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ABSTRACT

In this article, we developed PhyloTransformer, a Transformer-based self-
supervised discriminative model, which can model genetic mutations that may
lead to viral reproductive advantage. We trained PhyloTransformer on 1,765,297
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequences to in-
fer fitness advantages, by directly modeling the nucleic acid sequence mutations.
PhyloTransformer utilizes advanced techniques from natural language processing
to enable efficient and accurate intra-sequence dependency modeling over the
entire RNA sequence. We measured the prediction accuracy of novel mutations
and novel combinations using our method and baseline models that only take
local segments as input. We found that PhyloTransformer outperformed every
baseline method with statistical significance. We also predicted the occurrence of
mutations in each nucleotide of the receptor binding motif (RBM) and predicted
modifications of N -glycosylation sites. We anticipate that the viral mutations
predicted by PhyloTransformer may identify potential mutations of threat to
guide therapeutics and vaccine design for effective targeting of future variants.

1 INTRODUCTION

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of Coron-
avirus disease 2019 (COVID-19). The unprecedented COVID-19 pandemic is one of three major
pathogenic zoonotic disease outbreaks caused by β-coronaviruses Cui et al. (2019); De Wit et al.
(2016). Severe acute respiratory syndrome coronavirus (SARS-CoV) emerged in 2002, infecting
8,000 people with a 10% mortality rate Patel et al. (2020); Hui et al. (2020). Middle East respiratory
syndrome coronavirus (MERS-CoV) emerged in 2012 with 2,300 cases and a 35% mortality rate
Graham & Baric (2010). SARS-CoV-2, emerged in 2019 with a mortality rate of 3.6% Baud et al.
(2020) and 219 million cases have been reported as of October 2021.

After the emergence of SARS-CoV-2 in late 2019, the virus exhibited relative evolutionary stasis for
approximately 11 months. Since the end of 2020, SARS-CoV-2 has consistently acquired approx-
imately two mutations per month Worobey et al. (2020); Duchene et al. (2020) resulting in novel
variants of concern (VOCs). As more individuals became vaccinated against SARS-CoV-2, the viral
evolution has been characterized by the emergence of sets of mutations, probably in response to the
changing immune profile of the human population. Currently, the main focus is to identify critical
SARS-CoV-2 countermeasures, including vaccines, therapeutics, and diagnostics.

Since coronaviruses have proofreading functions Smith et al. (2013), most mutations in the SARS-
CoV-2 genome are expected to comprise neutral amino acid changes with little or no impact on
fitness advantages MacLean et al. (2020). However, the evolutionary diversity introduced by a
small minority of mutations may impact the virus phenotype and promote virus fitness. Some of
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the SARS-CoV-2 mutations displayed positive selection with improved pathogenicity, infectivity
Yurkovetskiy et al. (2020), transmissibility Hou et al. (2020); Volz et al. (2021), angiotensin con-
verting enzyme 2 (ACE2) binding affinity Starr et al. (2020), or antigenicity Thomson et al. (2021).
In addition, other SARS-CoV-2 mutations introduced an optimized trade-off to improve overall fe-
cundity. Heavily mutated lineages have also been reported, such as the lineage B.1.1.298, which
harbors the following four amino acid substitutions: ∆H69–V70, Y453F, I692V, and M1229I Fon-
ager et al. (2020). Some mutations may amplify other mutations, providing an improved fitness
advantage. For example, the combination of E484K, K417N, and N501Y results in the highest de-
gree of conformational alterations compared to either E484K or N501Y alone Nelson et al. (2021).
Accumulating evidence suggests that mutations which require immediate attention are circulating,
which highlights the urgent need to develop effective prevention and treatment strategies.

Figure 1: PhyloTransformer prediction
paradigm.

