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ABSTRACT
Federated Learning (FL) is an approach for privacy-preserving Machine Learning (ML), enabling model training
across multiple clients without centralized data collection. With an aggregator server coordinating training,
aggregating model updates, and storing metadata across rounds. In addition to training, a substantial part of
FL systems are the non-training workloads such as scheduling, personalization, clustering, debugging, and
incentivization. Most existing systems rely on the aggregator to handle non-training workloads and use cloud
services for data storage. This results in high latency and increased costs as non-training workloads rely on large
volumes of metadata, including weight parameters from client updates, hyperparameters, and aggregated updates
across rounds, making the situation even worse. We propose FLStore, a serverless framework for efficient FL.
non-training workloads and storage. FLStore unifies the data and compute planes on a serverless cache, enabling
locality-aware execution via tailored caching policies to reduce latency and costs. Per our evaluations, compared
to cloud object store based aggregator server FLStore reduces per request average latency by 71% and costs by
92.45%, with peak improvements of 99.7% and 98.8%, respectively. Compared to an in-memory cloud cache
based aggregator server, FLStore reduces average latency by 64.6% and costs by 98.83%, with peak improvements
of 98.8% and 99.6%, respectively. FLStore integrates seamlessly with existing FL frameworks with minimal

modifications, while also being fault-tolerant and highly scalable.

1 INTRODUCTION

Federated Learning (FL) (McMahan et al., 2017) is as a
privacy-aware solution for ML training across numerous
clients without data centralization. The FL process also
encompasses a broad range of non-training workloads. Non-
training workloads refer to tasks such as scheduling (Lai
et al.,, 2021b; Abdelmoniem et al., 2023), personaliza-
tion (Ghosh et al., 2020; Tan et al., 2022), clustering (Liu
et al., 2023a), debugging (Gill et al., 2023), and incentiviza-
tion (Han et al., 2022b; Hu et al., 2022), etc. that are nec-
essary for the success and efficiency of the FL process.
The growing interest in Explainable Al (Gade et al., 2019;
Mohseni et al., 2021), has led to several Explainable FL
(XFL) systems that depend on non-training workloads in-
cluding debugging (Duan et al., 2023; Gill et al., 2023),
accountability (Balta et al., 2021; Baracaldo et al., 2022;
Yang et al., 2022a), transparency (Han et al., 2022b), and
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reproducibility (Desai et al., 2021; Gill et al., 2023).

Challenges Existing research concentrates only on train-
ing efficiency (Reisizadeh et al., 2020; Shlezinger et al.,
2021; Yu et al., 2023; Kairouz et al., 2019; Yang et al., 2019;
Lai et al., 2021b; Tan et al., 2023a). However, non-training
workloads constitute a significant and equally important part
of the latency and cost in the FL process (Kairouz et al.,
2019). Figure 1 shows a single non-training application
can comprise up to 98% of the total latency of the FL job,
and several non-training applications are often executed
in the same FL process (Baracaldo et al., 2022) with la-
tency several times more than training (§ 2.1). Non-training
workloads are highly data intensive and require tracking,
storage, and processing of data, including model parameters,
training outcomes, hyperparameters, and datasets reaching
thousands of TBs across just 100 FL jobs (§ 2.2).

In current state-of-the-art FL. frameworks (Qi et al., 2024;
Bonawitz et al., 2019; Beutel et al., 2020; He et al., 2020;
IBM, 2020; FederatedAl, 2024), cloud-based aggregators
handle the non-training workloads and utilize a separate
cloud object store for data storage (Amazon Web Services,
2024b) as shown in Figure 3. Consequently, aggregators
are ill-equipped to store and process large volumes of FL
metadata efficiently and cost-effectively.

This raises several challenges regarding costs and latency.
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Figure 1. Non-training portion of latency in total FL process per
round with 200 clients, EfficientNet model (Tan & Le, 2021), 1000
training rounds, and CIFAR10 Dataset (Krizhevsky, 2009).
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Figure 2. Non-training portion of cost in total FL process per round
with 200 clients, EfficientNet model (Tan & Le, 2021), 1000 train-
ing rounds, and CIFAR10 Dataset (Krizhevsky, 2009).

First, utilizing cloud object stores for data storage sepa-
rates the data and compute planes. As shown in Figure 3,
this results in extra round trips of storing and fetching the
data into the aggregator server’s memory, leading to high
latency and costs. Even when augmented with more expen-
sive cloud-based caches (Amazon Web Services, 2024a) the
communication bottleneck remains a challenge (Liu et al.,
2023b). Second, non-training workloads in FL have diverse
data storage and processing requirements. For instance, trac-
ing the provenance of specific clients necessitates access to
client model updates from previous training rounds (Bara-
caldo et al., 2022), while identifying issues in malicious
clients requires the model updates of all clients for a specific
training round (Gill et al., 2023). Thus, any caching solution
for non-training workloads with traditional caching policies
that do not consider these unique data requirements will
result in sub-optimal performance.

Third, relying on dedicated servers for executing these work-
loads becomes a significant issue since the demand for non-
training tasks such as debugging and auditing could extend
beyond the training phase, necessitating continuous opera-
tion of the servers and cache (Baracaldo et al., 2022).

Our Solution To address these challenges, we make three
key observations. First, unifying the compute and data
planes can significantly reduce communication bottlenecks.
Second, the iterative nature of FL leads to non-training work-
loads having sequential and predictable data access patterns;
for example, tracking a client’s model updates across train-
ing rounds will require repeated access to the same client’s
data across rounds. Third, because non-training workloads,
such as debugging, may be required long after training has
concluded, a scalable and on-demand solution is essential.

