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Abstract

Diffusion models (DMs) have achieved significant success in generative modeling,
but their iterative denoising process is computationally expensive. Training-free
samplers, such as DPM-Solver, accelerate this process through gradient estimation-
based numerical iterations. However, the mechanisms behind this acceleration
remain insufficiently understood. In this paper, we demonstrate gradient estimation-
based iterations enhance the denoising process by effectively reducing the con-
ditional entropy of reverse transition distribution. Building on this analysis, we
introduce streamlined denoising iterations for DMs that optimize conditional en-
tropy in score-integral estimation to improve the denoising iterations. Experiments
on benchmark pre-trained models validate our theoretical insights, demonstrat-
ing that numerical iterations based on conditional entropy reduction improve the
reverse denoising diffusion process of DMs. The code will be available.

1 Introduction

It is well established that diffusion models (DMs) (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song
et al., 2021b) have achieved significant success across various generative tasks, including image
synthesis and editing (Dhariwal & Nichol, 2021; Meng et al., 2022), text-to-image synthesis (Ramesh
et al., 2022), voice synthesis (Chen et al., 2021), and video generation (Ho et al., 2022). DMs consist
of a forward diffusion process and a reverse denoising diffusion process. In the forward process,
Gaussian noise is progressively injected into the data, perturbing the data distribution to collapse
towards a standard Gaussian distribution by increasing conditional entropy. During training, the
neural network is tasked with learning to reverse this process by minimizing the loss between the
predicted and injected noise. Once the model is well-trained, high-quality samples can be synthesized
by simulating the reverse-time denoising process associated with the forward noise-adding process.

However, a key limitation of DMs is the slow sequential nature of their iterative denoising process
(Song et al., 2021a). To overcome this, training-free methods aim to accelerate denoising process by
efficient numerical iterative algorithms without requiring additional training or costly optimization.
Many of these methods focus on reformulating the denoising process as the solution of an ODE,
allowing for accelerated sampling through numerical techniques. Such examples include PNDM (Liu
et al., 2022), EDM Karras et al. (2022), DPM-Solver (Lu et al., 2022a), DEIS (Zhang & Chen, 2023),
UniPC (Zhao et al., 2024), and DPM-Solver-v3 (Zheng et al., 2023a).

Despite the success of these numerical discretization techniques, the underlying mechanisms driving
their acceleration remain inadequately understood. In particular, the reasons why iterations with
similar orders of convergence result in varying levels of acceleration are not well explored. To address
this gap, we reexamine the principles driving the accelerated denoising process. Our conditional
entropy-based analysis reveals that effective iterations systematically reduce the conditional entropy
of denoising transition distributions at each step, thereby directly contributing to a faster denois-
ing process. This insight clarifies the mechanisms of gradient-based acceleration and provides a
foundation for designing efficient denoising algorithms. Our main contributions are as follows:

• We introduce a novel perspective on entropy reduction in denoising diffusion of DMs,
demonstrating that gradient estimation-based iterations significantly accelerate the denois-
ing process by effectively reducing conditional entropy. Our theoretical analysis further
reveals that denoising iterations using data-prediction parameterization are more effective
than those using noise-prediction parameterization in minimizing conditional entropy.
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(a) DPM-Solver++2m. (b) DPM-Solver-v3-2m. (c) Algorithm 1 (2m).

Figure 1: Random samples from Stable-Diffusion Rombach et al. (2022) with a classifier-free
guidance scale 7.5, using 10 number of function evaluations (NFE) and text prompt “A beautiful
castle beside a waterfall in the woods, by Josef Thoma, matte painting, trending on artstation HQ”.

• Building on our theoretical insights, we propose a denoising iteration method focused on
efficient reducing conditional entropy in DMs. Unlike existing training-free methods, our
approach improves the denoising process by lowering variance-driven conditional entropy
during gradient-based iterations, which provides a simple yet effective improvement.
• Experiments on benchmark pre-trained models in both pixel and latent spaces validate our

theoretical insights and demonstrate that our proposed method not only matches but often
improves the reverse denoising diffusion process in DMs.

2 Background
Diffusion models (DMs) define a Markov sequence {xt}t∈[0,T ] in the forward process, starting with
x0, where x0 ∈ R

d is drawn from the clean data distribution q0(x0). This sequence is pushed forward
with increasing entropy until it approaches a standard Gaussian distribution via the transition kernel:
qt (xt | x0) = N

(
xt;αtx0, σ

2
t I

)
, where σt are smooth monotonic scalar functions w.r.t t. In DMs,

αt and σt are called as the noise schedules, α2
t /σ

2
t is called the signal-to-noise ratio (SNR) function.

This transition kernel can be reformulated as the equivalent stochastic differential equation (SDE):

dxt = f (t)xt dt + g(t)dωt, x0 ∼ q0 (x0) , (2.1)

where ωt denotes a standard Wiener process, f (t) := d logαt
dt , g2(t) := dσ2

t
dt − 2 d logαt

dt σ2
t (Kingma et al.,

2021). The reverse-time SDE of above forward diffusion process can be written as:

dxt =
[
f (t)xt − g2(t)∇x log qt (xt)

]
dt + g(t)dωt, xT ∼ qT (xT ) , (2.2)

where ωt represents another standard Wiener process. In score-based models (Song et al., 2021b),
the diffusion (or probability flow) ordinary differential equation (ODE) used for efficient sampling is
derived from the Fokker-Planck evolution equation of the probability density function as follows:

dxt

dt
= f (t)xt −

1
2

g2(t)∇x log qt (xt) , (2.3)

where the marginal distribution qt (xt) of xt is equivalent to that of xt in the SDE presented by Eq.
(2.2). To train DMs, following the practiced in DDPM Ho et al. (2020), a neural network ϵθ (xt, t) is
parameterized to predict the noise ϵ by minimizing the expectation of mean squared error as follows:

Ex0∼q0(x0), ϵ∼N(0,I), t∼U(0,T )

[
w(t) ∥ϵθ (αtx0 + σtϵ, t) − ϵ∥22

]
, (2.4)

where α2
t +σ

2
t = 1, w(t) is a weighting function that depneds on the evolution time t. By substituting the

trained noise prediction model ϵθ (xt, t) with the scaled score function: −σt∇x log qt (xt), sampling
from DMs can be formulated by solving the diffusion ODE from T to 0 Song et al. (2021b):

dxt

dt
= f (t)xt +

g2(t)
2σt

ϵθ (xt, t) , xT ∼ N
(
0, σ̂2I

)
. (2.5)
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With a different parameterization, the data prediction model xθ (xt, t) satisfies: xθ (xt, t) = (xt −

σtϵθ (xt, t))/αt (Kingma et al., 2021). This results in an equivalent ODE-based diffusion process:

dxt

dt
=

(
f (t) +

g2(t)
2σ2

t

)
xt − αt

g2(t)
2σ2

t
xθ (xt, t) . (2.6)

3 Conditional Entropy Reduction as a Catalyst for Denoising Diffusion
By applying the variation-of-constants formula (Hale & Lunel, 2013) to ODEs (2.5) and (2.6), then

xt = e
∫ t

s f (r)dr
(∫ t

s
h1(r)ϵθ (xr, r) dr + xs

)
,xt = eh2(t)

(
−

∫ t

s
e−h2(r)αrg2(r)

2σ2
r

xθ (xr, r) dr + xs

)
, (3.1)

where h1(r) := e−
∫ r

s f (z)dz g2(r)
2σr

, h2(r) :=
∫ r

s f (z) + g2(z)
2σ2

z
dz, and xs represents the given initial value.