While vaccination has been the most important and effec-
tive preventive measure, it is also facing challenges. The
mRNA vaccine BNT162b2 (Pfizer–BioNTech) has 95% effi-
cacy against COVID-19 Polack et al. (2020). However, the
estimated effectiveness of the vaccine against the B.1.1.7 vari-
ant was 89.5% (95% CI, 85.9 to 92.3) at 14 or more days af-
ter the second dose and 75.0% (95% CI, 70.5 to 78.9) against
the B.1.351 variant Abu-Raddad et al. (2021) at 14 or more
days after the second dose. Several studies have characterized
multiple mutations that change the antigenic phenotype. Thus,
these studies elucidate how these mutations affect antibody-
mediated neutralization. Variants containing these mutations
are potentially highly virulent and have received much recent
attention. However, it remains unknown whether more infec-
tious variants exist along with the likelihood that they will ap-

pear and transmit. Designing vaccines after a novel variant has emerged is not optimal because the
variant could potentially compromise existing vaccines and spread among the population. Thus,
more infections might generate further variants, leading to a never-ending pandemic.

In order to win the race against the rapidly evolving SARS-CoV-2, an intelligent system capable
of forecasting potential VOCs before they actually appear is urgently required. Therefore, in order
to infer fitness advantages, we proposed PhyloTransformer, which models constraints from natural
sequences, including long-range dependencies between positions. We hope that PhyloTransformer
can be used to predict novel mutations and novel combinations of mutations in SARS-CoV-2. Thus,
we anticipate that when variants of high consequence arise, existing vaccines based on PhyloTrans-
former predictions will have already been developed that target those strains.

2 RESULTS

We used the hCoV-19/Wuhan/WIV04/2019 sequence (WIV04) as our reference sequence, which
is the official reference sequence employed by GISAID (EPI ISL 402124). WIV04 represented
the consensus of several early submissions for the β-coronavirus responsible for COVID-19 Okada
et al. (2020), which was isolated by the Wuhan Institute of Virology from a clinical sample The
consensus sequence was obtained by de novo assembly Zhou et al. (2020). Based on WIV04, we
define a mutation as the change in a nucleotide at a particular position that is different from the
reference sequence. We define a mutation at a particular position that only occurs in the testing
set but does not occur within the training set as a novel mutation, which signifies a mutation that
is novel for the training set. We define all the novel mutations over an RNA sequence as a novel
combination, i.e., a combination of mutations that do not occur in the training data. The prediction
of novel mutations aims to predict single mutations, while the prediction of novel combinations aims
to predict a collection of single mutations that jointly occur in a mutated sequence.

The prediction accuracies of novel mutations and novel combinations were evaluated after the pre-
dicting models PhyloTransformer, Local Transformer, and ResNet-18 converged. In this section, we
first evaluated PhyloTransformer-generated predictions of novel mutations and novel combinations.
Next, we compared the accuracy of each prediction with those obtained from baseline models. We
then reported our predictions in the receptor binding motif (RBM). Finally, we predicted modifica-
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tions of N -glycosylation sites to help identify mutations associated with altered glycosylation that
might be favored during viral evolution. The technical overview is presented in Appendix C, and
the detailed model architecture and training process are reported in Appendix D.

2.1 PREDICTING NOVEL MUTATIONS

We evaluated the efficacy of PhyloTransformer to predict novel mutations and compared it to base-
line model predictions from three datasets with different sizes spanning different time frames. The
dataset details are described in Table 3 of Appendix C, and the prediction results are reported in
Box 1. For each mutation, we masked the raw nucleotide in the reference sequence and predicted
which nucleotide it would mutate to, and we selected the nucleotide with the highest confidence as
our prediction. The prediction accuracy is the proportion of positions that are predicted correctly
among all novel positions in the testing set. The prediction accuracy of random guessing is exactly
1/3. We evaluated the prediction efficacy averaged over 10 checkpoints after the convergence of
PhyloTransformer, Local Transformer, and our baseline models on three datasets.

We performed a two-sample z-test of proportions and found that for each model, the best prediction
accuracy of novel mutations from the large dataset among the 10 checkpoints significantly less than
PhyloTransformer. Local Transformer had the best performance among baseline models, but the
average over 10 checkpoints was still 11% lower than that of PhyloTransformer on the large dataset
with statistical significance, as shown in Box 1C.
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Box 1 — Prediction Accuracy. A. Prediction accuracy of novel mutations from the small, medium, and large
datasets based on PhyloTransformer and the best baseline methods. B. Prediction accuracy of novel com-
binations trained with the small, medium, and large datasets based on PhyloTransformer and the best base-
line methods. The accuracy improvement for each indicated model was calculated based on dividing the
number of correct predictions by the expected number of correct random guesses. C. Prediction accuracy
of PhyloTransformer–and baseline method–generated predictions of novel mutations and novel combinations.
Sig. Phylo: p-value with respect to PhyloTransformer, compared to random guessing resulted in an accuracy of
0.26% with an SD = 0.012%. Sig. Local: p-value with respect to Local Transformer.