We present FLStore, a caching framework that unifies the
data and compute planes with a cache built on serverless
functions. FLStore utilizes the co-located compute avail-
able on those functions for locality-aware execution of non-
training workloads. FLStore uniquely leverages the iterative
nature of FL and its sequential data access patterns to imple-
ment tailored caching policies optimized for FL. To develop
these policies, we classify non-training workloads in FL
applications into a comprehensive taxonomy, categorizing
them by their distinct data needs and access patterns. FL-
Store then customizes its caching policies to the specific
type of non-training request encountered.

Contributions Our contributions in this work are as fol-
lows: 1) To the best of our knowledge, we present the first
comprehensive study of storage and execution requirements
of non-training workloads in FL, analyzing their impact
on cost and efficiency. 2) Based on the insights from this
study, we identify iterative data access patterns in FL, which
we leverage to develop FLStore, a novel caching frame-
work with tailored caching policies that use prefetching
for locality-aware execution of FL. workloads. FLStore is
the first FL. framework that unifies the data and compute
planes and has native support for non-training FL. work-
loads; 3) FLStore provides a highly scalable solution with
its serverless functionality (Wang et al., 2020) to meet the de-
mands of serving up to millions of clients in FL (Khan et al.,
2023; Kairouz et al., 2019); It has a modular design (Abadi
et al., 2016; Ludwig et al., 2020; Abdelmoniem et al., 2023)
and can be integrated into any FL framework with minor
modifications. 4) Compared to state-of-the-art FL. frame-
works (IBM, 2022; FederatedAl, 2024; Beutel et al., 2020)
that are based on cloud services (Amazon Web Services,
2024a;b; Amazon Web Services, Inc., 2024b; Google Cloud,
2024), FLStore reduces the average per-request latency by
50.8% and up to 99.7%, and the average costs by 88.2%
and up to 98.8%.
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Figure 3. Data flow of serving non-training requests in conven-
tional FL aggregators

2 BACKGROUND AND MOTIVATION
2.1 Non-training workloads in FL.

XFL aims to improve FL by addressing issues such as clients
submitting flawed models due to data quality problems or
sabotage (Han et al., 2022b; Gill et al., 2023). It also em-
phasizes auditing and regulatory compliance, especially in
collaborations involving diverse entities (Balta et al., 2021;
Yang et al., 2022a; Baracaldo et al., 2022). FLDebugger (Li
et al., 2021) assesses the influence of each client’s data on
global model loss, identifying and correcting harmful clients.
FedDebug (Gill et al., 2023) improves reproducibility by
enabling the FL process to pause or rewind to specific break-
points and helps detect malicious clients through differential
neuron activation testing.

Other FL applications Due to the distributed nature of
FL, many applications involve non-training tasks like clus-
tering (Liu et al., 2023a; Duan et al., 2021), personaliza-
tion (Khan et al., 2024a; Ruan & Joe-Wong, 2022; Tang
et al., 2021), and asynchronous learning (Nguyen et al.,
2021), which are essential for managing and optimizing
the FL process. For example, clustering evaluates client
models based on factors like training duration, networks, or
energy use (Le et al., 2024; Liu et al., 2023a; Chai et al.,
2021), while personalization groups clients by model pa-
rameters, efficiency, or accuracy on held-out data (Ruan &
Joe-Wong, 2022; Tang et al., 2021). Incentive mechanisms
assess client contributions and reputations via accuracy or
Shapley Values (Khan et al., 2024¢; Sun et al., 2023; Wang
et al., 2024b; Hu et al., 2022), and intelligent client selection
relies on analyzing client availability, participation, and per-
formance (Abdelmoniem et al., 2023; Han et al., 2022a; Lai
et al., 2021b). Non-training tasks like debugging and hyper-
parameter tracking are also crucial for optimizing FL (Gill
et al., 2023; Duan et al., 2023).

Non-training tasks can make up to 98% of the FL workflow,
as shown in Figure 1. Typically, the FL process incorpo-
rates numerous non-training tasks. In this scenario involv-
ing multiple tasks such as filtering, scheduling, reputation
calculation, incentive distribution, debugging, and person-
alization, non-training tasks account for 86% of total FL
time, lasting 6 x longer than training. Figure 2 summarizes
the cost breakdown for various FL tasks. The non-training

components dominate the overall cost of the FL process
as non-training tasks require special provisioning of cloud
services and high data transfer costs. For instance, tasks
like debugging, inference, and reputation calculation incur
non-training costs that constitute over 90% of their total
costs. In our setup with 200 clients per round and only 10
selected for training—the non-training overhead can reach
up to 97%. This high proportion indicates that even if train-
ing is inherently computationally intensive, the cumulative
cost of non-training operations such as filtering, scheduling,
and incentive management becomes a significant factor in
the overall efficiency of FL systems. Optimizing these non-
training workloads is therefore critical to reducing latency
and improving cost-effectiveness in FL deployments.

