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Abstract

Question-Answering (QA) from technical documents often involves
questions whose answers are present in figures, such as flowcharts
or flow diagrams. Text-based Retrieval Augmented Generation
(RAG) systems may fail to answer such questions. We leverage
graph representations of flowcharts obtained from Visual large Lan-
guage Models (VLMs) and incorporate them in a text-based RAG
system to show that this approach can enable image retrieval for QA
in the telecom domain. We present the end-to-end approach from
processing technical documents, classifying image types, building
graph representations, and incorporating them with the text embed-
ding pipeline for efficient retrieval. We benchmark the same on a QA
dataset created based on proprietary telecom product information
documents. Results show that the graph representations obtained
using a fine-tuned VLM model have lower edit distance with re-
spect to the ground truth, which illustrate the robustness of these
representations for flowchart images. Further, the approach for QA
using these representations gives good retrieval performance using
text-based embedding models, including a telecom-domain adapted
one. Our approach also alleviates the need for a VLM in inference,
which is an important cost benefit for deployed QA systems.
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1 Introduction

With advances in Large Language Models (LLMs), Retrieval Aug-
mented Generation (RAG) based Question-Answering (QA) sys-
tems for technical domains like telecom have become prevalent
[11, 12, 15], which leverage domain-adapted models [5, 13]. How-
ever, these works largely focus on text-based input and output
modalities for RAG based QA task. A typical telecom engineer
would require to refer to information present in Product Informa-
tion Documents (referred to as PI Docs in this work) and assimilate
information from images (or figures), tables and/or equations, apart
from text, to provide answers to user queries, or for troubleshooting
scenarios.

1.1 Background

In the literature, multi-modality pertaining to images interspersed
with text are typically addressed as Visual QA (VQA) tasks that
use Visual Language Models (VLMs) [6]. However, models trained
on public datasets, which may include images of cat, dog, or back-
ground objects, are not useful for domains such as telecom. Typical
images in telecom-domain documents pertain to categories such as
screenshots of tools, flowcharts, block diagrams, sequence diagrams,
icons, equations, schematic diagrams, among others, as can be seen
in [1]. It is evident that images here often contain information
primarily as text, and may also include icons, schematic represen-
tations, connections and dependencies among connected blocks or
objects. The textual content is dominant and also domain-intensive.

Popular RAG systems either support text modality alone or use
multi-modal embeddings in vector database to support images, in
addition to text in the input. However, the cost of using VLMs for
embedding, and as the generator for RAG in an inference setup,
is formidable for business needs due to the large size of VLMs [8].
Approaches using knowledge graphs [3], as is common with textual
data, require manual verification and hence are not suitable.

In this work, we focus on parsing, categorizing and processing
images from proprietary technical documentation in the telecom
domain. We specifically focus on flowchart images which are hard
to interpret. These flowcharts present a unique issue of having
mostly text-based content and are also indicative of decision rules
and conditions. These, in turn, are a very valuable source of infor-
mation, especially in configuration and troubleshooting of telecom
networks. However, summarizing a flowchart as text via VLMs
might be tedious, prone to hallucinations, difficult to quantify ac-
curacy, and potentially may lose out on various conditions (refer
Figure 1). Converting flowcharts to graph structures has been ad-
dressed in the earlier works of [10, 14]. However, these works are
limited to evaluating the conversion of flowcharts to graphs and
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Response: This image is a flowchart or process diagram that visually represents a series of interconnected elements through labeled shapes and

directional arrows. Below is a detailed description:

### **General Layout™*

1. The diagram begins at the top with a circular shape labeled **"quaketail storywise"**, which appears to be the starting point or central concept.
2. From this initial circle, various rectangular, trapezoidal, and diamond shapes are connected by arrows, indicating relationships or sequential steps.
3. The arrows flow in different directions, showing a non-linear progression, with some elements linking back to earlier nodes.

