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Abstract

Multimodal Large Language Models (MLLMs)001
have demonstrated proficiency in handling a002
variety of visual-language tasks. However, cur-003
rent MLLM benchmarks are predominantly de-004
signed to evaluate reasoning based on static005
information about a single image, and the abil-006
ity of modern MLLMs to extrapolate from im-007
age sequences, which is essential for under-008
standing our ever-changing world, has been009
less investigated. To address this challenge,010
this paper introduces Mementos, a new bench-011
mark designed to assess MLLMs’ sequential012
image reasoning abilities. Mementos features013
4,761 diverse image sequences with varying014
lengths. We also employ a GPT-4 assisted015
method to evaluate MLLM reasoning perfor-016
mance. Through a careful evaluation of nine017
recent MLLMs on Mementos, including GPT-018
4V and Gemini, we find that they struggle to019
accurately describe dynamic information about020
given image sequences, often leading to hal-021
lucinations/misrepresentations of objects and022
their corresponding behaviors. Our quantita-023
tive analysis and case studies identify three key024
factors impacting MLLMs’ sequential image025
reasoning: the correlation between object and026
behavioral hallucinations, the influence of co-027
occurring behaviors, and the compounding im-028
pact of behavioral hallucinations.029

1 Introduction030

The recent emergence of Multimodal Large Lan-031

guage Models (MLLMs) such as GPT-4V (Ope-032

nAI, 2023b) and Gemini (Team, 2023) has shown033

strong visual-language understanding and gener-034

ation capabilities in many areas, like image cap-035

tioning and visual question answering. Despite the036

notable performance of existing MLLMs, they of-037

ten suffer from hallucination (a phenomenon where038

MLLMs produce inaccurate descriptions of the039

given images) due to insufficient reasoning capa-040

bilities, generating inaccurate responses in visual041

inference (Liu et al., 2023a; Yue et al., 2023). Thus, 042

monitoring the reasoning capability is of great im- 043

portance in understanding the ability and the lim- 044

itations of MLLMs and applying MLLMs in the 045

real world. Previous benchmarks, such as Liu et al. 046

(2023a) and Yue et al. (2023), have primarily ad- 047

dressed evaluating reasoning in each individual im- 048

age, relying on static and object-centric knowledge. 049

However, they are insufficient to comprehensively 050

assess the reasoning capabilities of MLLMs due to 051

a lack of time-varying object behaviors or events. 052

To investigate the capabilities of Multi-Modal 053

Language Models (MLLMs) in dynamic reasoning 054

across image sequences, we present a new bench- 055

mark, Mementos. This benchmark focuses on the 056

complex task of monitoring and deciphering the 057

positional changes of objects within an image se- 058

quence, followed by the inference of behavioral pat- 059

terns and logical connections among them. Such an 060

endeavor requires the interpretation of the overarch- 061

ing context based on time-variant visual elements, 062

posing a greater challenge than the analysis of static 063

scenes. Concretely, Mementos consists of 4,761 064

image sequences with varying episode lengths, en- 065

compassing diverse scenarios from everyday life, 066

robotics tasks, and comic-style storyboards. An 067

episode refers to a specific event or series of events 068

depicted in the image sequence. Each sequence is 069

paired with a human-annotated description of the 070

key objects and their behaviors. 071

To assess the reasoning capability of MLLMs on 072

Mementos, we employ a GPT-4-assisted evaluation 073

procedure: after an MLLM produces a descrip- 074

tion for an image sequence, we extract behavior 075

and object keywords from both AI-generated and 076

human-annotated descriptions using GPT-4. We 077

then use keyword matching to assess the degree 078

of behavioral and object hallucinations. To refine 079

the correctness of this evaluation, we have devel- 080

oped behavior and object synonym graphs for each 081

domain. These graphs facilitate more precise key- 082
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Figure 1: Examples of hallucinations by GPT-4V in three domains on Mementos. The red box shows the description
generated by GPT-4V based on the given prompt, and the human-annotated descriptions are in the blue box. Texts
highlighted in yellow are hallucination parts generated by GPT-4V. This illustrates that even GPT-4V experiences
severe hallucinations when reasoning from image sequences.

word matching, ensuring a thorough and nuanced083

analysis of the MLLMs’ reasoning abilities. Be-084

sides, we also provide the comparison with human085

evaluation to demonstrates that the GPT-4-assisted086

evaluation procedure is very reliable.087

We evaluated the reasoning proficiency of nine088

leading-edge MLLMs on Mementos, encompass-089

ing both black-box and open-source models. Our090

findings indicate that Mementos poses a consid-091

erable challenge to these current MLLMs. For092

instance, as depicted in Figure 1, GPT-4V exhibits093

notable behavioral and object hallucinations in vari-094

ous domains during image sequence reasoning. Be-095

havioral hallucinations are defined as the MLLMs’096

erroneous interpretations or predictions of entity097

actions, while object hallucinations pertain to the098

inaccurate identification or creation of objects. No-099

tably, behavioral hallucinations were more frequent100

than object hallucinations, highlighting a signifi- 101

cant deficiency in MLLMs’ capability to deduce 102

events from image sequences. 103

Furthermore, our research pinpoints three prin- 104

cipal factors that lead to the reasoning failures of 105

MLLMs: (1) the interconnectedness of object and 106

behavioral hallucinations, (2) the impact of co- 107

occurring behaviors, and (3) the cumulative effect 108

of behavioral hallucinations. The objective of our 109

proposed benchmark and analyses is to shed light 110

on innovative approaches to augment the reasoning 111

abilities of MLLMs and to reduce hallucinations in 112

their subsequent advancements. 113

2 Mementos 114

In this section, we introduce Mementos, a novel 115

and challenging benchmark designed to test the rea- 116

soning capability of Multimodal Large Language 117
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Model (MLLM) under sequential image input. Ini-118