2.2 Shortcomings of popular FL frameworks

State-of-the-art FL frameworks, as depicted in Figure 3,
generally utilize an aggregator server on a stateful (Lai et al.,
2021a; Beutel et al., 2020; IBM, 2020; He et al., 2020) or
serverless compute plane (Qi et al., 2024; Jiang et al., 2021;
Grafberger et al., 2021). The serverless model (Jonas et al.,
2019) allows cloud providers (Amazon Web Services, Inc.,
2024a; Jiang et al., 2021) to manage scaling and mainte-
nance by executing functions on demand, with costs based
on usage. However, FL data demands can escalate rapidly.
For instance, training 100 jobs on the CIFARI10 dataset
with 100 clients each, using ResNet-101 (= 170.5 MB per
model) over 1000 training rounds, can generate approxi-
mately 1626 TB of data. To manage this, the compute plane
is connected to a separate data plane using cloud caches
like ElastiCache (Amazon Web Services, 2024a) or object
stores like AWS S3 (Amazon Web Services, 2024b) and
Google Cloud Storage (Google Cloud, 2024). This separa-
tion increases communication steps for non-training tasks,
involving multiple rounds from receiving requests to fetch-
ing and processing data, and then storing results back, which,
along with dedicated cloud services, leads to ongoing costs
even when non-training requests are dormant. Compared to
these FL frameworks (Lai et al., 2021a; Beutel et al., 2020;
IBM, 2020; He et al., 2020), FLStore serves as a one-stop
solution that processes non-training requests directly from
the serverless cache, asynchronously fetching missing data
from persistent storage when needed. It also utilizes tailored
caching policies based on a classification of non-training
workloads. FLStore’s design is discussed in detail in (§ 4).

2.3 Serverless Cache for Non-Training Apps

To build an in-memory locality-aware cache for non-training
FL workloads, we must first answer two important questions:
1) Can the models utilized in cross-device FL be stored in
cloud functions’ memory? 2) Does the execution latency
of non-training workloads fall within the cloud functions
lifetime thresholds? To answer these questions, we first
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Figure 4. Average workload latencies (log scale) of computation
and communication for non-training FL. workloads.

analyze 23 popular models used in cross-device FL settings
from various works in FL (Caldas et al., 2018; Chen et al.,
2022; Lai et al., 2021b; Kairouz et al., 2019). Analyzing the
memory footprint of these models, the average size of these
models is approximately 161 MB as discussed in detail in
the Appendix D. These model sizes are perfect for storage
in the in-memory cache of cloud functions, as the memory
of these functions goes up to 10 GB. We also analyze the
typical latency of different non-training workloads. Figure 4
shows the latencies of executing five different workloads
across three different models (EfficientNetV2 Small (Tan &
Le, 2021), Resnet18 (He et al., 2016), and MobileNet V3
Small (TorchVision Contributors, 2024)) and same setup as
Figure 1 on a serverless cloud function (Amazon Web Ser-
vices, Inc., 2024a) while fetching data from a cloud object
store (Amazon Web Services, 2024b). It can be observed
that the average computation latency across workloads is
approximately 2.8 seconds, which is perfect for cloud func-
tions due to their short lifetimes. The small size of the mod-
els and the short execution time of non-training tasks for
cross-device FL make the memory and compute resources in
serverless functions ideal for processing non-training tasks.
However, the major bottleneck comes from the 31 x higher
average communication latency (89 sec). Thus, unifying the
compute and data planes can ease this bottleneck, enabling
efficient, cost-effective serving of non-training requests.

3 RELATED WORK

To our knowledge, no existing FL framework efficiently and
cost-effectively processes non-training requests.

Generic cloud-based frameworks: General-purpose XAl
cloud solutions like AWS SageMaker (Amazon Web Ser-
vices, Inc., 2024b) use dedicated instances such as AWS
EC2 with storage options like AWS S3 (Amazon Web
Services, 2024b) or ElastiCache (Amazon Web Services,
2024a). This setup leads to high costs and decreased ef-
ficiency due to separated data storage and compute re-

sources (Khan et al., 2023), also lacking tailored caching
policies suited for FL’s iterative nature.

FL frameworks: Existing State-of-the-art FL frameworks
(IBM, 2020; Beutel et al., 2020; He et al., 2020; Caldas
et al., 2018; FederatedAl, 2024) follow a similar architec-
ture, where cloud-hosted aggregator servers with separate
persistent storage execute non-training tasks (Khan et al.,
2023; Bonawitz et al., 2019; Baracaldo et al., 2022), result-
ing in increased latency and costs.

Serverless aggregators: Another line of work focuses
only on aggregation via serverless functions (Qi et al., 2024;
Khan et al., 2023; Grafberger et al., 2021). FLStore can eas-
ily incorporate aggregation as one of the application work-
loads, however, FLStore is more generic and also includes
additional non-training workloads for FL. Furthermore, non-
training workloads such as debugging and incentivization
often extend beyond the training phase, requiring aggrega-
tors beyond the training phase increasing costs (Gill et al.,
2023; Khan et al., 2023; Haroon et al., 2024; Bonawitz et al.,
2019).

Serverless Storage: Serverless storage approaches utilize
memory available on serverless functions at no additional
cost, such as InfiniStore (Zhang et al., 2023b), a cloud stor-
age service, and InfiniCache (Wang et al., 2020), an object
caching system using ephemeral functions. These solutions
primarily address storage, often underutilizing the comput-
ing resources of serverless functions.

4 FLSTORE

In this section, we present the detailed design for FLStore
derived from the following insights we gather from our
preliminary analysis (§ 2):

e J;: Communication latency is the major bottleneck for
non-training workloads brought by separate compute
and data planes in extant solutions (§ 2.1 & 2.2).

* I: Non-training workloads show iterative data access
patterns which can be classified, and leveraged to im-
prove performance via a caching solution (§ 2.1).

e I3: Memory footprint of models typically used in
cross-device FL and the average latency of non-training
workloads are suitable for the inexpensive on-demand
Serverless functions (§ 2.3).