Subsequently, this two diffusion ODEs have a unified semi-linear solution formula.
Remark 1 Let the noise-prediction and data-prediction diffusion ODEs be defined by equations (2.5)
and (2.6), respectively. A unified semi-linear solution formula for both ODEs is then given by:

f (xt) − f (xs) =
∫ κ(t)

κ(s)
dθ

(
xψ(τ), ψ(τ)

)
dτ, (3.2)

where ψ (κ(t)) := t, {f (xt) := xt/αt, κ(t) := σt/αt} when dθ represents the noise prediction model
and {f (xt) := xt/σt, κ(t) := αt/σt} when dθ represents the data prediction model.

For brevity, we refer to Eq. (3.2) as the score-integral process, as the denoiser dθ
(
xψ(τ), ψ(τ)

)
is often

trained to approximate the score function. Note that the semi-linear nature of diffusion ODEs can
potentially reduce the sampling error of DMs Lu et al. (2022a;b); Zhang & Chen (2023). Unless
otherwise specified, the following discussion defaults to noise prediction models.

3.1 Denoising Iterations Formulated by Score-integral Estimation

Denote hti := κ(ti−1)− κ(ti), ι(xti−1 ) :=
∫ κ(ti−1)
κ(ti)

dθ
(
xψ(τ), ψ(τ)

)
dτ and d(k)

θ

(
xψ(τ), ψ(τ)

)
:= dkdθ(xψ(τ),ψ(τ))

d τk

as k-th order total derivative of dθ
(
xψ(τ), ψ(τ)

)
w.r.t. τ. The Taylor expansion of dθ

(
xti−1 , ti−1

)
at τti is

dθ
(
xti−1 , ti−1

)
= dθ

(
xti , ti

)
+

n∑
k=1

hk
ti

k!
d(k)
θ

(
xti , ti

)
+ O(hn+1

ti ). (3.3)

Substituting this Taylor expansion into Eq. (3.2) to approximate ι(xti−1 ) yields:

ι̃(xti−1 ) = htidθ
(
xti , ti

)
+

n∑
k=1

hk+1
ti

(k + 1)!
d(k)
θ

(
xti , ti

)
+ O(hn+2

ti ). (3.4)

Beyond the transformations within the solving space, this Taylor-based approximation establishes a
generalized numerical iterative framework for solving the score-integral in DMs. For instance, when
n = 1, the truncated Taylor approximation reduces to the well-known DDIM iterative algorithm Song
et al. (2021a), as follows:

f (x̃ti−1 ) = f (x̃ti ) + htidθ
(
x̃ti , ti

)
. (3.5)

where x̃ is obtained by the definition of f (x̃). Due to the lack of derivative information, higher-
order algorithms can only be formulated by evaluating the derivatives. A widely used technique for
evaluating derivatives is the finite difference (FD) method, which approximates d(k)

θ (·, ·) as follows
(k ≥ 1):

d(k)
θ (xt, t) =

d(k−1)
θ (xs, s) − d(k−1)

θ (xt, t)

ĥt
+ O(ĥt). (3.6)

Thus, a gradient estimation-based iteration can be obtained by truncating all higher-order derivatives:

f (x̃ti−1 ) = f (x̃ti ) + htidθ
(
x̃ti , ti

)
+

h2
ti

2
Fθ(si, ti), (3.7)

where Fθ(si, ti) := dθ(x̃si ,si)−dθ(x̃ti ,ti)
ĥti

, ĥti := κ(si) − κ(ti), ĥti , 0 and it is often satisfied that ĥti/hti ≤ 1.
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3.2 Conditional Entropy Reduction in Denoising Iterations
Iterative Uncertainty Reduction: Theoretical Insights. The semi-linear solution formula in
Remark 1 provides a structured theoretical framework for analyzing the denoising diffusion process.
By iteratively solving this formula, DMs refine noisy latent states closer to the data distribution.
From an information-theoretic perspective, each iteration progressively reduces uncertainty from
intermediate representations by leveraging the structured denoising mechanism. This uncertainty
reduction can be formalized through the concept of mutual information between consecutive states
Jaynes (1957):

Ip(xti ;xti+1 ) = Hp(xti ) − Hp(xti |xti+1 ), (3.8)
where Hp(xti ) is the entropy of state xti , and Hp(xti |xti+1 ) is the conditional entropy of xti given xti+1 .
The conditional entropy Hp(xti |xti+1 ) quantifies the uncertainty in xti after incorporating information
from the subsequent state xti+1 . A lower Hp(xti |xti+1 ) indicates that the method effectively utilizes
information from xti+1 to refine the estimate of xti , driving the estimate of xti closer to the target
data distribution. Practically, this conditional entropy reduction aligns with the goal of minimizing
reconstruction error during denoising, improving the quality of generated samples. This theoretical
insight not only elucidates the uncertainty reduction mechanism but also provides an optimization
criterion for improving the denoising process.
Conditional Entropy in Gaussian Approximations. In practical implementations of DMs Ho
et al. (2020); Song et al. (2021b), the reverse transition distribution p(xti |xti+1 ,x0) is commonly
approximated as a Gaussian distribution under the Markov assumption. For brevity, p(xti |xti+1 ,x0) is
often abbreviated as p(xti |xti+1 ). Then, this reverse transition distribution can be expressed as

p(xti |xti+1 ) := p(xti |xti+1 ,x0) ≈ N(µti ,Σti ), (3.9)
where µti and Σti are derived using Bayes’ rule from the forward diffusion process. This Gaussian
approximation is widely used for simplifying model training and theoretical analysis, despite potential
deviations at extreme steps, as noted in prior works Song et al. (2021b); Luo (2022); Bao et al. (2022);
Karras et al. (2022). Under this approximation, the conditional entropy Hp(xti |xti+1 ) simplifies to

Hp(xti |xti+1 ) ≈
d
2

(log 2π + 1) +
1
2

log |Var(xti |xti+1 )|, (3.10)

where d is the dimensionality of x, and Var(xti |xti+1 ) is the conditional variance. This expression
provides a tractable framework for analyzing conditional entropy reduction during the denoising
iteration, as it establishes a direct relationship between conditional entropy and the variance. Note
that the conditional entropy Hp(xti |xti+1 ) is intrinsically tied to the conditional variance Var(xti |xti+1 ):

