
PPG-DISTILL: Efficient Photoplethysmography
Signals Analysis via Foundation Model Distillation

Anonymous Author(s)
Affiliation
Address
email

Abstract

Photoplethysmography (PPG) is widely used in wearable health monitoring, yet1

large PPG foundation models remain difficult to deploy on resource-limited devices.2

We present PPG-DISTILL, a knowledge distillation framework that transfers3

both global and local knowledge through prediction-, feature-, and patch-level4

distillation. PPG-DISTILL incorporates morphology distillation to preserve local5

waveform patterns and rhythm distillation to capture inter-patch temporal structures.6

On heart rate estimation and atrial fibrillation detection, PPG-DISTILL improves7

student performance by up to 21.8% while achieving 7× faster inference and8

reducing memory usage by 19×, enabling efficient PPG analysis on wearables.9

1 Introduction10

Wearable sensors that are unobtrusive, widely accessible, and cost-effective have demonstrated strong11

potential for real-time health monitoring. Among these, photoplethysmography (PPG), an inherently12

time-series signal that captures continuous variations in blood volume over time, has become a widely13

used modality in smartwatches [4, 25]. Its popularity arises from enabling non-invasive physiological14

assessment without requiring firm skin attachment [25, 28]. The rich information in PPG arises from15

its local waveform morphology, which reflects cardiovascular events, and its long-range structural16

rhythm, reflecting periodicity and autonomic regulation. These properties enable applications from17

cardiovascular monitoring [23, 27, 26, 31, 9, 2, 21], clinical diagnostics [29, 22, 5, 13], to mental18

state assessment [35, 12, 30].19

Given its wide range of applications, it is crucial to develop models that can learn generalizable repre-20

sentations from PPG signals and perform reliably across multiple downstream tasks. Recent studies21

have therefore introduced foundation models tailored to PPG signals [20, 4, 25, 7]. Although these22

models demonstrate strong performance, deploying them on edge devices such as wearables remains23

difficult due to constraints on inference speed and memory usage. A natural solution is to leverage24

knowledge distillation (KD) [10, 8] to compress large teacher models into a smaller, more efficient25

student models (Figure 1). However, the primary challenge lies in knowledge preservation, since26

vanilla KD techniques may fail to transfer the nuanced understanding of PPG’s unique characteristics.27

This raises a critical question: What specific structural and temporal knowledge is essential for a28

PPG model, and how can it be effectively distilled from a teacher to a student?29

Most existing distillation methods concentrate on aligning output predictions [10] or intermediate30

feature [24] between a teacher and a student, namely Global KD. Such approaches risk overlooking31

the local structural information that is central to PPG. In particular, waveform morphology within32

short temporal windows (patches) and structural rhythm between patches are essential for capturing33

both cardiovascular events and autonomic dynamics, yet these fine-grained patterns can be lost when34

only global prediction- or feature-level alignment is enforced. Moreover, recent PPG foundation35

models [20, 4] already adopt a patch-based representation, which naturally encodes local dynamics36
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Figure 1: Illustration of our motivation. PPG foundation models are
pretrained and finetuned for downstream tasks, but direct deployment
on wearables is costly. KD produces efficient student models suitable
for wearable deployment.
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Figure 2: Real PPG signals
from the StanfordAF dataset,
segmented into patches by
red lines (patch size = 40).

but remains underutilized during distillation. To address this gap, we introduce PPG-DISTILL, a37

distillation framework that augments vanilla prediction- and feature-level transfer with two novel38

patch-level strategies: morphology distillation, which enforces discriminability among local segments,39

and rhythm distillation, which preserves structural dependencies across patches. By explicitly40

transferring both global knowledge and local morphology–rhythm patterns, PPG-DISTILL equips the41

student with richer PPG-specific representations. This design enables compact models that maintain42

strong task performance and are practical for on-device deployment. Across diverse benchmarks,43

PPG-DISTILL achieves up to 21.80% higher accuracy while reducing inference latency by up to44

