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ABSTRACT

Implicit Neural Representation (INR) has revolutionized scene representation
using neural networks, offering high-quality rendering and memory efficiency.
Leveraging a neural network as a continuous function, INR learns to render images
through reconstruction loss, including RGB images for 3D scenes using multi-
view images. In this project, we tackle the problem of style transfer for implicit
neural representations. Existing methods for INR style transfer rely on test-time
operations using fixed network parameters, leading to limited diversity in stylized
images. To overcome these limitations, we propose an enhanced style transfer ap-
proach for INR. Our framework introduces generalizable INRs for style transfer,
incorporating a ViT-based hypernetwork to predict instance-specific features for
an MLP. By leveraging Adaptive Instance Normalization (AdaIN), we fuse con-
tent and style features, providing the MLP with the necessary inputs. We evaluate
the effectiveness of our generalizable style transfer INR framework on the Ima-
geNette dataset, demonstrating its ability to produce high-quality stylized images.

1 INTRODUCTION

Implicit Neural Representation (INR) has emerged as a novel approach for scene representation
using neural networks. By treating a neural network, typically a Multi-Layer Perceptron (MLP), as
a continuous function mapping pixel coordinates to color or features, INR learns to render images
through reconstruction loss. Moreover, leveraging multi-view images and corresponding camera
extrinsics, INR can render RGB images for 3D scenes (Mildenhall et al., 2021). With high-quality
rendering and memory efficiency, INR offers a promising solution for scene representation.

Style transfer, a well-studied problem in computer vision, aims to apply a desired style to an image
while preserving its underlying content structure. This project focuses on style transfer for implicit
neural representations. Existing style transfer methods for INR typically involve test-time operations
using the original content and style images, but they suffer from limited diversity in the resulting
stylized images. Once the network parameters are optimized at test time, they remain fixed and
generate the same stylized images for a given style.

To address these limitations, we propose an improved approach for style transfer in INR. We intro-
duce a framework for style transfer of generalizable INRs. By adopting a ViT-based hypernetwork,
we can predict instance-specific features to be given to an MLP. We utilize AdaIN proposed in
(Huang & Belongie, 2017) to fuse content features and style features to be given to the MLP. With
offline training of the framework, the MLP generates stylized images from unseen images without
test-time optimization. Our generalizable style transfer INR framework can generate stylized images
from unseen images on ImageNette dataset.

2 RELATED WORK

2.1 STYLE TRANSFER

The task of style transfer, which finds its roots in non-photo-realistic rendering and texture synthesis,
has evolved significantly over time. Traditionally, style transfer involved formulating an optimiza-
tion problem that simultaneously minimizes content and style loss based on the content and style
images. While this approach has yielded satisfactory results, there is ongoing research to further
improve the quality of style transfer.
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One avenue of improvement lies in learning-based methods that leverage offline training on pre-
defined datasets and utilize pre-trained networks. These methods offer greater flexibility and control
over the style transfer process. For example, techniques such as adaptive instance normalization
(AdaIN) have been introduced to align the mean and variance of content features with those of style
features, facilitating more effective style transfer (Huang & Belongie, 2017). Other approaches
explore reshuffling-based style loss (Gu et al., 2018) or employ whitening and coloring transforms
(Li et al., 2017) to enhance stylization outcomes. Consistency in stylization without introducing
unwanted artifacts has also been a focus of research (Li et al., 2018).

These learning-based methods build upon the foundation of traditional style transfer techniques, of-
fering improved results and greater flexibility in controlling the style transfer process. By harnessing
the power of pre-trained, frozen networks, these methods open up new avenues for creative expres-
sion and enable more sophisticated and refined style transfer applications. Ongoing research in this
field continues to push the boundaries of what is possible, aiming to deliver even more compelling
and realistic style transfer results.

2.2 IMPLICIT NEURAL REPRESENTATION (INRS)

Implicit Neural Representation (INR) is a powerful paradigm that leverages neural networks to cap-
ture intricate structures in continuous data, such as images, audio, and 3D objects. Initially, INRs
utilized techniques like Fourier features and sinusoidal activations in coordinate-based MLPs to
address spectral bias. These approaches have demonstrated impressive capabilities and have been
applied in various domains, including data compression and rendering.

One notable application of INR is Neural Radiance Fields (NeRFs), which represent 3D scenes or
objects as continuous functions. By training a neural network on multiple views of a scene, NeRFs
can reconstruct the scene’s geometry and render novel views from any camera position. While
NeRFs excel at single-data representation, conventional INRs have limitations when it comes to
accommodating multiple sets of data within a single network. Representing additional data points
would typically require training a separate neural network from scratch.

To overcome this limitation, we propose a novel and generalizable INR framework. Our approach
enables the representation of diverse datasets within a unified network, eliminating the need for
training separate networks for each dataset. This advancement has significant implications for syn-
thesizing and manipulating complex, multi-modal data. It provides a more efficient and scalable
solution, opening up new possibilities for applications ranging from multi-domain style transfer to
data-driven simulations. Our research contributes to the advancement of INRs, facilitating more
versatile and flexible representations of continuous data.