### **Key Components**
1. **Central Node:**

quaketail storywise

- It branches into two distinct paths:

- **_eft Path:** Leads to "epopoeias besoms."

- **Right Path:** Leads to "nonnaturalistic.”
2. **Left Path:**

[

- The circle labeled **"quaketail storywise"** is likely the main focus or origin point of the diagram.

SooposisbessEE nonnaturalistic - "epopoeias besoms" connects to "homosporous" through two arrows.
T l | S— - From "homosporous,” the flow moves downward to ***KP@TwiXF"** and ultimately to a diamond-shaped node labeled **"grummet gaudete"**.
x N — | 3. **Right Path:**
[RETeE FE S camalized | JMMRSI3 - "nonnaturalistic" connects to "carnalized.”
I - Another arrow from “nonnaturalistic" leads downward to **"jMMnS;j5"**, which in turn connects to **"cardholder."**
— _ - "carnalized" connects to "jelerang introductor," which also leads to "grummet gaudete."
‘ KPOTWiXF jelerang introductor 4. **Diamond Node:**
- The diamond-shaped node **"grummet gaudete"** acts as a junction where multiple paths converge.
\ | - It flows downward into two separate paths:
N - ***wronghearted shrave™**
- A path that loops back upward, connecting to “cardholder."
DG || cardhotder ### **Connections and Relationships**
- The diagram includes multiple feedback loops, where nodes like “cardholder" reconnect to earlier nodes in the flow, such as "wronghearted shrave" and
“jelerang introductor."
l i B - J ‘ - The layout suggests a system with a mix of linear and cyclical relationships, potentially representing processes or dependencies.
e © ###*™Visual Design**

wronghearted shrave

- Shapes:

- Circular node: Represents the central concept.

- Rectangles and trapezoids: Represent intermediate or secondary ideas.
- Diamond: Represents a decision point or convergence of multiple flows.
- Arrows: Represent directional flow or relationships between elements.

Prompt: Provide a detailed description of
uploaded image -

- Colors: All elements are shaded in light purple, with a consistent style used throughout.

Figure 1: A sample description of synthetic flowchart from Flowlearn using GPT4 Vision model. The incorrect part of description
are highlighted in gray. This illustrates the issues faced in using VLMs directly for technical QA involving flowcharts.

evaluating the best representation of flowcharts (graphs or UML)
for QA. The latter work, in fact, assumes that the correct flowchart
is available for answering the question. Hence, there exists a gap
in the study of retrieving the right flowchart or its representation.
We build on some of these existing works to propose a solution
which uses fine-tuned VLMs to convert flowcharts’ images to graph
representations, and benchmark it for retrieval for a typical QA
task based on these flowcharts.

1.2 Problem Statement

We propose the enhancement of text-only RAG with the following
capabilities:

o Categorize parsed images (from telecom documents - PI
Docs) into image categories identified as relevant for telecom
domain QA.

o Use a fine-tuned VLM to convert flowchart images to graph
structures, using nodes connected through edges (unidirec-
tional and/or bidirectional). The nodes and edges also have
attributes associated.

e Jointly represent flowchart based graph structures inter-
spersed with text using LM domain-adapted embeddings.

o Utilize the graphical structures in RAG pipeline for improved
coverage during retrieval.

1.3 Contributions

The contributions of this work are as follows:

o Automatically categorize images parsed from technical doc-
umentation using fine-tuned Document Image Transformer
(DIT) model [7].

e Convert flowchart images to graph structures using a fine-
tuned VLM.

e Evaluate various chunking approaches to introduce these
graphs in vector database for retrieval.

e Benchmark retrieval performance on QA dataset based on
flowcharts.

The rest of the paper is organized as follows: Section 2 details
the proposed approach, with details of image classification (Section
2.1), conversion of flowcharts to graphs (Section 2.2), chunking
and ingestion (Section 2.3) and evaluation (Section 2.4). Experimen-
tal setup details are provided in Section 3 followed by the results
and analysis in Section 4. Finally, conclusions and future work are
presented in Section 5.

