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Abstract001

Large language models often suffer from lan-002
guage confusion, a phenomenon where re-003
sponses are partially or entirely generated in un-004
intended languages. This can critically impact005
user experience in low-resource settings. We006
hypothesize that conventional supervised fine-007
tuning exacerbates this issue because the soft-008
max objective focuses probability mass only009
on the single correct token but does not explic-010
itly penalize cross-lingual mixing. Interestingly,011
by observing loss trajectories during the pre-012
training phase, we observe that models fail to013
learn to distinguish between monolingual and014
language-confused text. Additionally, we find015
that ORPO, which adds penalties for unwanted016
output styles to standard SFT, effectively sup-017
presses language-confused generations even at018
high decoding temperatures without degrad-019
ing overall model performance. Our findings020
suggest that incorporating appropriate penalty021
terms can mitigate language confusion in low-022
resource settings with limited data.023

1 Introduction024

Scaling large language models has empirically025

delivered substantial gains in multilingual capa-026

bilities (Hurst et al., 2024; Cohere et al., 2025;027

Yang et al., 2025), among diverse tasks such as028

machine translation (Alves et al., 2024), summa-029

rization (Forde et al., 2024), and reasoning (Son030

et al., 2025). However, despite their growing capa-031

bilities, LLMs often suffer from language confu-032

sion (Marchisio et al., 2024), a failure mode in033

which outputs inadvertently blend multiple lan-034

guages. This hampers real-world deployment of035

LLM systems as even the most minor language036

confusion may be critical to user experience (Son037

et al., 2024a). This issue is particularly pronounced038

in low-resource settings, where limited supervision039

exacerbates cross-lingual interference (Arivazha-040

gan et al., 2019; Wang et al., 2023).041

However, little research has been conducted on 042

why such behavior may happen. In this work, we 043

draw inspiration from the training methodology 044

proposed by Hong et al. (2024), which applies su- 045

pervised fine-tuning to preferred generation styles 046

while imposing penalties on disfavored ones. 047

In this work, we conduct two experiments to in- 048

vestigate whether language confusion arises from 049

the absence of an explicit penalty against unde- 050

sired languages. First, we track the training loss 051

of two model families (SmolLM2 (Allal et al., 052

2025) and OLMo2 (OLMo et al., 2024)) through- 053

out their pretraining process. In both cases, the loss 054

of language-confused outputs steadily decreases 055

over time, indicating that the models do not learn 056

to disfavour confused generations. Additionally, by 057

using ORPO (Hong et al., 2024) for an additional 058

three epochs of fine-tuning, we show that introduc- 059

ing an explicit penalty against unwanted languages 060

effectively restricts cross-lingual mixing. 061

2 Preliminaries 062

2.1 Related Works 063

What is language confusion? Language con- 064

fusion, also known as language mixing or code- 065

mixing, occurs when two or more languages are 066

mixed within a single utterance (Chen et al., 2024; 067

Yoo et al., 2024). This phenomenon is particularly 068

prevalent in low-resource languages (Arivazhagan 069

et al., 2019) and even appears in state-of-the-art 070

models (u/VictorRM, 2025). Diverse discussions 071

have emerged regarding language confusion. Al- 072

though it can sometimes support multilingual trans- 073

fer (Wang et al., 2025), mixed-language responses 074

may undermine user experience, as they can be per- 075

ceived as signs of incompetence (Son et al., 2024a). 076

2.2 Quantifying Language Confusion 077

Measuring language confusion may be challenging 078

as LLM-Judges (Zheng et al., 2023) remain unre- 079
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liable (Son et al., 2024b), and rule-based methods080