2.2 PREDICTING NOVEL COMBINATIONS

If a sequence in the testing set does not exist in the training set, we compared it to the reference
sequence, then masked the mutated positions and generated predictions at these positions. If the
model predicts all the mutations correctly in this sequence, we say that it predicted a novel combi-
nation correctly. The accuracy of predicting novel combinations is the proportion of the number of
sequences whose combinations are predicted correctly to all the sequences in the testing set.

The difficulty of predicting novel combinations changes as the size of the dataset changes, so we
measure our prediction efficacy by accuracy improvement, which is defined as the following:

Accuracy improvement :=
Accuracy of the model

Accuracy of random guessing
.

For the small dataset, there were 2.26 mutations on average with a standard deviation (SD) = 5.06;
for the medium dataset, there were 3.06 mutations on average with an SD = 2.56; and for the large
dataset, there were 8.75 mutations on average with an SD = 2.87. For the small dataset, random
guessing resulted in an accuracy of 13.30% with an SD = 1.12%; for the medium dataset, random
guessing resulted in an accuracy of 5.42% with an SD = 0.12%; and for the large dataset, random
guessing resulted in an accuracy of 0.26% with an SD = 0.012%. The predicted results are summa-
rized in Box 1B, where the accuracy improvement value was defined as follows: given the dataset
(small, medium, or large), take the number of correct predictions generated by the indicated model
and divide that value by the expected number of correct random guesses.
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We performed a two-sample z-test of proportions to determine the accuracy of predicting novel
combinations on the large dataset. The prediction accuracy of PhyloTransformer among the 10
checkpoints was higher than that generated by all of the baseline models with statistical signifi-
cance. Local Transformer was no longer the best baseline model, while ResNet-18 and random
forest outperformed Local Transformer for the task of predicting novel combinations.

2.3 PREDICTIONS IN THE SPIKE PROTEIN RBM

SARS-CoV-2 infects human cells by binding of the viral surface protein spike to its receptor
on human cells, the ACE2 protein. Because of its role in viral entry, the RBD is a domi-
nant determinant of zoonotic cross-species transmission. Although SARS-CoV-2 does not cluster
within SARS and SARS-related coronaviruses, the RBD of SARS-CoV and SARS-CoV-2 share
structural similarities, probably due to their shared zoonotic ancestry. This similarity implies
convergent evolution for improved binding to ACE2 between the SARS-CoV and SARS-CoV-
2 RBDs. Therefore, we focused our predictions on the spike protein RBD. The total length of
the SARS-CoV-2 spike protein is 1,273 amino acids, and its structural features are listed below:

In Amino Acid In Nucleotide
Loc. Ref. Pred. Loc. Ref. Pred.
488 C R 1461 T G T C G T
497 F S 1489 T T C T C C

Table 1: Prediction of spike protein RBM mutations.

The spike protein RBM comprises amino
acids 438 to 506. Yi et al. Yi et al. (2020)
compared the SARS-CoV-2 and SARS-
CoV RBD affinity for hACE2 by creat-
ing single amino acid substitution muta-
tions in the SARS-CoV and SARS-CoV-2
RBM sequences. The authors found that receptor binding was enhanced by introducing amino acid
changes at P499, Q493, F486, A475, and L455, which are all localized to the RBM. PhyloTrans-
former trained with the large dataset predicted only two mutations. The first mutation was predicted
at amino acid 488, changing it from C to R, which is closely adjacent to F486. The second mu-
tation was predicted at amino acid 497, changing it from F to S, once again right next to P499.
The close proximity of the introduced mutations and predicted mutations indicated that PhyloTrans-
former is potentially capable of capturing meaningful genetic phenomena and can generate effective
predictions. Our prediction results are reported in Table 1. We also reports the 20 novel mutations
predicted by the trained PhyloTransformer, the results are listed in Table 4 of Appendix F.