tially, we detail the data gathering and annotation119

methodology for Mementos, alongside an overview120

of data distribution. Subsequently, we outline the121

procedure and the metric employed to evaluate the122

reasoning capabilities of MLLMs on Mementos.123

2.1 Mementos Benchmark124

2.1.1 Dataset Composition125

Mementos comprises 4,761 image sequences of126

varying lengths, predominantly sourced from Daily-127

life, Robotics, and Comics domains. Detailed128

statistics are provided in Table 1. This diverse col-129

lection is instrumental in evaluating the comprehen-130

sive time-varying reasoning abilities of MLLMs.131

Specifically, the robotics data, closely associated132

with embodied AI or real-world contexts, and the133

comic-style storyboard data, rich in stylistic and134

episodic diversity in image sequences, significantly135

enhance the benchmark’s relevance and robustness.136

Table 1: The number of image sequences in different
categories within Mementos.

Total Train Set Val set

Daily-life 3505 3055 450
Robotics 1101 902 199
Comics 155 105 50

Daily-life The Daily-life image sequences in Me-137

mentos are derived from video clips in the Next-138

QA dataset, as cited in Xiao et al. (2021). These139

sequences represent a range of everyday life sce-140

narios. We have selectively extracted videos from141

the Next-QA Training set, specifically those with142

frame counts ranging from 400 to 2,500. To bal-143

ance the challenge of testing MLLMs’ reasoning144

capabilities against the risk of losing critical in-145

formation, our methodology involves retaining the146

first frame of each video. Subsequently, we sample147

one image every 100 frames. The collected images148

from this sampling process then form an image se-149

quence that corresponds to the original video. This150

approach ensures a rigorous yet feasible evalua-151

tion of MLLMs’ reasoning abilities in dynamically152

evolving everyday scenarios.153

Robotics For the Robotics data, we utilized154

videos from various sub-datasets within Open X-155

Embodiment (Collaboration et al., 2023). Open X-156

Embodiment aggregates video datasets from multi-157

ple university laboratories, showcasing a variety of158

tasks performed by different robotic systems. We159

meticulously selected sub-datasets from Open X- 160

Embodiment that offer video resolutions exceeding 161

128x128 and exhibit a high degree of task diver- 162

sity. From these chosen sub-datasets, a total of 163

1,101 videos were sampled. The precise number 164

of videos sourced from each sub-dataset is detailed 165

in Appendix A. For video sampling, our approach 166

varied based on the length of the videos. Videos 167

exceeding 100 frames were processed by sampling 168

one image every n/20 frames, where n represents 169

the total frame count. Conversely, for videos with 170

frame counts ranging from 20 to 100, we sampled 171

one image every 5 frames. This ensures the for- 172

mation of comprehensive and representative image 173

sequences for each video, catering to the evalua- 174

tion of MLLMs in diverse and complex robotic 175

contexts. 176

Comics The Comics data is composed of word- 177

less multi-panel comics of diverse styles, cu- 178

rated from online sources. Unlike Daily-life and 179

Robotics sections, where image sequences are uni- 180

formly extracted from video frames, the comics rep- 181

resent intentionally selected key moments within 182

a narrative, manually illustrated by artists. This 183

distinction sets our dataset apart from conventional 184

video datasets. In addition to traditional comics, 185

this category also incorporates 20 storyboards from 186

movies reimagined in comic style. We have further 187

deconstructed these comics into individual image 188

sequences by taking screenshots. This approach 189

enables a unique exploration of sequential visual 190

reasoning, enhancing the diversity and complexity 191

of the dataset for evaluating MLLMs. 192

2.1.2 Dataset Annotation 193

For each image sequence in Mementos, we have 194

meticulously annotated a ground truth description 195

that captures the unfolding events. These descrip- 196

tions focus on the primary objects and their respec- 197

tive behaviors, where behavior refers to a verb or 198

verb phrase associated with the object in question. 199

For the Daily-life data, we initially employed 200

GPT-4V(ision) (OpenAI, 2023a), to amalgamate 201

and reformulate the questions and answers from the 202

Next-QA videos into single paragraph descriptions. 203

This method significantly expedited the manual an- 204

notation process. Following this, we conducted 205

a thorough manual review of these automated de- 206

scriptions, making necessary adjustments. This 207

included rectifying inaccuracies, removing non- 208

existent episodes, and adding missing details to 209
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ensure alignment with the actual image sequences.210

To ensure reliability, we implemented a cross-211

validation step, where a separate set of annotators212

performed a secondary review. For the Robotics213

and Comics categories, the annotation process was214

entirely manual, conducted by human annotators.215

These annotations were then subjected to a veri-216

fication process by the authors which ensures the217

accuracy and consistency of the descriptions across218

all categories.219

2.1.3 Dataset Statistics220

In showcasing the diversity of Mementos, we221

present a detailed overview of the data distribution222

within the Mementos validation set. Our analysis223

focuses on two key dimensions: the length of the224

image sequence and the length of the episode. The225

length of an image sequence is defined by the num-226

ber of frames it contains, while the episode length is227

determined by the total number of events depicted228

in the sequence. A longer image sequence neces-229

sitates the MLLM to process a larger number of230

images, thereby challenging the model’s capacity231

to manage sequences spanning broader timeframes.232

A greater episode length signifies that the image233

sequence encompasses more intricate scenarios.234

(a) Distribution of image sequence length

(b) Distribution of episode length
Figure 2: Data distribution in Mementos Val set.