2 Proposed Approach

As mentioned earlier, QA on flowcharts can be challenging using
VLMs directly (since they may comprise information related to
flow of information between nodes, decisions based on conditions
or sequence of steps). Evaluation of these textual description of
flowcharts can be challenging as there is no ground truth available
and these descriptions can tend to be verbose based on complexity
of flowcharts (refer Fig 1).

Our proposed approach entails classification of images into vari-
ous categories. Next, we consider only flowchart images. We use
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VLM model

Extract graphs from
Flowcharts in JSON
(Section 2.2)

Document Processor

Image Type Classifier

- Section-wise chunking (Section 2.1)

- Images, captions
- Text
- Tables, captions

for each entry

Map to JSON parsed from document

| - Pipe separated values
- Column header prefixed —+———

Metadata
- Section heading
- Image and table captions

Retrieve
relevant chunk
or section of
textual data
(Section 2.4)

Context

Embeddings
Vector

generation
(Section 2.3)

Response
Generation

I_‘ using LLM

User query in

| the prompt
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Figure 2: The end-to-end approach for multi-modal QA, our approach for images is indicated in black-shaded boxes.

fine-tuned VLMs (trained using publicly available database) to con-
vert these domain-specific flowchart images to graph represen-
tations. In the subsequent step, we use text-based chunking and
obtain embeddings of these for retrieval. This section details the pro-
posed approach and evaluation metrics. Fig. 2 depicts the proposed
end-to-end approach for multi-modal QA.

2.1 Classification of images

Telecom documentation can have various categories of images. Typ-
ically, PI Docs processing involves parsing various formats (such
as HTML, PDF) of documents and extracting the text, tables, equa-
tions and images from the paragraphs of various sections. Typically,
the textual components are chunked (optimally) converted to em-
bedding vector using domain-adapted embedding model [16] and
ingested into a vector database. In our approach, we aim to in-
troduce only flowcharts using textual embedding for retrieval. To
achieve this, we train a classifier to categorize the images parsed
from PI Docs into various categories, viz., block diagrams, equa-
tions, flowcharts, graphs, hardware diagrams, icons (navigation,
logos), schematic diagrams, screenshots, sequence diagrams. This
helps categorize images for subsequent downstream QA task. In
this work, we use the flowchart images for further processing and
obtain their corresponding graph representation.

2.2 Graph representation for flowcharts

We filter on the images identified as flowcharts from the classifier
model discussed in Section 2.1. On these, we propose to use a fine-
tuned VLM to generate graph representations of the images.

A flowchart consists of a number of blocks and interconnecting
links between them. We create a directed graph out of the flowchart
- we represent each block as a node and capture the text within the
block as a node attribute. Links between blocks are considered as

edges, and any text on the link is considered as an edge attribute.
Although flowcharts may have different shapes of blocks, we do
not capture that in the node information. A sample representation
of a flowchart and the corresponding graph (in JSON format) is
shown in Figs. 3a and 3b, respectively.

2.2.1 Using a fine-tuned VLM. In order to improve the graph repre-
sentation generated by the open source VLM, we also fine-tuned a
open-source VLM using the publicly available synthetic flowcharts
of Flowlearn dataset [10].

It may be noted here that the model was fine-tuned on a publicly
available dataset of flowcharts and used to generate graphs for
telecom-domain flowcharts, as shown in Fig. 4. Details of VLM
considered and training dataset are given in Section 3.

2.2.2  Evaluation metric for VLM. The output of the VLM is a graph
representations of the flowchart. Hence, we use Graph Edit Distance
(GED) [2] as a measure of the performance of the model, apart from
number of nodes and edges accurately detected. A lower value of
GED indicates close similarity of the generated graph representa-
tion when compared with the ground-truth representation of that
flowchart. We show in our results that we obtain lower GED with
the fine-tuned VLMs.