2.4 PREDICTION OF GLYCOSYLATION SITE MODIFICATIONS

Sites In Amino Acid In Nucleotide
Loc. Ref. Pred. Loc. Ref. Pred.

Glycosylation 122 N D 363 A A C G A C
Glycosylation 331 N D 990 A A T G A T
Glycosylation 343 N S 1027 A A C A G C
N-mutation 422 N D 1263 A A T G A T
N-mutation 542 N D 1623 A A C G A C
N-mutation 542 N S 1624 A A C A G C
N-mutation 953 N D 2856 A A C G A C

Table 2: Predictions of glycosylation sites and N-mutations.
First three rows: predicted glycosylation site mutations. N-
mutation sites: other predictions with mutations of N.

The SARS-CoV-2 spike protein is
heavily glycosylated. Viral glyco-
sylation plays a vital role in viral
pathobiology, including antibody re-
sistance, target recognition, viral en-
try, and host immune modulation
Doores (2015). Glycosylation sites
facilitate immune evasion by shield-
ing epitopes from antibody neutral-
ization; therefore, they are under se-
lective pressure. Since glycosylation site modifications of the SARS-CoV-2 spike protein will likely
impact the overall activities of SARS-CoV-2 replication and escape from immune surveillance Hoff-
mann et al. (2021), we examined glycosylation site model predictions. We reported our results on
the N -glycosylation sites to help identify altered glycosylation mutations favored during viral evolu-
tion. PhyloTransformer predicted three mutations of the following glycosylation sites: N122, N331,
and N343. Table 2 shows the predicted mutations in the spike protein.

3 CONCLUSION

We developed the PhyloTransformer model, a deep neural network with a multi-headed self-
attention mechanism. PhyloTransformer was subjected to an advanced training methodology to
predict potential mutations. Our computational platform may be helpful in guiding the design of
therapeutics and vaccines for effective targeting of emerging SARS-CoV-2 VOCs, as well as novel
mutants of other viruses that may cause pandemics.
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A SIGNIFICANCE

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused an ongoing pandemic
infecting 219 million people as of October 19, 2021, with a 3.6% mortality rate. Since SARS-CoV-
2 rapidly evolves and presents an unprecedented threat, the ability to forecast viral mutations is
urgently required. Here, we developed PhyloTransformer, a self-supervised neural network model
that can predict potential SARS-CoV-2 variants of threat without relying on human labels. Phylo-
Transformer leverages modern deep learning techniques and is the first method that can effectively
model sparse mutations over the whole sequence of the SARS-CoV-2 spike protein. We hope that
PhyloTransformer may be used to forecast future mutations of SARS-CoV-2 for the development of
countermeasures against this public health threat.

B ETHICS STATEMENT

This research was based on the SARS-CoV-2 sequences in the Global Initiative for Sharing All
Influenza Data (GISAID) database (https://www.gisaid.org/). There is no human infor-
mation involved in the data. All the experiments were carried out on the RNA sequences of the
viruses and did not involve humans.

C TECHNICAL OVERVIEW

Our analysis pipeline was based on the 5/31/21 download of the Global Initiative for Sharing All
Influenza Data (GISAID) database (https://www.gisaid.org/) with a total of 1,765,297
genetic sequences. PhyloTransformer consists of two independently trained models based on the
SARS-CoV-2 spike sequence of 1,273 amino acids (3,819 nucleotides).

PhyloTransformer was trained with the full-length spike protein nucleotide sequence based on the
Transformer Vaswani et al. (2017) architecture using the Masked Language Model (MLM) pre-
training objective in Bidirectional Encoder Representations from Transformers (BERT) Devlin et al.
(2019). The Fast Attention Via positive Orthogonal Random features approach (FAVOR+) from Per-
former Choromanski et al. (2021) was utilized to accelerate attention computation. Transformer is
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Dataset Train Start Date Train End Date Test End Date Total Training Set Testing Set
Small 01/01/2020 03/20/2020 03/31/2020 24,951 12,475 12,476
Medium 01/01/2020 04/22/2020 09/30/2020 134,704 67,352 67352
Large 01/01/2020 02/17/2021 05/31/2021 1,765,297 882,648 882,649