Image sequence length For the image sequence235

length, we count the number of frames in each236

image sequence. As shown in Figure 2(a), the237

majority of image sequences are between 4 and238

14 frames in length. 67.38% of image sequences239

contain 4 to 14 frames, yet 31.90% of sequences are 240

composed of longer frames - more than 15 frames. 241

Episode length To quantify the episode length 242

within each image sequence of Mementos, we em- 243

ployed GPT-4 for extracting behavior keywords, 244

specifically verbs associated with objects, from the 245

human-annotated descriptions. This extraction was 246

facilitated using a pre-defined manual prompt, de- 247

tails of which can be found in Appendix D. Follow- 248

ing the extraction, we calculated the length of the 249

behavior list for each image sequence. A length- 250

ier behavior list signifies a more extended episode 251

within the image sequence, which inherently poses 252

a greater challenge for the MLLM in comprehend- 253

ing the entire image sequence. As illustrated in 254

Figure 2(b), a significant portion of the image se- 255

quences, particularly those from the robotics data, 256

feature episode lengths ranging between 1 and 3. 257

This is mainly attributed to the dominance of two- 258

action episodes like ‘pick up and place’, ‘move 259

and pull open’, ‘locate and push’. Meanwhile, the 260

remaining data exhibits a normal distribution for 261

episode lengths spanning 4 to 17. 262

Figure 3: GPT-4-assisted evaluation procedure. We use
"O-" for objects and "B-" for behaviors.

2.2 Evaluation Procedure and Metrics 263

In this section, we illustrate how to evaluate the 264

descriptions generated by MLLMs, including the 265

evaluation procedure and metrics. 266

Procedure As shown in Figure 3, we use an 267

image sequence and a pre-designed prompt to- 268

gether as the input for MLLMs, and generate the 269

description aligned with the corresponding image 270

sequence. Next, we ask GPT-4 to extract object and 271

behavior keywords in the AI-generated description. 272

We then match the obtained keywords with the 273

synonym graph we built, replacing the matched 274

keywords with the root word from the synonym 275

graph. Finally, we obtain two lists of keywords: 276

AI-generated object list and AI-generated behavior 277
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list. We note that the proposed keyword extraction278

leveraging GPT-4 is surprisingly reliable and accu-279

rate, which is competitive with human extraction.280

Please refer to Appendix C for more details.281

Synonym graph The synonym graph is an uni-282

lateral digraph where each edge connects two nodes283

representing words or phrases. For instance, given284

a synonym pair (pick up, lift up), an edge is di-285

rected from ‘lift up’ to ‘pick up’. In each syn-286

onym pair, the first word, originating from the287

human-annotated keyword list, is referred to as288

the root word, while the second word is from the289

AI-generated keyword. To construct this synonym290

graph, we use GPT-4 to extract object and behavior291

keywords from all human-annotated descriptions292

in the Val set, forming a human-annotated keyword293

list. Then, we generate descriptions using GPT-294

4V, LLAVA, and Gemini and use GPT-4 to extract295

object and behavior keywords. After that, we man-296

ually match these words with the human-annotated297

keyword list to identify all synonym pairs and add298

them as edges to the synonym graph. Given a299

word or phrase, this synonym graph can quickly300

match the corresponding root word if a synonym ex-301

ists in the human-annotated keyword list, complet-302

ing the keyword replacement. For convenience in303

evaluation, we maintain separate synonym graphs304

for objects and behaviors of different categories.305

We make all constructed synonym graphs publicly306

available as open-source resources.307

Metrics After obtaining the AI-generated object308

list and behavior list, we utilize the corresponding309

human-annotated object list and human-annotated310

behavior list as the ground truth to calculate ‘Re-311

call,’ ‘Precision,’ and ‘F1 metrics’ at both the ob-312

ject and behavior levels. These metrics are used to313

measure the understanding capabilities regarding314

the image sequence episode. ‘Recall’ reflects the315

accuracy of an MLLM’s reasoning about episodes316

in an image sequence, while ‘precision’ focuses on317

assessing the severity of hallucinations that occur318

when understanding the image sequence.319

3 Experiments320

In our experimental section, we delve into two key321

questions: (a) We examine the reasoning capabili-322

ties of current MLLMs on Mementos. Specifically,323

we assess the severity of object and behavioral hal-324

lucinations in these models. (b) We investigate the325

underlying causes of reasoning failures in MLLMs326

when interpreting image sequences.327

3.1 Baseline evaluation 328

3.1.1 Models 329

We establish our baseline using 9 popular MLLMs. 330

The black-box MLLMs include GPT-4V (OpenAI, 331

2023a) and Gemini (Team, 2023), and the open- 332

source MLLMs are Video-LLaMA-2 (Zhang et al., 333

2023a), Chat-UniVi (Jin et al., 2023), LLaVA- 334

1.5 (Liu et al., 2023c), MiniGPT4 (Zhu et al., 2023), 335

MiniGPT5 (Zheng et al., 2023), mPLUG_Owl- 336

v2 (Ye et al., 2023), and InstructBLIP (Dai et al., 337

2023). Considering that only a few open-source 338

MLLMs are designed to process sequential im- 339

ages (Video-LLaMA-2 and Chat-UniVi), we adapt 340

input for other models by combining all frames 341

from an image sequence into one composite im- 342

age, referred to as the combined-input (c-input) 343

setting. For black-box MLLMs and Chat-UniVi, 344

we conduct evaluations using both the c-input 345

and an alternative approach where frames from 346

the image sequence are input sequentially, termed 347

the sequential-input (s-input) setting. For Video- 348

LLaMA-2, we only test in s-input setting. 349

Figure 4: Comparison of metrics for different MLLMs.

3.1.2 Evaluation results 350

We evaluate all MLLMs on Mementos and report 351

the results in Figure 4. Besides, we provide the 352

performance of each baseline method in three dif- 353

ferent domains (Daily-life, Robotics, and Comics) 354

in Table 2. We summarize our findings as follows: 355

GPT-4V (s-input) and LLaVA-1.5 are the best- 356

performing models among black-box and open- 357

source MLLMs, respectively. As shown in 358

Figure 4, except for being on par with Gemini (s- 359

input) and LLaVA-1.5 in behavior precision, GPT- 360

4V with s-input demonstrates the best reasoning 361
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Table 2: Evaluation of different MLLMs on Mementos.

