
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

FUNBO: DISCOVERING ACQUISITION FUNCTIONS FOR
BAYESIAN OPTIMIZATION WITH FUNSEARCH

Anonymous authors
Paper under double-blind review

ABSTRACT

The sample efficiency of Bayesian optimization algorithms depends on carefully
crafted acquisition functions (AFs) guiding the sequential collection of function
evaluations. The best-performing AF can vary significantly across optimization
problems, often requiring ad-hoc and problem-specific choices. This work tackles
the challenge of designing novel AFs that perform well across a variety of experi-
mental settings. Based on FunSearch, a recent work using Large Language Models
(LLMs) for discovery in mathematical sciences, we propose FunBO, an LLM-based
method that can be used to learn new AFs written in computer code by leveraging
access to a limited number of evaluations for a set of objective functions. We
provide the analytic expression of all discovered AFs and evaluate them on various
global optimization benchmarks and hyperparameter optimization tasks. We show
how FunBO identifies AFs that generalize well in and out of the training distribution
of functions, thus outperforming established general-purpose AFs and achieving
competitive performance against AFs that are customized to specific function types
and are learned via transfer-learning algorithms.

1 INTRODUCTION

Bayesian optimization (BO) (Jones et al., 1998; Mockus, 1974) is a powerful methodology for
optimizing complex and expensive-to-evaluate black-box functions which emerge in many scientific
disciplines. BO has been used across a large variety of applications ranging from hyperparameter
tuning in machine learning (Bergstra et al., 2011; Snoek et al., 2012; Cho et al., 2020) to designing
policies in robotics (Calandra et al., 2016) and recommending new molecules in drug design (Korovina
et al., 2020). Two main components lie at the heart of any BO algorithm: a surrogate model and an
acquisition function (AF). The surrogate model expresses assumptions about the objective function,
e.g., its smoothness, and it is often given by a Gaussian Process (GP) (Rasmussen & Williams, 2006).
Based on the surrogate model, the AF determines the sequential collection of function evaluations
by assigning a score to potential observation locations. BO’s success heavily depends on the AF’s
ability to efficiently balance exploitation (i.e. assigning a high score to locations that are likely to
yield optimal function values) and exploration (i.e. assigning a high score to regions with higher
uncertainty about the objective function in order to inform future decisions), thus leading to the
identification of the optimum with the minimum number of evaluations.

Existing AFs aim to provide either general-purpose optimization strategies or approaches tailored to
specific objective types. For example, Expected Improvement (EI) (Mockus, 1974), Upper Confidence
Bound (UCB) (Lai & Robbins, 1985) and Probability of Improvement (PofI) (Kushner, 1964) are
all widely adopted general-purpose AFs that can be used out-of-the-box across BO algorithms and
objective functions. The performance of these AFs varies significantly across different types of
black-box functions, making the AF choice an ad-hoc, empirically driven, decision. There exists an
extensive literature on alternative AFs outperforming EI, UCB and PofI, for instance entropy-based
(Wang & Jegelka, 2017) or knowledge-gradient (Frazier et al., 2008) optimizers, see Garnett (2023,
Chapter 7) for a review. However, while these functions are often interpretable as they can be
written as the expectation of a utility function, they are generally hard to implement and expensive
to evaluate, partly defeating the purpose of replacing the expensive original optimization with the
optimization of a much cheaper and faster to evaluate AF. In other to avoid the limitations of current
AFs, several works have proposed self-adjusting the hyper-parameters of known AFs in a data driven
way throughout the optimization process (Benjamins et al., 2023; Ding et al., 2022) or combining
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different AFs in a portfolio and selecting them via an online multi-armed bandit strategy (Hoffman
et al., 2011). Other prior works (Hsieh et al., 2021; Volpp et al., 2020; Wistuba & Grabocka, 2021)
have instead proposed representing AFs via neural networks thus bypassing the need for an analytical
representation and and learning new AFs tailored to specific objectives by transferring information
from a set of related functions with a given training distribution via, e.g., reinforcement learning
or transformers. While such learned AFs can outperform general-purpose AFs, their generalization
performance to objectives outside of the training distribution is often poor (see experimental section
and discussion on generalization behaviour in Volpp et al. (2020)). More recently, the concurrent
work of Yao et al. (2024) investigated representing AFs in code for specific optimization settings
where the experimentation budget is limited. Defining methodologies that automatically identify new
AFs capable of outperforming general-purpose and function-specific alternatives, both in and out of
the training distribution, remains a significant and unaddressed challenge. In this work we tackle
this challenge by considering AFs represented in computer code. Learning new AFs expressed in
code presents three main difficulties: (i) the vast space of all possible programs makes exhaustive
search infeasible, (ii) efficiently exploring a constrained space of possible programs requires scalable
methods and (iii) there is no clear criteria for ensuring the validity and effectiveness of generated AFs.

Contributions. We overcome these difficulties by formulating the problem of learning novel AFs
written in computer code as an algorithm discovery problem and address it by extending FunSearch
(Romera-Paredes et al., 2023), a recently proposed algorithm that uses LLMs to solve open problems
in mathematical sciences. In particular, we introduce FunBO, a novel method that explores the
large space of AFs written in computer code by taking an initial AF as input and, with a limited
number of evaluations for a set of objective functions, iteratively modifying it to improve the
performance of the resulting BO algorithm. We focus on Python programs but develop an algorithm
that can be readily applied to other languages supported by FunSearch, such as C++. Unlike existing
algorithms, FunBO outputs code snippets corresponding to improved AFs, which can be inspected
to (i) identify differences with respect to known AFs, (ii) investigate the reasons for their observed
performance, thereby enforcing interpretability, and (iii) be easily deployed in practice without
additional infrastructure overhead. We extensively test FunBO on a range of optimization problems
including standard global optimization benchmarks and hyperparameter optimization (HPO) tasks.
For each experiment, we report the explicit functional form of the discovered AFs and show that
they generalize well to the optimization of functions both in and out of the training distribution,
outperforming general-purpose AFs while comparing favorably to function-specific ones. To the
best of our knowledge, this is the first work exploring AFs represented in computer code, thus
demonstrating a novel approach to harness the power of LLMs for sampling policy design.

2 PRELIMINARIES

We consider an expensive-to-evaluate black-box function f : X → R over the input space X ⊆ Rd

for which we aim at identifying the global minimum x∗ = argminx∈X f(x). We assume access
to a set of auxiliary black-box and expensive-to-evaluate objective functions, G = {gj}Jj=1, with
gj : Xj → R,Xj ⊆ Rdj for j = 1, . . . , J , from which we can obtain a set of evaluations.

Bayesian optimization. BO seeks to identify x∗ with the smallest number T of sequential evaluations
of f given N initial observations D = {xi, yi}Ni=1, with yi = f(xi).1 BO relies on a probabilistic
surrogate model for f which in this work is set to a GP with prior distribution over any batch of input
points X = {x1, . . . ,xN} given by p(f |X) = N (m(X),Kθ(X,X ′)) with prior mean m(X)
and kernel Kθ(X,X ′) with hyperparameters θ. The posterior distribution p(f |D) is available in
closed form via standard GP updates. At every step t in the optimization process, BO selects the next
evaluation location by optimizing an AF α(·|Dt) : X → R, given the current posterior distribution
p(f |Dt), with Dt denoting the function evaluations collected up to trial t (including D). A commonly
used AF is the Expected Improvement (EI), which is defined as αEI(x|Dt) = (y∗ −m(x|Dt))Φ(z) +
σ(x|Dt)ϕ(z), where y∗ denotes the best function value observed in Dt, also called incumbent,
z = (y∗ −m(x|Dt))/σ(x|Dt), ϕ and Φ are the standard Normal density and distribution functions,
and m(x|Dt) and σ(x|Dt) are the GP posterior mean and standard deviation computed at x ∈ X .
Other general-purpose AFs proposed in the literature are: UCB (αUCB(x|Dt) = m(x|Dt)−βσ(x|Dt)