2.3 GENERALIZABLE INRS

In order to address the challenge of representing diverse scenes without the need for training from
scratch, researchers have introduced the concept of generalizable Implicit Neural Representations
(INRs). These INRs are designed to learn modulated weights for neural networks, allowing them to
be easily adapted to previously unseen data. Building upon the notion of modulation (Perez et al.,
2018), alternative forms of INRs (Park et al., 2019; Mescheder et al., 2019) incorporate additional
latent vectors that share weights across the dataset.

Taking inspiration from the concept of hypernetworks (Ha et al., 2016), several recent approaches
(Dupont et al., 2022; Kim et al., 2022a; Szatkowski et al., 2022) leverage hypernetworks to predict
modulated weights for Multi-layer Perceptrons (MLPs). This enables the extraction of common
representations across the dataset. Notably, (Kim et al., 2022a) introduced a transformer-based hy-
pernetwork specifically designed to predict modulated weights for coordinate-based MLPs, making
them suitable for representing audio, images, and 3D views.

In our work, we adopt a transformer-based hypernetwork to predict weights for both content images
and style images. By leveraging the capabilities of the hypernetwork, we aim to effectively capture
the necessary information for style transfer while ensuring the flexibility and adaptability of the
generalizable INRs.
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Figure 1: Our overall architecture.

3 PROPOSED METHOD

In this Section, we discuss the architecture design of our generalizable INR stye transfer and training
scheme. In Section 3.1, we analyze the limitations of extending the previous approach (Kim et al.,
2022b) for INR style transfer. Then, in Section 3.2, we describe the proposed architecture for
generalizable INRs and how to train this network efficiently for stye transfer. In Section 3.3 we
describe the training strategy of our proposed framework.

3.1 MOTIVATING EXPERIMENTS

The work by Kim et al. (2022) Kim et al. (2022b) introduced a style transfer approach for Implicit
Neural Representations (INR) using a test-time training strategy. Their framework employs a Multi-
Layer Perceptron (MLP) to generate stylized images based on a given content image and style image.

To achieve style transfer, they interpolate the latent vectors of the content image, denoted as zc, and
the style image, denoted as zs, resulting in an interpolated latent vector z′ = αzc + (1 − α)zs,
where α controls the degree of interpolation. This interpolated latent vector is then fed into the
MLP along with positional encoded coordinates, and it encodes RGB values with single MLP for
rendering. Compared with conventional INR training, the rendered image is penalized to ensure
that the structure of the content image is preserved while transferring the style from the style image.
During test-time adaptation, the level of stylization applied to the content image, which is decoded
from INR, can be adjusted by α.

To generate the diverse stylized images, we first extend this framework in that it can encode both
single content image and multiple style images at the same time. After training the provided archi-
tecture, we conducted an evaluation to assess its performance during test time when encountering
unseen latent z inputs. In particular, the network was trained using a field image as the content image
and a spring image as the style image. Subsequently, we evaluated the network by applying fall or
winter styles while varying the alpha value. As depicted in Figure ??, our findings indicate that the
network exhibited deficiencies in accurately performing the desired stylization during test time and
encountered reconstruction issues as well.

The observed outcomes can be viewed as a natural result, considering the reliance on pixel-based
reconstruction loss during training. When presented with latent vectors that differ from the style
images seen during training, it highlights a specific limitation of the encoded INR model in terms of
its ability to generalize effectively.

In contrast, in this paper, we propose a style transfer framework based on generalizable INRs. Our
approach aims to overcome the limitations of previous methods by developing a more versatile and
adaptable style transfer system using INRs.
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3.2 PROPOSED ARCHITECTURE

The architecture of our proposed style transfer framework is depicted in Figure 1. It involves several
steps to transform a given content image and style image into stylized outputs.

To begin, the content image and style image are tokenized into content tokens and style tokens using
a Vision Transformer (ViT)-based hypernetwork (Dosovitskiy et al., 2020). This process allows us
to extract meaningful representations from the input images. The ViT-based hypernetwork takes
content tokens and learnable weight tokens as inputs and predicts content vectors. Similarly, it
predicts style vectors for style tokens and learnable weight tokens.

Next, the content feature Fc and the style feature Fs are combined using the coordinates (x, y) and
passed through an Adaptive Instance Normalization (AdaIN) layer (Huang & Belongie, 2017). The
AdaIN layer applies a style transfer operation to match the statistics of the content feature with those
of the style feature. It is expressed by the formula:

AdaIN(Fc, Fs) = σs
Fc − µc

σc
+ µs, (1)

where µc and µs represent the mean values of Fc and Fs respectively, and σc and σs represent their
standard deviations.

The output of the AdaIN layer is then passed through a Multi-Layer Perceptron (MLP), which per-
forms additional transformations and computations to generate the final stylized images. The MLP
takes the combined features as input and produces the rendered stylized images as output.