7× and memory footprint by up to 19× compared to the teacher, advancing the deployment of45

foundation-level PPG models in wearables. We discuss the related work in Appendix A46

2 Methodology47

We first introduce key notations. For PPG signal anslysis, given an input PPG signal X ∈ RL, where48

L represents the length of the PPG signal, the goal is to predict the value Y ∈ R1 for regression and49

the class Y ∈ RC for classification, where C is the number of classes. Below, we propose and discuss50

several approaches to distill knowledge from a teacher PPG foundation model to a student. We start51

by adapting two Global KD methods: prediction-matching and feature-matching. Next, we motivate52

and introduce our proposed PPG-DISTILL, with patch-level matching strategies to distill additional53

patch-level local morphology-aware and structural rhythm information to the student.54

2.1 Global KD55

The student produces predictions Ŷs and internal features Hs ∈ RD. The teacher produces predictions56

Ŷt and internal features Ht ∈ RD. The objective of Global KD is:57

minθs Lsup(Y, Ŷs) + LY
KD(Ŷt, Ŷs) + LH

KD(Ht, Hs), (1)

where θs is the parameter of the student; Lsup is the supervised loss (e.g., MAE for regression,58

cross-entropy for classification); LY
KD and LH

KD are the distillation loss terms that encourage student59

model to learn knowledge from teacher on both prediction level [10] and feature level [24]. However,60

Global KD only matches the signal-level feature (i.e., LH
KD), making it less effective at preserving the61

local morphology within each PPG segment and the structural rhythm across segments (Figure 2).62

2.2 PPG-DISTILL63

In accordance with our intuition regarding preservation of local information of PPG signal, we64

propose a novel patch-level distillation framework, called PPG-DISTILL in Figure 3. Instead of65

focusing on matching global signal-level features, PPG-DISTILL focuses on distilling knowledge66

about local morphology and rhythm by patch-level morphology and rhythm distillation. We note that67

the term morphology here refers to data-driven local waveform representations within patches, rather68

than predefined or clinical morphological descriptors.69
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Figure 3: Overall framework of PPG-DISTILL.

Patchtify, for most PPG foundation models [20, 4], is the first step to process the original PPG signal70

X to non-overlapping patches [16, 14]. Denote the patch length as P , then the patchifying process71

will generate a sequence of patches Xp ∈ RP×N where N is the number of patches, N = L/P .72

PPG morphology distillation Let the student and teacher produce features for a PPG patch73

sequence Xp as Hp
s ∈ RN×ds and Hp

t ∈ RN×dt . Because ds and dt can differ, we introduce a74

shared learnable linear adapter A ∈ Rdt×ds and form H̃p
t = Hp

t A. We then ℓ2-normalize patch75

vectors row-wise, Ĥp
s/t = norm(Hp

s/t). We align the i-th student patch to the i-th teacher patch and76

treat all other teacher patches as negatives. The similarity matrix is Z =
Ĥp

s (Ĥ
p
t )

⊤

τ ∈ RN×N , where77

τ is temperature. We use InfoNCE-style [17] loss with one positive per row:78

Lmor =
1

N

N∑
i=1

(
− log

exp(Zii)∑N
j=1 exp(Zij)

)
.

This objective encourages one-to-one alignment of local morphology across patches, allowing the79

student to preserve the teacher’s patch-level morphology feature.80

PPG rhythm distillation To keep the PPG rhythm (beat-to-beat periodicity and timing regularity),81

we transfer the teacher’s inter-patch relations to the student rather than only aligning individual patch82

features. We form pairwise Euclidean distance matrices with normalization [Dt]ij =
∥∥ϕ(Hp

t,i) −83

ϕ(Hp
t,j)
∥∥
2
, [Ds]ij =

∥∥Hp
s,i − Hp

s,j

∥∥
2
, The relational distillation loss matches these normalized84

structures with a smooth L1 penalty [18]:85

Lrhy =
1

N(N − 1)