Hp(xti |xti+1 ) ∝ log |Var(xti |xti+1 )|. (3.11)
Thus, Eq. (3.11) suggests that minimizing variance directly optimizes conditional entropy reduction.
Variance-Driven Conditional Entropy Reduction in Gradient-Based Iterations. Building on the
established relationship between conditional variance and entropy, we derive several analytical results
that provide insights into the conditional entropy reduction achieved by gradient-based denoising
iterations. For instance, under suitable conditions, our analysis suggests that gradient estimation-based
iterations (Eq. (3.7)) can effectively drive significant reductions in conditional entropy.
To simplify the analysis, we assume that the estimated noise ϵθ(·) at different timesteps is independent.
While the forward process has the Markov property, our assumption mainly stems from practical
considerations in training. Specifically, the training objective of Eq. (2.4) in DDPMs Ho et al. (2020)
minimizes the mean squared error at each timestep independently, which aligns with this assumption.
Although adopting a parameter-sharing setting across timesteps in the noise prediction model may
involve a compromise on the assumption of independence, prior works Song et al. (2021a) indicate
that these dependencies have minimal impact on model performance. This makes the independence
assumption Ho et al. (2020) a reasonable and practical surrogate for theoretical analysis.
Under this independence assumption, we derive the Proposition 3.1, with the proof in Appendix B.1.
Proposition 3.1 The gradient-based denoising iteration in Eq. (3.7) tends to reduce conditional

entropy more efficiently than the first-order iteration in Eq. (3.5) when
hti

ĥti
∈

[
1, 4·Var(ϵθ(x̃ti ,ti)

Var(ϵθ(x̃si ,si)+Var(ϵθ(x̃ti ,ti)

]
.

Intuitively, this result reveals that gradient-based denoising iterations can achieve greater reductions
in uncertainty compared to first-order methods when the step-size ratio is properly chosen. As the
reverse process in DMs aims to estimate p(xt |xt+1,x0) Ho et al. (2020); Luo (2022), we examine
Var(ϵθ(x̃t, t) | x0) to capture the model’s uncertainty in noise prediction conditioned on the clean data.
For brevity, we denote this variance as Var(dθ(x̃t, t)) throughout the paper. Based on this consideration,
we can establish the practical interval for Proposition 3.1 using the prior-like conditional variance.
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Proposition 3.2 In the forward process of DMs, the clean data at each step can be expressed by
x0 = xt/αt − σt/αtϵ. If we assume that Var(ϵθ(x̃t, t)) ∝ σ2

t /α
2
t to quantify the extent of deviation

from the clean data. Under this prior-like assumption, we obtain
Var(ϵθ(x̃si ,si))
Var(ϵθ(x̃ti ,ti))

=
SNR(ti)
SNR(si)

. Then, the

relative condition of conditional entropy reduction in Propostion 3.1 is hti/ĥti ∈
[
1, 4 SNR(si)

SNR(ti)+SNR(si)

]
.

Additionally, interpreting the denoising numerical iterative mechanisms through the lens of condi-
tional entropy reduction offers deeper insights into accelerated denoising diffusion solvers, such as
the widely recognized accelerated iterations in DPM-Solver Lu et al. (2022a) and EDM Karras et al.
(2022). Building on this insight, we present the following proposition, with details in Appendix B.2.
Proposition 3.3 The exponential integrator-based iterations in DPM-Solver and the Heun iterations
in EDM can be interpreted as specific instances of accelerated denoising mechanisms driven by
conditional entropy reduction, thereby distinguishing them from conventional gradient-based methods.
Finally, based on our comprehensive analysis of the differences in conditional entropy reduction
between denoising iterations using data-prediction and noise-prediction parameterization, we derive
the following conclusion. The detailed proof is provided in Appendix B.4.
Proposition 3.4 Assuming that the injected noise at different time steps in DM is mutually inde-
pendent, denoising iterations using data-prediction parameterization are more effective at reducing
conditional entropy than those using noise-prediction parameterization in a well-trained DM.
Proposition 3.4 highlights the key advantage of data-prediction:it directly aligns with the target
distribution x0, bypassing the intermediate noise-to-data mapping ϵt 7→ xt 7→ x0, which can
accumulate errors, especially in late timesteps with high noise variance (or few-step sampling). By
minimizing conditional entropy more effectively, data-prediction reduces uncertainty in x0 without
relying on intermediate transformations. Nonetheless, this advantage is contingent on the training
quality. If the model struggles to accurately predict x0, noise-prediction parameterization, which
treats timesteps more uniformly, may perform better in practice.
In summary, the perspective of conditional entropy reduction deepens our understanding of denoising
mechanisms in diffusion model sampling, while the variance-driven approach provides valuable
insights into the design of efficient denoising algorithms.

4 Variance-Driven Efficient Conditional Entropy Reduction Iteration
In this section, we elucidate the approach for improving both single-step and multi-step numerical
iterations through conditional entropy reduction. Building on prior-like model variance assumptions,
we derive several efficient iteration rules for conditional entropy reduction and establish the conver-
gence orders of these iterations. Finally, we further optimize these iteration rules by refining the
conditional variance with the actual state differences observed during the iterative process.

4.1 Single-step Iteration with Conditional Entropy Reduction
One key insight is that the model parameter ϵθ

(
x̃si , si

)
can be further leveraged to enhance gradient

estimation-based iteration, as observed in Eq. (3.7) and supported by conditional entropy analysis,
without additional model parameters. Formally, the improvement iteration can be defined as follows:

f (x̃ti−1 ) = f (x̃ti ) + hti
(
γidθ

(
x̃si , si

)
+ (1 − γi)dθ

(
x̃ti , ti

))
+

h2
ti

2
Fθ(si, ti), (4.1)

where γi ∈ (0, 1]. This improved iteration shares the same limit state as the vanilla gradient estimation-
based denoising iteration in Eq. (3.7) when si → ti. For convenience, we refer to the standard gradient
estimation-based iteration as the FD-based iteration. In the analysis of conditional entropy, we can
compare the different components of Eq. (3.7) and Eq. (4.1). Therefore, the variance of the key
distinct components in each conditional distribution is as follows:

Varp1 = h2
ti ·Var(ϵθ(x̃ti , ti)), Varp2 (γi) = h2

ti

(
γ2

i · Var(ϵθ(x̃si , si)) + (1 − γi)2 · Var(ϵθ(x̃ti , ti))
)
. (4.2)

Then, the difference in conditional entropy between the two gradient estimation-based iterations is

∆H(p) =
1
2

log
Varp2 (γi)

Varp1

=
1
2

log
(
1 − 2γi + γ

2
i + γ

2
i

Var(ϵθ(x̃si , si))
Var(ϵθ(x̃ti , ti))

)
. (4.3)

Due to γi ∈ (0, 1] and SNR(ti) ≤ SNR(si), ∆H(p) ≤ 0 consistently holds under the assumption that
Var(ϵθ(x̃t, t)) ∝ σ2

t /α
2
t . Therefore, this improved iteration can more efficiently reduce conditional

entropy compared to the vanilla iteration by using subsequent model parameters in lower-variance
regions as guidance. Consequently, based on ∆H(p) ≤ 0, we have the following proposition.