1We focus on noiseless observations but the method can be equivalently applied to noisy outcomes.
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with hyperparameter β), PofI (αPofI(x|Dt) = Φ((y∗ −m(x|Dt))/σ(x|Dt))) and the posterior mean
αMEAN(x|Dt) = m(x|Dt) (denoted by MEAN hereinafter).2

Unlike general-purpose AFs, several works have proposed increasing the efficiency of BO for a specific
optimization problem, say the optimization of f , by either adaptively selecting and/or adjusting known
AFs in a data-driven manner (Benjamins et al., 2023) or by learning problem-specific AFs (Hsieh
et al., 2021; Volpp et al., 2020; Wistuba & Grabocka, 2021). The learned AFs are trained on the set G,
whose functions are assumed to be drawn from the same distribution or function class associated to
f , reflecting a meta-learning setup. “Function class” here refers to a set of functions with a shared
structure and obtained by, e.g., applying scaling and translation transformations to their input and
output values or evaluating the loss function of the same machine learning model, e.g., AdaBoost, on
different data sets. For instance, Wistuba et al. (2018) learns an AF that is a weighted superposition
of EIs by exploiting access to a sufficiently large dataset for functions in G. Volpp et al. (2020)
considered settings where the observations for functions in G are limited and proposed MetaBO, a
reinforcement learning based algorithm that learns a specialized neural AF, i.e., a neural network
representing the AF. The neural AF takes as inputs a set of potential locations (with a given d),
the posterior mean and variance at those points, the trial t and the budget T and is trained using
a proximal policy optimization algorithm (Schulman et al., 2017). Similarly, Hsieh et al. (2021)
proposed FSAF, an AF obtained via few-shot adaptation of a learned AF using a small number of
function instances in G. Note that, while general-purpose AFs are used to optimize objectives across
function classes, learned AFs aim at achieving high performance for the single function class to which
f and G belong.

FunSearch. FunSearch (Romera-Paredes et al., 2023) is a recently proposed evolutionary algorithm
for searching in the functional space by combining a pre-trained LLM used for generating new
computer programs with an efficient evaluator, which guards against hallucinations and scores fitness.
An example problem that FunSearch tackles is the online bin packing problem (Coffman et al., 1984),
where a set of items of various sizes arriving online needs to be packed into the smallest possible
number of fixed sized bins. A set of heuristics have been designed for deciding which bin to assign
an incoming item to, e.g., “first fit.” FunSearch aims at discovering new heuristics that improve on
existing ones by taking as inputs: (i) the computer code of an evolve function h(·) representing the
initial heuristic to be improved by the LLM, e.g., “first fit” and (ii) an evaluate function e(h, ·),
also written in computer code, specifying the problem at hand (also called “problem specification”)
and scoring each h(·) according to a predefined performance metric, e.g., the number of bins used in
h(·). The inputs of both h(·) (denoted by h hereinafter) and e(h, ·) (denoted by e hereinafter), are
problem specific. A description of h’s inputs is provided in the function’s docstring3 together with an
explanation of how the function itself is used within e. Given these initial components, FunSearch
prompts an LLM to propose an improved h, scores the proposals on a set of inputs, e.g., on different
bin-packing instances, and adds them to a programs database. The programs database stores correct
h functions4 together with their respective scores. In order to encourage diversity of programs and
enable exploration of different solutions, a population-based approach inspired by genetic algorithms
(Tanese, 1989) is adopted for the programs database (DB). At a subsequent step, functions in the
database are sampled to create a new prompt, LLM’s proposals are scored and stored again. The
process repeats for τ = 1, . . . , T until a time budget T is reached and the heuristic with the highest
score on a set of inputs is returned.

3 FUNBO

FunBO is a FunSearch-based method for discovering novel AFs that increase BO efficiency by exploit-
ing the set of auxiliary objectives G. In particular, FunBO (i) uses the same prompt and DB structure
as FunSearch, but (ii) proposes a new problem specification by viewing the learning of AFs as a
algorithm discovery problem, and (iii) introduces a novel initialization and evaluation pipeline that is
used within the FunSearch structure. FunBO does not make assumptions about similarities between f
and G, nor assumes access to a large dataset for each function in G. Therefore, FunBO can be used to

2We focus on AFs that can be evaluated in closed form given the posterior parameters of a GP surrogate
model and exclude those whose computation involve approximations, e.g., Monte-Carlo sampling.

3We focus on Python programs.
4The definition of a correct function is also problem specific. For instance, a program can be considered

correct if it compiles.
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Inputs: GTr, GV, NDB, B, T
Setup: Initialize h (Fig. 2, Top), e (Fig. 9-10) and DB with NDB

islands. Assign h to each island.
while τ < T do

1. Sample two programs from DB and create prompt (Fig. 2)
2. Get a batch of B samples from the LLM
3. For each correct hτ in the batch compute shτ (GTr)
4. Add correct hτ to DB and update it (see Appendix B)
5. Update step τ = τ + 1

end
Output: Return h in DB with score in the top 20th percentile for
GTr and highest score on GV.

Figure 1: Left: The FunBO algorithm. Right: Graphical representation of FunBO. The different
FunBO component w.r.t. FunSearch (Romera-Paredes et al., 2023, Fig. 1) are highlighted in color.

discover both general-purpose and function-specific AFs as well as to adapt AFs via few-shots. FunBO
leverages the LLMs’ ability to generate executable code to make the search for novel AFs automatic
and scalable, potentially leveraging the extensive LLMs’ knowledge of BO and AFs while delivering
more interpretable AFs than those represented by neural networks. Furthermore, while FunSearch
was only applied to problems that required evolving functions with simple inputs (integers, floats or
short tuples; with only one application taking as input a single array), FunBO explores a significantly
more complex function space where programs take as inputs multiple arrays. This demonstrates how
the same formulation can be applied to problems of increasing complexity as long as an appropriate
scoring mechanism is identified.

Method overview. FunBO sequentially prompts an LLM to improve an initial AF expressed in code
so as to enhance the performance of the corresponding BO algorithm when optimizing objectives
in G. At every step τ of FunBO, an LLM’s prompt is created by including the code for two AF
instances generated and stored in a programs database (DB) at previous iterations. With this prompt,
a number (B) of alternative AFs are sampled from the LLM and are evaluated based on their average
performance on a subset GTr ⊆ G, which acts as training dataset. The evaluation process for an
AF, say hτ at step τ , on GTr gives a numeric score shτ (GTr) that is used to store programs in DB
and sample them for subsequent prompts. The “process” of prompt creation, LLM sampling, and AF
scoring and storing repeats until time budget T is reached. Out of the top performing5 AFs on GTr,
the algorithm returns the AF performing the best, on average, in the optimization of GV = G\GTr,
which acts as a validation dataset. When no validation functions are used (G = GTr), the AF with
the highest average performance on GTr is returned. Each FunBO component highlighted in bold is
described below in more details, along with the complete algorithm and graphical representation in
Fig. 1. We denote the AF returned by FunBO as αFunBO.