∑
i ̸=j

smoothL1
(
[D̃s]ij , [D̃t]ij

)
. (2)

This term penalizes discrepancies in relative inter-patch distances, thereby transferring the teacher’s86

structural knowledge of rhythm to the student.87

Joint Optimization While training PPG-DISTILL, we jointly optimize both the PPG morphology88

and rhythm distillation losses in addition to the Global KD losses. Therefore, the overall training loss89

that PPG-DISTILL adopts for the student is L = Lsup + αLY
KD + βLH

KD + γ(Lmor + Lrhy), where90

α, β, and γ are hyper-parameters which mediate the strengths of each loss term.91

3 Experiment92

Experimental Setting To evaluate the effectiveness of PPG-DISTILL, we benchmark it on both93

regression and classification tasks in PPG analysis, following GPT-PPG [4]. For regression, we94

use the DaLiA dataset [23], where the model is required to estimate patients’ heart rates from PPG95

signals. For classification, we use the StanfordAF dataset [29], which targets atrial fibrillation (AF)96

detection. We adopt two PPG foundation models, GPT-PPG-19m [4] and PaPaGei [20], as teachers,97

and consider MLP as well as the lightweight GPT-PPG-1m variant of GPT-PPG as students. For98

regression, we report mean squared error (MSE) and mean absolute error (MAE). For classification,99

we report accuracy (Acc.) and F1 score. Further implementation details are provided in Appendix B.100

Results Table 1 reports the effectiveness of the proposed PPG-DISTILL compared with Global KD101

on GPT-PPG-1m [4]. Since MLP does not patchify PPG signals, only Global KD can be applied to it.102
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Table 1: Performance comparison on DaLiA and StanfordAF. “+xx%” values indicate the relative
improvement in student performance after distillation.

Teacher Models GPT-PPG-19m [4] PaPaGei [20]
Metric MSE (↓) MAE (↓) MSE (↓) MAE (↓)

DaLiA

Teacher 221.78 8.82 160.39 6.81

MLP 581.77 17.87 581.77 17.87
+Global KD 230.59+60.36% 10.74+39.89% 575.40+1.10% 17.84+0.14%

GPT-PPG-1m [4] 255.07 10.08 255.07 10.08
+Global KD 234.16+8.20% 9.44+6.37% 220.26+13.65% 8.38+16.89%

+PPG-DISTILL 215.36+15.57% 8.34+17.32% 202.31+20.68% 7.90+21.62%

Metric Acc. (↑) F1 (↑) Acc. (↑) F1 (↑)

StanfordAF

Teacher 0.93 0.88 0.83 0.70

MLP 0.76 0.42 0.76 0.42
+Global KD 0.76-0.09% 0.54+29.17% 0.73-4.31% 0.41-1.15%

GPT-PPG-1m [4] 0.81 0.64 0.81 0.64
+Global KD 0.82+0.80% 0.65+2.73% 0.83+1.83% 0.67+5.69%

+PPG-DISTILL 0.87+6.73% 0.77+21.80% 0.88+7.68% 0.77+21.35%

Several key observations can be drawn from the results. First, PPG-DISTILL consistently improves103

the performance of GPT-PPG-1m across both regression (DaLiA) and classification (StanfordAF)104

tasks. In particular, PPG-DISTILL achieves up to a +21.8% relative F1 improvement on StanfordAF105

and a +13.7% relative MSE improvement on DaLiA, highlighting its strong and consistent gains106

across tasks. Notably, on the DaLiA dataset with GPT-PPG-19m as the teacher, GPT-PPG-1m trained107

with PPG-DISTILL even outperforms its teacher while using 19× fewer parameters, demonstrating108

that structural KD can close, and even invert, the capacity gap between teacher and student. Second,109