5
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(a) Single-step Iteration on CIFAR-10 (Discrete)
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(b) Single-step Iteration on CelebA-64 (Discrete)

Figure 2: Comparisons of FID ↓ computed by RE-based and FD-based iterations demonstrate that
efficient entropy reduction consistently enhances image quality across various ablation scenarios.

10 steps 15 steps 20 steps

DDIM

FD-
based

RE-
based

Figure 3: Samples were generated from a pre-trained DM on the ImageNet 256×256 dataset using
noise-prediction parameterization with 10-20 single-step iterations. The sample results indicate that
RE-based iterations can improve sample quality by reducing the conditional variance.

Proposition 4.1 The iteration specified in Eq. (4.1) consistently achieves a more efficient reduction
in conditional entropy than the FD-based iteration. Then, an efficient improvement interval for γi

is recommended as
[

SNR(ti)
SNR(ti)+SNR(si)

, max{2·SNR(ti), SNR(si)}
SNR(ti)+SNR(si)

]
. For clarity, we identify this iteration that

enhances denoising efficiency by reducing conditional entropy as the RE-based iteration.
Accordingly, Proposition 4.1 demonstrates that the RE-based iteration can consistently surpass the
FD-based iteration in reducing conditional entropy. In the following, we provide the convergence
guarantees in Theorem 4.1 for the RE-based iteration, the proof is provided in Appendix C.2.
Theorem 4.1 If dθ (xt, t) satisfies Assumption C.1, the RE-based iteration constitutes a globally
convergent second-order iterative algorithm.
Consequently, although the RE-based iteration in Eq. (4.1) shares the same order of convergence as
the FD-based iteration, the primary distinction between the RE-based and FD-based iterations lies in
their handling of conditional variance, which improves the denoising diffusion process by enabling
more efficient conditional entropy reduction with the same model parameters.

4.2 Multi-step Iteration with Conditional Entropy Reduction
This section focuses on the multi-step iteration with a step size determined by the two adjacent time
points. Our discussion focuses on the conditional entropy reduction in multi-step iterations that
leverage data-prediction parameterization, as this approach has demonstrated its superiority through
our theoretical result presented in Proposition 3.4 and the empirical evidence from the earlier study in
Lu et al. (2022b). The difference analysis of multi-step iterations is provided in Appendix B.3.
Formally, the iteration with a step size determined by two adjoint time points can be written as:

f (x̃ti−1 ) = f (x̃ti ) + htidθ
(
x̃ti , ti

)
+

h2
ti

2
Bθ(ti, ti+1), (4.4)

6
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where Bθ(ti, ti+1) :=
dθ(x̃ti ,ti)−dθ(x̃ti+1 ,ti+1)

hti+1
. In this iteration, the step size |hti | is smaller than the step size

|hti − hti+1 | used in gradient estimation-based iterations for the single-step case. As smaller step sizes
reduce conditional entropy according to Eq. (3.10), the iteration in Eq. (4.4) offers greater potential
for improving the denoising process compared to single-step counterparts.
A straightforward improvement of the iteration in Eq. (4.4) can be formulated as follows:

f (x̃ti−1 ) = f (x̃ti ) + htidθ
(
x̃ti , ti

)
+

h2
ti

2
Bθ(ti, li), (4.5)

where dθ
(
x̃li , li

)
= ζidθ

(
x̃ti , ti

)
+ (1 − ζi)dθ

(
x̃ti+1 , ti+1

)
represents a linear interpolation of the model

parameters between times ti and ti+1. Similarly, the implicit improvement approach is as follows:

f (x̃ti−1 ) = f (x̃ti ) + htidθ
(
x̃ti , ti

)
+

h2
ti

2
Bθ(si, ti), (4.6)

where dθ
(
x̃si , si

)
= ζidθ

(
x̃ti−1 , ti−1

)
+ (1 − ζi)dθ

(
x̃ti , ti

)
. Note that both iterations can be unified as

f (x̃ti−1 ) = f (x̃ti ) + htidθ
(
x̃ti , ti

)
+

h2
ti

2
ζiB̄θ(ti; ui), (4.7)

where B̄θ(ti; ui) = Bθ(si, ti) when ui = si, and B̄θ(ti; ui) = Bθ(ti, li) when ui = li. Similar to the case of
single-step iterations, the following conditional entropy relation also holds for multi-step iterations.
Remark 2 The improved multi-step iterations in Eq. (4.7) reduce the conditional entropy of the
vanilla multi-step iterations in Eq. (4.4) by leveraging model parameters from low-variance regions.

However, a key question arises: how should ζi and ĥti be determined? In the data prediction model,
dθ

(
x̃ti , ti

)
is designed to directly predict the clean data x0 from the intermediate noisy data x̃ti . Since

x̃ti is perturbed by Gaussian noise with a standard deviation σti , σti reflects the amount of noise
present at time step ti. Then, for the interpolation of dθ

(
x̃si , si

)
, we have the following proposition.

Proposition 4.2 If assume that Var
(
dθ

(
x̃ti , ti

))
∝ σ2

ti , the minimizing variance can be achieved when

ζi =
σ2

ti−1

σ2
ti
+σ2

ti−1
for dθ

(
x̃si , si

)
. For dθ

(
x̃li , li

)
, the optimal choice of lower variance is ζi =

σ2
ti

σ2
ti
+σ2

ti+1
.

One key insight is that we can further improve the denoising iteration in Eq. (4.4) with gradient
estimation by incorporating Bθ(ti, si) and Bθ(si, ti) as follows:

f (x̃ti−1 ) = f (x̃ti ) + htidθ
(
x̃ti , ti

)
+

h2
ti

2
(ηiBθ(si, ti) + (1 − ηi)Bθ(ti, li)) . (4.8)

In Eq. (4.8), ηi determines the variance of the gradient term. From the perspective of conditional
entropy reduction, we can reduce this variance by establishing an optimization objective that measures
the differences between the corresponding states. Thus, in the next section, we will discuss the
optimized ηi and ζi based on the actual state differences observed during the iterative process.