By following this architecture, we are able to achieve style transfer by leveraging the content and
style representations obtained from the ViT-based hypernetwork, and applying the AdaIN layer and
MLP for the final stylized image generation process.

3.3 TRAINING STRATEGY

To ensure the generalizability of Implicit Neural Representations (INRs), we employ a two-stage
training process. In the first stage, we pretrain both the Vision Transformer (ViT)-based hypernet-
work and the Multi-Layer Perceptron (MLP) simultaneously using the training dataset.

During this pretraining stage, we feed a single image as input to the network and pass it through
the AdaIN layer. It is important to note that in this stage, the AdaIN layer operates with the same
feature, meaning that the statistics of the feature are not altered by the AdaIN transformation. This
helps to maintain consistency and stability during the pretraining process.

Once the pretraining stage is completed, we freeze the parameters of the ViT-based hypernetwork,
as it has already learned to extract meaningful content and style representations. We then proceed to
finetune the remaining components of the framework using both content images and style images.

During the finetuning stage, we train the network to optimize the style transfer performance by
adjusting the parameters of the MLP. By using content images and style images together, the network
learns to combine the content features and style features through the AdaIN layer, generating stylized
outputs that preserve the structure of the content image while incorporating the style characteristics
of the style image.

This two-stage training approach allows us to effectively train generalizable INRs by initially pre-
training the network to learn meaningful representations and then fine-tuning it to specialize in style
transfer tasks using content and style images.

3.4 LOSS

Image reconstruction loss. At pertaining, we use image reconstruction loss to ensure model re-
constructs given image well. For given image x1, encoder E, and composed MLP INR, image
reconstruction loss can be formulated as

Lrecon =
∑

(i,j)∈H×W

||INR(i, j;Ec(x1))− x1(i, j)|| (2)
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where E(·) is hypernetwork, INR(·; c) is composed MLP, and x(i, j) are color value of image x at
coordinate (i, j).

Content loss. At second stage, We also have to ensure context have to be maintained in stylized im-
age xc7→s. We utilize VGG network to extract context information from content image and stylized
image.

Lcontent = ||V GG(xc7→s)− V GG(xc)|| (3)

Style loss. We additionally employ style loss to make stylized image have similar style with stylized
image. We define style loss similar to Kim et al. (2022b), by measuring L2 norm between gram
matrices G from style image and stylized image.

Lstyle = Ec1∼p(c1),s2∼q(s2)[||G(xc7→s)− G(xs)||] (4)

Total loss. Total loss is as follows:

Lstage1 = Lrecon (5)

Lstage2 = λcontentLcontent + λstyleLstyle (6)

where λcontent, λstyle are weights for each loss.

4 EXPERIMENTAL RESULTS

4.1 DATASETS

We utilize Imagenette(Howard) and WikiArt(Saleh & Elgammal (2015)) for universal style transfer.
We first tried to train our model on full dataset, but the model took an excessively long time to
converge. So, we randomly selected 1000 style images from WikiArt dataset and 1000 content
images from Imagenette dataset for training.

4.2 TRAINING DETAILS

We implement our model in Pytorch. We train our model with AdamKingma & Ba (2014) optimizer
with cosine annealing schedulingLoshchilov & Hutter (2016) with max learning rate 1e−4 for 2000
epochs at first stage. At second stage, we additionally train the model with Lstage2 for 500 epochs.
We also use Adam optimizer, cosine annealing scheduling with max learning rate 1e−4. Also, we
randomly select content and style image to ensure universal style transfer.

4.3 QUALITATIVE RESULTS

We show stylized image from our model and INR-st(Kim et al. (2022b)) in Figure.2. We can found
that stylized images from our model contain fine structure of content images and color similarity
from style images. INR-st also generates well-stylized images, but it generates unrealistic clouds
(3rd row in Figure 2) and flowers (4th row in Figures 2). However, our results show blurrier bound-
aries. It might come from universal style transfer training of our model, while INR-st only optimized
on one pair of content and style images. We also expect that our model could generate sharper styl-
ized images when we found more precise hyperparameters and longer training steps.

5 CONCLUSION

In conclusion, we have presented an improved approach for style transfer in Implicit Neural Repre-
sentations (INR), aiming to enhance the diversity and flexibility of stylized images. Our framework
utilizes a ViT-based hypernetwork to predict instance-specific features for an MLP, enabling fine-
grained control over the style transfer process. By incorporating Adaptive Instance Normalization
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Figure 2: Qualitave comparison between our model and INR-st(Kim et al. (2022b)). Note that INR-
st is optimized on one pair of content and style image, while our model generates stylized images
from various input content and style image pairs.

(AdaIN), we successfully fuse content and style features, providing the necessary inputs for gener-
ating stylized images. Experimental evaluations on the ImageNette dataset have demonstrated the
feasibility of our generalizable style transfer INR framework in producing stylized images. In the
future, we can extend this work by training arbitrary scale rendering to produce arbitrary scale style
transfer by utilizing the characteristics of INRs.
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