2.3 Chunking, ingestion into vector store and
retrieval

The graph structures obtained from the previous step (detailed in
Section 2.2) must be introduced into the vector store to ensure these
are included in the retriever stage of RAG. Hence, it is essential
to be able to obtain embedding vectors for these graph structures.
There have been studies which perform experiments to find optimal
chunking of textual data and for tables to improve retrieval accu-
racy [16]. Similarly, it is of importance to understand the optimal
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{"edges": [
{
“from": "start",
"to "xyz1",
e <
L “from": "condition2",
{ "to": “def",
“from": "xyz", "value": "Yes"
Xyz "id": "condition1", gt e °
"label"; "Condition1?" to': "conditionl L
) value™: {
{ L "from": “condition2",
“id": “abc”, {
Condition “label": "abc” “from™:
e abc z “conditionl",
“id": "condition2", “to ]: ?.bc e " o g
No “label"; "Condition2 7" value™: "Yes from": "def",
), L "to": “pqr",
- { { "value": " "
ondition "id": "def", fi "
def et rom® L
2? label": “def" “condition1", {
z' "to": "condition2", “from": “pgr",
No — "value": “No" “to": "stop",
“label”: "pqr" L "value": "edge8"
b3 { }
par { “from": “abc", 1
id" "stop”, "to™ “def", )
) label": "Stop' "value™ " "
L
Stop 1

(a) A sample image of a flowchart.

(b) Graph representation in JSON (JavaScript Object Notation) with
nodes and edges.

Figure 3: A sample flowchart and its graph representation in JSON format.

Tvim Fine-tuning

Flowlearn
Dataset

VLM Fine-Tuned
Model

VLM Base Model

Graph JSON Generation

Telecom Flowchart
Dataset

————————————— 1

|

. Embeddings Vector :
generation

- Store !

I Inference !

Figure 4: Fine-tuning the VLM with a publicly available
dataset and using it on telecom data for generating graph
representations.

chunking mechanism for embedding graph structures. We consider
the following options to generate embeddings, as shown in Fig. 5:

e Each node as one chunk: Embed each node’s textual infor-
mation as a single embedding vector.

o All nodes as one chunk: Embed all the node textual infor-
mation as a single embedding vector.

o Entire graph JSON as one chunk: Embed the entire textual
information from graph JSON as a single embedding vector.

Chunking Strategies

1
i
H
- A) Graph Nodes + Graph Edges |'
| e ? s o E Embedding
i Model
Graph JSON :
— Nodes ‘ | (B) All Graph Nodes | i» ‘
H
— Edges i v
H -
H Vector
» H
| (C) Each Graph Node | ! Store
H
H
H

Figure 5: Chunking approaches for flowchart JSONs.

2.4 Evaluation of Retrieval for RAG

We evaluate retrieval using two embedding models, the bge-large
[18] which is a publicly available embedding model and the TeleR-
0BERTa [4], a telecom-domain adapted embedding model. For evalu-
ating the retrieval, we compute top-k accuracy for k = {1, 3, 5}. Fol-
lowing is the evaluation criteria adopted for the respective chunking
approaches:

e When textual information of each node is embedded as a
vector, the retrieval is correct if any of the nodes from the
top-k retrieved graph JSONs appears in the ground truth.

e When textual information of all the nodes is embedded as a
single vector, the retrieval is considered correct if all of the
nodes from the ground truth appear in the top-k retrieved
graph JSONs.

e When the entire textual information in the graph JSON is
embedded as a single vector, the top-k retrieval is considered
correct one of the graph JSON among the k- retrieved graphs
corresponds to the ground truth.
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3 Experiments
3.1 Datasets

For the dataset creation, we initially considered two sources - (i)
publicly available 3GPP (Rel 18) documents (ii) proprietary PI Docs
- both of which pertain to the telecom domain.