Initial AF. FunBO’s initial program h determines the input variables that can be used to gener-
ate alternative AFs while imposing a prior on the programs the LLM will generate at successive
steps. For these reasons it is important for guiding the search process effectively. We consider
acquisition_function in Fig. 2 (top) which takes the functional form of the EI and has as
inputs the union of the inputs given to EI, UCB and PofI. The AF returns an integer representing
the index of the point in a vector of potential locations that should be selected for the next function
evaluation. All programs generated by the LLM share the same inputs and output, but vary in their
implementation, which defines different optimization strategies, see for instance the AF generated for
one of our experiments in Fig. 3 (left).6

Prompt. At every algorithm iteration, a prompt is constructed by sampling two AFs, hi and hj ,
previously generated and stored in DB. hi and hj are sampled from DB in a way that favours higher
scoring and shorter programs (see paragraph below for more details) and are sorted in the prompt

5In this work we consider the programs with score in the top 20th percentile.
6We explored using a random selection of initial points as an alternative to EI. However, this approach did

not yield good results as using a random selection was incentivizing the generation of functions with a stochastic
output, for which convergence results are not reproducible.
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def acquisition_function(predictive_mean , predictive_var , incumbent , beta=1.0):

"""Returns the index of the point to collect ... (Full docstring in Fig. 8)."""

z = (incumbent − predictive_mean) / np.sqrt(predictive_var)

predictive_std = np.sqrt(predictive_var)

vals = (incumbent − predictive_mean) * stats.norm.cdf(z) + predictive_std * stats.norm.pdf(z)
return np.argmax(vals)

"""Improve Bayesian Optimization by discovering a new acquisition function."""

def acquisition_function_v0(predictive_mean , predictive_var , incumbent , beta=1.0):

"""Returns the index of the point to collect ... (Full docstring in Fig. 8)"""

# Code for lowest−scoring sampled AF.
return ...

def acquisition_function_v1(predictive_mean , predictive_var , incumbent , beta=1.0):

"""Improved version of ‘acquisition_function_v0 ‘."""

# Code for highest−scoring sampled AF.
return ...

def acquisition_function_v2(predictive_mean , predictive_var , incumbent , beta=1.0):

"""Improved version of the previous ‘acquisition_function ‘."""

Figure 2: Top: FunBO’s initial AF takes the functional form of EI with inputs given by the posterior
parameter of the GP at a set of potential sample locations, the incumbent and a parameter β = 1.
Bottom: FunBO prompt includes two previously generated AFs which are sampled from DB and
are sorted in ascending order based on the score achieved on GTr. The LLM generates a third AF,
acquisition_function_v2, representing an improved version of the highest scoring program.

in ascending order based on their scores shi
(GTr) and shj

(GTr), see the prompt skeleton7 in Fig. 2
(bottom). The LLM is then asked to generate a new AF representing an improved version of the last,
higher scoring, program.

Evaluation. As expected, the evaluation protocol is critical for the discovery of appropriate AFs. Our
novel evaluation setup, unlike the one used in FunSearch, entails performing a full BO loop to evaluate
program fitness. In particular, each function generated by the LLM is (i) checked to verify it is correct,
i.e., it compiles and returns a numerical output; (ii) scored based on the average performance of a
BO algorithm using hτ as an AF on GTr. Evaluation is performed by running a full BO loop with hτ

for each function gj ∈ GTr and computing a score that contains two terms: a term that rewards AFs
finding values close to the true optimum, and a term that rewards AFs finding the optimum in fewer
evaluations (often called trials). Specifically, we use the score:

shτ (GTr) =
1

|GTr|

J∑
j=1

[(
1−

gj(x
∗
j,hτ )− y∗j

gj(xt=0
j )− y∗j

)
+

(
1− Thτ

T

)]
(1)

where, for each gj , y∗j is the known true optimum, xt=0
j gives the optimal input value at t = 0 which

is assumed to be different from the true one, x∗
j,hτ is the found optimal input value with hτ and Thτ

gives the number of trials out of T that hτ selected before reaching y∗j (if the optimum was not found,
then Thτ = T to indicate that all available trials have been used). The first term in the square brackets
of Eq. (1) quantifies the discrepancy between the function values at the returned optimum and the
true optimum. This term becomes zero when x∗

j,hτ equals xt=0
j , indicating a failure to explore the

search space. Conversely, if hτ successfully identifies the true optimum, such that gj(x∗
j,hτ ) = y∗j ,

this term reaches its maximum value of one. The second term in Eq. (1) captures how quickly hτ

identifies y∗j . When Thτ = T , indicating the algorithm has not converged, this term becomes zero,
and the score is solely determined by the discrepancy between the discovered and true optimum. If,

7Note that, when τ = 1, only the initial program will be available in DB thus the prompt in Fig. 2 will be
simplified by removing acquisition_function_v1 and replacing v_2 with v_1.
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def acquisition_function(predictive_mean

predictive_var , incumbent , beta=1.0):

"""Returns the index of the point to collect..."""

predictive_std = np.sqrt(predictive_var)

diff_mean_std = (incumbent − predictive_mean

+ beta * predictive_std)
z = diff_mean_std / predictive_std

vals = (diff_mean_std * stats.norm.cdf(z)
+ predictive_std * stats.norm.pdf(z))

return np.argmax(vals)

Figure 3: OOD-Bench. Left: Code for αFunBO. Right: Different AFs trading-off exploration and
exploitation for two one-dimensional objective functions (green lines). Blue and gray trajectories
track the points queried by αFunBO, EI and UCB over 150 steps (right y-axis). All AFs behave similarly
for Styblinski-Tang (top, note that trajectories are overlapping), converging to the true optimizer (red
vertical line) in fewer than 25 trials. Instead, for Weierstrass (bottom), EI and UCB get stuck after a
few trials while αFunBO continues to explore, eventually converging to the ground truth optimum.

instead, the algorithm reaches the global optimum, this term represents the proportion of trials, out of
the total budget T , needed to do so. As an alternative scoring mechanism, we considered: (i) a binary
score giving 0 or 1 based on the convergence of the optimization problem to the global optimum,
and (ii) the negative normalized cumulative regret. We found (i) to not provide enough signal during
the exploration phase. A scoring mechanism that captures small improvements in the proposed AF
is needed to steer the LLM toward promising regions of the function space. At the same time, we
did not find (ii) to provide significant advantages over the currently adopted scoring mechanism. BO
algorithms with simple Code for the evaluation process is presented in Appendix A.

Programs database. Similar to FunSearch, scored AFs are added to DB, which keeps a population
of correct programs following an island model (Tanese, 1989). DB is initialized with a number NDB

of islands that evolve independently. Sampling of hi and hj from DB is done by first uniformly
sampling an island and, within that island, sampling programs by favouring those that are shorter
and higher scoring. A new program generated when using hi and hj in the prompt is added to the
same island and, within that, to a cluster of programs performing similarly on GTr, see Appendix B
for more details.

4 EXPERIMENTS

Our experiments explore FunBO’s ability to generate novel and efficient AFs across a wide variety
of settings. In particular, we demonstrate its potential to generate AFs that generalize well to the
optimization of functions both in distribution (ID, i.e. within function classes) and out of distribution
(OOD, i.e. across function classes) by running three different types of experiments:

1. OOD-Bench tests generalization across function classes by running FunBO with G containing
different standard global optimization benchmarks and testing on a set F that similarly comprises
diverse functions in terms of smoothness, input ranges and dimensionality and output magnitudes.
We do not scale the output values nor normalise the input domains to facilitate learning, but rather
use the objective functions as available in standard BO packages out-of-the-box. In this case G and
F do not share any particular structure, thus the generated AFs are closer to general-purpose AFs.

2. ID-Bench, HPO-ID and GPs-ID test FunBO-generated AFs within function classes for standard
global optimization benchmarks, HPO tasks, and general function classes, respectively. As this
setting is closer to the one considered by meta-learning approaches introduced in Section 2, we
compare FunBO against MetaBO (Volpp et al., 2020),8 the state-of-the-art transfer AF.

8We used the author-provided implementation at https://github.com/boschresearch/MetaBO.
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Figure 5: ID-Bench. Average BO performance when using known general purpose AFs (gray lines),
the AF learned by MetaBO (black dashed line) and αFunBO (blue line) on 100 function instances.
Shaded area gives ± standard deviations/2. The red line represents R̄t = 0, i.e. zero average regret.