Domain Input type Model Object Behavior
Recall Precision F1 Recall Precision F1

Sequential

GPT-4V 59.80% 50.96% 53.51% 36.71% 32.97% 33.59%
Gemini 35.92% 42.06% 37.10% 18.80% 29.42% 21.64%

Video-LLaMA-2 31.59% 30.01% 29.37% 17.05% 28.19% 20.12%
Chat-UniVi 40.74% 40.78% 39.13% 22.30% 31.10% 24.90%

Combined

GPT-4V 39.45% 39.64% 38.04% 26.43% 23.59% 23.98%
Daily-life Gemini 31.17% 37.39% 32.38% 17.71% 25.65% 19.74%

Chat-UniVi 36.19% 38.88% 36.02% 21.80% 28.52% 23.73%
LLaVa-1.5 37.72% 47.01% 40.18% 22.17% 37.33% 26.65%
MiniGPT4 32.25% 23.14% 25.75% 18.09% 24.16% 19.45%
MiniGPT5 31.39% 22.62% 24.91% 18.42% 24.56% 19.85%

mPLUG_Owl-v2 32.59% 47.17% 37.04% 17.96% 33.57% 22.13%
InstructBLIP 31.82% 41,14% 34.28% 22.40% 30.30% 24.55%

Sequential

GPT-4V 63.94% 65.42% 62.99% 60.72% 24.43% 33.95%
Gemini 43.80% 46.26% 43.15% 46.43% 38.13% 39.38%

Video-LLaMA-2 13.41% 10.33% 11.15% 17.04% 8.96% 11.23%
Chat-UniVi 35.40% 32.57% 32.39% 32.24% 16.69% 21.14%

Combined

GPT-4V 27.87% 31.86% 28.58% 44.72% 16.54% 23.58%
Robotics Gemini 34.78% 41.66% 36.16% 47.29% 29.59% 34.17%

Chat-UniVi 17.74% 18.32% 17.07% 19.81% 10.01% 12.54%
LLaVa-1.5 36.88% 46.62% 39.31% 25.27% 14.80% 17.95%
MiniGPT4 10.97% 7.28% 8.16% 13.40% 5.88% 7.76%
MiniGPT5 9.75% 6.52% 7.16% 8.96% 4.53% 5.43%

mPLUG_Owl-v2 19.75% 26.70% 21.99% 26.46% 16.59% 19.51%
InstructBLIP 17.96% 18.65% 17.29% 31.41% 19.08% 22.69%

Sequential

GPT-4V 49.53% 37.57% 41.71% 19.97% 17.29% 18.11%
Gemini 38.57% 40.64% 38.53% 15.23% 19.11% 16.30%

Video-LLaMA-2 20.26% 17.59% 18.09% 5.45% 11.07% 6.81%
Chat-UniVi 28.04% 31.61% 28.13% 10.42% 15.74% 11.97%

Combined

GPT-4V 29.23% 24.64% 25.90% 13.19% 13.09% 12.90%
Comics Gemini 41.25% 45.07% 41.18% 15.37% 20.55% 16.42%

Chat-UniVi 25.12% 28.08% 25.51% 8.85% 10.67% 9.31%
LLaVa-1.5 29.44% 35.61% 30.97% 8.63% 13.56% 10.27%
MiniGPT4 20.50% 13.94% 15.74% 7.95% 8.64% 7.98%
MiniGPT5 22.94% 18.11% 19.42% 8.88% 11.92% 9.94%

mPLUG_Owl-v2 26.82% 37.74% 29.49% 8.70% 20.85% 11.74%
InstructBLIP 25.02% 29.15% 25.10% 8.25% 10.48% 8.97%

capability compared with all other MLLMs in un-362

derstanding image sequences. Among open-source363

models, LLaVA1.5 performs the best, nearly match-364

ing or even surpassing the black-box model Gemini365

in object comprehension, but its ability to infer be-366

haviors from image sequences is weaker compared367

to Gemini and GPT-4V. Although Video-LLaMA-2368

and Chat-UniVi are designed for video understand-369

ing, they do not show an advantage over LLaVA-370

1.5, especially Video-LLaMA-2, which performs371

notably worse compared to LLaVA-1.5. The weak-372

est models in understanding image sequences are373

MiniGPT4 and MiniGPT5, with a significant gap in374

every metric compared to the other baselines. It’s375

noteworthy that under c-input setting, the perfor-376

mance of black-box MLLMs does not significantly377

differ from that of open-source MLLMs. LLaVA-378

1.5 and mPLUG_Owl-v2 meet or even exceed the379

black-box MLLMs on many metrics.380

MLLMs possess a much stronger ability on rea-381

soning objects in image sequences than they382

do on reasoning behaviors. We find that all 383

MLLM methods perform significantly better on 384

the three metrics for objects than those for behav- 385

iors. Taking the best-performing GPT-4V as an 386

example, it achieves over 50% on all three object 387

metrics, with recall even reaching 60%, indicating 388

it can effectively recognize the main objects in an 389

image sequence. However, for behaviors, GPT-4V 390

scores only around 30%, with the best recall metric 391

barely exceeding 40%. Despite this, GPT-4V is still 392

the best-performing MLLM in reasoning behaviors. 393

This suggests that current MLLMs do not possess 394

strong abilities to autonomously infer the behav- 395

iors from given sequential images, indicating the 396

importance of our benchmark in highlighting the 397

limitations in the reasoning abilities of MLLMs. 398

Reasoning capability of MLLMs varies across 399

different domains. From Table 2, we find that 400

black-box models perform best in the robotics do- 401

main across the three domains, while open-source 402

models show relatively better performance in the 403
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daily-life domain. Analyzing each domain specifi-404