4.3 Improving RE-based Iterations with Actual State Differences
In the previous sections, we derived the RE-based numerical iteration to reduce conditional entropy,
grounded in the model’s prior-like variance. In this section, the RE-based iteration is further optimized
by refining the model variance with the actual state differences observed during the iterative process.
Improving ζi with Evolution State Differences. Our goal is to refine ζi in the RE-based it-
eration. What follows is the optimized ζi by formulating an optimization objective. Denote
G(ζi) := ζidθ

(
x̃si , si

)
+ (1 − ζi)dθ

(
x̃ti , ti

)
, where ζi ∈ (0, 1]. On one hand, we can rewrite the

RE-based iteration as

f (x̃ti ) = f (x̃ti−1 ) − htiG(ζi) −
h2

ti

2
Fθ(si, ti). (4.9)

Notice that x̃ti in Eq. (4.9) is determined by ζi. On the other hand, we can consider x̃ti−1 as a starting
point and perform a inverse iterative from ti−1 to ti to approximate x̃ti . The inverse iterative formula is

f (xs) − f (xt) =
∫ κ(s)

κ(t)
dθ

(
xψ(τ), ψ(τ)

)
dτ. (4.10)

Similar to the score-integral iteration in Eq. (3.7), this inverse integral can be estimated by

∆̃reverse
ti = −htidθ

(
x̃ti−1 , ti−1

)
+

h2
ti

2
Fθ(si, ti−1). (4.11)
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Based on equations (4.10) and (4.11), we obtain a new estimation x̂ti for the state xti as follows:

f (x̂ti ) = f (x̃ti−1 ) − htidθ
(
x̃ti−1 , ti−1

)
+

h2
ti

2
Fθ(si, ti−1). (4.12)

Drawing inspiration from equations (4.9) and (4.12), we can determine ζi by minimizing the differ-
ences between two estimations. Then, the optimization objective for ζi is defined as follows:

min
ζi∈(0,1]

L1(ζi) :=
∥∥∥(x̃ti − xti ) + (x̂ti − xti )

∥∥∥
F , (4.13)

Directly solving this objective is challenging, as xti is unknown in practice. Fortunately, there exists
an tractable error upper bound (EUB) for L1(ζi). Specifically, denote L1s(ζi) := ∥x̃ti + x̂ti∥F , we have

L1(ζi) =
∥∥∥x̃ti + x̂ti − 2xti

∥∥∥
F ≤

∥∥∥x̃ti + x̂ti

∥∥∥
F +

∥∥∥2xti

∥∥∥
F = L1s(ζi) +

∥∥∥2xti

∥∥∥
F , (4.14)

where ∥2xti∥F can be viewed as a specific regularization term. Since ∥2xti∥F is independent of the
target ζi, we can optimize the vanilla L1(ζi) by minimizing L1s(ζi) according to Eq. (4.14). Then,
the optimized ζi can be obtained by solving minL1s(ζi) with a small regularization using x̃ti . For

example, denote P(x̃p
ti−1

) := x̂ti +
σti
σti−1

x̃p
ti−1
− σti

h2
ti
2 Fθ(si, ti), where x̃p

ti−1
can be obtained by prior

RE-based iteration. Then, the simplified optimization objective L1s(ζi) can be rewritten as:

L1s(ζi) =
∥∥∥P(x̃p

ti−1
) − σti htiG(ζi)

∥∥∥
F . (4.15)

Practical Considerations. In practice, the constraints on ζi can hinder its computational efficiency. To
address this, we adopt an optimization-guided streamlined approach for determining ζi. Specifically,
we observe that the optimization objective admits a closed-form solution, as presented in Lemma
4.1, when the constraints on ζi are relaxed. These constraints are then satisfied by applying an
activation function to map the closed-form solutions. This optimization-driven streamlined approach
not only captures the actual differences in states during the iterative process, but also circumvents the
computational cost of solving constrained optimization problems iteratively Boyd et al. (2011).

Algorithm 1 Denoising Diffusion Sampling by Variance-Driven Conditional Entropy Reduction.

Require: initial value xT , time schedule {ti}Ni=0, model dθ.
1: x̃tN ← xT , hti ← κ(ti−1) − κ(ti)
2: for i← N to 1 do
3: f (x̃ti ) ← f (x̃ti+1 ) + hti+1dθ

(
x̃ti+1 , ti+1

)
4: ζi = rihti , where ri is used to balance the prior-like variance, such as the log-SNR ratio.

5: f (x̃ti−1 ) = f (x̃ti ) + htidθ
(
x̃ti , ti

)
+

h2
ti
2 Bθ(ti, li)

6: ηi = Sigmoid
(
|η∗i |

)
, where η∗i is computed using Eq. (4.19).

7: Bθ(ti)←
ηi
2 Bθ(si, ti) +

(
1 − ηi

2

)
Bθ(ti, li)

8: ζi = Sigmoid
(
|ζ∗i | − µ

)
, where µ is the shift parameter, and ζ∗i is computed using Eq. (4.16).

9: f (x̃ti−1 )← f (x̃ti ) + htidθ
(
x̃ti , ti

)
+

h2
ti
2 ζiBθ(ti)

10: end for
return : x̃0.

Lemma 4.1 The minimizing problem min
ζi
L2

1s(ζi) possesses the following closed-form solution:

ζ∗i = −
vecT (Di)vec(P̃i)

σti hti vecT (Di)vec(Di)
, (4.16)

where P̃i := P(x̃p
ti−1

) − σti htixθ
(
x̃ti , ti

)
, Di := xθ

(
x̃si , si

)
− xθ

(
x̃ti , ti

)
, and vec(·) denotes the vector-

ization operation. The proof details can be found in Appendix C.3.

Improving ηi with Balanced Difference Techniques. Our goal is to refine the RE-based iteration by
optimize ηi with the available information at current step. Denote ∆̃g

ti = ηiFθ(ti−1, ti)+(1−ηi)Fθ(ti+1, ti).
We can define the estimation error of derivative at point τti as E(ti−1, ti) := Fθ(ti−1, ti) − d

(1)
θ

(
xti , ti

)
.

For balancing the estimation errors, we formulate the following optimization objective:

min
ηi∈(0,1]

L2(ηi) := ∥ηiE(ti−1, ti) + (1 − ηi)E(ti+1, ti)∥F . (4.17)
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We can rewrite L2(ηi) as L2(ηi) =
∥∥∥∆̃g

ti − d
(1)
θ

(
xti , ti

)∥∥∥
F . Denote L2s(ηi) := ∥∆̃g

ti∥F . Then, we have

L2(ηi) =
∥∥∥∆̃g

ti − ϵ
(1)
θ

(
xti , ti

)∥∥∥
F ≤ L2s(ηi) +

∥∥∥d(1)
θ

(
xti , ti

)∥∥∥
F , (4.18)

where d(1)
θ

(
xti , ti

)
can be regarded as a specific regularization term independent of the target ηi. The

optimized ηi can be obtained by minimizing the tractable EUB term L2s(ηi). Similarly, for practical
considerations, we employ optimization-guided streamlined approach for determining ηi. We first
calculate the closed-form solution outlined in Lemma 4.2. The refined ηi is then obtained by mapping
these solutions into the constrained space using an activation function, such as the Sigmoid function.
Lemma 4.2 The minimizing problem min

ηi
L2

2s(ηi) possesses the following closed-form solution:

η∗i = −
vecT (F̃i)vec(Fθ(ti+1, ti))

vecT (F̃i)vec(F̃i)
, (4.19)

where F̃i := Fθ(ti+1, ti) − Fθ(ti−1, ti). The proof process is similar to that of Lemma 4.1.
Consequently, by integrating the optimized ζi and ηi into the iterations of Eq. (4.8), we obtain
the refined RE iterations. Algorithm 1 outlines this improved iteration process, which exhibits
second-order global convergence, and the proof details are provided in Appendix C.4.