cannot distinguish genuine confusion from legiti-081

mate uses of foreign-language (e.g., abbreviations).082

In this work, we leverage two metrics Word Pre-083

cision Rate (WPR) and Language Precision Rate084

(LPR) proposed by Marchisio et al. (2024).085

WPR computes the overall fraction of tokens086

produced in the target language, offering a granular087

view of how consistently a model sticks to one088

language. Where T =
⋃N

i=1 Ti is the set of all089

valid tokens across N outputs WPR is defined as:090 ∣∣{ t ∈ T : is_Korean(t)}
∣∣

|T |
(1)091

LPR counts the proportion of sentences in which092

at least 90 % of tokens belong to the target lan-093

guage, thereby penalizing any cross-lingual intru-094

sions. Given I(·) is the indicator function and si095

the i-th sentence LPR is defined as:096

1

N

N∑
i=1

I
(∣∣{ t ∈ si : is_Korean(t)}

∣∣∣∣{ t ∈ si : is_valid(t)}
∣∣ ≥ 0.9

)
(2)097

Additionally, as noted above, rule-based metrics098

alone cannot distinguish true language confusion099

from minor lexical variations, such as numerals,100

named entities, or common loanwords. Therefore,101

alongside WPR and LPR, we also report the propor-102

tion of responses with WPR and LPR exceeding 0.9.103

Empirically, we observe that many such responses104

remain perfectly acceptable sentences containing105

a few legitimate English terms. For examples with106

varying WPR and LPR levels of sentences, see Ap-107

pendix D.108

3 Experimental Setup109

3.1 Dataset Preperation110

To facilitate pairwise preference learning, we con-111

structed instruction-centered triplet datasets. Each112

triplet comprises a Korean prompt (input), a fully113

Korean response (chosen), and an alternative re-114

sponse exhibiting code-mixing or full unexpected115

language (rejected).116

We construct three multilingual datasets based117

on existing Korean corpora, each designed to rep-118

resent a different form of language confusion. The119

OIG dataset (LAION, 2022; Heegyu, 2023) and120

HC3 dataset (Guo et al., 2023; Na, 2023) pair121

Korean prompts with rejected responses written122

entirely in English. In contrast, the KoAlpaca123

Figure 1: Dataset structure (OIG, Chosen-Rejected pair)

dataset (Beomi, 2023) introduces more nuanced 124

confusion by synthetically injecting translated En- 125

glish or Chinese tokens into Korean outputs, re- 126

sulting in code-mixed responses. Additional pre- 127

processing and filtering steps are described in Ap- 128

pendix A. 129

3.2 Experiment Setup 130

We fine-tuned two publicly available instruction- 131

tuned language models—SmolLM2-1.7B (Allal 132

et al., 2025) and OLMo2-7B (OLMo et al., 2024), 133

selected for their ability to generate Korean text 134

among lightweight open source models. Detailed 135

training configurations are provided in Appendix B. 136

3.3 Evaluation Protocol 137

We evaluate three model variants: Base, the origi- 138

nal instruction-tuned model; SFT, supervised fine- 139

tuned on Korean prompt–response pairs from the 140

OIG dataset; and ORPO, fine-tuned using Odds Ra- 141

tio Preference Optimization, on the same dataset. 142

4 Main Results 143

Prior work shows LLMs default to high-frequency, 144

dominant-language tokens when uncertain, causing 145

language confusion (Marchisio et al., 2024). We 146

hypothesize that the standard next-token prediction 147

objective exacerbates this bias: softmax focuses 148

probability mass on the correct token but does not 149

explicitly penalize cross-lingual mixing. 150

4.1 Loss-Based Diagnostic: Do LLMs Penalize 151

Language Mixing? 152

We begin with the observation that, during pretrain- 153

ing, neither SmolLM2 (Allal et al., 2025) model 154

learns to penalize language confusion, as shown by 155

their loss trajectories in Figure 2. 156

In principle, a model that internalizes a robust lin- 157

guistic preference should learn to assign lower loss 158

to coherent Korean-only generations while preserv- 159

ing relatively higher loss for language-confused 160
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Model SmolLM2-1.7B OLMo2-7B