4.1 Unification of Compute and Data Planes

Aims. Our first design goal, guided by insight (/7), is
to integrate compute and data planes by using serverless
function memories for a distributed cache with co-located
compute resources like InfiniCache (Wang et al., 2020).
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Figure 5. FLStore architecture design.

However, InfiniCache does not use the compute capabilities
of serverless functions or offer specialized caching policies
(§ 2.2). This limitation presents a unique opportunity to also
utilize free serverless computing for executing non-training
workloads (/3).

Challenges. Creating such a framework presents non-
trivial challenges, which we address one by one in the fol-
lowing sections. First, we must track data storage, removal,
and updates across multiple function memories (§ 4.2). Sec-
ond, non-training requests need to be routed to the appro-
priate functions with the relevant data (§ 4.3). Third, it is
crucial to identify which metadata should be cached, as stor-
ing all metadata would be costly and unsustainable (§ 4.4).
Lastly, the solution must be scalable, fault-tolerant, and en-
sure data persistence (§ 4.5). We begin by introducing the
main components of our solution (FLStore) that resolve the
first challenge of tracking data across functions.

4.2 Tracking Data in Serverless Functions

FLStore consists of three components, a Request tracker,
the Cache Engine, and a Serverless Cache as shown in Fig-
ure 5. For the Serverless cache, FLStore uses disaggregated
serverless function memories similar to (Wang et al., 2020);
FLStore extends this design to utilize the serverless com-
pute resources of those functions to process non-training
requests. The Cache Engine and the Request tracker can
be run in the cloud or collocated with a client. The Cache
Engine uses a hash table to store the location of data in
disaggregated functions, tracking specific metadata to the
functions where it is cached. The CacheEngine dictionary
format is as follows:

Tuple(Client : str, Round : int) — FunctionI D : str
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Figure 6. FLStore workflow (top) and examples (bottom).

As shown by the data-flow in Figure 6, the Cache Engine
receives incoming data from client training devices (Step @)
and fetches the current and incoming non-training request in-
formation from the Request tracker (Steps @ & ®). Based on
the request types, it utilizes the appropriate caching policy
to filter hot data from cold data (Step @) and puts models in
Serverless Cache and Persistent Store, respectively (Step ®).
The data is cached at the granularity of client models such
that each function holds at least one client model. This level
of granularity is practical as a single function provides up
to 10 GB of memory (Amazon Web Services, Inc., 2024a).
Unlike conventional cloud caching systems like ElastiCache,
FLStore’s serverless cache also provides compute resources
for non-training tasks, ensuring that cached data is close to
the compute needed to execute requests. So next we discuss
how to resolve the second challenge of routing the requests
to the appropriate functions containing the relevant data for
locality-aware execution.

4.3 Locality-Aware Request Routing

One of FLStore’s key contributions is to effectively leverage
local compute resources to process data, enhancing the over-
all efficiency of resource utilization. Using these compute
resources requires the non-training requests to be routed to
the functions with data relevant to the request. The Request
tracker, as shown in Figure 5, is responsible for receiving
requests from clients, forwarding the request to the appro-
priate functions, and keeping track of the progress. The
tracking data is stored in a dictionary where request IDs
serve as keys, and the corresponding values include the list
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Table 1. Taxonomy of Non-Training Applications and Mapping of
Workloads in FLStore

ID Caching Applications and Mapped Workloads
Policy
P1 Individual Evaluates individual model’s accuracy and
Client fairness (Li et al., 2020; Yu et al., 2020;
Updates Ezzeldin et al., 2023).
P2 All Updates Used in Personalization (Tan et al., 2022),
inaRound Clustering (Ghosh et al., 2020), Schedul-
ing (Chai et al., 2020), Contribution calcu-
lation (Sun et al., 2023), Filtering malicious
clients (Han et al., 2022b), Cosine Similar-
ity (Liu et al., 2023a).
P3 Updates Facilitates debugging (Gill et al., 2023; Duan
Across et al., 2023), fault tolerance (Balta et al., 2021;
Rounds Yang et al., 2022a), reproducibility, trans-

parency, data provenance, and lineage (Bara-
caldo et al., 2022).

P4 Metadata  Hyperparameter tuning (Zhou et al., 2023),
& Hyperpa- tracking client resources for scheduling, clus-
rameters tering client priorities (Liu et al., 2023a),

clustering performance, client incentives, and
client dropouts, monitoring payouts (Hu
et al., 2022), and optimizing communication
through pruning and quantization (Khan et al.,
2024b; Sun et al., 2023).

of function IDs to which the request was routed and the
progress made by each function in executing the request.
The Request Tracker dictionary is formatted as follows:

RequestID : str — Tuple(List[FunctionID : str,...],
Status : bool)

Figure 6 describes the workflow. Upon receiving the request
in (Step @), the Request tracker fetches the function IDs
from the Cache Engine where the data required for the non-
training request is cached (Steps @ and @). Then, it issues
the requests to those function IDs and keeps track of their
progress (Step @), reporting the results as soon as they are
returned to the client daemon (Step ©). Next, we discuss
how to determine which data is important for caching.

4.4 Workload Characterization and Caching

Based on our insight (/3) from studying existing works (Lai
et al., 2021b; Beutel et al., 2020; Gill et al., 2023; Kairouz
et al., 2019), we recognize that FL follows an iterative pro-
cess with sequential data access patterns, which can inform
tailored caching policies. We first analyze the data process-
ing needs of popular FL applications to develop a taxonomy
of their non-training workloads (Gill et al., 2023; Duan et al.,
2023; Baracaldo et al., 2022; Balta et al., 2021; Han et al.,
2022b) as shown in Table 1. Leveraging the insights gained
from this study, we propose tailored caching policies that
also enable easy FLStore extension to new applications.