5 Experiments
In this section, we experimentally validate our approach in both single-step and multi-step scenarios,
demonstrating that variance-driven conditional entropy reduction improves the denoising process
of pre-trained diffusion model in both pixel and latent spaces. This method effectively extends
the capabilities of existing training-free ODE samplers without incurring additional computational
overhead. We compare Algorithm 1 against the baseline methods on Stable Diffusion, as illustrated
in Figure 7. More implementation details and additional results are provided in Appendix D.

5.1 Single-step Iterations
In the single-step iterations, we adopt DPM-Solver Lu et al. (2022a) as our baseline, focusing
on denoising iterations based on noise prediction parameterization. Each step of the single-step
mechanism only requires information from the starting point and prior to the endpoint. To ensure
variance reduction in each step, we configure the step size ratio ri following the effective interval
defined in Proposition 4.1 and γi as specified in Proposition 3.2. As a specific instance of RE-
based iterations (Proposition 3.3), DPM-Solver has demonstrated its effectiveness over traditional
gradient-based iterations. We further validate RE-based iterations through experiments on CIFAR-10
Krizhevsky (2009), CelebA 64 Liu et al. (2015), and ImageNet 256 Deng et al. (2009), comparing
them against solvers such as DDPM Ho et al. (2020), DDIM Song et al. (2021a), and Analytic-DDPM
Bao et al. (2022). Results (Figures 2, 3, and 1) consistently show improved performance due to
improved variance reduction. On CIFAR-10, the RE-based iteration achieves a 3.15 FID with only
84 NFEs, surpassing DDPM’s Ho et al. (2020) 3.17 FID with 1000 NFEs, improving quality while
realizing approximately 10× acceleration. Additional comparisons are provided in Figure 4.

5.2 Multi-step Iterations
In the multi-step iterations, we primarily adopt DPM-Solver++ Lu et al. (2022b) as our baseline,
focusing on denoising iterations based on data-prediction parameterization. Leveraging the multi-
step mechanism enables us to utilize marginally more model information compared to single-step
approaches. This allows us to optimize conditional variance through actual state differences, thereby
circumventing the limitations imposed by prior-like variance assumptions. To demonstrate the
effectiveness of efficient conditional entropy reduction in improving the denoising process of DMs,
we propose Algorithm 1, which improves denoising diffusion sampling by leveraging the variance-
driven approach aimed at minimizing actual state differences. Notably, DPM-Solver-v3 Zheng
et al. (2023b) recently introduced a novel optimization-based parameterization scheme, distinct from
data-prediction and noise-prediction parameterizations, achieving impressive sampling performance,
particularly on CIFAR-10. Therefore, we adopt DPM-Solver-v3 as our baseline method for CIFAR-10
experiments, considering its demonstrated advantages in optimized parameterization on this dataset.
We evaluated the RE-based iterations against widely-recognized benchmark solvers, including
DPM-Solver++ Lu et al. (2022b), DEIS Zhang & Chen (2023), UniPC Zhao et al. (2024), and DPM-
Solver-v3 Zheng et al. (2023a) on both CIFAR-10 and ImageNet 256 datasets. The experimental
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results (Tables 3, 2) demonstrate that the variance-driven conditional entropy reduction consistently
improves sampling performance. Furthermore, we validated the effectiveness of our approach on
pre-trained models in the latent space, such as Stable Diffusion, with results illustrated in Figure 7.

12 15 20 5050 66 84 100 200 1000
NFE

2.7

3.15

4

5

6

7

8

FI
D

DDPM
Analytic-DDPM
DDIM
Analytic-DDIM
DPM-solver-2
DPM-so1ver-3
F-PNDM
ERA-Solver
RE-based-2 (ours)
RE-based-3 (ours)

Figure 4: Comparisons of FID ↓ for single-step
RE iterations on discrete DMs in CIFAR-10.

Discrete Continuous Cond. EDM
3.17 2.55 1.79

DDPM Hybrid PC EDM
3.26 2.64 1.79

F-PNDM DPM-Solver-v3 Heun’s 2nd
3.15 2.41 1.76

RE-based RE-based RE-based

Table 1: The comparison for the performance lim-
its of sampling methods on CIFAR-10 Krizhevsky
(2009) indicates that RE-based iterations can fur-
ther improve the denoising process.

Table 2: Quantitative results of the gradient estimation-based denoising iterations on ImageNet-256
Deng et al. (2009). We report the FID ↓ evaluated on 10k samples for various NFEs.

Method Model NFE
5 6 8 10 12 15 20

DPM-Solver++
Guided-Diffusion

15.69 11.65 9.06 8.29 7.94 7.70 7.48
UniPC

(s = 2)
15.03 11.30 9.07 8.36 8.01 7.71 7.47

DPM-Solver-v3 14.92 11.13 8.98 8.14 7.93 7.70 7.42
RE-based 13.98 10.98 8.84 8.14 7.79 7.48 7.25

Table 3: Quantitative results of the gradient estimation-based denoising iterations on CIFAR10. We
report the FID ↓ evaluated on 50k samples for the different NFEs. We directly borrow the results of
reported in the original paper of other methods.

Method Model NFE
5 6 8 10 12 15 20

DEIS 15.37 \ \ 4.17 \ 3.37 2.86
DPM-Solver++

ScoreSDE
28.53 13.48 5.34 4.01 4.04 3.32 2.90

UniPC 23.71 10.41 5.16 3.93 3.88 3.05 2.73
DPM-Solver-v3 12.76 7.40 3.94 3.40 3.24 2.91 2.71
RE-based 13.54 8.56 4.11 3.38 3.22 2.76 2.42
Heun’s 2nd 320.80 103.86 39.66 16.57 7.59 4.76 2.51
DPM-Solver++

EDM
24.54 11.85 4.36 2.91 2.45 2.17 2.05

UniPC 23.52 11.10 3.86 2.85 2.38 2.08 2.01
DPM-Solver-v3 12.21 8.56 3.50 2.51 2.24 2.10 2.02
RE-based 11.82 8.30 3.46 2.48 2.21 2.07 2.01

Conclusions
In this paper, we introduce a novel framework that leverages variance-driven conditional entropy
reduction to improve the sampling performance of pre-trained diffusion model without the need for
retraining. Our theoretical analysis establishes that minimizing conditional entropy in the reverse
process of diffusion models leads to more accurate and efficient denoising, which provides a principled
foundation for optimizing this process. Building on these insights, we propose a Reduced Entropy
(RE) approach for sampling of diffusion models, which improves the denoising process through
efficient conditional variance minimization. Our method achieves state-of-the-art performance across
multiple benchmark training-free methods, demonstrating promising improvements in both sampling
speed and generation quality. While our approach yields promising results in image generation tasks,
the full potential of conditional entropy reduction-based sampling methods remains to be explored.
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Appendix