Temperature 0.7 1.0 1.2 0.7 1.0 1.2

Base ORPO Base ORPO Base ORPO Base ORPO Base ORPO Base ORPO

Metric

WPR > 0.9 ratio 96.1% 100.0% 94.3% 100.0% 81.4% 100.0% 96.3% 99.8% 91.8% 99.9% 7.5% 99.0%
LPR > 0.9 ratio 92.6% 99.9% 88.5% 100.0% 71.2% 99.9% 71.2% 99.7% 46.0% 99.8% 0.5% 96.8%
Average WPR 0.9821 0.9999 0.9696 1.0 0.8953 0.9999 0.9818 0.9998 0.9576 0.9998 0.6799 0.9962
Average LPR 0.9681 0.9996 0.9496 1.0 0.8434 0.9999 0.9379 0.9992 0.8684 0.9995 0.3044 0.9881

Table 1: Comparison of SmolLM2 and OLMo2 models across temperatures (Base vs. ORPO). All metrics are
higher-is-better: higher values indicate stronger language consistency.

Figure 2: Average loss for monolingual and code-mixed
responses across training tokens (SmolLM2)

outputs. Contrary to expectations, we observe a161

monotonic decrease in loss for both chosen and162

rejected responses. This trend may suggest that, in163

the absence of explicit preference signals, models164

eventually learn to prefer any sequence of tokens165

they have seen during training, without distinguish-166

ing linguistically coherent and code-mixed outputs.167

Such behavior persists up to 7B scale, suggesting168

that model size alone cannot resolve the issue. See169

Appendix C for results of OLMo2 models (OLMo170

et al., 2024).171

4.2 Generation-level evaluation: WPR and172

LPR Comparison173

To evaluate the effectiveness of preference-based174

tuning method, we compare the generation per-175

formance of the Base and ORPO-tuned models176

using WPR and LPR under varying decoding tem-177

peratures. Each model generated responses for the178

same set of 1,000 prompts, repeated three times per179

prompt, and all reported scores are averaged across180

the three generations.181

As summarized in Table 1, we observe the fol-182

lowing trends:183

• ORPO-tuned models consistently outper-184

form the base-instruct models, achieving185

near-perfect WPR and LPR even at high tem-186

perature settings (up to 1.2).187

• Temperature significantly impacts the Base 188

models, with LPR dropping below at temper- 189

ature 1.2, indicating severe language confu- 190

sion in the absence of preference-based fine- 191

tuning. 192

5 Additional Results 193

5.1 Comparison with other fine-tuning 194

methods 195

To assess how ORPO compares to other common 196

fine-tuning paradigms, we conducted additional ex- 197

periments using SFT under identical conditions. 198

The results are summarized in Appendix E for 199

SmolLM2 and OLMo2, respectively. 200

We observe that across both model families, 201

ORPO consistently achieves strong WPR and LPR 202

scores, matching or slightly outperforming SFT. 203

To further investigate whether preference-based 204

learning offers additional internal modeling advan- 205

tages, we conduct a loss-based diagnostic analy- 206

sis on the evaluation subset HC3 and compare the 207

loss between original (chosen) and code-mixed (re- 208

jected) responses. 209

Figure 3: Loss of SmolLM2 models across tuning meth-
ods for both original and code-mixed responses

We found that ORPO assigns significantly 210

higher loss to code-mixed responses compared to 211

other models, indicating stronger penalization of 212
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Figure 4: Loss of OLMo2 models across tuning methods
for both original and code-mixed responses

