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Abstract

Vision-Language Foundation Models (VLMs), trained on large-scale multimodal
datasets, have driven significant advances in Artificial Intelligence (AI) by enabling
rich cross-modal reasoning. Despite their success in general domains, applying
these models to medical imaging remains challenging due to the limited availabil-
ity of diverse imaging modalities and multilingual clinical data. Most existing
medical VLMs are trained on a subset of imaging modalities and focus primar-
ily on high-resource languages, thus limiting their generalizability and clinical
utility. To address these limitations, we introduce a novel Vietnamese-language
multimodal medical dataset consisting of 2,757 whole-body PET/CT volumes from
independent patients and their corresponding full-length clinical reports. This
dataset is designed to fill two pressing gaps in medical Al development: (1) the
lack of PET/CT imaging data in existing VLMs training corpora, which hinders
the development of models capable of handling functional imaging tasks; and (2)
the underrepresentation of low-resource languages, particularly the Vietnamese
language, in medical vision-language research. To the best of our knowledge, this
is the first dataset to provide comprehensive PET/CT-report pairs in Vietnamese.
We further introduce a training framework to enhance VLMs’ learning, including
data augmentation and expert-validated test sets. We conduct comprehensive ex-
periments benchmarking state-of-the-art VLMs on downstream tasks, including
medical report generation and visual question answering. The experimental results
show that incorporating our dataset significantly improves the performance of ex-
isting VLMs. However, despite these advancements, the models still underperform
on clinically critical criteria, particularly the diagnosis of lung cancer, indicating
substantial room for future improvement. We believe this dataset and benchmark
will serve as a pivotal step in advancing the development of more robust VLMs
for medical imaging, particularly in low-resource languages, and improving their
clinical relevance in Vietnamese healthcare.
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1 Introduction

Vision-Language Foundation Models (VLMs) have rapidly evolved as a cornerstone of modern Artifi-
cial Intelligence (Al), capable of jointly modeling information across visual and textual modalities.
These models are typically pre-trained on diverse datasets encompassing billions of image-text pairs,
enabling them to acquire generalized and transferable representations [1H5]]. This cross-modal align-
ment allows VLMs to bridge the semantic gap between images and language, facilitating downstream
tasks such as image captioning [6} [7], visual question answering [4-7]], report generation [8|9], and
even zero-shot image classification [1} [10], with minimal task-specific supervision.

While VLMs such as CLIP [1]], Flamingo [[L1], and GPT-40 [[12]] have demonstrated exceptional
performance on natural image benchmarks, transferring this success to the medical domain remains an
ongoing challenge. The primary barrier lies in the domain shift: medical images fundamentally differ
from natural images in terms of texture, structure, semantics, and purpose [13|14]. Furthermore,
the textual annotations associated with medical images are typically richer, more technical, and
context-sensitive, often demanding expert-level knowledge for accurate interpretation [[L1SH17].

In response to these limitations, recent efforts have focused on developing medical-specific VLMs,
including MedCLIP [18]] and MedFlamingo [19]. These models aim to adapt general-purpose VLMs’
architecture to the medical domain by retraining or fine-tuning on domain-specific datasets. However,
existing models are still constrained in several critical aspects. First, the visual modality coverage in
current medical VLMs is narrow. Most existing works focus on well-established imaging types such as
chest X-rays [20], Magnetic Resonance Imaging (MRI) and Computed Tomography (CT) scans [21],
and histopathology slides [22]. In contrast, functional imaging modalities such as Positron Emission
Tomography (PET), which are essential in oncology, cardiology, and neurology, remain significantly
underrepresented in current datasets and VLMSs. Second, the linguistic side of existing VLMs, and
vision-language datasets, is largely monolingual, overwhelmingly dominated by English [23]]. Very
few resources consider linguistic inclusivity, resulting in low-resource languages such as Vietnamese
being severely underrepresented in developing and evaluating VLMs. In addition, most existing
datasets include only brief image captions [24} [25]] or limited diagnostic annotations [26], which are
insufficient to fully capture the complex and nuanced information embedded in medical images.

Our preliminary experiments highlight signifi- Table 1: Limitations of current VLMs in Viet-
cant limitations of current medical VLMs when namese reports generating from PET images. R-1
applied to PET/CT imaging data. Table [I] and R-L denote ROUGE-1 and ROUGE-L scores.
presents the results of a Vietnamese clinical re- *GPT-4o is evaluated under few-shot prompting.

port generation task using PET/CT images from

a dataset we curated, comprising 1,725 clinical =~ Model |BLEU-4 1 |R-171|R-L 1| BERT 1
case studies. As shown, models such as LLaVA-  LLaVA-Med [27] 001 150.08|27.89 | 64.63
Med [27], M3D [28], and RadFM [29] yield  M3D [28] 0.04 |41.01]23.53| 67.21
near-zero BLEU-4 scores and low ROUGE and  RadFM [29] 0.06 |54.23|28.33| 69.49

BERT score metrics, reflecting their poor capac- ~_GPT-40* [12] 3112 ]67.96|52.76 | 81.09

ity to generate coherent and clinically relevant

reports. While GPT-4o [12] demonstrates relatively better performance, its BLEU-4 score remains at
a modest 31%, indicating inadequate generation quality. These findings underscore the pressing need
for more diverse training data regarding imaging modalities and linguistic representation to enhance
the robustness and generalizability of medical VLMs.

To address this challenge, we introduce the first large-scale paired dataset of PET/CT images and
corresponding clinical reports in Vietnamese, a language with limited medical Al resources. Our
focus is motivated by these factors:

* Clinical significance: PET/CT scan is indispensable in modern diagnostic workflows, especially
in oncology, where it enables non-invasive assessments of tumor metabolism and spread [30-33]].
Its importance in early diagnosis, staging, and treatment monitoring is unparalleled, yet it remains
underutilized in Al due to data scarcity.

* Data scarcity and accessibility: Public PET/CT datasets are rare. To our knowledge, no existing
dataset offers paired PET/CT images with detailed clinical reports. PET/CT scans are also among
the most expensive imaging procedures [34,|35]], further limiting data availability and open access.



Table 2: Comparison of our ViMed-PET dataset with existing medical vision-language datasets. Our
dataset is the first large-scale PET/CT dataset with clinical reports in Vietnamese, stored in standard
medical DICOM format. “Multiple” indicates more than one modality (e.g., CT, MRI, X-ray). “K”
is thousand. (*) Values show the number of 2D slices/images extracted from 3D volumes.

\ Text \ Image \ Modality Size
Dataset Name

| PET-related | Type | 3D Volume | PET/CT | Others | PET/CT | Others
MIMIC-CXR [26] X Report X X X-ray - 227K
PMC-OA [24] X Caption X v Multiple 600K | 1,646K
ROCOV2 [25] X Caption X v Multiple 432 79K
CT-RATE [37] X Report v X CT - 50K
M3D-Data [28] X Report v X CT - 120K
MedMD-3D [29] X Caption/Report v X Multiple - 500K
RIDER Lung PET-CT [38] X - v v - 266K (*) -
Head-Neck PET-CT [39] X - v v - 123K (*) -
Lung-PET-CT-Dx [40] X - v v - 251K (%) -
FDG-PET-CT-Lesions [41] X - v v - 917K (*) -
Our ViMed-PET Dataset | v \ Report \ v | v \ - | L567K (*) | -

For our ViMed-PET dataset, 1,567K paired slices correspond to 2,757 paired whole-body PET/CT volumes.

* Language equity: The lack of medical image-report datasets in Vietnamese exacerbates health
data inequity. With over 100 million native speakers [36]], Vietnamese represents a substantial user
base that remains excluded from Al-enabled healthcare technologies.

The main contributions of this study are as follows:

1. We introduce a comprehensive dataset comprising 2,757 whole-body PET/CT volumes from
independent patients along with full-length Vietnamese clinical reports. The dataset spans a
demographically and pathologically diverse patient population, reflecting real-world clinical
variability. It provides a valuable resource for advancing the training of medical VLMs, with the
potential to support a broader range of modalities and enable multilingual development, especially
for low-resource languages.

2. We develop a data augmentation framework that enriches the visual and textual components of the
dataset, improving its effectiveness for model training and generalization.

3. We leverage our newly curated PET/CT image-report dataset, named ViMed-PET, to fine-tune
state-of-the-art VLMs and evaluate their performance on tasks such as medical report generation
and visual question answering. Experimental results show notable gains, enhancing the capabilities
of pre-trained medical VLMs.

4. We collaborate with medical domain experts to develop a clinically validated test set specifically
tailored for lung cancer diagnosis. This test set incorporates structured, clinically relevant evalua-
tion metrics that assess model performance in real-world diagnostic scenarios. Rather than relying
solely on conventional Natural Language Processing metrics that emphasize lexical matching,
our benchmark provides a comprehensive evaluation of the ability of a model to address the
nuanced and complex demands of clinical lung cancer diagnosis. This offers a more holistic and
meaningful assessment of medical VLMs’ effectiveness.