cally, it is evident that in the daily-life domain, the405

performance of all methods, except for GPT-4V406

(s-input), does not vary significantly. The main rea-407

son for the performance gap between open-source408

MLLMs and black-box MLLMs is the noticeably409

lower metrics of open-source models compared410

to black-box models in the robotics and comics411

domains. The recall, precision, and F1 of both ob-412

ject and behavior for black-box MLLMs are almost413

more than double those of open-source models. We414

speculate that one reason for this phenomenon is415

the distribution shift between Mementos and the416

training data of open-source MLLMs. The limita-417

tions of the training data lead to weaker reasoning418

capability of open-source MLLMs.419

3.2 Analysis of Failure Reasoning420

In this section, we will provide reasons for fail-421

ure reasoning results in current MLLMs, combin-422

ing specific quantitative analyses and case stud-423

ies. Since behavioral hallucination is a unique phe-424

nomenon in image sequence reasoning, and the425

causes of object hallucination are not significantly426

different from those in single image reasoning, we427

only present the reasons leading to behavioral hal-428

lucination in this paper. Due to space limitations,429

please refer to the Appendix E for specific case430

studies. The following are our main findings:431

Interplay between object and behavioral halluci-432

nations in MLLMs. A key hypothesis underpin-433

ning behavioral hallucination is that incorrect ob-434

ject identification leads to subsequent inaccuracies435

in behavior identification. To test this, we evalu-436

ated the correlation coefficients between object and437

behavioral hallucinations across different domains438

for various MLLMs, as detailed in Appendix B439

Table 4. Our findings reveal that, for most MLLMs,440

the correlation coefficients in the three domains441

fluctuate between 0.1 and 0.4, suggesting a weak442

yet present correlation. This outcome supports the443

hypothesis that object hallucination contributes to444

behavioral hallucination to some extent. Case stud-445

ies further reveal that after an object hallucination446

occurs, MLLMs tend to describe behaviors related447

to the hallucinated object, even if these behaviors448

do not exist in the image sequence. As shown in449

Figure 5, after recognizing a scene as a tennis court,450

a MLLM might describe a person playing tennis.451

Interestingly, in the robotics domain, there is a neg-452

ligible correlation between object and behavioral453

hallucinations in black-box MLLMs. This diver-454

gence is likely because behaviors in robotics are 455

predominantly linked to robotic arms, which these 456

MLLMs generally identify correctly. 457

Figure 5: A sample of failure reasoning case in Daily-
life domain. The failure reason is object hallucination,
correlation between object hallucination and behavioral
hallucination, and co-occurrence behavior. Following
the object hallucination of tennis court, the LVLM sub-
sequently exhibits behavioral hallucinations of holding
a tennis racket (correlation between object hallucina-
tion and behavioral hallucination) and appears to be
playing tennis (co-occurrence behavior).

The impact of co-occurrence on behavioral hal- 458

lucination. In line with object hallucination phe- 459

nomena, as noted in Li et al. (2023c) and Zhou 460

et al. (2023a), MLLMs demonstrate a tendency to 461

generate behaviors that are commonly paired to- 462

gether. This proclivity exacerbates the problem 463

of behavioral hallucination, especially in the field 464

of robotics. Consider the case in Figure 1 where 465

a robotic arm is tasked with opening a drawer by 466

grabbing its side. MLLMs might erroneously de- 467

pict the sequence as the arm grabbing the handle 468

first, followed by pulling the drawer open, since 469

grabbing the handle is a more co-occurring be- 470

havior with ‘pull open’. Despite the final outcome 471

being accurately described, such errors in key de- 472

tails are unacceptable in robotics. This issue is of 473

particular concern given the growing inclination 474

to utilize MLLMs as reward functions in robotic 475

training (Ma et al., 2023; Sontakke et al., 2023; 476

Rocamonde et al., 2023; Baumli et al., 2023). Such 477

behavioral hallucinations can critically affect the 478

quality of the reward function, leading to poten- 479

tial mislearning of behaviors in robotic systems. 480

Detailed case studies are shown in Appendix E. 481
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The Snowball effect in behavioral hallucinations.482

The Snowball effect is a well-documented phe-483

nomenon in machine learning, referring to the pro-484

gressive accumulation or intensification of errors485

in a system, as discussed in Asadi et al. (2019);486

Zhang et al. (2023b); Wang et al. (2023c); Liu et al.487

(2023d). Zhang et al. (2023b) notably highlight488

this phenomenon in Large Language Models. Ex-489

periments on Mementos reveal that the snowball490

effect in both behavioral and object hallucinations491

becomes markedly pronounced when reasoning492

through image sequences. The temporal nature of493

image sequences, consisting of a series of frames494

rather than a solitary image, demands that MLLMs495

sequentially infer the narrative. This process makes496

models susceptible to exacerbating hallucinations497

if errors occur early in the sequence. We specifi-498

cally examined the trend of object and behavioral499

hallucination in GPT-4V and LLaVA-1.5 within the500

daily-life domain, correlating it with the episode501

length. As shown in Figure 6, there is a notice-502

able decrease in object and behavior recall for both503

MLLMs as the episode length extends. This trend504

suggests a heightened susceptibility to hallucina-505

tions and a pronounced snowball effect in MLLMs506

when processing image sequences with a greater ar-507

ray of objects and behaviors. Detailed case studies508

can be found in Appendix E.509

(a) Object (b) Behavior
Figure 6: The trend of changes in object and behavior
recall for GPT-4V and LLaVA-1.5 in the Daily-life do-
main as the episode length increases.