3. FEW-SHOT demonstrates how FunBO can be used in the context of few-shot fast adaptation of an
AF. In this case, the AF is learnt using a general function class as G and is then tuned, using a
very small (5) number of examples, to optimize a specific synthetic function. We compare our
approach to Hsieh et al. (2021),9 the most relevant few-shot learning method.

Figure 4: OOD-Bench. Average BO performance
when using known general purpose AFs and αFunBO.
Shaded area gives ± standard deviations/2. The
red line gives R̄t = 0, i.e. zero average regret.

We report all results in terms of normalized aver-
age simple regret on a test set, R̄t, as a function
of the trial t. For an objective function f , this
is defined as Rt = f(x∗

t )− y∗ where y∗ is the
true optimum and x∗

t is the best selected point
within the data collected up to t. As F might
include functions with different scales, we nor-
malize the regret values to be in [0, 1] before
averaging them. To isolate the effects of differ-
ent acquisition functions, we employ the same
setting across all methods in terms of (i) num-
ber of trials T , (ii) hyperparameters of the GP
surrogate models (tuned offline), (iii) evaluation
grid for the AF, which is set to be a Sobol grid
(Sobol’, 1967) on the input space, and (iv) initial
design, which includes the input point giving the
maximum function value on the grid. Note that here we use a GP model with zero mean function
and RBF kernel across experiments. Therefore, the discovered AFs are conditioned on this choice of
surrogate model. All experiments are conducted using FunSearch with default hyperparameters in
Romera-Paredes et al. (2023)10 unless otherwise stated. We employ Codey, an LLM fine-tuned on a
large code corpus and based on the PaLM model family (Google-PaLM-2-Team, 2023), to generate
AFs.11

OOD-Bench. We test the capabilities of FunBO to generate an AF that performs well across function
classes by including the one-dimensional functions Ackley, Levy, and Schwefel in GTr and using the
one-dimensional Rosenbrock function for GV. We test the resulting αFunBO on nine very different
objective functions: Sphere (d = 1), Styblinski-Tang (d = 1), Weierstrass (d = 1), Beale (d = 2),
Branin (d = 2), Michalewicz (d = 2), Goldstein-Price (d = 2) and Hartmann with both d = 3 and
d = 6. We do not compare against MetaBO as (i) it was developed for settings in which the functions
in G and F belong to the same class and, (ii) the neural AF is trained with evaluation points of a
given dimension, thus it cannot be deployed for the optimization of functions across different d. For
completeness, we report a comparison with a dimensionality-agnostic version of MetaBO in Appendix
C.1 (Fig. 11) together with all experimental details, e.g., input ranges and hyperparameter settings.

9We used the author-provided implementation at https://github.com/pinghsieh/FSAF.
10See code at https://github.com/google-deepmind/funsearch.
11Codey is publicly accessible via its API (Vertex AI, 2023). For AF sampling, we used 5 Codey instances

running on tensor processing units on a computing cluster. For scoring, we used 100 CPUs evaluators per LLM
instance.
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AF interpretation: In this experiment, αFunBO (Fig. 3, left) represents a combination of EI and UCB
which, due to the beta*predictive_std term, is more exploratory than EI but, considering
the incumbent value, still factors in the expected magnitude of the improvement and reduces to EI
when beta=0. This determines the way αFunBO trades-off exploration and exploitation which can
be visualized by looking at the "exploration path", i.e., the sequence of x values selected over t, as
shown in the right plots of Fig. 3 (t measured on the secondary y-axis). For objective functions that
are smooth, for example Styblinski-Tang (top plot), the exploration path of αFunBO matches those of
EI and UCB. In this scenario, all AFs exhibit similar behavior, converging to x∗ (red vertical line)
with less than 25 trials. When instead the objective function has a lot of local optima (bottom plot)
as in Weierstrass, both EI and UCB get stuck after a few trials while FunBO keeps on exploring the
search space eventually converging to x∗. Notice how in this plot the convergence paths of all AFs
differ and only the blue line aligns with the red line, i.e., converges to x∗, after a few trials.

Using αFunBO to optimize the nine functions in F leads to a fast and accurate convergence to the
global optima (Fig. 4). The same is confirmed when extending the test set to include 50 scaled and
translated instances of the functions in F (Fig. 11, right). Interestingly, the input spaces considered
in this experiment vary significantly. This seems to suggest that scale does not affect the discovery
of new AFs as long as the possible scale variability is accounted for in the training set. Further
investigation is needed to assess FunBO robustness to more extreme scale differences, such as those
often encountered in robot simulations or high-dimensional parameter spaces. Finally, Fig. 4 shows a
surprisingly good performance of random search. This is due to the fact that random search performs
competitively on functions with numerous local optima, which are generally harder to optimize.
Aggregating performance across all functions in F highlights that no single known general-purpose
AF consistently outperforms the others. This aligns with the well-established understanding that
the effectiveness of AF can vary significantly across different types of black-box functions and is
consistent with findings reported in the literature (Perrone et al., 2019; Li et al., 2018).

ID-Bench. Next we evaluate FunBO capabilities to generate AFs that perform well within function
classes using Branin, Goldstein-Price and Hartmann (d = 3). For each of these three functions, we
train both FunBO and MetaBO with |G| = 25 instances of the original function obtained by scaling
and translating it with values in [0.9, 1.1] and [−0.1, 0.1]d respectively.12 For FunBO we randomly
assign 5 functions in G to GV and keep the rest in GTr. We test the performance of the learned AFs on
another 100 instances of the same function, with randomly sampled values of scale and translation
from the same ranges. We additionally compare against a BO algorithm that uses EI, UCB, PofI,
MEAN or a random selection of points. All hyper-parameter settings for this experiment are provided
in Appendix C.2. Across all objective functions, αFunBO leads to a convergence performance that
outperform general purpose AFs (Fig. 5). More importantly, despite using the same inputs of EI
or UCB, FunBO is able reach performances that are comparable or superior to those of AFs that are
parametrized by neural networks and use additional inputs (Fig. 5). In terms of interpretability, notice
how the AF for Goldstein-Price (Fig. 14) can be written as σ2(x|Dt)Φ(

y∗−µ(x|Dt)
σ(x|Dt)

) thus giving a
modified PofI where the probability of observing an improvement over the incumbent is multiplied
by the predictive variance.

The AFs found in this experiment (code in Figs. 13-15) are “customized” to a given function class
thus being closer, in spirit, to the transfer AF. However, in order to further validate the generalizability
of αFunBO found in OOD-Bench, we tested such AF across instances of Branin, Goldstein-Price and
Hartmann (Fig. 12, green line). We found it to perform well against general purpose AFs thus
confirming the strong results observed in OOD-Bench while being, as expected, slower than AFs
customized to a specific objective.

HPO-ID. We test FunBO on two HPO tasks where the goal is to minimize the loss (d = 2) of an
RBF-based SVM and an AdaBoost algorithm.13 As in ID-Bench, we test the ability to generate AFs
that generalize well within function classes. Therefore, we train FunBO and MetaBO with losses
computed on a random selection of 35 of the 50 available datasets and test on losses computed on
the remaining 15 datasets. For FunBO we randomly assign 5 dataset to GV and keep the rest in GTr.

12Throughout the paper we adopt MetaBO’s translation and scaling ranges.
13We use precomputed loss values across 50 datasets given as part of the HyLAP project

(http://www.hylap.org/). For SVM, the two hyperparameters are the RBF kernel parameter and the
penalty parameter while for AdaBoost they correspond to the number of product terms and the number of
iterations.
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Figure 6: Average BO performance when using known general purpose AFs (gray lines), the AF learned
by MetaBO (black dashed line) and αFunBO (blue line). Shaded area gives ± standard deviations/2.
The red line represents R̄t = 0, i.e. zero average regret. Left: HPO-ID. Right: GPs-ID with d = 4.