language-confused outputs. On the HC3 evaluation213

set, ORPO yields an average delta loss of 0.8379 for214

SmolLM2 and 4.6778 for OLMo2-both the high-215

est among all fine-tuning methods. This increased216

separation suggests that ORPO fine-tuning more ef-217

fectively reinforces internal preferences for linguis-218

tically consistent outputs, enabling more reliable219

discrimination between coherent and code-mixed220

generations (Figure 3, Figure 4).221

This increased separation indicates that ORPO222

fine-tuning more effectively reinforces internal223

preferences for linguistically consistent outputs,224

allowing the model to more reliably discriminate225

between coherent and code-mixed generations.226

5.2 Does ORPO Fine-Tuning Lead to a227

Trade-off in General QA Capabilities?228

We assess whether ORPO fine-tuning, which miti-229

gates language confusion, adversely affects general230

performance by evaluating our models on the HAE-231

RAE benchmark—a Korean multiple-choice QA232

suite covering general knowledge, history, loan-233

words, and rare vocabulary (Son et al., 2023). We234

omit more challenging reasoning benchmarks due235

to the modest size of our models and limited train-236

ing data. We compared three models: Base, SFT,237

and ORPO fine-tuned model.238

Figure 5 reports the average accuracies in all sub-239

categories for the SmolLM2 and OLMo2 models.240

The results show no statistically significant perfor-241

mance degradation in the three tuning methods.242

These findings suggest that neither SFT nor243

ORPO introduces measurable harm to general QA244

capabilities. In particular, ORPO maintains general245

QA performance while reducing language confu-246

sion.247

Figure 5: Average accuracy across training methods for
SmolLM2 and OLMo2.

6 Conclusion 248

This work investigates why language confusion 249

may happen in multilingual large language models 250

and empirically show that penalizing unwanted lan- 251

guages via preference optimization is effective in 252

restricting such behavior. By analyzing loss trajec- 253

tories and generation-level evaluations, we demon- 254

strate that preference-based tuning could enhance 255

the model’s ability to distinguish between original 256

and language-confused outputs while preserving 257

general question answering capabilities. These re- 258

sults suggest that incorporating explicit preference 259

signals during fine-tuning provides a promising 260

approach for reinforcing linguistic fidelity in multi- 261

lingual settings. Moreover, we suggest that future 262

research may explore the use of penalty terms even 263

in the pretraining phase to penalize language con- 264

fusion earlier in the training effectively. 265
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A Dataset preprocessing390