2 ViMed-PET: The proposed Vietnamese Vision-Language Medical Dataset
of PET/CT Images and Clinical Reports

2.1 Existing Medical Multimodal Datasets

Recent advances in medical VLMs have been driven by datasets that align medical images with
associated textual annotations. Table [2] summarizes existing datasets, which primarily cover CT,
MRI, and X-ray modalities and provide either image captions or diagnostic reports. For 2D imaging,
representative examples include MIMIC-CXR [26], PMC-OA [24], and ROCOv2 [25]. Several
datasets have introduced volumetric data to support 3D understanding, including CT-RATE [37]],
M3D-Data [28], and MedMD [29]. However, functional imaging modalities such as PET/CT remain
largely absent from current benchmarks. Although datasets like RIDER Lung PET-CT [38]], Lung-



Table 3: The proposed ViMed-PET dataset. (a) Statistics of the original data. (b) Augmented datasets
for training and evaluation various downstream tasks.

(a) Our ViMed-PET dataset (M: Male, F: Female). (b) Task-specific augmented dataset.
Year | Studies (M, F) | Age (years) | Height (cm) | Weight (kg) | # Slices Subset | Size
2017 215 (137,78)|53.55 £ 15.25|160.63 4+ 11.81|55.81 + 12.02| 126,766 VQA 8,271 conversations

2018 | 462 (308, 154) |56.77 + 13.56| 161.55 + 8.27|56.72 + 9.97| 270,668  Report Generation | 5,571 reports
2019 | 339(227,112)|57.35 £ 12.94|161.89 £ 7.89|58.18 £ 9.79| 200,660  Study Comparison | 10,000 pairs
2023 | 1741 (1144, 597) | 58.69 + 13.61 | 161.25 & 8.68|57.53 £10.10| 968,968  Medical Test Set | 398 lesions

Total | 2757 (1816, 941) | 57.81 £ 13.73 | 161.33 = 8.81|57.34 + 10.22| 1,567,062

PET-CT-Dx [40], Head-Neck-PET-CT [39]], and FDG-PET-CT-Lesions [41] provide 3D PET/CT
scans, they do not include aligned clinical reports, which limits their use for generative modeling
and multimodal reasoning. This gap motivates the need for PET/CT imaging and structured clinical
language datasets to enable training and evaluation of VLMs in functional imaging contexts.

To overcome current limitations, we present ViMed-PET, a comprehensive PET/CT image-report
dataset composed of two main parts, as summarized in Table[3| The first part consists of the original
dataset, including paired PET/CT images and their corresponding clinical reports, collected directly
from a hospital (Table[3h). The second part comprises a series of augmented datasets derived from
the original data. These augmentations aim to increase the diversity and richness of the dataset while
enabling more fine-grained alignment between the visual and textual modalities (Table [3p). The
following sections detail the structure of ViMed-PET and the methodology used to construct it.

2.2 Data Description

The proposed ViMed-PET dataset is collected exclusively from a national tertiary general hospital
in Vietnam, one of the country’s largest medical centers. As a high-volume referral institution
receiving patients from across all regions, its data reflect broad clinical diversity and ensure high
representativeness and reliability. It consists of 2,757 paired CT-PET volumes (equivalent to 1,567,062
paired CT-PET slices) collected over four years, each accompanied by a corresponding full-length
clinical report. Note that the dataset does not contain complete data for all 12 months of each year,
as detailed in the statistics shown in Table[3] Each study includes approximately 250—500 paired
CT and PET slices, covering the area from the head to the upper thighs (just above the knees). The
dataset encompasses various disease cases such as lung cancer, thyroid cancer, and other conditions,
representing a broad range of clinical scenarios. The images are stored in the Digital Imaging and
Communications in Medicine (DICOM) format, including pixel data and relevant metadata such as
patient age, sex, body weight, radiotracer activity, and other acquisition parameters. Acquired using
GE Discovery 710 PET/CT and GE Discovery STE PET/CT systems, the images provide high-quality
data for analysis. Furthermore, the PET images have undergone attenuation correction using the
corresponding CT data to ensure accurate representation. Each medical report, stored in DOCX
format, corresponds to a single PET/CT study and contains detailed patient information, clinical
status, medical history, scanning methods, and physician observations, making the dataset rich in both
imaging and clinical information. All data are obtained under the oversight of an Institutional Ethics
Committee (Ethics Approval No. 6184/CN-HDDDBYV). Informed consent for anonymized research
use is obtained by the hospital, in accordance with institutional policy and national regulations.

2.3 Data Pre-processing

The pre-processing pipeline consists of several key steps to ensure consistency, accuracy, and usability
for model training and evaluation. Figure[I]illustrates an example from the ViMed-PET dataset,
showing the workflow from raw input to the PET/CT image-report pair.

De-identification. In accordance with privacy regulations, we remove all patient-identifiable informa-
tion, such as patient name and patient ID, from both the PET/CT images and the associated reports.
Additionally, to protect confidentiality, we remove details related to doctors and hospitals, including
the institution name, the referring physician’s name, the names of the physicians reading the study,
and the operator’s name.
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Figure 1: An example from our ViMed-PET dataset. The visual input consists of aligned 3D CT
and PET/CT volumes, segmented by anatomical regions: head—neck, chest, and abdomen—pelvis.
The corresponding report includes patient metadata and structured descriptions for each region in
Vietnamese (VI), with English (EN) as the translation.

Report parsing and standardization. We structure the reports using a predefined template from the
hospital, ensuring consistent formatting. A keyword-based search algorithm extracts key information,
after which the original DOCX format is converted into a standardized JSON format for easy
integration with the corresponding images. After automated extraction, we conduct manual checks to
correct grammatical or spelling errors, ensuring the integrity of the text data.

Body part-based data partition. To expand the dataset and improve the data quality used for training
and evaluating the model, we divide each study, comprising a PET/CT volume and its corresponding
report, into three anatomically distinct regions: head-neck, chest, and abdomen-pelvis. This approach
results in a total of 8,271 paired image-report samples. To preserve continuity across adjacent regions
and avoid the loss of critical contextual information at segment boundaries, we introduce a 20-slice
overlap between neighboring segments. The proportional boundaries of each region are adaptively
determined based on the patient’s body height, ensuring flexibility across subjects of different statures.
The specific ratios for region division follow expert guidelines, with the head—neck typically covering
approximately the first 20% of the body length, the chest starting around 15% below the last slice
of the head—neck region, and the abdomen—pelvis including the remainder from the chest down to
the pelvis. This segmentation strategy increases the number of training samples and significantly
improves the alignment between the visual and textual modalities. By localizing image content and
clinical descriptions to specific anatomical regions, we enable more precise fine-tuning of models,
ultimately enhancing their ability to learn region-specific patterns and improving overall performance.

2.4 Dataset Construction

We construct four specialized subsets to facilitate various stages of model development and evaluation:
(1) Visual Question Answering (VQA), (2) Report generation, (3) Study comparison dataset, and
(4) Medical test set. The first three subsets are used to fine-tune the 3D vision encoder and the large
language model. The final subset is specifically curated to assess the clinical efficacy of the proposed
framework in the real-world medical context of a specific task: lung cancer diagnosis.

Visual question answering dataset. The VQA dataset aims to fine-tune VLMs by enabling context-
aware, multi-turn dialogue about biomedical images for tasks like diagnostic reasoning and clinical
decision-making. The dataset is composed of two parts: single-turn and multi-turn conversations.
First, we created a set of 27,855 image-related questions that prompt descriptive answers. These
questions were then randomly sampled and paired with each PET/CT image-report pair from the



original dataset to generate single-turn VQA samples. Next, we employ the few-shot prompting
strategy to guide the GPT-4o [12] in generating multi-turn conversations based on the clinical reports
from the original dataset (detailed in the Appendix [B.I). In total, we construct 8,271 multi-turn
conversations as part of this dataset.

Report generation dataset. To increase the diversity of the dataset, we augment the textual modality.
Specifically, we use GPT-4o [12] to paraphrase the original clinical reports in the initial dataset. For
each original report, we generate one corresponding paraphrased version. To ensure the clinical
accuracy of the paraphrased content, a subset of the generated reports is randomly reviewed by
medical experts. As a result, starting from the original set of 5,571 paired PET/CT image-report
samples, we create an augmented dataset of 5,571 additional PET/CT image-report pairs, which we
subsequently use for fine-tuning the model.

Study comparison dataset. To further expand the dataset, we introduce a novel augmentation
method. In this approach, instead of aligning a single PET/CT image with its corresponding report,
each data instance aligns both the similarity and difference between two PET/CT images with the
similarity and difference between their corresponding reports. Specifically, we construct a study
comparison dataset consisting of tuples in the form: (X!|| X?), Comp(X¥, X"), where (X|| X?) is
the concatenation of two PET images from studies v and v, and Comp(X*, X") is a text description
that highlights the comparison between their corresponding reports, including similarities and differ-
ences. The comparison descriptions Comp(X*, X) are generated using GPT-4o [12]] (detailed in
the Appendix [B.2)). This dataset contains a total of 10,000 samples.