While a Serverless cache is scalable enough to store all meta-
data (Zhang et al., 2023a), FL metadata can reach several
thousand terabytes (TBs), so using tailored caching poli-
cies significantly reduces resource consumption and costs.
For example, an FL job with 1000 clients and 1000 train-
ing rounds using the EfficientNet model (Tan & Le, 2021)
would require 79 TBs of memory across 10098 Lambda
functions, costing $10.2 per hour or $7357.8 per month.
With FLStore’s tailored policies, only 1.2 GB is consumed
from just two Lambda functions, reducing costs to $0.001
per hour or $0.7 per month.

Table 1 also outlines the corresponding policies for each
workload type in the taxonomy. Based on the chosen
caching policy, FLStore distinguishes hot data from cold
data, caching the former in serverless memory and asyn-
chronously storing the latter in the persistent store. Next,
we discuss each caching policy in detail:

P1: Single Client or Aggregated Model. This policy
applies to tasks such as serving and testing a fully trained
model (Li et al., 2020; Yu et al., 2020; Ezzeldin et al., 2023),
and requires access to individual model updates for fine-
tuning (Tang et al., 2022) or the final aggregated model (Hu
et al., 2023). As previously explained (§ 2), the final aggre-
gated model created by combining updates from participat-
ing clients after the FL training concludes is a model ready
for deployment to consumers. To support these workloads,
this policy requires caching the aggregated model for serv-
ing and inference. Additionally, any updates to this model
are cached for workloads that involve comparative analysis
or tracking of the aggregated model.

P2: All Client Model Updates per Round. Applications
such as filtering malicious clients (Han et al., 2022b),
calculating clients’ relative contributions (Sun et al., 2023),
debugging (Gill et al., 2023; Duan et al., 2023), personal-
ization (Tan et al., 2023b), and fault tolerance (Balta et al.,
2021) fall under this category because they require iterative
access to all client updates for specific rounds. When a
request in this category is made for a particular client in
a training round, we pre-cache all client updates for that
round and the next, as these workloads require iterative
access to clients’ metadata from the requested round and
possibly the next round. Metadata from previous rounds is
unnecessary since these applications operate separately and
incrementally for each round. Additionally, we keep the
latest round cached, as workloads like scheduling, contribu-
tion calculation, and malicious client filtering run for each
new round, requiring all client updates from that round.

Figure 6 illustrates two example workloads handled by FL-
Store. The first corresponds to this policy (P2), where a
malicious filtering application is executed per round. In
this example, data from round Ri — 1 is old data that was
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required for a prior request, while round R: was pre-cached
during the execution of that prior request. As the current
request for round R: executes, FLStore evicts past data and
pre-caches round Ri + 1 for future requests, demonstrating
how iterative non-training workloads in FL such as incentive
distribution, scheduling, etc. have predictable data needs.

P3: Client Model Updates Across Rounds. Applications
like reproducibility, checkpointing, transparency, data prove-
nance, and lineage require access to a single client’s model
updates across consecutive rounds (Baracaldo et al., 2022).
To support these, we cache the client’s model update for
the requested round and pre-cache that client’s metadata
from the previous and subsequent rounds. This is necessary
because these workloads track performance, costs, or other
metrics for a client over time or training rounds.

The second example in Figure 6 demonstrates a workflow
for this policy (P3). In the example, the system is handling
a request to track the improvement of client 2. Since track-
ing improvement is an iterative, round-based workload, the
cache holds data from round R — 1 (from a past request),
while the current request is for round Rz, and the next is
expected to be for round Ri + 1. As FLStore processes
the current request for round Ry, it evicts data from round
Ri — 1 and pre-caches client 2’s updates for round Ri + 1.

P4: Metadata and Hyperparameters. This includes ap-
plications such as hyperparameter tuning (Zhou et al., 2023),
assessing data shift impacts on performance (Tan et al.,
2023c), tracking client resource availability for scheduling,
clustering by client priorities, and monitoring client payouts
in FL. Communication optimization techniques like prun-
ing, quantization, and contribution tracking for incentive
distribution also require monitoring client optimization and
contributions (Khan et al., 2024b; Sun et al., 2023).

For these applications, we cache configuration and perfor-
mance metadata, including hyperparameters, for the most
recent R rounds, where R is tunable (default is 10). This
ensures that up-to-date data is available for configuration
and tuning, as older data may not be reliable. For instance,
when scheduling client devices for training, current resource
information is critical, as outdated data could cause clients
to miss training deadlines.

Choice of policy. Since non-training workloads are iter-
ative with predictable data needs (Baracaldo et al., 2022;
Gill et al., 2023; Kairouz et al., 2019), we use the mappings
in Table 1 to select the appropriate caching policy. While
we continue to add new workloads, most fit into existing
caching policies due to the iterative nature of FL. Future
work includes incorporating a Reinforcement Learning with
Human Feedback (RLHF) agent (Khan et al., 2024b) to
adapt policies for outlier workloads. Additional discussion

on improving caching policy selection is in the Appendix D.

4.5 Data Persistence and Fault Tolerance

In this section, we discuss how FLStore ensures data per-
sistence and fault tolerance against reclaimed serverless
functions. The persistent store serves as a cold data reposi-
tory for all data as protection against data loss and allows
users to revisit data from past rounds. This data is crucial for
post-training analysis, such as distributing incentives or vi-
sualizing convergence and loss trends. In the rare event that
all cached functions fail, FLStore retrieves the necessary
data from the persistent store, similar to state-of-the-art FL
frameworks (FederatedAl, 2024; Beutel et al., 2020; IBM,
2020), ensuring comparable performance.