3.1.1 Image Sources. From the 36 series of the publicly available
3GPP (Rel 18) documents [1], we parse 6342 images comprising of
various categories such as schematic diagrams, graphs, frequency
plots, block diagrams, sequence diagrams. However, there are very
few examples of flowcharts (less than 2%) and many of these can
be considered as a mix of flowchart as well as block diagram (refer
Fig. 9 in Appendix B). Hence, we do not consider the flowcharts
from this source, as it is not representative of the data we encounter
during troubleshooting.

From the proprietary PI Docs, we have identified few documents
to include in this dataset, extracted 1586 images of multiple types
such as block diagrams, equations, flowcharts, graphs, hardware di-
agrams, icons (navigation, logos), schematic diagrams, screenshots,
sequence diagrams, among others. Fig. 8 shows sample images for
the categories of images seen in PI Docs. Since this is a proprietary
dataset, all content in images pertaining to PI Docs source have
been obfuscated in this manuscript to retain confidentiality. Table 2
shows the image categories considered and their statistics. We have
manually annotated this dataset to construct training and test sets
with 1268 and 318 images respectively using stratified sampling
across these image types. This dataset was used to fine-tune the
classifier model that predicted the image type.

3.1.2  Image to graph representation. For fine-tuning, we consider
synthetic flowcharts component of Flowlearn dataset [10] for train-
ing VLM model. This consists of 10,000 flowchart images generated
with Mermaid tool. The mermaid tool script is mapped to the re-
quired JSON format and is used for fine-tuning. However, we found
that this dataset did not consider the following scenarios typically
seen in flowcharts:

o Shapes of nodes such as rectangles with semicircular ends,
parallelograms, decision boxes (typically shaped as rhom-
bus), connectors (shaped as circles and pentagons)

e Edges, including bi-directional edges, multiple arrow heads
(small, medium, large), various edge connectors (solid, dotted,
dashed), straight sharp edges

e Node lines - solid, dotted, dashed and sometimes, no outer
lines

o Edge attributes with text associated

In order to deal with such scenarios, we synthetically created images
using Mermaid tool, using existing Flowlearn dataset as the starting
point. These synthetically generated images were augmented with
existing images of Flowlearn dataset. The augmented images for
training (fine-tuning) and testing are kept separate.

3.1.3 QA Dataset for Retrieval. For testing retrieval accuracy, we
consider 105 flowchart images from PI Docs which have been asso-
ciated with ground truth graph structures. With inputs from Subject
Matter Experts (SMEs), we carefully curate a set of 502 QA pairs
from these images, with a mode of ~ 5 questions for each image.
Each QA pairs is tagged as ‘Decision related’ (D), ‘Edge related’

KDD ’25 Workshop on Structured Knowledge for LLMs, August 04, 2025, Toronto, CA

(E) and ‘Node related’ (N) - based on how to arrive at the answer
from the question. Details of the QA dataset are listed in Table 1 for
different hops. The categories listed are based on ability of retriever
to identify the correct chunk of data which contains the graphical
structure from the flowchart image.

l Category #of QA ‘
Decision related 359
Node related 487
Edge related 479
Table 1: Distribution of QA categories considered

3.2 Experimental Setup

3.2.1 Image Category Classifier. We use the manually annotated PI
Docs image dataset (1586 images) described in Section 3.1 to train
(fine-tune) the image classification model. This dataset is split into
train and test dataset in the ratio 80-20 split (1268-318 train-test
split) using stratified sampling. We fine-tune the “microsoft/dit-base”
model [7] with batch size of 16 for this dataset.

While it is possible to explore models other than DIT, we note
that image classification is not the primary focus of this work and
this model performance can be considered as a baseline for further
improvements.

3.2.2 VLM for graph representation. The top-performing open-
source VLMs ! available at the time of conducting our experiments
were Qwen2-VL [17] and Llava 1.5 [9]. We considered Qwen2-VL for
fine-tuning due to better performance on few samples. The prompt
used for generating the graph representation of a flowchart is:

‘T have uploaded an image of a flowchart and here is its
ground truth JSON representation, image_json ={}. Now
generate JSON for the next image, from and to should
be the node IDs. In the edges section, make sure that
the edge value is present. If there are multiple identi-
cal nodes, create different IDs for them and their edges
accordingly.”