4 Related work510

4.1 Benchmarking in MLLMs511

The advent of MLLMs has prompted a reassess-512

ment of traditional benchmarks (Lin et al., 2014;513

Marino et al., 2019; Hudson and Manning, 2019).514

These benchmarks fail to sufficiently expose the515

hallucination issues in MLLMs. Consequently,516

there is a growing impetus to devise more challeng-517

ing benchmarks. This trend spans various domains,518

from question and answering (QA) reasoning (Liu519

et al., 2023a; Yue et al., 2023), to optical char-520

acter recognition (OCR) (Liu et al., 2023f), and521

extends to the study of hallucinations (Wang et al.,522

2023a), with benchmarks such as POPE (Li et al.,523

2023c) and Bingo (Cui et al., 2023). Additionally, 524

comprehensive analyses of MLLMs, such as Mm- 525

bench (Liu et al., 2023e), Mm-vet(Yu et al., 2023b), 526

LVLM-eHub(Xu et al., 2023), SEED(Li et al., 527

2023a), GAVIE(Liu et al., 2023b), and LAMM 528

(Yin et al., 2023), are emerging. 529

Our paper presents a novel benchmark using se- 530

quences from videos or comics to study behavioral 531

hallucinations, diverging from single-image analy- 532

sis. Unlike Chen et al. (2023a)’s vision QA tasks 533

from uniformly sampled video frames, our bench- 534

mark challenges MLLMs to describe sequences 535

without question guidance, offering a finer evalua- 536

tion of hallucinations and reasoning in MLLMs. 537

4.2 Hallucination in MLLMs 538

Hallucinations in MLLMs, akin to those in Large 539

Language Models (LLMs) (Zhang et al., 2023c; Li 540

et al., 2023b; Zhou et al., 2024; Chen et al., 2023b), 541

represent a significant challenge. In MLLMs, hal- 542

lucinations are characterized by inconsistencies 543

between the model’s output and the visual con- 544

tent (Rohrbach et al., 2018; Wang et al., 2023a). 545

Recent studies have explored various aspects of 546

hallucination in MLLMs, covering topics such as 547

object hallucination (Li et al., 2023c), hallucina- 548

tion assessment in GPT-4V (Cui et al., 2023), and 549

knowledge hallucination (Liu et al., 2023a). 550

While there are methods proposed for mitigat- 551

ing hallucinations (Zhou et al., 2023a; Wang et al., 552

2023b; Leng et al., 2023; Zhou et al., 2023b; Chen 553

et al., 2023c; Jiang et al., 2023; Huang et al., 2023; 554

Yu et al., 2023a; Zhao et al., 2023), there is a no- 555

ticeable gap in the literature regarding the study of 556

behavioral hallucination. Moreover, the existing 557

work does not offer a dedicated metric for evaluat- 558

ing behavioral hallucinations. 559

5 Conclusion 560

In this paper, we present Mementos, a novel 561

and challenging benchmark designed to assess 562

the reasoning abilities of Multimodal Large Lan- 563

guage Models (MLLMs) in interpreting image se- 564

quences. We conduct evaluations on nine most 565

recent MLLMs using GPT-4-assisted evaluation 566

procedure. Our findings indicate that all tested 567

MLLMs struggle with significant behavioral and 568

object hallucinations in generating descriptions for 569

image sequences. Through a mix of quantitative 570

analysis and case studies, we identify three primary 571

factors contributing to these reasoning failures. 572
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Limitations573

Domain courage Mementos is consisted of574

4,761 image sequences from three domains: Daily575

life, Robotics, and Comics. It would be interesting576

to include a broader variety of data types. This577

expansion could include first-person navigation ex-578

periences, sequential medical CT scans, and inter-579

active gaming data. MLLMs could behave different580

types of hallucinations in image sequences from581

other domains582

Evaluation Process Our evaluation process fo-583

cuses on the match of keywords to measure the584

reasoning ability of MLLMs. However, it would585

be possible that the MLLM generation is the same586

as human annotations in semantics but obtains low587

performance, since the generated tokens are not588

covered by our synonym graph. Future work could589

extend the evaluation method to semantic under-590

standing rather than relying predominantly on key-591

word matching.592

Hallucination Mitigation Our work identifies593

two kinds of hallucination: object and behavioral594

hallucinations and explore the failure reason of595

MLLMs. We have not yet proposed a mitigation596

method to reduce behavioral hallucinations. Future597

work could utilize the three causes of reasoning fail-598

ures to bolster the reasoning faculties of MLLMs,599

making them more adept at accurately interpreting600

and describing complex image sequences.601
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A Details of Open X-Embodiment Data 890

Selection 891

In this section, we provide the names of all subsets 892

selected from Open X-Embodiment dataset and 893

the corresponding sampling video numbers. For 894

detailed information, please refer to Table 3. 895

B Correlation Coefficients between 896

Object and Behavioral Hallucinations 897

In this section, we provide detailed correlation co- 898

efficients between object and behavioral hallucina- 899

tions in Table 4. 900
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Table 3: Number of videos selected from each sub-dataset of Open X-Embodiment.