MLP, even with Global KD, fails to surpass GPT-PPG-1m, highlighting the limitation of its shallow110

architecture in modeling complex PPG dynamics. Third, PPG-DISTILL consistently yields stronger111

performance than Global KD when applied to GPT-PPG-1m, confirming that PPG-DISTILL is more112

effective than Global KD, particularly in transferring fine-grained rhythm and morphological cues that113

are crucial for PPG signal analysis. Fourth, on the DaLiA dataset, stronger teachers (e.g., PaPaGei)114

generally lead to better students, suggesting that high-quality teacher representations provide richer115

relational structure for distillation. However, this trend does not hold for the StanfordAF dataset,116

where the performance gap between teachers is smaller, and dataset-specific factors likely play a117

larger role. We conduct an ablation study and hyperparameter sensitivity analysis in Appendix C.118
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Figure 4: Inference throughput (Batch/s) and pa-
rameter size comparison across GPT-PPG-19m,
PaPaGei, and GPT-PPG-1m.

Efficiency Analysis To further evaluate the ef-119

ficiency of PPG-DISTILL, we compare through-120

put (measured in Batch/s) and model size (mea-121

sured in number of parameters) across different122

models, as shown in Figure 4.The results high-123

light two points. First, foundation models such124

as GPT-PPG-19m and PaPaGei provide strong125

accuracy but suffer from low throughput and126

high memory cost, making them unsuitable for127

wearables. Second, GPT-PPG-1m distilled with128

PPG-DISTILL achieves the highest throughput129

with nearly 19× fewer parameters, showing that compact students can retain strong performance130

while enabling efficient on-device inference. We provide detailed efficiency results in Appendix D.131

4 Conclusion and Future Work132

We proposed PPG-DISTILL, a distillation framework that combines prediction-, feature-, and patch-133

level strategies to transfer both global and local knowledge from large PPG foundation models to134

lightweight students. Experiments on heart rate estimation and atrial fibrillation detection show135

notable performance gains with much higher efficiency, enhancing the feasibility of real-world136

deployment of these models. Future work includes extending to more tasks and datasets, deeper137

analysis of the framework, and exploring diverse teacher models beyond foundation models.138
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A Related Work246

A.1 PPG Signal Analysis247

PPG has been used to estimate key physiological metrics, including heart rate [23, 27], heart rate248

variability [26], blood glucose [2], respiration rate [21], and blood pressure [31, 9]. Beyond general249

monitoring, PPG contributes to diagnostic applications by supporting the detection of cardiovascular250

conditions such as atrial fibrillation [29, 22], reducing false arrhythmia alarms [5], and identifying251

hypoxia [13]. In addition, it is increasingly applied in mental health and wellness contexts, where it252

enables tracking of stress [35], emotion [12], and cognitive states such as focus [30].253

A.2 Foundation Model for PPG Signal254

A foundation model is a large pre-trained model that learns general representations transferable to255

many downstream tasks. Recent advances in foundation models for PPG signals can be categorized256

by their pre-training data sources. Clinical or lab PPG-based models include PaPaGei [20], which257

leverages morphology-aware contrastive learning on 57,000 hours of clinical PPG and provides open-258

source weights, SiamQuality [6], which enforces robustness to signal quality variations using over 36259

million clinical PPG pairs, and GPT-PPG [4], which adapts generative transformers to ICU-collected260

PPG and demonstrates both predictive and denoising capabilities. In addition, REGLE [33] employs261

autoencoders to extract disentangled embeddings from biobank-scale clinical PPG for genomic262

discovery and disease risk prediction, while TS2TC [34] introduces a generative self-supervised263

framework trained on the VitalDB dataset of surgical patients, aiming at physiological parameter264

estimation. Field PPG-based models directly address wearable applicability: Apple-PPG [1] is265

trained on data from more than 140K Apple Watch users and achieves strong generalization, though266

it remains closed-source, while Pulse-PPG [25] represents the first open-source foundation model267

trained exclusively on large-scale wearable field PPG, showing improved robustness to motion noise268

and free-living conditions.269

A.3 Knowledge Distillation270

Knowledge distillation (KD) [10] transfers knowledge from a larger, more complex model (teacher)271