Medical test set. One of the most challenging aspects of evaluating medical VLMs is quantifying
their clinical accuracy. In a generated clinical report, the medical importance and semantic weight
of each word vary significantly. For instance, key elements such as lesion type and lesion location
carry far more clinical relevance than other details. Therefore, standard NLP evaluation metrics that
compare model output with the original report often fail to reflect the true clinical quality of the
model’s output. To address this challenge, we create a specialized ground-truth dataset that extracts
the most clinically significant information from the original reports (refer as medical-important
information). Such information is then represented in a structured JSON format includes details
such as lesion type, lesion location, and key PET/CT metabolism parameters, including SUVmax,
FDG metabolism, and the invasiveness of the lesion. The dataset construction follows a two-step
process: First, medical experts manually curate a small set of medical-important information from
the original reports. Next, we use this curated dataset along with few-shot prompting techniques to
guide GPT-4o [12] in automatically extracting medical-important information from the full set of
clinical reports. To ensure the reliability of the extracted data, all outputs generated by the model
are independently verified by two experienced physicians. As this study is constrained by available
resources, this dataset only focuses on lung cancer cases. In total, we construct a dataset of 80
instances, corresponding to 80 lung cancer patients, covering 398 individual lesions.

3 Model Selection and Fine-tuning Flow

In the following, we describe the models used for benchmarking in Section[3.1] and the details of our
process to fine-tune these models using ViMed-PET dataset in Section [3.2]

3.1 Model Selection

A typical VLM consists of two main components: a vision encoder and a text encoder. In our
framework, we adopt two 3D vision encoders: CT-ViT [42] and Cosmos Tokenizer [43], each
selected for their complementary strengths in medical image modeling. CT-ViT is chosen as it is the
only publicly available vision transformer pretrained on 3D medical imaging data, specifically 3D
CT scans. In contrast, Cosmos Tokenizer is originally pretrained on general-purpose tasks. Although
not specifically trained on medical images, its architectural design, optimized for handling sequential
inputs, makes it naturally compatible with 3D medical imaging, where volumetric scans can be
viewed as ordered slices. We adapt the Cosmos Tokenizer for 3D PET/CT data by removing the
causality-based attention mechanisms that are essential for video modeling but irrelevant for spatially
coherent medical volumes. For the language component, we utilize Mistral-7B [44]] and LLaMA-
2-7B [45], language models recommended by the state-of-the-art VLMs as LLaVA-Med [27] and
M3D [28]], respectively. These models are fine-tuned on biomedical instruction-following datasets,
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Figure 2: Overview of the fine-tuning pipeline. Stage 1: Fine-tuning the 3D Vision Encoder with
PET/CT volumes and associated reports; Stage 2: Aligning concept features between the 3D image
and textual embeddings; Stage 3: Instruction tuning of the complete architecture using Low-Rank
Adaptation. Finally, the trained model is used for Report Generation and VQA tasks.

enhancing their ability to interpret complex clinical narratives and engage in nuanced, medically
relevant dialogue.

3.2 Model Fine-tuning Flow

We employ our curated dataset to fine-tune the baseline models through a structured approach. As
shown in Figure[2] our process consists of three stages: (1) Adaptation of the vision encoder to the
PET/CT imaging modality, (2) Alignment of visual and textual embedding spaces, and (3) Instruction
tuning to optimize the model for downstream multimodal clinical tasks.

Stage 1: 3D vision encoder fine-tuning. For the encoder based on CT-ViT [42], we use a self-
supervised learning approach based on text—image contrastive learning, inspired by CLIP [1]. Here,
the model is trained to align visual representations of PET images with textual embeddings derived
from their corresponding clinical reports. This cross-modal supervision enables the encoder to learn
semantically meaningful and clinically relevant visual features. In contrast, for the encoder based on
Cosmos Tokenizer [43], we employ an image reconstruction objective. Specifically, a decoder within
the Cosmos Tokenizer architecture is used to reconstruct the original PET/CT volume from the latent
representations produced by the encoder. The model is trained with a reconstruction loss, which
encourages it to capture the underlying structural and semantic features of the 3D medical images.

Stage 2: Concept feature alignment. In this stage, we fine-tune a linear projection layer that
maps visual feature representations into the embedding space of the text encoder. We use single-
turn image-text pairs from our VQA dataset, where each sample includes a PET/CT image and an
instruction-based question. Examples include prompts such as “<image> What are the main findings
in this medical image?” or “<image> Please write a detailed medical report for this image.”. The
model is trained to generate the original textual response based on the given image and prompt.
During this process, we freeze the weights of the visual encoder and the language model, allowing
updates only to the linear projector. This design ensures efficient and stable alignment between visual
and textual embeddings while minimizing overfitting and preserving pre-trained representations.

Stage 3: Instruction-tuning with Low-Rank Adaptation. In the final stage, we fine-tune the
VLM using our VQA dataset, which includes single-turn question—answer pairs and multi-turn
conversational interactions. During this phase, the parameters of the image encoder are kept frozen to
preserve previously learned visual representations. We update only the parameters of the visual-text
alignment projector and the language model, applying Low-Rank Adaptation (LoRA) [46] for efficient
fine-tuning. This stage strengthens the capacity of the model to interpret and respond to a broad
spectrum of medical queries by integrating visual and textual modalities. The inclusion of simple and
complex dialogue formats further improves its robustness in biomedical VQA tasks.



3.3 Training and Evaluation

We integrate two vision encoders (CT-ViT and a customized Cosmos Tokenizer) with two text
encoders (Mistral-7B and LLaMA-2-7B) to construct four VLMs. We evaluate the performance of
these models on two tasks: medical report generation and VQA. The dataset is divided into three
subsets: a training set with 5,571 image-report pairs, a validation set with 975 pairs, and a test
set with 1,725 pairs. Each subset contains samples from all four years of our collection to reduce
temporal bias. To assess the impact of data augmentation, we fine-tune our framework under three
configurations: (1) O: using only the Original dataset, (2) O-G: using the Original dataset and the
report Generation dataset, (3) O-G-C: using the Original dataset, the report Generation dataset, and
the study Comparison dataset. In addition, we benchmark our models against baselines, including
LLaVA-Med [27], M3D [28], RadFM [29], and GPT-40 [12]]. Further details regarding model
architectures, training configurations, and optimization settings are provided in Appendix [B.3]

3.4 Evaluation Metrics

Common natural language processing metrics. We evaluate model performance using stan-
dard Natural Language Processing (NLP) metrics, including BLEU-4 [47]], ROUGE [48]], and
BERTScore [49]]. BLEU-4 measures 4-gram precision in generated text, ROUGE-1 captures unigram
recall for summarization tasks, and ROUGE-L evaluates fluency based on the longest common
subsequence. BERTScore assesses semantic similarity between generated and reference texts by
leveraging contextual embeddings from a pre-trained BERT model.

Proposed clinical metrics. Conventional NLP metrics are insufficient for evaluating the clinical
accuracy of generated text, particularly in terms of medical relevance. For example, in auto-generated
clinical reports, details such as tumor location or FDG uptake carry significantly more diagnostic
weight than general descriptions. To address this limitation, we introduce targeted evaluation metrics
that focus specifically on clinically meaningful content. We use our expert-curated Medical Test
Set (see Section [2.4) to evaluate model performance on the report generation task, emphasizing the
extraction of key attributes including lesion Type, lesion Position, and FDG uptake. Specifically,
for each generated report, we use GPT-4o [12]] to extract structured content aligned with these three
clinical attributes. The extracted information is converted into categorical variables (detailed in
Appendix [B.4) and verified by medical professionals. We then compute F1-scores by comparing these
model-generated outputs with the ground truth labels in our test set. We report four clinical evaluation
metrics: F1-T, based on lesion Type; F1-TP, based on Type and Position; F1-TF, incorporating Type
and FDG uptake; and F1-TPF, which evaluates all three aspects of Type, Position, and FDG uptake.

4 Evaluation Results

This section presents the experimental results assessing the performance of the VLMs fine-tuned
on our ViMed-PET dataset, with respect to two key tasks: clinical report generation (Table ) and
medical VQA (Table[5). Additional benchmarks and evaluation results are provided in Appendix

4.1 PET/CT Report Generation Task

Comparison with existing baselines. Our results first demonstrate that fine-tuning VLMs on our
proposed ViMed-PET dataset leads to substantial performance improvements across both standard
NLP metrics and clinically specific evaluation metrics. For instance, when LLaMA-2-7B is paired
with either CT-ViT or our customized Cosmos Tokenizer and fine-tuned on ViMed-PET, it significantly
outperforms the pretrained LLaMA-2-7B model used in M3D across all key metrics (i.e., BLEU-4,
ROUGE-1, ROUGE-L, and BERT score). Notably, the BLEU-4 score improves significantly over
baseline medical LLMs following fine-tuning, reflecting a dramatic enhancement in generation
quality. Compared to GPT-40, which is evaluated under few-shot prompting, models fine-tuned with
ViMed-PET also yield substantial performance gains. Specifically, BLEU-4, ROUGE-1, ROUGE-L,
and BERT score increase by up to 89.17%, 17.88%, 40.09%, and 11.67%, respectively. Furthermore,
clinical metrics, including F1-T, F1-TP, F1-TF and F1-TPF, also exhibit notable improvements,
increasing by more than 1.8 times, underscoring the clinical relevance and robustness of the generated
reports. These findings highlight the effectiveness of fine-tuning with ViMed-PET in enhancing the
performance of VLMs for clinical report generation.