KoAlpaca (Code-Mixed Rejection): We con-391

structed this dataset using the KoAlpaca1 corpus,392

a Korean instruction-tuning dataset modeled after393

Stanford Alpaca (Beomi, 2023). Each triplet con-394

tains a Korean instruction, a fully Korean chosen395

response, and a synthetically generated code-mixed396

rejected response, created by injecting randomly397

selected English or Chinese tokens—translated via398

the Google Translate API—at random word-level399

positions.400

To ensure high linguistic purity, we applied the401

following preprocessing steps: (1) filtered for cho-402

sen responses written entirely in Korean, guarantee-403

ing a Word-level Pass Rate (WPR) and Line-level404

Precision Rate (LPR) of 1.0; (2) applied string nor-405

malization (e.g., whitespace trimming) to instruc-406

tion, chosen, and rejected fields.407

OIG (Fully English Rejection): We constructed408

a triplet dataset using the OIG-small-chip2-ko2409

corpus, which contains over 210K instruction-410

response pairs translated into Korean from the orig-411

inal English OIG dataset (LAION, 2022). Each412

triplet comprises a Korean instruction, a fully Ko-413

rean chosen response, and a fully English rejected414

response. This dataset is designed to evaluate the415

model’s ability to distinguish between clearly sepa-416

rated linguistic domains.417

We applied several preprocessing steps to im-418

prove data quality: (1) applied string normaliza-419

tion; (2) filtered for chosen responses containing420

only Korean text; (3) discarded samples where the421

length ratio between chosen and rejected responses422

1https://huggingface.co/datasets/beomi/
KoAlpaca-v1.1a

2https://huggingface.co/datasets/heegyu/
OIG-small-chip2-ko

fell outside the range of 0.4 to 2.0; (4) removed 423

duplicate instructions. Each dataset contains ap- 424

proximately 10,000 instruction-response triplets, 425

selected for linguistic consistency and diversity. 426

HC3 (Fully English Rejection): We also 427

constructed quadruplet dataset using the HC3- 428

ko3, which contains 24.3k insruction-response by 429

human-response by GPT triplet translated into Ko- 430

rean from the original English HC3 dataset(Guo 431

et al., 2023)(Na, 2023). 432

Each quadruplet comprises a Korean instruction, 433

fully Korean chosen response, fully English re- 434

jected response, and a confusion response where 435

eight Korean words are randomly selected and re- 436

placed with their translations into either English or 437

Chinese. This dataset is designed to evaluate the 438

model’s generalizing ability to use the unseen data 439

during training. 440

We applied several preprocessing steps to im- 441

prove data quality: (1) applied string normaliza- 442

tion; (2) filtered for chosen responses containing 443

only Korean text; (3) discarded samples where the 444

length ratio between chosen and rejected responses 445

fell outside the range of 0.4 to 2.0; (4) removed 446

duplicate instructions. (5) removed responses ex- 447

hibiting generation failures caused by the language 448

model, such as repeated phrases or malformed out- 449

puts due to server errors. 450

B ORPO Training Configuration 451

Table 2 outlines the training configuration used 452

for ORPO fine-tuning. Both SmolLM2-1.7B and 453

OLMo-2-1124-7B were trained for 3 epochs with a 454

global batch size of 128. ORPO’s weighting coeffi- 455

cient β was set to 0.1 across experiments, and train- 456

ing was performed using the DeepSpeed ZeRO-2 457

framework. 458

Parameter SmolLM2-1.7B OLMo-2-1124-7B

GPUs A6000 × 1 H100 × 2
Max sequence length 8192 4096
Micro batch size 8 8
Gradient accumulation 16 8
Global batch size 128 128
Training steps 223 223
Epochs 3 3
ORPO β value 0.1 0.1
Optimizer AdamW AdamW
Framework DeepSpeed ZeRO-2 DeepSpeed ZeRO-2

Table 2: Training configuration for ORPO fine-tuning on
SmolLM2 and OLMo2 models.

3https://huggingface.co/datasets/nayohan/
HC3-ko

6

https://huggingface.co/datasets/beomi/KoAlpaca-v1.1a
https://huggingface.co/datasets/beomi/KoAlpaca-v1.1a
https://huggingface.co/datasets/heegyu/OIG-small-chip2-ko
https://huggingface.co/datasets/heegyu/OIG-small-chip2-ko
https://huggingface.co/datasets/nayohan/HC3-ko
https://huggingface.co/datasets/nayohan/HC3-ko


C Average loss tracking for OLMo2459

Figure 6: The average loss of original (monolingual)
and code-mixed responses across training checkpoints
for OLMo2 models.