FLStore addresses fault tolerance through prevention and
mitigation. We regularly ping cached functions to check
their liveness, leveraging cloud platforms’ default behav-
ior (Zhang et al., 2023a). Cloud providers like AWS (Ama-
zon Web Services, Inc., 2024a) cache functions at no cost,
as long as they are regularly invoked (Zhang et al., 2023a).
Pinging a function every minute, as recommended by In-
finiStore (Zhang et al., 2023a), incurs a minimal monthly
cost of $0.0087 per instance and $0.00000016 per million
requests. Additionally, FLStore replicates functions to en-
hance reliability. Each primary function has k secondary
copies to prevent stragglers and recovery delays. If the
primary function fails to acknowledge a request or respond
within a set time, the Request Tracker reroutes the request to
a secondary instance. For added reliability, we recommend
scaling function instances linearly with the number of re-
quests, which minimizes cost and latency while preventing
data re-fetching and cold starts.

Scalability over Serverless Functions FLStore’s cache
has two scalable facets: the cache size and handling more
concurrent requests. To increase cache size, new serverless
functions can be spawned to store additional data. For con-
current requests, new functions can be spawned which are
simply copies of existing ones. Since serverless functions
are highly scalable (Wang et al., 2020), scaling FLStore’s
cache is straightforward—new function instances are cre-
ated as needed. FLStore can also spawn multiple instances
to enhance scalability and performance.

5 EVALUATION
5.1 Evaluation Setup

This section presents a proof-of-concept analysis to demon-
strate the potential improvements brought by FLStore in
latency and cost for non-training FL. workloads. We show
the effectiveness of FLStore by answering the questions:
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Figure 7. FLStore vs. Baseline per request latency comparison over 50 hours.

* How well does FLStore reduce the latency of non-
training workloads compared to state-of-the-art FL
frameworks? (§ 5.2)

* How is the performance of FLStore’s tailored caching
policies compared to traditional ones? (§ 5.5)

* What is the overhead of FLStore components? (§ 5.6)

* How well does FLStore scale for parallel FL jobs?
G AD

* How well does FLStore cope with faults? (§ A.2)

Baselines: We utilize baselines derived from the architec-
tures of popular FL frameworks (Qi et al., 2024; He et al.,
2020; IBM, 2020; Beutel et al., 2020), as depicted in Fig-
ure 3. Specifically, we deploy the cloud aggregator server on
the ml.mb.4xlarge instance of AWS SageMaker (Amazon
Web Services, Inc., 2024b), a widely-used AWS service for
managing non-training workloads such as inference and de-
bugging (Liberty et al., 2020; Perrone et al., 2021; Das et al.,
2020). AWS SageMaker connects with data storage options
such as AWS S3 (Amazon Web Services, 2024b) for cloud
object storage or AWS ElastiCache (Amazon Web Services,
2024a) for in-memory caching. Thus, our baselines are
structured as follows: the first features an aggregator server
on AWS SageMaker linked with AWS S3 (ObjStore-Agg),
and the second connects AWS SageMaker with ElastiCache
(Cache-Agg). In both setups, the data plane stores all FL.
metadata, while AWS SageMaker, forming the compute
plane, processes non-training requests.

Workloads: We evaluate ten common non-training work-
loads, integral to many FL applications as shown in Table 1,
across four models: EfficientNetV2 Small (Tan & Le, 2021),

Resnet18 (He et al., 2016), MobileNet V3 Small (TorchVi-
sion Contributors, 2024), and SwinTransformerV?2 tiny (Liu
et al., 2021). Each model underwent FL training with
10 clients per round, selected from a pool of 250, across
1000 rounds or until convergence, following standard cross-
device FL protocols in related studies (Lai et al., 2021b;
Kairouz et al., 2019).

Metrics: Since throughput can be effectively managed
through scaling, we focus on evaluating the latency and cost
associated with communication and computation. We assess
these metrics per request and their aggregated total for mul-
tiple requests over a period of several days, encompassing
various non-training workload applications and models.

Implementation of FLStore: FLStore is implemented
using the OpenFaas serverless framework (Ellis & Contrib-
utors, 2024). Function sizes are automatically adjusted to
accommodate the varying model sizes, with larger function
allocations (2 CPU cores and 4 GB of memory) config-
ured for SwinTransformer and EfficientNet models and 1
CPU core and 2 GB of memory for Resnet 18 and Mo-
bileNet models. For both the baseline and FLStore setups,
we use MinlO (MinlO, Inc., 2024) as our persistent data
store, which is compatible with Amazon S3 (Amazon Web
Services, 2024b). The MinlO configuration involves a 3-
node cluster, with each node hosting six IronWolf 10TB
HDDs (7200 RPM) and running default MinlO settings.

5.2 Latency Analysis
5.2.1 FLStore vs Cloud Object Store

We compare the latency and cost of baseline (ObjStore-
Agg) and FLStore for ten workloads over 50 hours. Unlike
ObjStore-Agg, FLStore co-locates the compute and data
planes and utilizes tailored caching policies to cache relevant
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Figure 8. FLStore vs. ObjStore-Agg per request cost comparison over 50 hours.

data in memory to reduce latency. However, in ObjStore-
Agg the required data is fetched from the persistent store
(data plane). Figure 7 shows the latency for communication
and computation per request. FLStore shows significant im-
provements in latency with its locality-aware computation
and caching policies. On average, FLStore decreases the
latency by 55.14 seconds (50.75%) per request, with up to
363.5 seconds of maximum decrease (99.94%) in latency
per request. It can be observed in Figure 7 that for some
applications such as Incentives and Sched. (Perf.), Swin-
Transformer has a large distribution in the third quartile
compared to ObjStore-Agg. However, FLStore still exhibits
a lower median response time for these worklaods.