In Training Set In Testing Set
VOC VOC Mutation Unmutated Other Mutation VOC Mutation Unmutated Other Mutation
K417Nβ 0.81% 99.05% 0.14% 1.67% 95.48% 2.85%
K417Tγ 0.14% 99.05% 0.81% 2.85% 95.48% 1.67%
T478Kδ 0.46% 99.48% 0.06% 3.46% 96.48% 0.06%
L452Rδ 2.38% 97.57% 0.05% 6.41% 93.40% 0.20%
E484Kα,β,γ 1.60% 98.33% 0.07% 8.78% 90.86% 0.36%
N501Yα,β,γ 18.51% 81.24% 0.24% 73.96% 25.89% 0.15%
D614Gα,β,γ,δ 96.44% 3.54% 0.02% 99.39% 0.60% 0.01%
P681Hα 19.34% 80.30% 0.36% 73.12% 24.39% 2.49%
P681Rδ 0.30% 80.30% 19.41% 2.47% 24.39% 73.14%

Table 3: Datasets used during training. The analysis was based on the GISAID database. Each dataset was
evenly split into training data and testing data while retaining their temporal order. Variant of Concern (VOC)
Mutation: the percentage of sequences with VOC mutations. Unmutated: the percentage of sequences that
remained the same as the reference sequence at the respective positions. Other Mutation: the percentage of
sequences with single amino acid mutations other than the amino acid mutations that characterize the VOCs.

a sequence model originally proposed for language processing tasks, and the MLM pre-training ob-
jective allows for multiple site predictions for phylogenetic applications. Meanwhile, the FAVOR+
technique reduces the time complexity for computing intra-genetic interactions that was initially
prohibitive with the naive Transformer model. Employing the FAVOR+ technique permits consid-
eration of global sequential information that accounts for the entire spike sequence.

PhyloTransformer, which functions as a global model, was trained with the full spike sequence. For
comparison of PhyloTransformer to models that only utilize local information, we segmented each
spike protein nucleotide sequence into 3,819 sections with a length of 15, while filtering out the repe-
titions. Next, we trained local models using various popular machine learning algorithms, including
the standard Transformer architecture and ResNet-18, as well as classical methods including multi-
layer perceptron (MLP), logistic regression, KNN, random forest, and gradient boosting. We mod-
eled the full spike sequence by integrating FAVOR+ and MLM techniques into PhyloTransformer to
reduce both time and spatial complexity to a linear extent; otherwise, the full spike sequence would
be computationally prohibitive for Transformer models. PhyloTransformer utilizes the full-length
spike sequence as input with multiple masked sites and generates predictions on respective sites
simultaneously, while baseline models can only make independent local predictions on a specified
site.

We used three datasets based on a temporal cut-off. We first prepared the small dataset, which
contains sequence data from 01/01/2020 to 03/01/2020 with a total of 24,951 sequences. Next, we
prepared the medium dataset, which contains sequence data from 01/01/2020 to 11/11/2020 with
a total of 134,704 sequences. Finally, we prepared the large dataset, which consists of data from
01/01/2020 to 05/31/2021, with a total of 1,765,297 sequences. Each dataset was then evenly split
into training and testing sets, retaining their temporal order. Table 3 summarizes the datasets.

The term VOC for SARS-CoV-2 is a category used when mutations in the receptor binding domain
(RBD) of the viral spike protein substantially increase the binding affinity of the RBD to the human
(h)ACE2 receptor, resulting in rapid spread in human populations. Table 1 shows the single amino
acid mutations that emerged as VOCs in our large dataset. Noteworthily, Table 1 shows an increase
in the percentage of VOCs over time. For example, 18.51% of the sequences in the training set (i.e.,
the first half of the data) have the mutation N501Y, and in the testing set (i.e., the latter half of the
data) the percentage of sequences with the N501Y mutation drastically increased to 73.96%.