FunBO identifies AFs (code in Fig. 17-18) that outperform all other AFs in AdaBoost (Fig. 6, left)
while performing similarly to general purpose or meta-learned AFs for SVM (Fig. 16). Across the
two tasks, αFunBO found in OOD-Bench still outperforms general-purpose AFs while yielding slightly
worse performance compared to MetaBO and FunBO customized AFs (Fig. 16, green lines).

GPs-ID. Similar results are obtained for general function classes whose members do not exhibit any
particular shared structure. We let GTr include 25 functions sampled from a GP prior with d = 3,
RBF kernel and length-scale drawn uniformly from [0.05, 0.5]. We test the found AF on 100 other GP
samples defined both for d = 3 and d = 4 and length-scale values sampled similarly. As done by
Volpp et al. (2020), we consider a dimensionality-agnostic version of MetaBO that allows deploying
the function learned from d = 3 functions on d = 4 objectives. We found αFunBO to outperform all
other AFs (code in Fig. 20) in d = 4 (Fig. 6, right) while matching EI and outperforming MetaBO in
d = 3 (Fig. 19, left).

FEW-SHOT. We conclude our experimental analysis by demonstrating how FunBO can be used in
the context of few-shot adaptation. In this setting, we aim at learning an AF customized to a specific
function class by “adapting” an initial AF with a small number of instances from the target class.

Figure 7: FEW-SHOT.

We consider Ackley (d = 2) as the objective
function and compare against FSAF (Hsieh et al.,
2021), which is the closest few-shot adaptation
method for BO. FSAF trains the initial AF with a
set of GPs, adapts it using 5 instances of scaled
and translated Ackley functions, then tests the
adapted AF on 100 additional Ackley instances,
generated in the same manner. Note that FSAF
uses a large variety of GP functions with dif-
ferent kernels and various hyperparameters for
training the initial AF. On the contrary, FunBO
few-shot adaptation is performed by setting the
initial h function to the one found in GPs-ID (Fig.
7, green line) using 25 GPs with RBF kernel, and
including the 5 instances of Ackley used by FSAF in GTr. Despite the limited training set, FunBO
adapts very quickly to the new function instances, identifying an AF (code in Fig. 21) that outperforms
both general purpose AFs and FSAF (Fig. 7, blue line).

5 RELATED WORK

LLMs as mutation operators. FunBO expands FunSearch (Romera-Paredes et al., 2023), an evo-
lutionary algorithm pairing an LLM with an evaluator to solve open problems in mathematics and
algorithm design. Prior to FunSearch, the idea of using LLMs as mutation operators paired with a
scoring mechanism had been explored to a create a self-improvement loop (Lehman et al., 2023),
to optimize code for robotic simulations, or to evolve stable diffusion images with simple genetic
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algorithms (Meyerson et al., 2023). Other works explore the use of LLMs to search over neural
network architectures described with Python code (Nasir et al., 2023; Zheng et al., 2023; Chen et al.,
2024), find formal proofs for automatic theorem proving (Polu & Sutskever, 2020; Jiang et al., 2022)
or automatically design heuristics (Liu et al., 2024a).

Meta-learning for BO. Our work is also related to the literature on meta-learning for BO. In this
realm, several studies have focused on meta-learning an accurate surrogate model for the objective
function exploiting observations from related functions, for instance by using standard multi-task
GPs (Swersky et al., 2013; Yogatama & Mann, 2014) or ensembles of GP models (Feurer et al., 2018;
Wistuba et al., 2018; Wistuba & Grabocka, 2021). Others have focused on meta-learning general
purpose optimizers by using recurrent neural networks with access to gradient information (Chen et al.,
2017) or transformers (Chen et al., 2022). Note that, while meta-learned surrogate models explicitly
learn structure from past functions observing data-points for each of them, methods that meta-learn
AFs via G implicitly learn similarities between these objectives by observing the optimization pattern
that each previously sampled AF obtained for each objective function in G. Interestingly, the most
significant performance gains observed for the approach proposed by Chen et al. (2022) stem from
using a standard AF (EI) on top of the transformer architecture for output predictions. This confirms
the continued importance of AFs as crucial components in BO, even when combined with transformer-
based approaches, and highlights the importance of a method such as FunBO that can be seamlessly
integrated with these newer architectures, potentially leading to further improvements in performance.
More relevant to our work are studies focusing on transferring information from related tasks by
learning novel AFs that more efficiently solve the classic exploration-exploitation trade-off in BO
algorithms (Volpp et al., 2020; Hsieh et al., 2021; Maraval et al., 2024). In contrast to prior works in
this literature, FunBO produces AFs that are more interpretable, simpler and cheaper to deploy than
neural network-based AFs and generalize not only within specific function classes but also across
different classes.

LLMs and black-box optimization. Several works investigated the use of LLMs to solve black-
box optimization problems. For instance, both Liu et al. (2024b) and Yang et al. (2024) framed
optimization problems in natural language and asked LLMs to iteratively propose promising solutions
and/or evaluate them. Similarly, Ramos et al. (2023) replaced surrogate modeling with LLMs within a
BO algorithm targeted at catalyst or molecule optimization. Other works have focused on exploiting
black-box methods for prompt optimization (Sun et al., 2022; Chen et al., 2023; Cheng et al., 2023;
Fernando et al., 2023), solving HPO tasks with LLMs (Zhang et al., 2023) or identifying optimal
LLM hyperparameter settings via black-box optimization approaches (Wang et al., 2023; Tribes
et al., 2024). Concurrent to our work, Yao et al. (2024) propose to use an LLM coupled with an
evolutionary procedure to find cost-aware AFs. Several works investigated the use of LLMs to solve
black-box optimization problems. For instance, both Liu et al. (2024b) and Yang et al. (2024) framed
optimization problems in natural language and asked LLMs to iteratively propose promising solutions
and/or evaluate them. Similarly, Ramos et al. (2023) replaced surrogate modeling with LLMs within a
BO algorithm targeted at catalyst or molecule optimization. Other works have focused on exploiting
black-box methods for prompt optimization (Sun et al., 2022; Chen et al., 2023; Cheng et al., 2023;
Fernando et al., 2023), solving HPO tasks with LLMs (Zhang et al., 2023) or identifying optimal
LLM hyperparameter settings via black-box optimization approaches (Wang et al., 2023; Tribes et al.,
2024). Concurrent to our work, Yao et al. (2024) propose to use an LLM coupled with an evolutionary
procedure to find cost-aware AFs.

AFs representations Works proposing new meta-learned or general purpose AFs can also be classified
based on the representation used for the AF. Differently from general-purpose AFs, for which an
analytical representation is available, recent works have explored representing AFs via neural networks
or code. Among the works using neural networks, Volpp et al. (2020) proposed a neural AF that is a
MLP with relu-activations while Chen et al. (2022) and Maraval et al. (2024) jointly trained surrogate
models and AFs via transformers or neural processes. Instead, the recent work by Yao et al. (2024)
represents AFs for setting with limited experimentation budgets in code.

6 CONCLUSIONS AND DISCUSSION

We tackled the problem of discovering novel, well performing AFs for BO through FunBO, a
FunSearch-based algorithm which explores the space of AFs by letting an LLM iteratively mod-
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ify the AF expression in native computer code to improve the efficiency of the corresponding BO
algorithm. We have shown across a variety of settings that FunBO learns AFs that generalize well
within and across function classes while being easily adaptable to specific objective functions of
interest with only a few training examples.