In distributed deep learning applications like FL, the main
bottleneck is the increased communication time (Hashemi
et al., 2019; Tang et al., 2023). Thus, we analyze total
latency (computation vs. communication) for the base-
line (ObjStore-Agg) and our solution (FLStore) over 50
hours and 3000 non-training requests across 10 workloads.
ObjStore-Agg is heavily communication-bound, with com-
munication latency accounting for an average of 98.9% of
the total latency. FLStore mitigates this communication
bottleneck improving the latency performance. With FL-
store, we observe an average of 82.04% (35.50 second)
decrease in latency for Resnet18, 47.33% ( 75.99 second)
for MobileNet, 50.44% (100.18 second) for EfficientNet,
and 20.45% (4.42 second) decrease in latency for Swin-
Transformer compared to ObjStore-Agg. Due to space con-
straints, detailed results are provided in the Appendix.

5.2.2 FLStore vs In-Memory Cache

We also compare FLStore with other popular in-memory
caching solutions available by cloud frameworks. Classic

caching solutions like Redis and Memcached included in
AWS ElastiCache allow for such in-memory caching (Ama-
zon Web Services, 2024a). Figure 9, shows the result of the
comparison between FLStore and AWS ElastiCache with
AWS SageMaker baseline (Cache-Agg) per request. It can
be observed that per-request FLStore shows a 64.66% on av-
erage and a maximum of 84.41% reduction in latency when
compared with Cache-Agg. This reduction in latency is
brought by co-located compute and data planes and locality-
aware request processing in FLStore.

For the total latency breakup analysis over 50 hours and
across 3000 non-training requests, FLStore shows a de-
crease in the total time by 37.77% to 84.45%, amounting
to a reduction of 191.65 accumulated hours for all requests.
When comparing both Cache-Agg and ObjStore-Agg on the
same workloads, FLStore shows an average decrease in
latency of T1% with ObjStore-Agg and 64.66% with Cache-
Agg. The larger reduction with ObjStore-Agg is due to cloud
object stores being slower than cloud caches.

5.3 Cost Analysis
5.3.1 FLStore vs Cloud Object Store

In addition, we performed a per-request cost comparison
across the ten selected workloads and 50 total hours. Fig-
ure 8 shows significant cost reduction with FLStore com-
pared to ObjStore-Agg. The majority of this cost reduction
stems from the reduced latency due to low data movement
and the overall low computation cost of serverless functions
for computation-light workloads. FLStore has an average
cost decrease of 0.025 cents per request with a maximum
decrease of 0.094 cents. On average, the cost of these appli-
cations in FLStore is 88.23% less than the cost of ObjStore-
Agg baseline, with one application (Client Scheduling with



FLStore: Efficient Federated Learning Storage for non-training workloads

EEA Cache-Agg BN FLStore

N A O
o O o

Latency (sec)

o

10°
£10-?
2102
g10

1073

. O e .
& &L o
.\((\\ \Q\ (\r\e
e? S N N
6\(\ (‘f\e ,\oo =
[y S \;\?,\\
Applications

Figure 9. Cache-Agg baseline vs. FLStore variants: Per request
latency (top) and cost (bottom) over 50 hours.

Cosine Similarity for MobileNetV2) showing a 99.78% de-
crease in per request cost.

We also performed the total cost breakup analysis over 50
hours, 3000 total non-training requests, and 10 workloads,
calculating both the communication and computation costs
for ObjStore-Agg and FLStore. We observe that the ma-
jority of the cost for ObjStore-Agg stems from the com-
munication bottleneck. Resnet18, EfficientNet, SwinTrans-
former, and MobileNet spend 87.46%, 76.96%, 53.32%,
and 85.80% of their total latency respectively in communi-
cation. For the same settings, FLStore shows an average
decrease of 94.73%, 92.72%, 77.83%, and 86.81% in costs
for Resnet18, MobileNet, SwinTransformer, and Efficient-
Net models respectively. Thus, FLStore significantly re-
duces the data transfer costs by unifying the compute and
data planes. Due to space constraints, Figures for these
results are provided in the Appendix.

5.3.2  FLStore vs In-Memory Cache

We can observe in Figure 9 that keeping data in an in-
memory cache such as ElastiCache is more costly in com-
parison to FLStore. FLStore shows an average decrease
of 98.83% and a maximum decrease of 99.65% in cost
per request compared to Cache-Agg. This stems from the
increased communication latency and costs because Cache-
Agg does not have co-located computational resources for
processing the cached data so the data still needs to be
transferred to another cloud service such as AWS Sage-
Maker (Amazon Web Services, Inc., 2024b).

For the cost breakup analysis over 50 hours and across 3000
non-training requests, FLStore shows a reduction of 98.12%
to 99.89%, resulting in accumulated savings of $7047.16.
Cloud caches tend to be more expensive than cloud object
stores, which is why FLStore demonstrates an average cost
decrease of 98.83% when compared to Cache-Agg, and

a 92.45% decrease in cost when compared to ObjStore-
Agg. The total time and total cost breakup analysis for both
ObjStore-Agg and Cache-Agg is provided in the Appendix B.