Sub-dataset name Number of videos selected

fractal20220817_data 400
kuka 50
bridge 300
jaco_play 50
berkeley_autolab_ur5 50
toto 10
columbia_cairlab_pusht_real 5
stanford_hydra_dataset_converted_externally_to_rlds 5
ucsd_kitchen_dataset_converted_externally_to_rlds 50
bc_z 50
utokyo_pr2_opening_fridge_converted_externally_to_rlds 5
utokyo_pr2_tabletop_manipulation_converted_externally_to_rlds 10
utokyo_xarm_pick_and_place_converted_externally_to_rlds 1
utokyo_xarm_bimanual_converted_externally_to_rlds 5
dlr_sara_pour_converted_externally_to_rlds 5
dlr_edan_shared_control_converted_externally_to_rlds 100
asu_table_top_converted_externally_to_rlds 20
utaustin_mutex 30
berkeley_fanuc_manipulation 30

C Human Evaluation901

In this section, to verify the reliability of the GPT-902

4 assisted evaluation procedure, we compare the903

results of GPT-4 assisted evaluation with those of904

human evaluation. We randomly select 200 im-905

age sequences from the entire Val set and manu-906

ally extract object and behavior keyword lists for907

each image sequence’s AI-generated description908

and human-annotated description. Then, we calcu-909

late six metrics and compare them with the metrics910

obtained using keyword lists extracted by GPT-911

4. We choose the four MLLMs that performed912

best in reasoning on Mementos as representatives:913

GPT-4V (s-input), Gemini (s-input), Chat-UniVi914

(s-input), and LLaVA-1.5. The evaluation results915

are shown in Table 5.916

After comparison, we find that there is not a917

significant gap between the results of GPT-4 as-918

sisted evaluation and human evaluation, with the919

absolute value of the difference mostly ranging be-920

tween 1% to 4%. For most metrics, the GPT-4921

assisted evaluation tends to overestimate the perfor-922

mance of MLLMs, meaning the evaluation results923

are higher than those of human evaluation. How-924

ever, the relative ranking among different MLLMs925

remains essentially unchanged. Overall, the GPT-4926

assisted evaluation is quite reliable.927

D Prompt Details 928

In this section, we provide all the prompts used 929

in our paper, including those used to merge ques- 930

tions and answers from Daily-life videos into a 931

single description, prompts for MLLMs to gener- 932

ate descriptions corresponding to image sequences, 933

and prompts for extracting object and behavior 934

keywords from both human-annotated and AI- 935

generated descriptions. The detailed prompts are 936

showm in Table 6. 937
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Table 4: Correlation coefficient between behavioral hallucination and object hallucination of different MLLMs on
Mementos.

Domain Input type Model Recall Precision F1

Sequential

GPT-4V 0.120 0.188 0.132
Gemini 0.165 0.179 0.146

Video-LLaMA-2 0.197 0.067 0.125
Chat-UniVi 0.138 0.178 0.137

Combined

GPT-4V 0.242 0.182 0.199
Daily-life Gemini 0.158 0.179 0.152

Chat-UniVi 0.127 0.184 0.172
LLaVa-1.5 0.112 0.134 0.106
MiniGPT4 0.135 0.145 0.115
MiniGPT5 0.126 0.188 0.146

mPLUG_Owl-v2 0.106 0.113 0.069
InstructBLIP 0.133 0.125 0.127

Sequential

GPT-4V -0.012 0.022 0.011
Gemini 0.027 0.144 0.101

Video-LLaMA-2 0.107 0.107 0.109
Chat-UniVi 0.038 0.121 0.089

Combined

GPT-4V 0.041 -0.022 0.008
Robotics Gemini -0.049 -0.086 -0.106

Chat-UniVi 0.189 0.242 0.207
LLaVa-1.5 0.135 0.123 0.157
MiniGPT4 0.186 0.316 0.233
MiniGPT5 0.056 0.027 0.045

mPLUG_Owl-v2 0.244 0.163 0.231
InstructBLIP 0.227 0.235 0.253

Sequential

GPT-4V 0.045 0.225 0.158
Gemini 0.176 0.081 0.144

Video-LLaMA-2 0.261 0.280 0.299
Chat-UniVi 0.239 0.331 0.221

Combined

GPT-4V 0.343 0.539 0.471
Comics Gemini 0.187 0.121 0.167

Chat-UniVi 0.293 0.113 0.279
LLaVa-1.5 0.062 0.101 0.088
MiniGPT4 0.199 0.134 0.213
MiniGPT5 0.324 0.366 0.339

mPLUG_Owl-v2 0.231 -0.043 0.157
InstructBLIP 0.288 0.005 0.262

E Case Study938

In this section, we present failure reasoning cases939

of different domains (Figure 7-22), with specific940

reasons for failure detailed in the captions of each941

figure.942

F Status of Exemption from Institutional943

Review Board944

Before starting any segments of the study involving945

human evaluation, the research team completed and946

submitted a “Human Subjects Research Determina- 947

tion" form to the appropriate Institutional Review 948

Board (IRB). We obtained a determination letter 949

from the IRB before any human study activities 950

commenced, indicating that our project proposal 951

had been granted ‘Exempt’ status. This classifica- 952

tion implies that the proposed research was deemed 953

‘Not Human Subjects Research’. 954
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Figure 7: A sample of failure reasoning case in Daily-life domain, we highlight the hallucination parts in yellow.
Failure reason: co-occurrence behavior and Snowball.

Figure 8: A sample of failure reasoning case in Daily-life domain, we highlight the hallucination parts in yellow.
Failure reason: object hallucination, and correlation between object hallucination and behavioral hallucination.
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Figure 9: A sample of failure reasoning case in Daily-life domain, we highlight the hallucination parts in yellow.
Failure reason: lack of common sense and Snowball.

Figure 10: A sample of failure reasoning case in Daily-life domain, we highlight the hallucination parts in yellow.
Failure reason: object hallucination, correlation between object hallucination and behavioral hallucination, and
co-occurrence behavior.
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Figure 11: A sample of failure reasoning case in Daily-life domain, we highlight the hallucination parts in yellow.
Failure reason: Snowball. In this case, we observe that in addition to the significant behavioral hallucinations caused
by Snowball effect mentioned in Section 3.2, another result of Snowball is that LVLMs may not fully describe
all episodes in an image sequence. That is, after a behavioral hallucination occurs, the LVLM might assume the
episode has ended and stop describing. For instance, in this case, the LVLM stopped describing after mentioning
the child reaching the living room and the adult leaving, without continuing to describe the child pushing the box
back along the hallway.
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Figure 12: A sample of failure reasoning case in Robotics domain, we highlight the hallucination parts in yellow.
Failure reason: co-occurrence behavior.