The synthetic flowcharts from Flowlearn dataset [10] is consid-
ered for fine-tuned VLM. It has 10,000 images, split as 64-16-20%
for train, validation and test respectively. We augment this training
set with synthetic data for improved coverage of various nodes and
edges (details described in 3.1). The fine-tuning was performed for
few choices of parameters R and «, and the best fine-tuned model
was used in the pipeline.

3.2.3 Retrieval with chunking approaches. As detailed in Section 2.4,
we evaluate various chunking approaches via retrieval accuracies.
Three chunking approaches are proposed and evaluated for top-k
accuracies. The chunking approaches are evaluated in two scenarios:
(i) Embedding vectors of only graph-structures are considered for
retrieval (ii) Embeddings of graph-structure and accompanying text
are considered for retrieval. This results in 6 variations of retrieval
for each model. We consider two embedding models - bge-large and

!Since PI Docs are proprietary in nature, it is preferable to use open-source VLMs to
avoid data-sharing outside the organization
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TeleRoBERTa (domain-adapted) [4, 18] and hence will have 12 sets
of retrieval results.

4 Results and Analysis

In this section, we tabulate and detail results of the experiments
listed in experimental setup section.

4.1 Image Category Classifier

We consider dataset of 1586 images from the proprietary dataset
and labeled them manually to create training and test datasets. The
distribution of number of images in the respective categories is
shown in Table 2. We fine-tuned the “microsoft/dit-base” model [7]
with batch size of 16 for this dataset.

S. No. | Class #Train | #Test | Total

1. Block Diagram 123 39 162

2. Equation 154 42 196

3. Flowchart 171 38 209

4, Graph 41 9 50

5. Hardware 7 3 10

6. Icon 15 3 18

7. Others 131 43 174

8. Schematic Diagram | 168 29 197

9. Screenshot 388 102 490

10. Sequence Diagram | 70 10 80
Total 1268 318 1586

Table 2: Image categories for telecom dataset.

The fine-tuned model was evaluated on the test set for predicting
the image categories. The performance of the model on various
categories of images is shown in Fig. 6. We observe that the ac-
curacy of prediction is high for images categories like icons and
equations, while it is above 80% for sequence diagrams, screenshots
and flowcharts.

We also show the confusion matrix for the test set indicating the
correct and incorrect classification of images in the test set in Fig. 7.
We observe that most of the flowchart images are classified correctly,
while some are misclassified as block diagram, schematic diagram or
others. This is expected since these images can be similar and belong
to multiple categories. However, since most of the flowchart images
are categorized correctly, we use this classifier in the pipeline. The
performance can potentially be improved as more annotated images
are available for fine-tuning.

4.2 VLM for graph representation

The results for fine-tuning of the Qwen2-VL [17] VLM are shown
in Table 3, for various parameter values. The columns indicate
the average number of nodes and edges in the ground truth graph
JSON representations, the number of nodes after the transformation
operations and the number of edges detected for the model outputs.
The GED metric is shown in the last column. We obtain the lowest
GED of 2.74 using both Lora R and « as 512 for the finetuned Qwen2-
VL model, which is a significant improvement over the base model
which has a GED of 10.21 on the test set.

Soman et al.

Similar performance evaluation of flowcharts from PI Docs is
reported using the best performing fine-tuned model in Table 3.
We observe that the average number of nodes and edges in the
flowcharts from PI Docs is almost twice that of those seen in Flow-
chart dataset. Results show that GED on this unseen flowchart data
is quite low (3.14).