5.4 Performance over large models

We also conducted experiments using the billion-parameter
model Llama 3.2:1B (Al, 2024), designed for edge settings
such as cross-device FL. The experiment focused on in-
ference workloads, a common non-training workload in
real-world applications. It involved 200 clients, with 10
clients selected for inference per round, and latency results
were reported on a per-round basis using the same experi-
mental settings as Figure 14. The average per-round latency
and cost results for this experiment are shown in Table 2.

Metric Without FLStore With FLStore % Reduction
Latency (s) 26.56 1.2 95.48
Cost ($) 0.0068 0.0003 95.59

Table 2. Comparison of inference latency and cost for Llama 3.2
model (AI, 2024) with and without FLStore.

These results show that even billion-parameter models can
be effectively integrated into FLStore. However, even larger
models may not fit due to the current limits of serverless
function memory of 10 GB. While such models are outside
the scope of this paper, as they are typically not used in cross-
device FL or edge settings (Kairouz et al., 2019), FLStore
can be extended to include pipeline and model parallelism
to address memory constraints of serverless functions for
including these models.

5.5 FLStore vs Traditional Caching Policies

We introduce traditional caching strategies like Least Re-
cently Used (LRU) and First In First Out (FIFO) in FLStore,
alongside our tailored workload-specific policies derived
from a developed taxonomy. We evaluate these against
FLStore and its variant, FLStore-limited which depicts a
limited storage availability scenario having half the stor-
age capacity of FLStore. As depicted in Figure 10, both
FLStore-LRU and FLStore-FIFO show similar performance
due to their generic nature, unlike the taxonomy-driven poli-
cies of FLStore and FLStore-limited, which preemptively
cache relevant data for imminent requests, thereby markedly
reducing latency and costs. For instance, the debugging
workload in Table 1 mandates the P2 caching policy, direct-
ing FLStore to cache the current training round’s metadata
rather than outdated information, leading to a significant
reduction in debugging latency by 97.15% (380 seconds)
and cost savings of $0.1 per request. Notably, even with
limited capacity, FLStore-limited surpasses traditional poli-
cies. These improvements are substantial, especially given
that the non-training requests can range from thousands to
hundreds of thousands.
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Figure 10. Per request latency (left) and cost (right) comparison of various caching policies in FLStore over 50 hours.

Table 3. Cache Policy Performance Across Workloads

Applications Cache Hits MissesTotal Hit
Policy ratio

(Lai et al., 2021b), FLStore 19999 1 20000 0.99

(Liu et al., 2023a), P2)

(Tan et al., 2023b), FIFO 0 20000 20000 0

(Sun et al., 2023) LFU 0 20000 20000 0
LRU 0 20000 20000 0

(Gill et al., 2023), FLStore 63 1 64

(Baracaldo et al., 2022), (P3)

(Han et al., 2022b), FIFO 0 64 64 0

(Duan et al., 2023) LFU 0 64 64 0
0
1

0.98

LRU 0 64 64
20000

(Khan et al., 2024b), FLStore 20000 O

(Khodak et al., 2021), (P4)

(Balta et al., 2021), FIFO 0 20000 20000 O

(Lai et al., 2021b) LFU 0 20000 20000 O
LRU 0 20000 20000 O

We evaluated FLStore’s performance against traditional
caching policies like LFU, LRU, and FIFO using a sim-
ulated trace for non-training FL requests, crafted from FL
jobs for 10 clients each round from a pool of 250 over
2000 rounds on popular FL frameworks like Oort (Lai et al.,
2021b), FedDebug (Gill et al., 2023), REFL (Abdelmoniem
et al., 2023), and others (Tan et al., 2023b; Baracaldo et al.,
2022; Khodak et al., 2021) that utilize non-training appli-
cations. As shown in Table 3, FLStore’s caching policy
achieves a 99% hit rate for Clustering (Liu et al., 2023a) and
Personalized FL (Tan et al., 2023b) under the P2 caching
policy and 98% hit rate for tasks under the P3 caching pol-
icy (Gill et al., 2023; Duan et al., 2023; Baracaldo et al.,
2022) with similar results observed for the P4 policy work-
loads (Khan et al., 2024b; Khodak et al., 2021; Balta et al.,
2021). In contrast, traditional policies consistently register
a 0% hit rate across all tested scenarios.

Ablation study. We also evaluated FLStore variants without
tailored caching policies: FLStore-Random and FLStore-
Static. FLStore-Random, using random caching policy se-
lection regardless of workload, shows lower latency in some

cases, as depicted in Figure 10. However, for critical work-
loads like Scheduling and Incentivization, its performance
aligns with FLStore-FIFO and FLStore-LRU. Comparison
with FLStore-Static is detailed in Appendix C.

5.6 Overhead of FLStore’s components

The Cache Engine and Request Tracker can run co-located
with the aggregator service or locally, with minimal over-
head. We measure the overhead for 1000 concurrent non-
training requests. The Request Tracker uses less than 0.19
MB of memory, and the Cache Engine uses 0.6 MB. Scal-
ing to 100000 requests increases memory usage to 20.3 MB
and 63.2 MB, respectively. In both cases, the time to re-
trieve, use, or remove data from these services is under one
millisecond. The minimal overhead of the Cache Engine
and Request Tracker allows them to be run locally, on the
aggregator server, or even on a serverless function.

6 CONCLUSION

This paper introduces FLStore, an efficient and cost-
effective storage solution with locality-aware processing
for FL's communication-heavy non-training workloads. Our
experiments demonstrate that FLStore is efficient and cost-
effective compared to other caching and cloud storage so-
Iutions. FLStore is scalable and robust and can incorporate
new workloads by adding a new caching policy.
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