D METHODOLOGY

TECHNICAL BACKGROUND

In this section, we will briefly review the history of sequence models that led to the development of
Transformer and then introduce our PhyloTransformer model. The recurrent neural network (RNN)
is the standard neural sequence model which extends the conventional feed-forward neural network
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with a recurrent hidden state dependent on the previous timestep. RNN and its variants, such as
the long short-term memory (LSTM) Hochreiter & Schmidhuber (1997) and the gated recurrent
unit (GRU) Cho et al. (2014), have been widely applied to important AI tasks, including language
modeling Mikolov et al. (2010), speech recognition Graves et al. (2013), handwriting recognition
Graves et al. (2008), and machine translation Kalchbrenner & Blunsom (2013). However, RNNs are
difficult to train in practice since the gradients tend to either vanish or explode as the sequence length
increases Bengio et al. (1994). In addition, these models encode a source sequence into a fixed-
length vector, which becomes a bottleneck when tackling particularly long sequences. Therefore,
the attention mechanism was introduced Bahdanau et al. (2014) to augment RNNs with an additional
variable-length representation when encoding the input sequence. The attention mechanism allows
the model to only focus on a subset of the input sequence for decoding. The Transformer model
comprises a purely attention-based network architecture without RNN backbones to directly capture
intra-position dependencies via the self-attention mechanism Vaswani et al. (2017). In self-attention,
each sequence item has direct access to all the other positions, which yields a more powerful global
representation of the sequence. This feature also inspires biological applications due to the long-
range interactions of genetic sequences. However, the following challenges in modeling mutations
on RNA sequences remain:

• Length adaptation: most natural language processing (NLP) models deal with sequence
lengths of a few hundred to a thousand, but the RNA sequence of SARS-CoV-2 is much
longer: the genome of SARS-CoV-2 is 29,903 nucleotides in length Kim et al. (2020), and
the spike protein has 3,819 nucleotides.

• Mutation sparsity: due to the proofreading functions of coronaviruses Smith et al. (2013),
mutations in the SARS-CoV-2 genome are rare. Our dataset shows consistency in this
regard.

Regular Transformer scales quadratically with respect to the input sequence length, and the sparsity
of mutations might lead to the generative Transformer model overfitting the identical parts while
ignoring the mutations. Therefore, to adapt to biological problems and address issues regarding
genetic mutations, a new model that tackles the length and sparsity issues commonly encountered
in existing deep neural network architectures is required. To address these two challenges, we
propose PhyloTransformer, which is a linear time complexity discriminative model based on the
Transformer architecture. The time and space linearity are achieved by adopting FAVOR+ from
Performer Choromanski et al. (2021), which performs an unbiased fast attention approximation
with low variance. The mutation sparsity issue is addressed by directly modeling the mutations
using the MLM training objective from BERT Devlin et al. (2019), which is a discriminative variant
of Transformer for supervised NLP tasks. A detailed description of PhyloTransformer architecture
is presented in the next section.

MODEL DEVELOPMENT

We adopted a discriminative approach to model the mutation probability at a particular position in
the RNA sequence. Let p(xi = A|X) denote the probability of the ith nucleotide changing to A
given the reference sequence X . We will demonstrate how to predict p(xi|X) by PhyloTransformer
and other baseline models in this section.

THE PHYLOTRANSFORMER MODEL

The PhyloTransformer model adopts a Transformer-based network, which utilizes the full spike
sequence of 3,819 nucleotides as input and generates output mutation probabilities at particular po-
sitions. We followed the MLM pre-training objective from BERT Devlin et al. (2019). Note that
the attention mechanism in Transformer Vaswani et al. (2017) calculates attention matrices with a
shape of L × L (where L is the length of the sequence) to capture the relationship between nu-
cleotides. In order to reduce the computation complexity of the attention matrix, we adopted the
FAVOR+ technique from Performer Choromanski et al. (2021), which performs approximate atten-
tion computation in linear time. In the following content, we first present the network architecture
of PhyloTransformer. Next, we introduce FAVOR+ for fast low-rank approximation of the regular
full-rank attention computation in linear time. Finally, the overall training process will be discussed
in detail.
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Bidirectional Transformer Encoder: Let X = (x1, x2, ..., xL) denote the reference sequence,
where xi is the nucleotide at position i in the RNA sequence. We first applied trainable projections
to map each xi with its position information to three embedding vectors, qi, ki and vi, for attention
computation. Suppose the dimension of each embedding is d. The output of the attention layer is
computed by the following equation:

Attention(Q,K, V ) = A · V = softmax

(
QKT

√
d

)
V (1)

where A ∈ RL×L is the attention matrix. Q = [q1; q2; ...; qL],K = [k1; k2; ...; kL], and
V = [v1; v2; ..., vL] are embedding matrices in RL×d, where qi, ki, and vi are row vectors represent-
ing three embeddings. After the attention layer is computed, we further applied a feed-forward layer
with a residual connection. An attention layer and a feed-forward layer compose a single Trans-
former module. We stacked the N Transformer modules as the overall network architecture of our
PhyloTransformer model.