Limitations. FunBO inherits the strengths of FunSearch along with some of its inherent constraints.
While FunSearch allows finding programs that are concise and interpretable, it works best for
programs that can be quickly evaluated and for which the score provides an accurate quantification of
the improvement achieved. Therefore, a potential limitation of FunBO is the computational overhead
associated with running a full BO loop for each function in G, which significantly increases the
evaluation time of every sampled AF (especially when T is high). This limits the scalability of FunBO
for larger sets G and hinders its application to more complex optimization problems, such as those
with multiple objectives. In addition, the simple metric considered in this work in Eq. (1), only
captures the distance from the true optimum and the number of trials needed to identify it. More
research needs to be done to understand if a metric that better characterizes the convergence path
for a given AF can improve FunBO performance. Furthermore, each FunBO experiment shown in
this work required obtaining a large number of LLM samples. This means that the overall cost of
experiments, which depends on the LLM used as well as the algorithm’s implementation (e.g. single
threaded or distributed, as originally proposed by FunSearch), can be high. Finally, as reported by
Romera-Paredes et al. (2023), the variance in the quality of the AF found by FunBO is high. This is
due to the randomness in both the LLM sampling and the evolutionary procedure. While we were able
to reproduce the results shown for ID-Bench, HPO-ID and GPs-ID with different FunBO experiments,
finding AFs that perform well across function classes required multiple FunBO runs.

Future work. This work opens up several promising avenues for future research. While our focus
here was on the simplest single-output BO algorithm with a GP surrogate model, FunBO can be
extended to learn new AFs for various adaptations of this problem, such as constrained optimization,
noisy evaluations, or alternative surrogate. For instance, in order to deal with cases where the
objective to be optimized requires very expensive/time-consuming evaluations, one could explore
learning an AF by using a set G that includes cheaper and lower-fidelity evaluations of the objective.
By accounting for the difference between low-fidelity and high-fidelity evaluations in the surrogate
models, one can investigate whether FunBO can learn AFs that transfer to more expensive-to-evaluate
objectives. We speculate that in these settings, a key challenge is to find a small but representative set
of low-fidelity simulators that can be used to drive the LLM exploration by providing a meaningful
signal for the optimisation process while keeping the cost limited. In addition, FunBO can be used to
search in the space of functions with different inputs thus potentially discovering e.g. non myopic
AFs. Our method is inherently flexible and can accommodate such extensions which we view as
natural follow-up work. Additionally, FunBO demonstrates the potential to harness the power of
LLMs while maintaining the interpretability of AFs expressed in code. This opens an exciting avenue
for exploring how and what assumptions can be encoded within AFs, based on the desired program
characteristics and prior knowledge about the objective function. Finally, the discovered AFs might
have intrinsic value, independently on how they were discovered. Future work could focus on more
extensively test their properties and identify those that can be added to the standard suite of AFs
available in BO packages.
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import numpy as np

from scipy import stats

def acquisition_function(predictive_mean , predictive_var , incumbent , beta=1.0):

"""Returns the index of the point to collect in a vector of eval points.

Given the posterior mean and posterior variance of a GP model for the objective function ,

this function computes an heuristic and find its optimum. The next function evaluation

will be placed at the point corresponding to the selected index in a vector of

possible eval points.

Args:

predictive_mean: an array of shape [num_points , dim] containing the predicted mean

values for the GP model on the objective function for ‘num_points ‘ points of

dimensionality ‘dim‘.

predictive_var: an array of shape [num_points , dim] containing the predicted variance

values for the GP model on the objective function for ‘num_points ‘ points

of dimensionality ‘dim‘.

incumbent: current optimum value of objective function observed.

beta: a possible hyperparameter to construct the heuristic.

Returns:

An integer representing the index of the point in the array of shape [num_points , dim]

that needs to be selected for function evaluation.

"""

z = (incumbent − predictive_mean) / np.sqrt(predictive_var)

predictive_std = np.sqrt(predictive_var)

vals = (incumbent − predictive_mean) * stats.norm.cdf(z) + predictive_std * stats.norm.pdf(z)
return np.argmax(vals)

Figure 8: Python code for FunBO initial h function with full docstring.

A CODE FOR FUNBO COMPONENTS

Fig. 8 gives the Python code for the initial acquisition function used by FunBO, including the full
docstring. The docstring describes the inputs of the function and the way in which the function itself
is used within the evaluate function e. Evaluation of the functions generated by FunBO is done by
first running a full BO loop (see Fig. 9 for Python code) and then, based on its output (the initial
optimal input value, the true optimum, the found optimum and the percentage of steps taken before
finding the latter), computing the score as in the Python code of Fig. 10. Note how the latter captures
how accurately and quickly a BO algorithm using the proposed AF finds the true optimum.

B PROGRAMS DATABASE

The DB structure matches the one proposed by FunSearch (Romera-Paredes et al., 2023). We discuss
it here for completeness. A multiple-deme model (Tanese, 1989) is employed to preserve and
encourage diversity in the generated programs. Specifically, the program population in DB is divided
into NDB islands, each initialized with the given initial h and evolved independently. Within each
island, programs are clustered based on their scores on the functions in GTr, with AFs having the
same scores grouped together. Sampling from DB involves first uniformly selecting an island and
then sampling two AFs from it. Within the chosen island, a cluster is sampled, favoring those with
higher score values, followed by sampling a program within that cluster, favoring shorter ones. The
newly generated AF is added to the same island associated with the instances in the prompt, but to
a cluster reflecting its scores on GTr. Every 4 hours, all programs from the NDB/2 islands with the
lowest-scoring best AF are discarded. These islands are then reseeded with a single program from
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"""Evaluate an AF with a full BO loop for the objective f."""

import GPy

import numpy as np

import utils

def run_bo(

f, # objective function to minimize

acquisition_function , # h given by LLM

num_eval_points = 1000,

num_trials = 30):

"""Run a BO loop and return the minimum objective functions found and the percentage of

trials required to reach it."""

# Get evaluation points for AF. get_eval_points() returns a given number of points on a

# Sobol grid on the f’s input space

eval_points = utils.get_eval_points(f, num_eval_points)

# Get the initial point with get_initial_design(). This is set to be the point giving the

# maximum (worst) function evaluation among eval_points

initial_x , initial_y = utils.get_initial_design(f)

# Initialize GP hyper−parameters. We pre−compute the RBF kernel hyper−parameters
# for each given f. These are returned by get_hyperparameters().

hp = utils.get_hyperparameters(f)

# Initialize kernel and model.

kernel = GPy.kern.RBF(input_dim=input_dim , variance=hp[’variance’],

lengthscale=hp[’lengthscale’], ARD=hp[’ard’])

model = GPy.models.GPRegression(initial_x , initial_y , kernel)

# Get initial predictive mean and var.

predictive_mean , predictive_var = model.predict(eval_points)

# Get initial optimum value.

found_min = initial_min_y = float(np.min(model.Y))

# Get true optimum value.

true_min = np.min(f(eval_points))

# Optimization loop.

for _ in range(num_trials):

new_input = acquisition_function(eval_points , # Get new point using AF.

predictive_mean , predictive_var , found_min)

new_output = f(new_input) # Evaluate new point.

model.set_XY(np.concatenate((model.X, new_input), axis=0), # Append to dataset.

np.concatenate((model.Y, new_output), axis=0))

# Get updated mean and var

predictive_mean , predictive_var = model.predict(eval_points)

found_min = float(np.min(model.Y)) # Get current optimum value.

# Get percentage of trials (note that we remove the number of given points in the

initial design) needed to identify the optimum.

percentage_steps_before_converging = (np.argmin(model.Y) − len(

initial_design_inputs)) / (num_trials) if found_min == true_min else 1.0

return (found_min , true_min, initial_min_y , percentage_steps_before_converging)

Figure 9: Python code for the first part of e used in FunBO. This function runs a full BO loop with
a given number of trials and points on a Sobol grid to assess how efficiently a given AF allows
optimizing f .
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"""Score an AF given the output of run_bo()."""

import numpy as np

def score(found_min , true_min, initial_min_y , percentage_steps_before_converging):

"""Compute a score based on the output of run_bo()."""