To assess whether the failure to penalize lan-460

guage confusion generalizes across architectures,461

we also tracked the loss trajectories of OLMo2462

models (1B and 7B) throughout pretraining. As463

shown in Figure 6, both original and code-mixed464

responses exhibit a steady decrease in loss, mir-465

roring the trend observed in SmolLM2 (Figure 2).466

Despite the increase in model capacity, the gap be-467

tween two responses does not widen. This suggests468

that pretraining objectives alone may not induce469

meaningful linguistic preferences.470

D Samples of different levels of WPR and471

LPR472

To enable interpretable comparisons across models,473

we report the proportion of generations that exceed474

a threshold of 0.9 for both WPR and LPR. This475

threshold was chosen based on manual inspection476

by a native Korean speaker (the author), who re-477

viewed a large number of generated samples and478

heuristically identified 0.9 as a practical cutoff that479

separates mostly monolingual responses from visi-480

bly code-mixed ones. This level of tolerance allows481

minor lexical variation (e.g., loanwords, numerals)482

while still maintaining strong target-language align-483

ment. It also aligns with real world expectations484

for language consistency, particularly in Korean,485

where partial foreign-language inclusions are not486

uncommon but still undesirable in many contexts.487

Representative examples illustrating this threshold-488

ing effect are shown in Figure 7.489

E Generation-level evaluation: other 490

models 491

In addition to ORPO, we evaluate two other fine- 492

tuning methods: Supervised Fine-Tuning (SFT) 493

and Direct Preference Optimization (DPO). 494

Direct Preference Optimization (DPO) is a 495

preference-based tuning method that trains models 496

to maximize the log-probability margin between 497

preferred and rejected responses (Rafailov et al., 498

2023). 499

Table 3 describes the detailed training configura- 500

tions used for DPO fine-tuning. All settings were 501

selected to closely match the original DPO imple- 502

mentation where possible. 503

Table 4 and Table 5 summarize the generation 504

performance of SmolLM2 and OLMo2 models 505

across three decoding temperatures (0.7, 1.0, 1.2) 506

and three fine-tuning methods (SFT, DPO, ORPO). 507

We report four key metrics: the ratio of outputs 508

with WPR > 0.9, LPR > 0.9, average WPR, and 509

average LPR. 510

Across both model families, ORPO consistently 511

outperforms DPO and performs on par with or 512

slightly better than SFT in terms of language fi- 513

delity. In particular, ORPO maintains near-perfect 514

WPR and LPR values across all temperature set- 515

tings, while DPO exhibits significant degradation at 516

higher temperatures, most notably on the OLMo2 517

model at temperature 1.2 (LPR > 0.9 ratio drops to 518

52.1%. SFT remains relatively stable across tem- 519

peratures. 520

Parameter SmolLM2-1.7B (DPO) OLMo-2-7B (DPO)

GPUs A6000 × 1 A6000 × 4
Dataset size 10,000 10,000
Max sequence length 8192 4096
Micro batch size 8 4
Gradient accumulation 8 4
Global batch size 64 64
Training steps 467 467
DPO β value 0.1 0.1
Optimizer RMSprop RMSprop
Framework DeepSpeed ZeRO-2 DeepSpeed ZeRO-2

Table 3: DPO training configuration for SmolLM2 and
OLMo2 models.
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Table 4: Performance of SmolLM2 across temperature and tuning methods (SFT, DPO, ORPO)

Metric temperature = 0.7 temperature = 1.0 temperature = 1.2

SFT DPO ORPO SFT DPO ORPO SFT DPO ORPO

WPR > 0.9 ratio 99.9% 94.2% 100.0% 100.0% 96.9% 100.0% 100.0% 95.0% 100.0%
LPR > 0.9 ratio 99.8% 92.3% 99.9% 100.0% 94.4% 100.0% 99.7% 90.5% 99.9%
Average WPR 0.9998 0.9760 0.9999 1.0000 0.9857 1.0000 0.9998 0.9823 0.9999
Average LPR 0.9994 0.9705 0.9996 1.0000 0.9780 1.0000 0.9993 0.9629 0.9999

Table 5: Performance of OLMo2 across temperature and tuning methods (SFT, DPO, ORPO)

Metric temperature = 0.7 temperature = 1.0 temperature = 1.2

SFT DPO ORPO SFT DPO ORPO SFT DPO ORPO

WPR > 0.9 ratio 99.8% 99.5% 99.8% 99.9% 99.4% 99.9% 99.1% 94.4% 99.0%
LPR > 0.9 ratio 99.7% 92.7% 99.7% 99.8% 89.4% 99.8% 96.8% 52.1% 96.8%
Average WPR 0.9996 0.9959 0.9998 0.9998 0.9938 0.9998 0.9970 0.9649 0.9962
Average LPR 0.9988 0.9847 0.9992 0.9997 0.9791 0.9995 0.9915 0.8897 0.9881
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Figure 7: Samples of generated responses at varying WPR and LPR levels
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