Table 4: Performance on report generation task. We define training configurations as: Q-Original
dataset, G-Report Generate dataset, C-Study Comparison dataset. R-1 and R-L denote ROUGE-1 and
ROUGE-L scores. 1 means higher values are better. The best and second-best results are emphasized
using bold and underline, respectively. *GPT-4o is evaluated under few-shot prompting.

\ Model | Settings | NLP Metrics 1 \ Clinical F1-Score (%) 1
| Vision | Language | O G C |BLEU-4 R-1 R-L BERT | FI-T FI-TP FI-TF FI-TPF

° LLaVA-Med [27] - 0.01 5008 27.89 64.63 | - - - -

£ M3D [28] - 0.04 4101 2353 6721 | - - - -

g RadFM [29] - 0.06 5423 2833 6949 | - - - -
& GPT-40* [12] - 3112 6796 5276 81.09 | 2421 13.62 2057  7.87
v 5330 7779 68.60 8835 | 43.49 2497 2980  18.26
Mistral-7B v Y 58.07 80.11 72.74 89.98 | 51.11 30.66 37.02  22.65
CTVIT vV v v | 5805 80.08 7270 89.92 |51.96 30.17 3547 2123

-V1
= v 5791  79.87 72.89 89.88 | 4828 29.44 3342 2042
2 LLaMA-2-7B | v v 56.15  79.09 7139 89.20 | 4624 24.15 3240  17.38
2 vV Vv V| 5605 7895 7143 89.12 | 4797 29.17 33.66  20.76
WD

£ v 53.66  78.04 69.93 88.69 | 4629 30.00 31.14  19.71
Mistral-7B v Y 5580 78.93 71.68 89.43 | 4651 2568 31.10  17.40
Cosmos vV v v | 5887 80.10 7391 9055 | 47.93 2278 3284  15.68
Tokenizer v 5759 7926 7391 9035 | 4505 1821 3227  14.06
LLaMA-2-7B | v v 5798  79.83 7349 90.04 | 4559 27.13 3021  17.62
vV v v | 5714 7937 7313 90.01 | 49.73 3142 3361 22.13

Comparison between LLMs. Comparing the performance of the two LLMs using common NLP
metrics, we observe that when fine-tuning is performed solely on the original dataset (setting O),
LLaMAZ2-7B outperforms Mistral-7B. This can be attributed to the fact that the M3D backbone used
in LLaMAZ2-7B has been pretrained on 3D medical imaging data, allowing it to better capture spatial
features and align 3D PET/CT representations with textual descriptions. In contrast, Mistral-7B is
pretrained on 2D image—text data, which limits its capacity to model 3D spatial context in low-data
settings. However, when the training dataset is expanded to include both the original and augmented
data (settings O-G and O-G-C), Mistral-7B demonstrates superior performance, likely due to its more
efficient architecture compared to LLaMA2-13B. This finding is consistent with results reported in
the Mistral-7B paper [44]], which highlights the robustness of the model and scalability in large-scale
learning settings. For clinical evaluation metrics, Mistral-7B outperforms LLaMA2-7B when paired
with the CT-ViT encoder. However, when combined with the Cosmos Tokenizer, LLaMA2-7B shows
a slight advantage over Mistral-7B.

Comparison between vision encoders. The results show that CT-ViT and Cosmos Tokenizer achieve
comparable performance on standard NLP metrics across various settings, including integration
with different LLMs and the use of augmented data. However, CT-ViT consistently outperforms
Cosmos Tokenizer on clinical metrics across all four evaluation criteria and training configurations.
This indicates that CT-ViT, which is specifically designed and pretrained on 3D medical imaging
data, is more effective in improving the clinical accuracy of VLMs than Cosmos Tokenizer, which is
pretrained on general-purpose tasks.

4.2 PET/CT VQA Task

Table 5| shows the results on the VQA task under the O-G-C training setting. Fine-tuning with our
ViMed-PET dataset significantly improves performance across all evaluation metrics compared to
the baseline GPT-40 model. Specifically, the best-performing fine-tuned model, CT-ViT paired with
Mistral-7B, achieves substantial gains, outperforming GPT-40 by factors of 10.3 %, 1.3, 1.7%, and
1.1x on BLEU-4, ROUGE-1, ROUGE-L, and BERT score, respectively. When comparing different
combinations of vision and language encoders, the results on the VQA task follow a pattern similar to
those in the report generation task. The combination of CT-ViT and Mistral-7B consistently delivers
the highest performance, followed by Cosmos Tokenizer paired with LLaMA-2-7B. A comprehensive
analysis of the VQA task is provided in the Appendix[C]



Table 5: Performance on the VQA task under the O-G-C training setting. R-1 and R-L denote
ROUGE-1 and ROUGE-L scores. 1 means higher values are better. The best and second-best
results are emphasized using bold and underline, respectively. *GPT-4o is evaluated under few-shot
prompting.

Model \ NLP Metrics 1
Vision | Language | BLEU-4 R-1 R-L  BERT
GPT-40%* [12] ‘ 3.01 49.35  30.09 71.92
| Mistral-7B | 31.14  65.61 51.22 82.50

CT-ViT
| LLaMA-2-7B | 31.36  59.14 48.00 76.72

Cosmos | Mistral-7B | 28.09 6292 4837 79.25
Tokenizer | L] aMA-2-7B | 2840  63.29 4876 79.35

5 Conclusion

In this study, we introduced ViMed-PET, a high-quality dataset comprising 2,757 paired whole-body
PET/CT volumes and 2,757 Vietnamese clinical reports, covering a wide range of patient cases. We
also developed a clinically validated lung cancer test set to support meaningful evaluation beyond
conventional NLP metrics. Additionally, we proposed a data augmentation strategy that enhances
both visual and textual inputs to improve the fine-tuning of medical vision-language models. Models
fine-tuned on ViMed-PET demonstrated substantial gains, achieving improvements in both standard
NLP metrics and clinical evaluation scores compared to pretrained baselines.

Limitations and Societal Impacts. We acknowledge that clinical reports often follow standardized
formats, which can limit output diversity. Clinical results with F1 scores around 50% highlight the
challenges in modeling PET/CT data and performing complex medical reasoning. Although the
proposed ViMed-PET dataset contains PET and CT volumes, our benchmark focuses exclusively on
PET/CT imaging. This decision is based on the observation that report content is primarily driven by
PET information, with minimal reference to CT anatomical details. In future work, we plan to extend
our approach to better incorporate CT data and further improve the accuracy of VLMs. This study
provides a foundation for such enhancements. We believe ViMed-PET serves as a valuable resource
for advancing medical vision-language modeling in the low-resource Vietnamese language and the
underexplored PET/CT domain, supporting more equitable Al development in healthcare.
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Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: We have already outlined this in the Abstract and Introduction.
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations of this study are presented in Section 5.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
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* The authors should discuss the computational efficiency of the proposed algorithms
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tant role in developing norms that preserve the integrity of the community. Reviewers
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a complete (and correct) proof?
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Justification: The paper does not include theoretical results.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provided detailed descriptions of the training data, network architecture,
and experimental details to ensure the reproducibility of the results.

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: We provide the public URL to our dataset, and the source code is submitted
along with this paper.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We describe the data splitting in the main text, while the hyperparameters used
for the experiments are detailed in the Appendix.

Guidelines:

» The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:
Justification: We do not report the error bar due to the high cost for training LLMs.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Each experiment was conducted on a machine with four A100 GPUs, with
training and evaluation completed within three days (see Appendix for details).

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: This study complies with the NeurIPS Code of Ethics.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer:

Justification: This study aims to benchmark existing LLMs on a medical dataset and does
not present any negative societal impact.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification:
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We indicate licenses of public datasets in Appendix.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: We provide the documentation along with the code.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: [NA|
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer:
Justification: We remove the private information from the dataset.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]

Justification: Our paper uses GPT-40 to generate augmented datasets based on a few-shot
examples created by domain experts. We also leverage GPT-40 to post-process model outputs
for evaluating clinical metrics. In addition, we utilize pretrained Mistral and LLaMA-2
models, combined with vision encoders, to conduct experiments on our dataset.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Medical Vision-Language Models

Recent advances in Vision-Language Models (VLMs) have opened new possibilities for medical
image analysis by enabling multimodal reasoning across visual and textual inputs. In the medical do-
main, VLMs are broadly categorized into two types: CLIP-based and Large-Language-Model-based
(LLM-based) models. CLIP-based models, such as MedCLIP [18], PLIP [50]], and BiomedCLIP [51]],
leverage contrastive learning to align images with textual descriptions, performing well on classifica-
tion and retrieval tasks. However, their lack of generative capability limits their use in applications
such as report generation. In contrast, LLM-based models, including M3D-LaMed [28], CT2Rep [37]],
Merlin [52f], and RadFM [29], combine image encoders with language models to support complex
reasoning and text generation.