4.3 Retrieval with chunking approaches

Table 4 shows the retriever performance on top-k accuracy for
the chunking approaches using a publicly available base model
(bge-large) and domain-adapted (TeleRoBERTa) embedding models.
We highlight here that the TeleRoBERTa model has been domain-
adapted on publicly available telecom data (3GPP), and does not
include any images related information during its training phase.
Hence, there is no data contamination for the data considered and
evaluated in this work. The objective here is to compare it? with
a publicly available embedding model. We observe that the best
top-k retrieval results for k = {1, 3} are obtained when using for
TeleRoBERTa (57.17% and 71.91% respectively). Further, using each
node as one chunk (embedding vector) gives better results for top-1
(57.17%) for TeleRoBERTa.

We also observe that retrieval accuracy reduces in the scenario
when embeddings of graph structures are interspersed with text
in the vector store. This is expected, as in a typical scenario, the
retrieved top-k embeddings are no longer limited to only graph
structures.

Table 5 shows the top-k retrieval accuracy for the embedding
models for the various QA categories. Across the chunking strate-
gies, higher performance is most commonly seen when using the en-
tire graph JSON as one chunk, for both models. Better performance
is obtained for node-related questions, followed by decision-related
and finally, edge-related questions.

5 Conclusions and Future Work

In this work, we have considered an approach to introduce flow-
chart images with dominant textual content into retrieval (for RAG)
using textual embeddings. We first categorize images present in the
domain dataset using a fine-tuned DIT model. We observe that the
accuracy of flowchart category of images is sufficiently high. Next,
the flowchart images are converted to graph structures using a fine-
tuned VLM. Here, we show that the fine-tuned VLM has lower GED
for the flowchart graph representations. These graph structures are
then embedded into text-based vector store and benchmarked for
retrieval accuracy on a QA dataset based on these graphs. We ob-
serve that embedding the whole graph as one vector shows higher
accuracy. This is because the chunk of data embedded includes all
the information related to the nodes and edges of the graph. This
is also shown to have better performance when the QA category is
node-related.

Future work includes evaluation of generator output when JSON
structures are passed as context to textual generator component
of RAG. Analyzing cases involving errors in graph generation and
retrieval, and performance with interspersed (document) text would
be of interest. Additionally, extending the capabilities to other types

2 TeleRoberta model is much smaller than bge-large model in terms of parameter size.
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Figure 6: Performance of the classifier on the test set for various image categories from PI docs.

Model Avg. #Nodes Avg. #Edges Avg. #Nodes | Avg. #Edges | Avg. Graph
(Ground Truth) | (Ground Truth) | Detected Detected Edit Distance (GED)
Flowcharts from test set of Flowlearn dataset

Qwen2-VL Base 6.36 6.82 6.55 8.57 10.21

Qwen2-VL FT - Lora R=8, Alpha=16 6.36 6.82 6.3 6.23 4.24

Qwen2-VL FT - Lora R=32, Alpha=32 6.36 6.82 6.2 6.53 5.09

Qwen2-VL FT - Lora R=128, Alpha=128 | 6.36 6.82 6.34 6.43 4.43

Qwen2-VL FT - Lora R=256, Alpha=256 | 6.36 6.82 6.35 6.7 3.82

Qwen2-VL FT - Lora R=512, Alpha=512 | 6.36 6.82 6.36 6.42 2.74

Flowcharts from PI Docs
Qwen2-VL FT - Lora R=512, Alpha=512 | 12.54 | 11.77 [ 1232 [ 1111 3.14

Table 3: Graph Metrics for fine-tuned VLM with various parameter settings reported for test set of Flowlearn dataset and
flowcharts from PI Docs.