# Get score based on how close the found optimum is to the true one (first term

# in Eq. (1)).

score_min_reached = 1.0 − np.abs(found_min − true_min) / (initial_min_y − true_min)

# Get score based on how the percentage of trials needed to identify the true

# optimum (second term in Eq. (1)).

score_steps_needed = 1.0 − percentage_steps_needed

return score_min_reached + score_steps_needed

Figure 10: Python code for the second part of e used in FunBO. Based on the output of run_bo(), this
function computes a score capturing how accurately and quickly an AF allows identifying the true
optimum.

the surviving islands. This procedure eliminates under-performing AFs, creating space for more
promising programs. See the Methods section in Romera-Paredes et al. (2023) for further details.

C EXPERIMENTAL DETAILS

In this section, we provide the experimental details for all our experiments. We run FunBO
with T = 48hrs, B = 12 and NDB = 10. To isolate the effect of using different AFs and
eliminate confounding factors related to AF maximization or surrogate models, we maximized
all AFs on a fixed Sobol grid (of size NSG) over each function’s input space. We also ensure
the same initial design across all methods (including the point with the highest/worst function
value on the Sobol grid) and used consistent GP hyperparameters which are tuned offline and
fixed. In particular, we use a GP model with zero mean function and RBF kernel defined as
Kθ(X,X ′) = σ2

fexp(−||X − X ′||2/2ℓ2) with θ = (ℓ, σ2
f ) where ℓ and σ2

f are the length-scale
and kernel variance respectively. The Gaussian likelihood noise σ2 is set to 1e − 5 unless oth-
erwise stated. We set T = 30 for all experiments apart for HPO-ID and GPs-ID for which we
use T = 20 to ensure faster evaluations of generated AFs. We used the MetaBO implementa-
tion provided by the authors at https://github.com/boschresearch/MetaBO, retain-
ing default parameters except for removing the local maximization of AFs and ensuring consis-
tency in the initial design. We followed the same procedure for FSAF, using code available at
https://github.com/pinghsieh/FSAF. We ran UCB with β = 1. Experiment-specific
settings are detailed below.

C.1 OOD-BENCH

The parameter configurations adopted for each objective function used in this experiment, either
in G or in F , are given in Table 1. Notice that for Hartmann with d = 3 we use an ARD kernel.
Scaled and translated functions are obtained with translations sampled uniformly in [−0.1, 0.1]d and
scalings sampled uniformly in [0.9, 1.1]. Fig. 11 gives the results achieved by αFunBO (blue line) and
a dimensionality agnostic version of MetaBO that does not take the possible evaluation points as input
of the neural AF. This allows the neural AF to be trained on one-dimensional functions and be used to
optimize functions across input dimensions.
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Table 1: Parameters used for OOD-Bench.
d X NSG ℓ σ2

f σ2
f

Ackley 1 [−4, 4] 1000 0.21 28.19 1e− 5
Levy 1 [−10, 10] 1000 1.05 83.32 1e− 5
Schwefel 1 [−500, 500] 1000 18.46 76868.65 1e− 5
Rosenbrock 1 [−5, 10] 1000 1.20 87328.20 1e− 5
Sphere 1 [−5, 5] 1000 18.46 924202.43 1e− 5
Styblinski-Tang 1 [−5, 5] 1000 7.34 119522207.86 1e− 5
Weierstrass 1 [−0.5, 0.5] 1000 0.01 0.39 1e− 5
Beale 2 [−4, 5]2 10000 0.46 546837.32 1e− 5
Branin 2 [−5, 10]× [0, 15] 10000 4.65 155233.52 1e− 5
Michalewicz 2 [0, π]2 10000 0.22 0.10 1e− 5
Goldstein-Price 2 [−2, 2]2 10000 0.27 117903.96 1e− 5
Hartmann-3 3 [0, 1]3 1728 [0.716, 0.298, 0.186] 0.83 1.688e− 11
Hartmann-6 6 [0, 1]6 729 1.0 1.0 1e− 5

Figure 11: OOD-Bench. Average BO performance when using known general purpose AFs (gray lines
with different patterns), the AF learned by a dimensionality agnostic version of MetaBO (MetaBO-DA,
black dashed line) and αFunBO (blue line). Shaded area gives ± standard deviations/2. The red line
represents R̄t = 0, i.e., zero average regret. Left: F includes nine different synthetic functions. Right:
Extended test set including, for each function in F , 50 randomly scaled and translated instances.

C.2 ID-BENCH

The parameter configurations for Branin, Goldstein-Price and Hartmann are given in Table 2. For this
experiment, we adopt the parameters used by Volpp et al. (2020) thus optimize the functions in the
unit-hypercube and use ARD RBF kernels. Fig. 12 gives the results achieved by αFunBO (blue line) and
the AF found by FunBO for OOD-Bench (green). The Python code for the found AFs is given in Figs.
13-15.

Table 2: Parameters used for ID-Bench.
d X NSG ℓ σ2

f σ2
f

Branin 2 [0, 1]2 961 [0.235, 0.578] 2.0 8.9e− 16
Goldstein-Price 2 [0, 1]2 961 [0.130, 0.07] 0.616 1e− 6
Hartmann-3 3 [0, 1]3 1728 [0.716, 0.298, 0.186] 0.83 1.688e− 11

C.3 HPO-ID

For this experiment, we adopt the GP hyperparameters used by Volpp et al. (2020). From the training
datasets used in MetaBO, we assign “bands”, “wine”, “coil2000”, “winequality-red” and “titanic” for
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Figure 12: ID-Bench. Average BO performance when using known general purpose AFs (gray lines
with different patterns), αFunBO found in OOD-Bench (green line), the AF learned by MetaBO (black
dashed line) and αFunBO (blue line) on 100 instances of Branin, Goldstein-Price and Hartmann. Shaded
area gives ± standard deviations/2. The red line represents R̄t = 0, i.e., zero average regret.

import numpy as np

from scipy import stats

def acquisition_function(predictive_mean , predictive_var , incumbent , beta=1.0):

"""Returns the index of the point to collect ..."""

y_pred = predictive_mean + 2 * predictive_var
diff_current_best_y_pred = incumbent − y_pred

bound_standard_deviation = np.maximum(np.sqrt(predictive_var), 1e−15)
z = diff_current_best_y_pred / bound_standard_deviation

vals = (diff_current_best_y_pred * stats.norm.cdf(z)
+ np.sqrt(predictive_var) * stats.norm.cdf(z + 0.5)
+ (stats.norm.cdf(z) − stats.norm.cdf(z + 0.5)) * predictive_var / 2)

a = np.maximum(diff_current_best_y_pred , incumbent)

alpha = diff_current_best_y_pred if incumbent > 0.0 else −np.inf
alpha = np.maximum(alpha, 0.) * (−alpha + 0.5 * a) − y_pred

y_vals = np.absolute(alpha + a + np.abs(y_pred)) * (a >= 0.)
for y_val in y_vals:

idx = np.argmax(vals − (y_val − y_pred) / bound_standard_deviation)

vals[idx] = 0

return np.argmax(vals)

Figure 13: ID-Bench. Python code for αFunBO for Branin. The BO performance corresponding to this
AF is given in Fig. 5 (left).
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import numpy as np

from scipy import stats

def acquisition_function(predictive_mean , predictive_var , incumbent , beta=1.0):

"""Returns the index of the point to collect ..."""