FAVOR+: In the original attention mechanism, the time complexity of computing the attention
layer by Equation (1) is O(L2d), which becomes computationally intractable when L is large. The
Performer Choromanski et al. (2021) model proposed kernelizable attention by deriving a mapping
ϕ to decouple the attention matrix A into Q′ and K ′, where q′i = ϕ(qi), k

′
i = ϕ(ki) and Q′,K ′ ∈

RL×r, r ≪ L. In this case, the attention layer can be computed by the following equation:

Attention(Q,K, V ) = D−1(Q′((K ′)TV )), (2)

D = diag(Q′((K ′)T1L)) (3)

where 1L is an all-ones vector of length L. Since Q′,K ′ ∈ RL×r, V ∈ RL×d, the computation com-
plexity decreases to O(rLd) with respect to a small constant r, making it computationally feasible
to handle particularly long sequences such as RNA data.
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Figure 2: The training scheme of PhyloTransformer. We compared the reference sequence to a mutated
sequence and focused on the mutations. We masked the mutated positions along with some random positions
and processed the masked sequence with stacked Transformer modules. Each masked position’s final hidden
state was used as the aggregate representation for the mutation prediction task.

Training process: We denoted the reference sequence as X = (x1, x2, ..., xL) and the mutated
sequence as Y = (y1, y2, ..., yL), where xi and yi refer to the nucleotide at position i. On average,
there were 0.0592% mutations in the small dataset, 0.0801% mutations in the medium dataset, and
0.2291% mutations in the large dataset. These numbers refer to the average number of yis that are
different from the number of xis in the respective dataset. During the training process, we masked
certain positions in X , and used the model to predict nucleotides in Y at those masked positions.
Fig. 2 shows the workflow of our model. Specifically, we first identified the set of mutated positions
Pm = (P1, . . . , Pk), where P1, . . . , Pk are nucleotide positions. In addition, we randomly chose
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several unchanged positions Pu = (P ′
1, . . . , P

′
r) such that |Pm∪Pu|

L = 1.5%. Next, we applied a
masking function fm(xi) to each nucleotide xi at the masked positions. Namely, ∀Pi ∈ Pm ∪ Pu,
the masking function fm changes the nucleotide xi at position Pi to:

fm(x
Pi
) =


< mask > 80% of cases,
x

Pi
10% of cases,

Random({A, T,C,G}) 10% of cases,
(4)

where < mask > is a special masking token. The masking function fm acts on 1.5% of the entire
nucleotides and further randomly maps each nucleotide from this masking subset to (1) a special
token < mask > (80% chance), (2) a random substitution (10%), or (3) itself (10%).

Denoting the masked sequence as X̃ , we encode X̃ with stacked Transformer modules and represent
each nucleotide as a hidden vector hi from the model output. Next, the probability distribution of
the ith nucleotide position over {A, T, C, G} is computed as follows:

P (yi|X̃) = softmax(Wohi) ∀i ∈ Pm ∪ Pu, (5)

where Wo are trainable parameters. The probability of all the masked nucleotides is the following
equation:

P (Y |X̃) =
∏

i∈Pm∪Pu

P (yi|X̃) (6)

The model is optimized to minimize the negative log probability over all the mutated sequences
from the training set Y with respect to different masking positions, as determined by the equation:

L(θ) = −
∑
Y ∈Y

Efm

[
logP (Y |X̃)

]
. (7)

L(θ) = −EY ∈Y

{
Ei∈Pm∪Pu

[
logP (yi|X̃)

]}
. (8)

Since most of the masked positions are mutated positions, our model is trained to concentrate on
mutation predictions. Meanwhile, the randomly chosen positions (i.e., Pu) also improved the ro-
bustness of our model.