17



Figure 13: A sample of failure reasoning case in Robotics domain, we highlight the hallucination parts in yellow.
Failure reason: Snowball. This case effectively demonstrates the lack of LVLM’s reasoning ability in image
sequence comprehension. In the first image, the robotic arm indeed appears to be moving towards the cube, but
from the second image, the arm lowers and moves towards the disc-shaped object. The LVLM failed to infer this
behavior from the first two images and based its subsequent description solely on the understanding in the first
image, leading to a Snowball effect.
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Figure 14: A sample of failure reasoning case in Robotics domain, we highlight the hallucination parts in yellow.
Failure reason: co-occurrence behavior and Snowball. This case also reflects another outcome of the Snowball
effect that we mentioned in Figure 11. After assuming that the robotic arm is cooking, the LVLM do not continue to
describe the behavior of the robotic arm moving the pot from the right stove to the left.
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Figure 15: A sample of failure reasoning case in Robotics domain, we highlight the hallucination parts in yellow.
Failure reason: Snowball.
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Figure 16: A sample of failure reasoning case in Robotics domain, we highlight the hallucination parts in yellow.
Failure reason: object hallucination, correlation between object hallucination and behavioral hallucination, and
Snowball.
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Figure 17: A sample of failure reasoning case in Robotics domain, we highlight the hallucination parts in yellow.
Failure reason: object hallucination, correlation between object hallucination and behavioral hallucination, and
Snowball.
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Figure 18: A sample of failure reasoning case in Comics domain, we highlight the hallucination parts in yellow.
Failure reason: object hallucination, correlation between object hallucination and behavioral hallucination, and
Snowball.

Figure 19: A sample of failure reasoning case in Comics domain, we highlight the hallucination parts in yellow.
Failure reason: object hallucination, correlation between object hallucination and behavioral hallucination, and
Snowball.
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Figure 20: A sample of failure reasoning case in Comics domain, we highlight the hallucination parts in yellow.
Failure reason: Snowball.

Figure 21: A sample of failure reasoning case in Comics domain, we highlight the hallucination parts in yellow.
Failure reason: object hallucination, correlation between object hallucination and behavioral hallucination, and
Snowball.
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Table 5: Human evaluation.

Model Eval type Object Behavior
Recall Precision F1 Recall Precision F1

GPT-4V (s-input) GPT-4 60.91% 51.04% 54.13% 38.02% 33.05% 34.12%

Human 57.69% 49.54% 52.01% 35.26% 31.60% 32.67%

Gemini (s-input) GPT-4 37.54% 39.43% 36.88% 23.38% 34.19% 24.02%

Human 35.82% 38.11% 37.09% 20.46% 33.72% 22.99%

ChatUnivi (s-input) GPT-4 40.32% 42.04% 39.52% 24.95% 28.06% 27.15%

Human 37.65% 38.59% 36.46% 25.73% 27.40% 26.64%

LLaVA-1.5 (c-input) GPT-4 35.77% 44.18% 38.09% 24.47% 38.79% 28.59%

Human 36.84% 41.37% 39.77% 22.95% 39.82% 29.18%

Figure 22: A sample of failure reasoning case in Comics domain, we highlight the hallucination parts in yellow.
Failure reason: object hallucination, correlation between object hallucination and behavioral hallucination, and
Snowball.

25



Table 6: All prompts used in our paper.

Prompt

Task: Rewrite questions and answers into a single paragraph

Image: <Image sequence>
Text: <Write a description for this image based on the following questions and answers in one paragraph.
Please remember that some objects or actions in the following questions and answers may not be
included in the images. Please do not include the excluded items in your description. Here are the
questions and answers: Question: {Question 1} Answer: {Answer 1} Question: {Question 2} Answer:
{Answer 2} ... Question: {Question n} Answer: {Answer n}>

Task: Generate description for the given image sequence

Image: <Image sequence>
Text: <Write a description for the given image sequence in a single paragraph, what is happening in
this episode?>

Task: Extract object and behavior keywords

Text: <I will provide you two paragraphs. The first paragraph is human-composed and the second
paragraph is generated by AI models. I want to evaluate the hallucination in the second paragraph.
Please extract the object and action words or phrases from the following text. The objects should
have a tangible meaning and consist of no more than two words; non-tangible objects should not be
extracted. The action words or phrases should only relate to the extracted objects. Also, you must
convert the corresponding actions to their complete root form. Then, for the final answer, please
examine 4 lists and must transfer the synonyms in 4 lists into the same word. Please directly output the
final object and action lists in two paragraphs, respectively as in the form in the example below without
any justifications or intermediate steps.
Here is an example:
1. The sequence of images captures a dog’s cautious interaction with a metal toy inside a house. The
dog appears wary and maintains a distance from the unfamiliar object, barking to express its disapproval
and possibly intimidation. As the toy moves, the dog’s reaction is to bark and lean backward, showing
a clear sign of being unsettled by the toy’s motion. When the toy momentarily ceases movement, the
dog also stops, remaining alert and attentive. At the end of the image, when the toy comes to a halt, the
dog looks up, still processing the strange encounter with the inanimate object.
2. The image is a collage of multiple pictures featuring two dogs playing with a toy alligator. The dogs
are in various positions, with some of them standing on the toy alligator, while others are interacting
with it in different ways. The collage captures the dogs’ playfulness and excitement as they engage
with the toy alligator.
The lists are
Object list 1: [dog, toy, house]
Action list 1: [interaction, bark, express intimidation, move, lean backward, stop, look up]
Object list 2: [dog, toy]
Action list 2: [play, stand, interaction]
Here is the paragraphs:
1. {Human-annotated description}
2. {AI-generated description}
The lists are:>
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