shape, dim = predictive_mean.shape

best_score = 0.0

g_i = 0.0

predictive_var[(shape−10)//2] *= dim
predictive_var[~ np.isfinite(predictive_var)] = 1.0

for i in range(predictive_mean.shape[0]):

curr_z = (incumbent − predictive_mean[i]) / np.sqrt(predictive_var[i])

new_score = predictive_var[i] * stats.norm.cdf(curr_z, 0.5)

if new_score > best_score:

best_score = new_score

g_i = i

return g_i

Figure 14: ID-Bench. Python code for αFunBO for Goldstein-Price. The BO performance corresponding
to this AF is given in Fig. 5 (middle).

import numpy as np

from scipy import stats

def acquisition_function(predictive_mean , predictive_var , incumbent , beta=1.0):

"""Returns the index of the point to collect ..."""

diff_current_best_mean = incumbent − predictive_mean

standard_deviation = np.sqrt(predictive_var)

z = diff_current_best_mean / standard_deviation

vals = diff_current_best_mean * stats.norm.cdf(z)**3 + (
stats.norm.cdf(z)**2 + stats.norm.cdf(z) + 1) * stats.norm.pdf(z)

index = np.argmax(stats.truncnorm.cdf(vals, a=−0.1, b=0.1))
return index

Figure 15: ID-Bench. Python code for αFunBO for Hartmann. The BO performance corresponding to
this AF is given in Fig. 5 (right).
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Figure 16: HPO-ID. Average BO performance when using known general purpose AFs (gray lines with
different patterns), a meta-learned AF by MetaBO (black dashed line), αFunBO found in OOD-Bench
(green lines) and αFunBO (blue lines). Shaded area gives ± standard deviations/2. The red line
represents R̄t = 0, i.e., zero average regret.

import numpy as np

from scipy import stats

def acquisition_function(predictive_mean , predictive_var , incumbent , beta=1.0):

"""Returns the index of the point to collect ..."""

c1 = np.exp(−beta)
c2 = 2.0 * beta * np.exp(−beta)
alpha = np.sqrt(2.0) * beta * np.sqrt(predictive_var)
z = (incumbent − predictive_mean) / alpha

vals = −abs(c1 * np.exp( − np.power(z, 2)) − 1.0 + c1 + incumbent

) + 2.0 * beta * np.power(z+c2, 2)
vals −= np.log(np.power(alpha, 2))
vals[np.argmin(vals)] = 1.0

return np.argmin(vals)

Figure 17: HPO-ID. Python code for αFunBO for AdaBoost. The BO performance corresponding to this
AF is given in Fig. 6 (left).

Adaboost, and “bands”, “breast-cancer”, “banana”, “yeast” and “vehicle’ for SVM to GV. We keep
the rest in GTr. Fig. 16 gives the results achieved by αFunBO (blue lines) and the AF found by FunBO
for OOD-Bench (green lines). The Python code for the found AFs is given in Figs. 17-18.

C.4 GPS-ID

The functions included in both G and F are sampled from a GP prior with RBF kernel and length-scale
values drawn uniformly from [0.05, 0.5]. The functions are optimized in the input space [0, 1]3 with
NSG = 1728 points. In terms of GP hyperparameters, we set σ2

f = 1.0, σ2 = 1e − 20 and use the
length-scale value used to sample each function as ℓ. Fig. 19 gives the results achieved by αFunBO and
the AF found by FunBO for OOD-Bench. The Python code for αFunBO is given in Fig. 20.

C.5 FEW-SHOT

For this experiment, the 5 Ackley functions used to “adapt” the initial AF are obtained by scaling
and translating the output and inputs values with translations and scalings uniformly sampled in
[−0.1, 0.1]d and [0.9, 1.1] respectively. The test set includes 100 instances of Ackley similarly
obtained with scale and translations values in [0.7, 1.3] and [−0.3, 0.3]d respectively. Furthermore,
we consider [0, 1]2 as input space and use NSB = 1000. The GP hyperparameters are set to ℓ =
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import numpy as np

from scipy import stats

def acquisition_function(predictive_mean , predictive_var , incumbent , beta=1.0):

"""Returns the index of the point to collect ..."""

z = (incumbent − predictive_mean) / np.sqrt(predictive_var)

vals = (incumbent − predictive_mean) * stats.norm.cdf(z
) + np.sqrt(predictive_var) * stats.norm.pdf(z)

t0_val = stats.norm(loc=incumbent , scale=np.sqrt(predictive_var)).pdf(incumbent)

t1_val = z * stats.norm.pdf(z)
vals = ((vals * t1_val − t0_val) / (1 − 2 * t1_val)

+ t1_val*(vals/(1−2*t1_val))
− vals/(1 − 2*t1_val)**2 + t1_val*(t1_val − z)/beta)

return np.argmax(vals)

Figure 18: HPO-ID. Python code for αFunBO for SVM. The BO performance corresponding to this AF
is given in Fig. 16 (right).

Figure 19: Average BO performance when using known general purpose AFs (gray lines with different
patterns), the AF learned by MetaBO (black dashed line), αFunBO found in OOD-Bench (green lines)
and αFunBO (blue lines). Shaded area gives ± standard deviations/2. The red line represents R̄t = 0,
i.e. zero average regret. Left: GPs-ID. F includes functions with d = 3. Right: F includes functions
with d = 4.

import numpy as np

from scipy import stats

def acquisition_function(predictive_mean , predictive_var , incumbent , beta = 1.0):

"""Returns the index of the point to collect ..."""

z = (incumbent − predictive_mean) / np.sqrt(predictive_var)

vals = ((incumbent − predictive_mean) * stats.norm.cdf(z
) + np.sqrt(predictive_var) * stats.norm.pdf(z))**2

vals = vals / (1 + (z / beta)**2 * np.sqrt(predictive_var))**2
return np.argmax(vals)

Figure 20: GPs-ID. Python code for αFunBO. The BO performance corresponding to this AF is given in
Fig. 6 (right).
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import numpy as np

from scipy import stats

def acquisition_function(predictive_mean , predictive_var , incumbent , beta=1.0):

"""Returns the index of the point to collect ..."""

num_points , _ = predictive_mean.shape

a = 10

z = (predictive_mean + 0.000001 − incumbent) / np.sqrt(predictive_var)

vals = 1 / ((1 + (z / beta)**2 * np.sqrt(a * predictive_var + 0.00001)) **2)
beta_sqrt_p_z = np.sqrt(beta) * z
vals *= (1 + (z / beta)**2)*predictive_var/(

(1+ (beta_sqrt_p_z / np.sqrt(predictive_var))**2 * predictive_var) * (
1+(beta_sqrt_p_z / np.sqrt(predictive_var))**2))

vals += (1 − beta_sqrt_p_z / np.sqrt(predictive_var))**2 * predictive_var/ (
1 + (beta_sqrt_p_z / np.sqrt(predictive_var))**2 * predictive_var)**2

vals = (1 + (z / beta)**2) * vals− (1 − (z / beta)**2) * np.exp(− 1) ** 2
vals = np.sqrt(a * predictive_var) * vals / np.sqrt(

a * predictive_var + 0.00001)
vals *= np.sqrt(np.sqrt(a * predictive_var) * predictive_var)
vals *= predictive_var**2
vals[:num_points // 2] = 0

return np.argmax(vals)

Figure 21: FEW-SHOT. Python code for αFunBO. The BO performance corresponding to this AF is
given in Fig. 7.

[0.07, 0.018] (ARD kernel), σ2
f = 1.0 and σ2 = 8.9e − 16. Python code for αFunBO is given in Fig.

21.

C.6 ICLR REBUTTAL

Figure 22: OOD-Bench. Average performance with increased Sobol grid resolution.
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Figure 23: OOD-Bench. Performance on the single functions included in the test set using an increased
Sobol grid resolution.
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Figure 24: OOD-Bench. GP surrogate models for the Weierstrass function.

Figure 25: OOD-Bench. Performance of αFunBO and UCB with different β values.
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