Despite recent advances, most existing VLMs are trained primarily on 2D medical images (e.g.,
X-rays, Dermatology, Pathology), with the models such as XrayGPT [53]], ELIXR [54]], and CheX-
agent [55]. This focus limits their capacity to process 3D imaging modalities like PET/CT, which
require spatial and intensity-aware reasoning across volumetric data. In addition, most VLMs are
developed for English, with limited support for other languages due to a lack of multilingual annotated
datasets. Recent models like M3D-LaMed [28]] and RadFM [29] introduce architectures capable of
handling 3D inputs, improving performance across imaging modalities. For multilingual contexts,
Qilin-Med-VL [56]] and HuatuoGPT-Vision [57] show potential in Chinese and bilingual applications.
However, these VLMs perform poorly on PET/CT imaging, often confusing it with MRI or SPECT
and failing to produce accurate, medically grounded outputs. However, these efforts have yet to
address the needs of low-resource languages such as Vietnamese, where both medical imaging and
language data remain scarce.

B Technical Appendices

B.1 Visual Question Answering Dataset

messages = [{"role": "system", "content": "You are a medical assistant and are being provided with information related to a
medical image. This information comes in the form of a short clinical report, which includes the location of the image and some
preliminary diagnostic findings. Based on this, you are expected to answer the given questions as if you are directly viewing the
image. You should generate a dialogue between yourself, acting as a medical assistant, and a patient, focusing on the content of
the image. Both the questions and answers in the dialog must reflect the assumption that you are visually inspecting the image.
The questions must be diverse, and your answers must be based solely on the available information. Also the questions should
cover various aspects of the image content, including the anatomical location where the image was taken, possible diagnoses in
image, size or characteristics of any lesions and other observable clinical features. Only ask questions that can be answered with
certainty, based on either: the visual information directly present in the image or clearly inferable information that obviously
evident, even if not explicitly visible in the image. Do not include questions that can not be answered with certainty. The
dialogue may include complex questions but them must be grounded in clearly evident and justifiable information.That is, the
complexity of the question is acceptable only if the answer can still be reasoned with confidence based on what is explicitly or
obviously present. When answering complex questions, provide detailed, well-reasoned responses. The answers should refer
credible clinical sources of appropriate, clearly explain your logical reasoning. Be especially careful to avoid asking or answering
anything based on ambiguous, assumed or unverifiable details. Below is an example for you to follow."}]

for sample in fewshot_samples:
messages.append({"role": "user", "content": sample[‘context’]})
messages.append({"role": "assistant", "content": sample[‘response’]})

messages.append({"role": "user", "content": query})

Figure 3: Message used to prompt GPT-40 to generate our medical VQA conversations. Manually
curated few-shot examples are included in the prompt, where each example consists of an input
sample[‘context’] and an output sample [‘response’]. See Figure ] for a sample few-shot
example.

To construct the Visual Question Answering (VQA) dataset, we follow the methodology introduced
by LLaVA [4]], adopting two types of response formats: detailed description and conversation. For
the detailed description format, we directly use the original clinical report as the textual response
corresponding to the input image. For the conversational format, we employ instruction-based
prompting in conjunction with few-shot prompting. Specifically, GPT-4o0 [12] is guided to generate
coherent question—answer pairs by providing clear instructions that constrain the generated content
to align with the given report. Additionally, we include several few-shot examples to illustrate the
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Example Input:

This image captures the patient's thoracic (chest) region. Physiological FDG uptake is observed in the heart, consistent with
normal metabolic activity. There is no evidence of pleural effusion on either side and no pericardial effusion detected. A few
small mediastinal lymph nodes measuring approximately 10 mm are noted in the pretracheal, subaortic, and subcarinal regions.
These nodes show no increased FDG uptake. There is a linear opacity in the right middle lobe and a ground-glass opacity in the
right lower lobe, both without increased FDG uptake, suggesting a benign nature. A few axillary lymph nodes measuring 10 mm
are observed bilaterally, also without increased FDG uptake.

Example Output:

Question | Which part of the body does this image capture?

Answer This image captures the chest (thoracic) region of the patient.

Question | Are there any abnormal lymph nodes detected in the chest?

Answer Yes, there are a few small mediastinal lymph nodes measuring approximately 10 mm, located in the pretracheal,
subaortic, and subcarinal regions. However, these nodes show no increased FDG uptake, suggesting they are
likely benign.

Question | Are there any abnormalities in the pleura or pericardium?

Answer No, the image does not show any pleural effusion on either side, nor is there any pericardial effusion detected.

Question | Are there any parenchymal lung lesions?

Answer Yes, there is a linear opacity in the right middle lobe and a ground-glass opacity in the right lower lobe. However,
both findings show no increased FDG uptake, suggesting these are likely benign lesions.

Question | Are there any abnormal lymph nodes detected in the axillary region?

Answer Yes, a few axillary lymph nodes approximately 10 mm in size are seen in both axillae, but they do not exhibit
increased FDG uptake, indicating no signs of malignancy.

Figure 4: Few-shot examples included in our prompt to construct the VQA conversation dataset.

desired structure and tone, enhancing the ability of the model to produce contextually appropriate
outputs. The full prompting details are shown in Figures [3]and ] Note that while the figures are
translated into English for illustration purposes, the actual prompts and data are in Vietnamese.

B.2 Study Comparison Dataset

messages = [{"role": "system", "content": "You are a medical expert, and your current task is to compare two CT scan images of a
patient. Please indicate the similarities and differences between the two images. Make sure not to add or omit any information
from the two images. | will provide you with two reports, please treat them as if you are looking directly at the two images. Also,
please do not make any inference to get the conclusion about the status of patient. Below are example comparisons for you to
follow: "}]

for sample in fewshot_samples:

messages.append({"role": "user", "content": sample[‘context’]})

messages.append({"role": "assistant", "content": sample[‘response’]})

messages.append({"role": "user", "content": query})

Figure 5: System message used to prompt GPT-4o0 for generating the study comparison dataset. The
prompt includes few-shot examples, where each example consists of an input sample [ content’]
(a pair of reports to compare) and an output sample[‘response’] that describes the similarities
and differences between the two reports. See Figure @ for a sample few-shot example.

To construct the study comparison dataset, we adopt a few-shot prompting approach using GPT-
40 [12]. Few-shot examples are created by randomly sampling three pairs of medical reports, each
annotated by domain experts to highlight similarities and differences between the reports. To ensure
meaningful comparisons, all report pairs are selected from the same anatomical region. The full
prompting setup is illustrated in Figures [5] and [6] Note that while the figures are translated into
English for illustration purposes, the actual prompts and data are in Vietnamese.
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Example Input:

Report 1 | FDG uptake observed according to physiological characteristics in the brain. Mild FDG uptake at the amygdala and
both lateral edges of the tongue, consistent with physiological uptake. A few lymph nodes at the mandibular
angle and medial to the sternocleidomastoid muscle (group 11B) on both sides, small in size (10 mm), no increased
FDG uptake, likely due to inflammation or benign hyperplasia.

Report 2 | FDG uptake observed according to physiological characteristics in the brain. Mild FDG uptake at the amygdala and
both lateral edges of the tongue, consistent with physiological uptake. Mucosal thickening in the right maxillary
sinus, no increased FDG uptake, likely due to inflammation. No abnormal focal FDG uptake in the thyroid gland.
A few lymph nodes at the mandibular angle and medial to the sternocleidomastoid muscle (group 11B) on both
sides, small in size (10 mm), no increased FDG uptake, likely due to inflammation or benign hyperplasia.

Example Output:

The similarities between the two images are that both show a few small cervical lymph nodes on both sides, specifically at the
mandibular angle and medial to the sternocleidomastoid muscle (group IIB). These nodes are around 10 mm in size and do not
exhibit increased FDG uptake, suggesting benign reactive changes or inflammation. Both images also show mild FDG uptake at
the amygdala and the lateral edges of the tongue, as well as physiological brain metabolism, with no indication of malignancy.
The difference lies in the fact that the second image additionally reveals mucosal thickening in the right maxillary sinus without
increased FDG uptake, suggesting non-active mucosal inflammation. In contrast, the first image does not report any sinus
abnormalities, indicating no signs of sinusitis at the time of scanning.

Figure 6: Few-shot example used in our prompt for generating the study comparison dataset. The
yellow highlights indicate the differences between the two reports.