Embedding Model bge-large TeleRoBERTa
Chunking Approach Top-1 [ Top-3 [ Top-5 | Top-1 | Top-3 | Top-5
Embeddings of graph structures only for retrieval
Each node as one chunk 56.17% | 65.33% | 66.93% | 57.17% | 62.74% | 65.93%
All the nodes as one chunk 50.29% | 68.12% | 75.23% | 49.80% | 71.91% | 76.89%

Entire graph JSON as one chunk | 53.19% | 71.12% | 78.29% | 49.06% | 71.71% | 76.69%

Embeddings of graph structures interspersed with text for retrieval
Each node as one chunk 41.05 55.53 59.76 | 32.42 | 44.08 | 48.86
All the nodes as one chunk 38.84 43.63 43.82 30.92 38.33 42.29
Entire graph JSON as one chunk | 30.08 31.47 32.03 24.27 28.15 39.83
Table 4: Retriever performance of chunking approaches for the embedding models, best top-k values are indicated in bold
for (i) only embeddings of graph structures considered for retrieval, and (ii) with embeddings of graph structures and text
considered for retrieval.

of diagrams like UML Sequence diagrams which have a semantic References
structure are areas of potential future research for the community. [1] 3GPP. 2022. 3GPP Release 18. Technical Report. Accessed: 2024-05-19.
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Question Category D | N | D [ N | E D [ N | E
bge-large
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Table 5: D, N, E indicative of Decision based, Node based and Edge based QA. Retriever performance of chunking approaches
for the two embedding models. Best top-k values are indicated in bold for various chunking approaches.

True label

Confusion Matrix on Test Set

Block Diagram 23 0 2 [ [ 0 4 7 [1] 3
Equation 0 42 0 0 0 0 0 0 0 0
Flowchart 2 0 36 0 0 0 0 0 0 0
Graph 0 0 0 5 0 0 4 0 0 0
Hardware o 0 0 0 1 [ 0 2 [ 0
Icon [ 0 o [ [ 3 0 0o [ 0
Others 3 0 3 3 0 0 23 8 3 0
Schematic Diagram 2 0 2 0 0 0 6 19 0 0
Screenshot o 1 0 0 0 0 1 1 H 0
Sequence Diagram 0 0 0 0 0 0 1 0 0 9
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Figure 7: Confusion matrix on the test set for categorization
of images from the PI dataset.
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A Image Categories in Telecom Dataset

Representative examples of various types of images present in the
telecom (PI) dataset are shown in Fig. 8.

B Ambiguous Flowchart images in 3GPP
documents
A representative image from the 3GPP document that is ambiguous

as a flowchart is shown in Fig. 9.

Received 30 May 2025


https://llava-vl.github.io/blog/2024-01-30-llava-next/
https://doi.org/10.1109/WCNC61545.2025.10978393
https://arxiv.org/abs/2309.07597

KDD ’25 Workshop on Structured Knowledge for LLMs, August 04, 2025, Toronto, CA

ABCD

Graph Representations for Flowchart QA

WBNM

| CCWAC

(a) Block Diagram (b) Flowchart

® XBVU KLMN
cex ™
@ A Message 1
R R Message 2
Z KLMN

> = ! w w“ M 3

- @ essage

(c) Graphs (d) Hardware Diagrams (e) Icons

® @
g;o) QxFe92

o) &) (=) =

¢ _(® |9mPF11708
=

No interfering objects.
in front of the TBS

(f) Instruction Diagrams (g) Schematic Diagram (h) Representation Diagrams

DEF | Configuration Generator

Configuration Generator

Settings Test  Export Validate Summary  Clear zY vMO uiL

wertz
Baslcdata ABCDE123 M No Configuration Type selected a
Value XYZ98765432 v
880 BB123 - WXYZ112
Setting 4567 PQ LM RSTUV12 ~ binms
i -~ semnicolon-sepera- v
Configuration Type P
FG Option
-ABCD
H Radlo A _ILMS
1Radio B
parst
Figure 2 Basic Template Generator Menu
The menu of the Basic Template Generator incluodes following Ul elements: nijio
- Action buttons rtyuk .
- Settings elepj
(i) Screenshots (j) Sequence Diagrams

Figure 8: Representative images for various categories from the proprietary telecom dataset. (Note: content has been obfuscated
based on the confidentiality of data involved.)
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Figure 9: A sample of ambiguous flowchart image in 3GPP document. One can consider this to also be a block diagram.
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