A RelatedWork

A.1 DiffusionModels
The mathematical foundation of Diffusion models (DMs) originates from stochastic differential
equations (SDEs), particularly the Langevin dynamics Langevin et al. (1908). This framework was
first adapted to deep generative modeling in the work of Sohl-Dickstein et al. Sohl-Dickstein et al.
(2015) through a Markov chain approach based on non-equilibrium thermodynamics. Significant
advances in sample quality were achieved by Song and Ermon Song & Ermon (2019; 2020) through
score-based generative models, introducing effective methods to estimate and sample from the score
function ∇x log p(x) of data distributions. The introduction of DDPMs by Ho et al. Ho et al.
(2020) provided a significant simplification by parameterizing the reverse process and optimizing
a variational bound, establishing a stable training objective: L = Et,ϵ∥ϵ − ϵθ(xt, t)∥2. Subsequently,
Song et al. Song et al. (2021b) unified score-based models and DMs under a continuous-time SDE
formulation, providing a rigorous mathematical foundation.
Building upon this theoretical framework, diffusion models have demonstrated exceptional capabilities
across various domains. In image synthesis, they have achieved state-of-the-art quality Dhariwal &
Nichol (2021) and established new benchmarks in photorealism Karras et al. (2022). Their success
has extended to multimodal generation tasks, including text-to-image synthesis Ramesh et al. (2022);
Saharia et al. (2022), speech generation Chen et al. (2021), video synthesis Ho et al. (2022), and 3D
content generation Poole et al. (2023). Furthermore, DMs have shown remarkable capabilities in
controllable generation tasks Zhang et al. (2023), such as image editing, style transfer, and inpainting
Meng et al. (2022); Lugmayr et al. (2022).

A.2 Training-based Fast SamplingMethods
Training-based sampling methods improve the efficiency of diffusion models through learning-
based optimization of sampling trajectories. Knowledge distillation techniques facilitate efficient
sampling, where Progressive Distillation Salimans & Ho (2022) enables student models to learn
compressed sampling processes from teacher models. Consistency-based methods establish another
fundamental direction, with Consistency Models Song et al. (2023); Song & Dhariwal (2024)
achieving parallel generation through score function learning via consistency training, grounded in
probability flow ODE frameworks. Rectified Flow Liu et al. (2023) formulates a rectified flow ODE
that enhances sampling efficiency with the paired training strategy. Latent Consistency Models Luo
et al. (2023) extend consistency distillation to latent space, maintaining generation quality while
accelerating sampling through the integration of latent diffusion and consistency training. Additional
developments encompass architectural improvements and training optimizations Nichol & Dhariwal
(2021); Dhariwal & Nichol (2021); Zhang & Chen (2021).
Despite the acceleration benefits, these approaches typically necessitate specialized training pro-
cedures and careful balancing of quality-speed trade-offs. The training data for these methods are
typically obtained through iterative sampling from pre-trained DMs using deterministic samplers like
DDIM Song et al. (2021a).

A.3 Training-free sampling methods
In contrast, training-free methods focus on improving sampling efficiency without requiring any
additional training, making them more adaptable and flexible in nature. Early sampling methods
in DMs relied on ancestral sampling Ho et al. (2020). Score-based models Song et al. (2021b)
used predictor-corrector methods to refine samples and introduced PF ODEs as a faster sampling
alternative. DDIM Song et al. (2021a) advanced sampling methods by introducing a non-Markovian
deterministic process that enables deterministic sampling through a variance-minimizing path, signifi-
cantly reducing the number of required sampling steps. PNDM Liu et al. (2022) demonstrated the
adaptability of ODE solvers to diffusion sampling by effectively utilizing linear multistep methods.
EDM Karras et al. (2022) explored the design space of DMs with a σ-parameterization linked to
the SNR, analyzing noise dynamics to optimize time steps and achieved high-quality samples using
the Heun solver. DPM-Solver Lu et al. (2022a) introduced a generalized acceleration framework
leveraging favorable properties of PF ODEs in the semi-log-SNR space, with high-order solvers
for accelerated sampling. DEIS Zhang & Chen (2023) investigated the effectiveness of exponential
integrators in addressing the stiffness of diffusion ODEs. DPM-Solver++ Lu et al. (2022b) extended
DPM-Solver to guided sampling by using data-based parameterization, further improved efficiency.
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Based on DPM-Solver, UniPC Zhao et al. (2024) designed high-order predictor-corrector schemes
within a unified framework and demonstrated their strengths experimentally. Furthermore, DPM-
Solver-v3 Zheng et al. (2023a) proposed an optimized ODE parameterization using empirical model
statistics (EMS), which significantly enhanced the sampling efficiency of DMs.
Despite significant progress in the numerical discretization techniques of training-free methods, the
underlying mechanisms driving their acceleration remain inadequately understood. This motivates
our study, which seeks to unify efficient numerical iterations, such as DPM-Solver and EDM, through
the lens of conditional entropy reduction.

B Analysis and Proofs of Variance-Driven Conditional Entropy Reduction
B.1 The Proof of Proposition 3.1
Proof. Denote the Gaussian transition distributions governed by the iterative equations (3.5) and (3.7)
as p1

(
f (x̃ti−1 )|f (x̃ti )

)
and p2

(
f (x̃ti−1 )|f (x̃ti )

)
, respectively. Without loss of generality, we use the

common part f (x̃ti ) of the two iterative equations as the mean of both distributions. The remaining
components represent the perturbation terms associated with each transition distribution, respectively.
Since the noise prediction model is specifically trained to predict the noise, we can interpret ϵθ(x̃t, t)
as representing the noise perturbation term. Since the estimated noise by the model at different time
steps can be considered mutually independent, the conditional variances of the remaining terms for
the two different iterations are, respectively, expressed as follows:

Varp1 = h2
ti · Var(ϵθ(x̃ti , ti)), Varp2 = h2

ti

1 − hti

2ĥti

2

· Var(ϵθ(x̃ti , ti)) +
h4

ti

4ĥ2
ti

· Var(ϵθ(x̃si , si)). (B.1)

Denote ∆H(p) = Hp2 (x̃ti−1 |x̃ti ) − Hp1 (x̃ti−1 |x̃ti ). Then, by equations (B.1) and (3.10), we have:

∆H(p) =
d
2

log

∣∣∣∣∣∣∣1 − hti

ĥti

+
h2

ti

4ĥ2
ti

+
h2

ti

4ĥ2
ti

·
Var(ϵθ(x̃si , si))
Var(ϵθ(x̃ti , ti))

∣∣∣∣∣∣∣ . (B.2)

Therefore, ∆H(p) ≤ 0 if and only if
h2

ti

4ĥ2
ti

+
h2

ti

4ĥ2
ti

·
Var(ϵθ(x̃si ,si))
Var(ϵθ(x̃ti ,ti))