B.3 Training and Model Configurations
B.3.1 Fine-tuning Vision Encoders

We select CT-ViT [42] and Cosmos Tokenizer [43] as the vision encoders for our VLMs, as they are
well-suited for processing 3D volumetric inputs with depths of up to 200 slices and have been pre-
trained on large-scale datasets in prior work. Details on model selection are discussed in Section 3.1.

CT-ViT. We employ a specialized ViT model, CT-ViT [42]], as the vision encoder in our VLMs.
CT-ViT is designed to effectively process 3D chest CT volumes and is pre-trained on a large-scale
medical dataset comprising 25,701 non-contrast 3D chest CT volumes from 21,314 unique patients.
These volumes vary in resolution and contain between 100 and 600 axial slices. To align visual
and textual modalities, we adopt a CLIP-based [1] training approach. The model is fine-tuned
for up to 30 epochs using the AdamW optimizer 58], with a learning rate of 1.25 x 10~% and a
batch size of 8 per GPU across four NVIDIA A100 GPUs (80 GB each). Early stopping is applied
based on the convergence of training loss, ensuring efficient optimization. For the text modality, we
integrate PhoBERT [59], a state-of-the-art Vietnamese language model pre-trained on a large-scale
Vietnamese corpus. PhoBERT has demonstrated superior performance over multilingual models such
as XLM-R across several Vietnamese natural language processing (NLP) tasks, including part-of-
speech tagging, dependency parsing, named entity recognition, and natural language inference. Its
linguistic compatibility with clinical texts in our dataset enables effective semantic representation
and understanding.

Cosmos Tokenizer. We leverage the architecture of the Cosmos Tokenizer [43]], originally designed
for image and video reconstruction tasks. To adapt it for 3D PET/CT imaging, we remove causality-
based attention mechanisms, which are essential for modeling temporal dependencies in video but
unnecessary for spatially coherent volumetric medical scans. This modification allows us to retain
the benefits of pre-trained weights while enabling effective processing of 3D medical data. We
fine-tune the customized Cosmos Tokenizer using a single-phase reconstruction approach. The total
loss function L, combines two terms: an L; reconstruction loss £; and an inverted Structural
Similarity Index Measure (SSIM) loss Lissiv, defined as:

Lioa = L1+ Alissim = || — zo:r|[1 + A1 — SSIM(Zo:7, Zo:7)) (D

where Zg.7 is the reconstructed volume, xg.7 is the ground-truth volume, and A is the trade-off
coefficient (set to 1 x 1072 across all experiments). Training is performed for up to 20 epochs using
a Cosine Annealing Scheduler [60], with an initial learning rate of 1 x 10~ and a batch size of 8
across four NVIDIA A100 GPUs (80 GB each). Since the Cosmos Tokenizer requires a fixed number
of input frames, we standardize all PET/CT volumes to 120 slices. This value is chosen based on the
distribution in our dataset, and we apply zero-padding or linear interpolation to achieve this fixed
size.
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Table 6: Performance comparison of causal attention settings on ViMed-PET across two tasks: Report
Generation and Visual Question Answering (VQA). R-1 and R-L denote ROUGE-1 and ROUGE-L
scores. T indicates higher is better.

Model | Causal | Report Generation \ VQA
Vision | Language | Attention | BLEU-4f R-1t R-Lt BERT! | BLEU-4t R-11 R-Lt BERT!
Cosmos v 54.99 77.82 68.88  87.86 19.87 55.60 41.10 76.49
Tokenizer LLaMA-2-7B ‘ X ‘ 57.59 79.26 7391 90.35 28.40 63.29 48.76  79.35

The original Cosmos Tokenizer uses causal attention for video tasks, modeling forward-only temporal
relationships. However, 3D PET volumes have bidirectional spatial relationships, making causal
attention less appropriate. To assess this, we compared both settings (with vs. without causal masking)
using LLaMA-2-7B on the ViMed-PET dataset across two tasks: Report Generation and Visual
Question Answering (VQA). As shown in Table [6] removing causal attention yields significantly
better performance across both tasks.

B.3.2 Fine-tuning VLMs

After fine-tuning the vision encoders, we integrate each with two language models derived from state-
of-the-art medical multimodal foundation models: LLaMA-2-7B from M3D [28] and Mistral-7B
from LLaVA-Med [27]. The integration is facilitated by a linear projection layer that aligns the visual
and textual embedding spaces.

Conceptual Alignment. We use single-turn data composed of prompts such as “<image> What
are the main findings in this medical image?” and “<image> Please write a detailed medical report
for this image.”, paired with the corresponding medical report as the target output. During training,
the weights of both the LLM and the vision encoder are frozen, allowing updates only to the linear
projection layer. Training is conducted using a batch size of 16 per GPU across 4 A100 GPUs (80
GB each), with gradient accumulation over 4 steps. We employ the AdamW optimizer [58]] with
a warmup ratio of 0.03 and an initial learning rate of 2 x 10~2, followed by a Cosine Annealing
Scheduler [60]. Training runs for up to 20 epochs, and the checkpoint with the lowest validation loss
is selected for evaluation.

LoRA Fine-tuning. We employ both single-turn and multi-turn conversational data to continue
fine-tuning the linear projector and to update the LLM using the Low-Rank Adaptation (LoRA) [46]
method. This method efficiently adapts the pretrained LLM by injecting trainable low-rank matrices
into selected linear layers, substantially reducing the number of trainable parameters and computa-
tional overhead. The LoRA configuration is set as follows: rank () = 64, scaling factor (o) = 16, and
dropout rate = 0.05. The task type is defined as CAUSAL_LM, aligning with the LLM’s causal language
modeling objective. Training is conducted with a batch size of 8 per GPU across 4 NVIDIA A100
GPUs (80 GB each), using gradient accumulation over 4 steps. We use the AdamW optimizer [58]]
with a warmup ratio of 0.03 and an initial learning rate of 2 x 10~°, followed by a Cosine Annealing
Scheduler [60]. Training is performed for 20 epochs, and the checkpoint with the lowest validation
loss is selected for evaluation.

B.3.3 Fine-tuning Resources

We report the training time and GPU memory consumption for fine-tuning VLMs across different
stages, using a setup of four NVIDIA A100 GPUs with 80 GB memory each, as summarized in Table[7]
The GPU memory values in the table reflect the peak consumption observed across all four GPUs.
All measurements were recorded under a consistent software environment: Python 3.8.20, CUDA
nvce 12.8.61, Accelerate 1.0.1, DeepSpeed 0.16.2, PyTorch 2.1.0, Transformers 4.46.3, and PEFT
0.4.0. Our results show that VLMs utilizing the Cosmos Tokenizer as the vision encoder are more
efficient in both training time and memory usage compared to those based on the CT-ViT architecture.
This suggests that the architectural design of the Cosmos Tokenizer offers a more resource-efficient
training process, which is particularly advantageous in large-scale or resource-constrained settings.
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Table 7: Training resource consumption of VLMs on the Original dataset. Memory (Mem) values
indicate the peak GPU memory usage (in GB) across four A100 GPUs.

Computational Resources
Model

| |

| | Concept Alignment | LoRA Fine-tuning

| Vision | Language | Time (Hours) Mem (GB) | Time (Hours) Mem (GB)
< CTViT Mistral-7B 2.00 61.0 12.00 76.0
g LLaMA-2-7B 2.00 62.0 12.00 73.0
2 | Cosmos Tokenizer | Mistral-7B 1.83 415 11.00 70.0
= A LLaMA-2-7B 1.75 46.5 11.00 71.6
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Figure 7: Clinical evaluation pipeline. Phase 1: Experts define structured clinical attributes from
reports, which are validated and used to construct prompts for GPT-40. Phase 2: GPT-40 extracts
structured outputs from generated and ground-truth reports, which are mapped to clinical classes for
F1-score evaluation.

B.4 Clinical Evaluation Metrics

To clinically evaluate the performance of reports generated by VLMs, we propose a metric computa-
tion process developed in collaboration with medical experts. The overall workflow is illustrated in
Figure[7] focusing on the extraction of key clinical attributes: lesion type, lesion location, and FDG
uptake values.