to a smaller, simpler model (student) while maintaining comparable performance. By aligning the272

output distributions of teacher and student models, KD provides richer training signals than hard273

labels alone, enabling the student to capture subtle patterns that the teacher has learned. In the context274

of time series signal, CAKD [32] uses adversarial and contrastive learning for feature distillation275

without a specific design for time series, while LightTS [3] designs a KD framework for ensemble276

classifiers, limiting its generality. Unlike these, TimeDistill [15] targets time series-specific patterns,277

such as multi-scale and multi-period, pioneering cross-architecture KD for time series analysis. To278

the best of our knowledge, we are the first attempt to apply the KD technique to the PPG signal.279

B Implementation Details280

All experiments are implemented in PyTorch [19] and conducted on one NVIDIA L40S GPU. The281

teacher models are trained using their default configurations as reported in their respective papers.282

When using PPG-DISTILL for distillation, the teacher model is frozen, and only the student is trained.283

Following GPT-PPG [4], we set the patch size to 40. We use Adam [11] for optimization. The284

initial learning rate is set by lr init=1e-5, and further adjustments are handled by the scheduler. A285

warmup and cosine annealing strategy is applied at the batch level with lr max=1e-3, eta min=1e-6,286

warm up ratio=25%. We apply early stopping with a patience value of 20 epochs. The batch size287

is set to 64. The temperature τ for patch-level contrastive distillation is set to τ = 2. We perform a288

hyperparameter search for α, β and γ within the range {0.1, 0.5}.289

C Ablation study and Hyperparameter sensitivity290

We varied α, β, and γ in the joint objective L in Section 2.2 to examine the effect of each loss term.291

As shown in Figure 5, α strongly influences performance: small values improve learning while large292

values degrade it. β remains stable across settings, indicating feature-level distillation is less sensitive.293
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Figure 5: Effect of hyperparameters (α, β, γ) on MAE for the DaLia dataset (Teacher: GPT-PPG-19m,
Student: GPT-PPG-1m).

γ shows a non-monotonic trend, with γ = 1 achieving the best MAE, confirming the importance of294

patch-level objectives for capturing morphology and rhythm.295

D Full Results of Efficiency296

Table 2: Comparison on DaLiA dataset.

DaLiA GPT-PPG-19m Papagei MLP GPT-PPG-1m
MAE 8.82 6.81 10.74 7.90
Batch/s 128.06 225.80 4248.70 291.50
Params 19,018,417 5,917,197 41,473 1,017,197

Table 3: Comparison on StanfordAF dataset.

StanfordAF GPT-PPG-19m Papagei MLP GPT-PPG-1m
F1 0.88 0.70 0.54 0.77
Batch/s 39.19 222.30 1546.70 290.00
Params 19,034,290 5,917,454 154,242 1,021,690

Tables 2 and 3 compare accuracy, inference throughput, and parameter efficiency across different297

models on the DaLiA and StanfordAF datasets. Several observations can be made. First, large298

foundation models such as GPT-PPG-19m achieve strong accuracy (MAE of 8.82 on DaLiA, F1 of299

0.88 on StanfordAF) but come with high computational cost, processing fewer than 130 batches/s300

on DaLiA and fewer than 40 batches/s on StanfordAF. Second, PaPaGei provides a favorable trade-301

off, reducing parameters by about 3× while maintaining competitive accuracy and substantially302

increasing throughput. Third, MLP achieves extremely high throughput (over 4000 batches/s on303

DaLiA), but its limited capacity results in a clear accuracy drop (MAE 10.74 on DaLiA, F1 0.54304

on StanfordAF). Finally, GPT-PPG-1m, when distilled with PPG-DISTILL, offers the best balance:305

it achieves accuracy close to or surpassing its teachers with only around 1M parameters, while306

running an order of magnitude faster than GPT-PPG-19m. These results highlight that PPG-DISTILL307

enables lightweight models to approach the accuracy of large PPG foundation models while retaining308

significantly higher efficiency.309
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