LOCAL MODELS

In addition to PhyloTransformer, which considers the full sequence, we also examined baseline
methods, which predict p(xi|X) based on local segments from the spike RNA sequence. There is
a total of 3,819 nucleotides in the spike sequence. We can obtain a local segment of 15 nucleotides
centered around each nucleotide with sequence padding. Thus, we can obtain 3,819 segments of
15 nucleotides from the full spike RNA sequence. The center position of each segment is masked.
We adopted various classification methods (including neural models and non-neural methods) to
predict the center nucleotide based on other nearby nucleotides. During the training phase, we
split all training spike RNA sequences into segments and generated a local dataset with repeated
segments filtered out. Fig. 3 depicts the training scheme of local models. We first split the spike RNA
sequence into 3,819 segments with padding. We then masked the middle nucleotide in each segment
and adopted a classification model to predict the masked nucleotides. In this training scheme, any
classification model could be used.

E TRAINING DETAILS

For the PhyloTransformer model, we stacked six Transformer modules with eight attention heads
and a hidden size of 1, 024. We optimized the model following the loss function with Adam (β1 =
0.9, β2 = 0.999). We chose a learning rate of 3e − 5 for all three datasets. The batch size was 16
for the small and medium datasets, and the batch size was 32 for the large dataset. For the large
dataset, we trained the PhyloTransformer model with 8 Nvidia V100 GPUs for 10 epochs, which
took 13 hours per epoch. For Local Transformer, we stacked 12 Transformer modules with eight
attention heads and a hidden size of 768 for better representation capability. We employed a standard
classification loss and optimized the model via Adam (β1 = 0.9, β2 = 0.98). We used the learning
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Step 1: The spike RNA sequence was split into 3,819
segments with padding.

Step 2: The middle nucleotide was masked in each
segment. A classification model was adopted to pre-
dict the masked nucleotides.

Figure 3: The training scheme of local models. Any classification method could be used, such as the standard
Transformer, ResNet-18, MLP, logistic regression, KNN, random forest, and gradient boosting.

rate of 1e− 4 with a batch size of 128 for all three datasets on a single Nvidia 3080 GPU with 100
training epochs. For the large dataset, each epoch was completed in approximately 20 minutes. For
the ResNet model, a popular variant of the convolutions neural network, we employed the ResNet-
18 architecture as our backbone, and Adam (β1 = 0.9, β2 = 0.999) was utilized as the optimizer
with a learning rate of 5e− 5, and a batch size of 128. We trained the ResNet model for 100 epochs
on a single Nvidia 3080 GPU. In the large dataset, a single epoch was completed in approximately
five minutes. For other methods, we used scikit-learn (0.23.2) 1 with its default settings.

F TOP 20 PREDICTED NOVEL MUTATIONS

We report the top 20 novel mutations predicted by the trained PhyloTransformer in Table 4.

In Amino Acid In Nucleotide
Ranking Loc. Ref. Pred. Loc. Ref. Pred.

1 587 I T 1759 A T T A C T
2 742 I T 2224 A T T A C T
3 538 C R 1611 T G T C G T
4 1080 A V 3238 G C C G T C
5 720 I T 2158 A T T A C T
6 851 C R 2550 T G T C G T
7 423 Y H 1266 T A T C A T
8 377 F S 1129 T T T T C T
9 823 F L 2466 T T C C T C
10 488 C R 1461 T G T C G T
11 819 E G 2455 G A A G G A
12 617 C F 1849 T G C T T C
13 749 C R 2244 T G C C G C
14 873 Y H 2616 T A C C A C
15 1059 G V 3175 G G T G T T
16 539 V A 1615 G T C G C C
17 421 Y H 1260 T A T C A T
18 877 L P 2629 C T G C C G
19 418 I T 1252 A T T A C T
20 1145 L S 3433 T T A T C A

Table 4: Top 20 novel mutations predicted by training PhyloTransformer with the large dataset. Ref.:
reference sequence hCoV-19/Wuhan/WIV04/2019 sequence (WIV04).

1https://scikit-learn.org/stable/
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