From the reports generated by the VLMs, we apply a few-shot prompting strategy with GPT-4o [12]]
to structure the outputs, enabling systematic evaluation of each model’s performance. The prompt
used for this task is illustrated in Figures[8land[9} The extracted information is subsequently mapped
into categorical variables, which are validated by medical experts. The categories are defined as
follows:

* Type: {lymph node, pulmonary nodule, ground-glass opacity, pulmonary mass, pleural
thickening, interstitial thickening, consolidation, effusion, soft tissue nodule, wall thickening,
calcified nodule, hypermetabolic lesion}

¢ FDG: {increase, not increase }

* Position: {mediastinum, lung, abdomen, axilla, cervical region}

Subsequently, based on rules manually constructed in collaboration with domain experts, extracted
values are grouped into semantically equivalent categories. If two values belong to the same group,
they are considered equivalent for evaluation purposes. To preserve evaluation integrity, any extracted
value that cannot be confidently assigned to a predefined category is labeled as other and excluded
from positive prediction counts. We compute F1-scores by comparing model-generated attributes
against ground truth annotations in our medical test set. The evaluation comprises four metrics: F1-T,
which measures the F1 score based solely on lesion Types; F1-TP, which considers both lesion Types
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messages = [ {"role": "system", "content": """Assume you are an Al specialized in extracting information from medical reports.
Please provide accurate, complete, and detailed information directly from the report, without fabricating any answers. Return
only a list containing JSON objects as requested - no unrelated characters are allowed. Assume you are an Al specialized in
extracting information from medical reports. Follow these steps:

1. Identify and read the relevant sections of the report to answer the following questions:

- Are there any tumors, lymph nodes, lesions, or abnormalities in the lungs or metastasized to the lungs?
- What is the size of the lesion, tumor, lymph node, or abnormality?

- What is the shape of the lesion, tumor, lymph node, or abnormality?

- What is the FDG uptake level?

2. From the identified segments, extract the important information. For any information that is not available, record it as 'Not
available'. Return a list where each item is one JSON object in the following format:
[{ "Size of tumor/lesion/abnormality": ...,

"Shape of tumor/lesion/abnormality": ...,

" Position of tumor/lesion/abnormality": ...,

"FDG uptake": {"SUVmax": ..., "FDG metabolism": ...},

"Invasion": ...,

"Metabolic stage": ... }]

1 will provide some examples for you. """}]

for sample in fewshot_samples:
messages.append({"role": "user", "content": sample[‘context’]})
messages.append({"role": "assistant", "content": sample[‘response’]})

messages.append({"role": "user", "content": query})

Figure 8: Message used to prompt GPT-4o for structuring VLM-generated reports into JSON format.
Manually curated few-shot examples are included in the prompt, where each example consists of an
input sample[‘context’] and an output sample [‘response’]. See FigureE]for an example.

Example Input:
A spiculated mass opacity in subsegment | of the right upper lung lobe, measuring 74 x 56 mm, with increased FDG uptake
(SUVmax: 14.9).

Example Output:

[{ "Size of tumor/lesion/abnormality": "74 x 56 mm",
"Shape of tumor/lesion/abnormality": "Spiculated mass opacity",
"Position of tumor/lesion/abnormality": "Subsegment | of the right upper lung lobe",
"FDG uptake™: { "SUVmax":"14.9", "FDG metabolism": "Increased” },
"Invasion": "Not available",
"Metabolic stage": "Not available"}]

Figure 9: Example of a few-shot prompt used to guide GPT-40 in extracting structured JSON data
from VLM-generated reports.

and Position; F1-TF, which evaluates lesion Types together with FDG uptake; and F1-TPF, which
assesses all three attributes: Type, Position, and FDG uptake.

B.5 Task Evaluation by GPT-40

Due to the inability of GPT-4o to directly analyze 3D inputs, inspired by [61]], we adopt a flattening
strategy that converts all slices of a 3D volume into multiple 2D slice images, each labeled with a
numerical order in the top-right corner. These slices are then arranged into a 5 by 5 (25 slices) 2D
grid image, as illustrated in Figure[I0] Each 3D volume is thus represented by approximately 5 to 8
such grid images, which are subsequently input into GPT-40 with a prompt shown in Figure From
these inputs, GPT-40 generates corresponding reports, which we then evaluate using NLP-based
metrics and clinical F1 scores against the ground truth reports.
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Flattening Strategy: 3D volume-to-2D Grid

3D PET/CT volume 2D grid images Few-shot Prompting for GPT-40
‘;® ¢ :® It ) P @ ‘ ® <role-based instruction> 0
2D PET/CT Slices ke w » i e
® @ ©) [0) <few-shot samples #1>
- ) o & & av
<few-shot samples #n>
<2D image> <instruction question>

[ <corresponding response> ]

Figure 10: Visualization of the flattening strategy. Consecutive 2D slices from a 3D medical volume
are arranged in numerical order (top-right corner) and concatenated into a 5x5 grid image to enable
input into GPT-4o.

Assume you are an Al specialized in analyzing 3D medical images, including the regions: head-neck, chest, abdomen-pelvis. You
are provided with 3D images as multiple consecutive 2D slices, numbered in order to form a complete 3D volume. Please
analyze the 3D images by each region, detect physiological features and abnormal lesions. Provide the most detailed and
accurate medical diagnosis possible.

Requirements:

- Identify the anatomical region (head and neck, chest, abdomen and pelvis).
- Give a brief diagnosis based on physiological features and abnormal findings.
- Correlate with relevant clinical examination methods (if needed).

The response format | need is as follows:
- This is an image of the ... region.
- Medical Diagnostic Report: ...

Below are example formats of the analysis | need:

- Example #1 for 3D head-neck image: <head-neck report examples>

- Example #2 for 3D chest image: <chest report examples>

- Example #3 for 3D abdomen-pelvis image: <abdomen-pelvis report examples>

Please provide medical diagnoses based on the images | provide.

<2D image> You are provided with a 3D image input (in the format divided into multiple 2D images, each 2D image is numbered
to indicate its order within the 3D image). The provided 3D image belongs to one of three regions: abdomen and pelvis, chest,
or head and neck. Please provide the medical diagnosis for this 3D image.

Figure 11: Prompt template used with GPT-40 to analyze concatenated 2D grid images and generate
structured medical report outputs. Manually curated few-shot examples are included to guide the
model.

C Additional Results

C.1 PET/CT VQA Task

We provide additional qualitative results comparing the baseline and various fine-tuning strategies on
the VQA task in Table[8] These findings reveal several key insights that are consistent with trends
observed in the report generation task.

Comparison with existing baselines: Fine-tuning VLMs on our proposed ViMed-PET dataset leads
to significant improvements across all NLP evaluation metrics in the VQA task.

Comparison between LLMs: The relative performance of LLMs mirrors observations from the
report generation task. When fine-tuning is limited to the original dataset (setting O), LLaMA2-7B
outperforms Mistral-7B. However, with large-scale training on augmented data (settings O-G and
0-G-C), Mistral-7B demonstrates superior performance, likely due to its more efficient architecture
compared to LLaMA2-13B. Notably, when integrated with the Cosmos Tokenizer, LLaMA2-7B
shows a modest performance advantage over Mistral-7B.

Comparison between vision encoders: Across all training settings, CT-ViT consistently outperforms
the Cosmos Tokenizer. This indicates that CT-ViT, which is specifically designed and pretrained on
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Table 8: Performance on VQA task. We define training configurations as: O-Original dataset,
G-Report Generate dataset, C-Study Comparison dataset. R-1 and R-L denote ROUGE-1 and
ROUGE-L scores. 1 means higher values are better. The best and second-best results are emphasized
using bold and underline, respectively. *GPT-4o is evaluated under few-shot prompting.

| Model | Settings | NLP Metrics 1

| Vision | Language | 0O G C |BLEU4 R-1 RL BERT
© LLaVA-Med [27] - 339 4783 33.82 7586
% M3D [28] - 003 1180 9.66 59.87
2 RadFM [29] - 0.04 1171 1224 6193
- GPT-40* [12] - 3.01 4935 3009 7192
v 2322 5761 4380 77.06
Mistral-7B v 3133 65.61 51.22 82.05
, v v v | 3114 6510 5033 81.80

CT-ViT
- v 2693 5601 4228 7531
g LLaMA-2-7B | v v 2636 5648 4279 7773
2 v v v | 3136 59.14 48.00 76.72

D

£ v 2001  58.17 4254 7647
Mistral-7B v 2571  61.05 4659 78.49
Cosmos VOV V| 2809 6292 4837 7925
Tokenizer v 2583  61.80 4658 78.87
LLaMA-2-7B | v v 26.11 6226 47.05 79.39
v Vv V| 2840 6329 4876 7935

3D medical imaging data, provides greater clinical relevance and effectiveness in improving VLM
performance compared to the Cosmos Tokenizer, which was pretrained on general-purpose datasets.

C.2 Report Generation and VQA Samples

We present examples of generated PET/CT reports and VQA interactions using the CT-ViT + Mistral-
7B combination. Figure[I2]illustrates a sample from the report generation task, highlighting both
exact matches and discrepancies between predicted and ground truth reports for the chest and
abdomen—pelvis regions. Additionally, Figures [I3]and [I4]show examples of VQA conversations.
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Report Generation Task

<Question>: <image> Please write a detailed medical report for this image.

<PET/CT volume> , <Ground Truth>

- VI: Hinh anh bt xa theo dic diém sinh ly & tim. Khong phat hién hinh anh tran dich mang phéi hai bén va tran dich
mang tim. Hinh dnh n6t m& ban dic c6 kich thudc 9 x 10 mm, ting chuyén héa FDG (SUVmax: 3,5) & ngoai vi thuy
trén phdi trai. Hinh anh vai hach & dudi quai ddong mach chid va bén phai khi quan doan thap, kich thuéc 10 mm,
khéng tang chuyén héa FDG.

- EN: Imaging shows uptake according to physiological characteristics in the heart. No evidence of bilateral pleural
effusion or pericardial effusion. A semi-solid pulmonary nodule seen in the periphery of the left upper lobe,
measuring 9 x 10 mm with increased FDG uptake (SUVmax: 3.5). Several lymph nodes are present below the aortic
arch and on the right side of the lower trachea, measuring 10 mm, without increased FDG uptake.

Chest volume

<Generated Report>

- VI: Hinh anh bét xa theo dic diém sinh ly & tim. Khong phat hién hinh anh tran dich mang phéi hai bén va tran dich mang tim. Hinh anh vai
hach trung that & canh khi quan doan thap, trudc carina, cling véi hach rén phdi hai bén (hach 16n nhat c6 kich thuwdc 11 x 9 mm), ting
chuyén héa FDG (SUVmax: 5,3). Chura phat hién hinh anh ting chuyén héa FDG khu trd, bat thudng tai nhu mé hai phéi. Hinh anh vai hach
néch, kich thuwéc 10 mm, khéng tang chuyén héa FDG & hé nach hai bén.

- EN: Imaging shows uptake according to physiological characteristics in the heart. No evidence of bilateral pleural effusion or pericardial
effusion. Several mediastinal lymph nodes adjacent to the lower trachea, anterior to the carina, along with bilateral hilar lymph nodes (the
largest measuring (11 x 9 mm), show increased FDG uptake (SUVmax: 5.3). No focal abnormal FDG uptake is detected in the pulmonary
parenchyma of both lungs. Several axillary lymph nodes measuring 10 mm are seen bilaterally without increased FDG uptake.

<Question>: <image> What are the main findings in this medical image?

<PET/CT volume>

Fon

- l;"

<Ground Truth>

- VI: Hinh anh bt xa theo dic diém sinh ly & gan, lach, thugng than va dai bé than 2 bén. Hinh anh séi than
trai. Hinh anh ting chuyén héa FDG & khung dai trang theo d&c diém sinh ly. Hinh anh vai hach ben, kich thuéc
10 mm, khéng ting chuyén héa FDG & hé ben hai bén.

- EN: Imaging shows uptake according to physiological characteristics in the liver, spleen, adrenal glands, and
bilateral renal collecting systems. A left renal calculus is identified. FDG uptake in the colon is consistent with
physiological pattern. Several inguinal lymph nodes measuring 10 mm are seen bilaterally without increased
FDG uptake.

Abdomen-Pelvis volume

<Generated Report>

- VI: Hinh anh bét xa theo déc diém sinh ly & gan, lach, thugng than va dai bé than 2 bén. Hinh anh ting chuyén hda FDG lan tda & niém
mac da day kha ning do viém. Hinh &nh ting chuyén héa FDG & khung dai trang theo d3c diém sinh ly. Hinh anh vai hach ben, kich thudc
10 mm, khéng ting chuyén héa FDG & hé ben hai bén.

- EN: Imaging shows uptake according to physiological characteristics in the liver, spleen, adrenal glands, and bilateral renal collecting
systems. Diffuse increased FDG uptake is observed in the gastric mucosa, likely due to inflammation. FDG uptake in the colon is consistent
with physiological pattern. Several inguinal lymph nodes measuring 10 mm are seen bilaterally without increased FDG uptake.

Figure 12: Ground truth and generated PET/CT reports for the chest and abdomen-pelvis regions
using the CT-ViT + Mistral-7B model. Reports are originally written in Vietnamese (VI), with
English (EN) translations shown for illustration. Exact matches between the generated and reference
text are shown in bold, while key details that are missing or incorrectly added in the generated reports
are marked in red.
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Visual Question Answering Task

<Q&A conversation>:

- VI: Birc anh nay chup bd phan nao?
- EN: Which body part is shown in this image?

<PET/CT volume>:
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- VI: Bire nh nay chup khu virc dau va c6 cla bénh nhan.
- EN: This image captures the head and neck region of the patient.

- VI: C6 co quan nao trong viing dau va cb bét xa theo dac diém sinh Iy khong?
- EN: Are there any organs in the head and neck region that exhibit physiological uptake?

Head-neck volume

- VI: Hinh anh chup PET cho théy sy bét xa theo dac diém sinh Iy & ndo.
- EN: The PET images show physiological uptake in the brain.

<Q&A conversation>:

- VI: Khéng, khéng phat hién hinh anh hach bt thuong nao trong hé ben ca hai bén. Ngoai ra, c6 mot s&
hach ben kich thuwdc 10 mm & hd ben hai bén, nhung khong ting chuyén héa FDG.

- EN: No abnormal lymph nodes are detected in the bilateral inguinal regions. There are several inguinal
lymph nodes measuring 10 mm on both sides, but they do not exhibit increased FDG uptake.

! - VI: Blrc anh nay chup bd phan nao?
f - EN: Which body part is shown in this image?
<PET/CTvolume>: |
E - VI: Blrc anh nay chup khu vire ngue clia bénh nhan.
E - EN: This image captures the chest region of the patient.
s ; - VI: C6 phét hién bt thudmng nao & tim khong?
Chest volume E - EN: Are there any abnormalities detected in the heart?
E - VI: Khéng, khéng phét hién hinh anh tran dich mang phéi hai bén va tran dich mang tim.
E - EN: No, there is no evidence of bilateral pleural effusion or pericardial effusion detected.
| <Q&A conversation>:
E - VI: Birc anh nay chup bd phan nao?
! - EN: Which body part is shown in this image?
<PET/CT volume>: E
1| - VI: Birc &nh nay chup khu virc 6 bung va xwong chau clia bénh nhan.
E - EN: This image captures the abdomen and pelvis region of the patient.
g~ ;
K 1 PP i N N « R
3 ! VI: C6 phat hién hach bat thwong nao trong ho ben khéng?
i - EN: Are there any abnormal lymph nodes detected in the inguinal region?
Abdomen-Pelvis volume |

Figure 13: Short-form VQA interaction in Vietnamese (EN: translated) between a user and the
CT-ViT + Mistral-7B model. The example illustrates concise factual queries and direct responses.
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Visual Question Answering Task

<Q&A conversation>:

- VI: Blrc anh nay chup bd phan nao?
- EN: Which body part is shown in this image?

- VI: Birc 3nh nay chup khu virc dau va c6 clia bénh nhan.
- EN: This image captures the head and neck region of the patient.
- VI: C6 co quan nao trong viing dau va c6 bét xa theo dic diém sinh ly khong?
- EN: Are there any organs in the head and neck region that exhibit physiological uptake?

- VI: Hinh dnh chup PET cho théy sy bét xa theo dic diém sinh Iy & ndo.
- EN: The PET images show physiological uptake in the brain.

- VI: C6 d4u hiéu nao goi y tén thuong ac tinh khong?
- EN: Are there any signs suggestive of malignant lesions?

<PET/CT volume>

N
- VI: Khong, khong phat hién hinh dnh ting chuyén héa FDG khu trd, bat thuong & amydal va ria ludi hai
bén. Tuy nhién, cé hinh anh tang chuyén héa FDG lan toa & hai thuy tuyén gidp, c6 kha ning do viém. Can
d6i chiéu véi két qua siéu am dé danh gid chinh xac hon.

- EN: No focal abnormal FDG uptake is detected in the tonsils and bilateral lateral tongue borders. However,
there is diffuse increased FDG uptake in both lobes of the thyroid gland, which may indicate inflammation.
Correlation with ultrasound findings is recommended for more accurate assessment.

Head-neck volume
J

- VI: C6 phat hién hach bat thudng nao khong?
- EN: Are there any abnormal lymph nodes detected?

- VI: Khéng, chua phat hién hinh anh hach ting chuyén héa FDG & n3o. Tuyén gidp cé
kich thudrc 16n. Hinh Anh amydal con rd rét, khéng cé ting chuyén héa FDG.

- EN: No FDG-avid lymph nodes are detected in the brain. The thyroid gland is
enlarged. The tonsillar structures are clearly visible without increased FDG uptake.

- VI: Tuyén gidp c6 dau hiéu bat thueng nao khéng?
- EN: Are there any abnormal findings in the thyroid gland?

- VI: Hinh anh cho thay tuyén gidp da dugc phau thuat, va chua phat hién hinh anh
tang chuyén héa FDG khu tri hay bat thuong & viung giwdng tuyén gidp hai bén.

- EN: The images indicate that the thyroid gland has been surgically removed, and no
focal FDG uptake or abnormalities are detected in the bilateral thyroid bed regions.

9

Figure 14: Long-form VQA interaction in Vietnamese (EN: translated) using the CT-ViT + Mistral-
7B model. The conversation includes complex multi-sentence reasoning and detailed medical
explanation.
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