≤
hti

ĥti
. By solving this inequality and note

that ĥti ≤ hti , the proof is complete. □

B.2 The Perspective of Conditional Entropy Reduction for Some Accelerated Iterations
As an application of conditional entropy analysis, we deepen our understanding of the iterations
in accelerated denoising diffusion solvers, such as DPM-Solver Lu et al. (2022a) and EDM Karras
et al. (2022), by elucidating the associated changes in conditional entropy. We then demonstrate that
the iterations of both well-known solvers are denoising iterations grounded in conditional entropy
reduction and represent two special cases of RE-based iterations.
Firstly, let us revisit the accelerated iteration introduced by EDM Karras et al. (2022). Formally, the
iteration formula of EDM can be written as follows:

f (x̃ti−1 ) = f (x̃ti ) + hti
dθ

(
x̃ti , ti

)
+ dθ

(
x̃ti−1 , ti−1

)
2

, (B.3)

which can be equivalently rewritten as the following gradient estimation-based iteration:

f (x̃ti−1 ) = f (x̃ti ) + htidθ
(
x̃ti , ti

)
+

h2
ti

2
Fθ(ti−1, ti). (B.4)

As ĥti = hti in the iteration of EDM described by Eq. B.4, based on Proposition 3.2, we obtain the
following conclusion:
Remark 3 The EDM iteration in Eq. (B.3) can reduce conditional entropy more effectively than the
DDIM iteration in Eq. (3.5). Thus, the iteration of EDM can be interpreted as an iterative scheme for
reducing conditional entropy.
Next, we revisit the accelerated iteration framework established by DPM-Solver Lu et al. (2022a) with
exponential integrator. Specifically, the sampling algorithm of DPM-Solver decouples the semi-linear
structure of the diffusion ODE, with its iterations formulated by solving the integral driven by half of
the log-SNR. The exponentially weighted score integral in DPM-Solver can be written as follows:

f (xt) − f (xs) = −
∫ λ(t)

λ(s)
e−τdθ

(
xψ(τ), ψ(τ)

)
dτ. (B.5)
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where λ(t) := log αt
σt

. It follows that Eq. (B.5) and Eq. (3.2) can be mutually transformed through the
function relation λ(t) = − log(κ(t)). Denote hλi := λ(ti−1) − λ(ti) and ĥλi := λ(si) − λ(ti). Formally, the
second-order iteration of DPM-Solver can be written as follows:

f (x̃ti−1 ) = f (x̃ti ) −
σti−1

αti−1

(
ehλi − 1

)
dθ

(
x̃ti , ti

)
−
σti−1

αti−1

(
ehλi − 1

) dθ (x̃si , si
)
− dθ

(
x̃ti , ti

)
2r1

, (B.6)

where si = ψ
(
λ(ti) + r1hλi

)
. Note that r1 =

ĥλi
hλi

, κ(ti−1) =
σti−1
αti−1

and hti = κ(ti−1) − κ(ti). As ehλi =
κ(ti)
κ(ti−1) ,

then
σti−1
αti−1

(
ehλi − 1

)
= −hti . Thus, this second-order iteration can be equivalently rewritten as:

f (x̃ti−1 ) = f (x̃ti ) + htidθ
(
x̃ti , ti

)
+

hti hλi

2
dθ

(
x̃si , si

)
− dθ

(
x̃ti , ti

)
ĥλi

. (B.7)

Note that the si here in DPM-Solver differs from the one in Eq. (3.7), due to the variations arising
from the function space. Based on conditional analysis, similarly, we have the following conclusion.

Remark 4 Based on Proposition 3.2, when
hλi

ĥλi
∈

[
1, 4 SNR(si)

SNR(ti)+SNR(si)

]
, the DPM-Solver’s iteration in

Eq. (B.6) can reduce conditional entropy more effectively than the DDIM iteration in Eq. (3.5).
Note that

hλi

ĥλi
= 2 in the practical implementation of DPM-Solver. Thus, as SNR(si) > SNR(ti), the

DPM-Solver’s iteration can be interpreted as an iterative scheme for reducing conditional entropy.

Finally, we summarize the relationship between these two iterations and RE-based iterations. In fact,
the iteration described in Eq. (B.3) is an RE-based iteration within the EDM iteration framework.
Clearly, the RE-based iteration within the DPM-Solver iteration framework can be formulated as:

f (x̃ti−1 ) = f (x̃ti ) + hti
(
γdθ

(
x̃si , si

)
+ (1 − γ)dθ

(
x̃ti , ti

))
+

hti hλi

2
dθ

(
x̃si , si

)
− dθ

(
x̃ti , ti

)
ĥλi

. (B.8)

Therefore, the iterations in both EDM and DPM-Solver can be interpreted as specific instances of
RE-based denoising iterations from the perspective of the conditional entropy.

B.3 Difference Analysis of Gradient Estimation-based Iterations inMulti-step Framework
On one hand, let us revisit the multi-step accelerated framework established by DPM-Solver++ Lu
et al. (2022b). Formally, the second-order iteration of DPM-Solver++ can be written as follows

f (x̃ti−1 ) = f (x̃ti ) −
αti−1

σti−1

(
e−hλi − 1

)
dθ

(
x̃ti , ti

)
−
αti−1

σti−1

(
e−hλi − 1

) dθ (x̃ti , ti
)
− dθ

(
x̃ti+1 , ti+1

)
2ri

, (B.9)

where dθ
(
x̃ti , ti

)
denotes the data-prediction prediction model and ri =

hλi+1
hλi

. Since
αti−1
σti−1

(
e−hλi − 1

)
=

αti
σti
−

αti−1
σti−1
= −hti in data-prediction prediction models, Eq. (B.9) can be rewritten as

f (x̃ti−1 ) = f (x̃ti ) + htidθ
(
x̃ti , ti

)
+

hti hλi

2
dθ

(
x̃ti , ti

)
− dθ

(
x̃ti+1 , ti+1

)
hλi+1

. (B.10)

On the other hand, we can rewrite the iteration presented in Eq. (4.4) as follows:

f (x̃ti−1 ) = f (x̃ti ) + htidθ
(
x̃ti , ti

)
+

h2
ti

2
dθ

(
x̃ti , ti

)
− dθ

(
x̃ti+1 , ti+1

)
hti+1

. (B.11)

It has been observed that the differences in the multi-step iterations presented in Eq. (B.10) and Eq.
(B.11) are still caused by the variations in ri. Therefore, in gradient estimation-based iterations, the
core characteristic of the DPM-Solver++ iteration is the determination of ri in the half-logarithmic
SNR space. For convenience, we will hereafter refer to half-logarithmic SNR simply as ‘logSNR’.
Without loss of generality, the core differences between various gradient estimation-based iterations
can be generalized as variations in the determination of ri. Then, a natural question arises: how
can ri be determined better or systematically? Therefore, a principle for determining ri is of great
importance. This inquiry drives our investigation from the perspective of conditional entropy within
the context of multi-step iterations.
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B.4 The Proof of Proposition 3.4 for Conditional Entropy Reduction
Proof. Without loss of generality, we only need to prove that the conditional entropy of the first-order
iteration using data-prediction parameterization is lower than that of the first-order iteration using
noise-prediction parameterization. Let us revisit both first-order denoising iterations. Clearly, based
on Eq. (3.5) and Remark 1, the first-order iteration of data-prediction parameterization as follows:

x̃ti−1 =
σti−1

σti
x̃ti︸  ︷︷  ︸

Ldata: linear

+σti−1

(
αti−1

σti−1

−
αti

σti

)
xθ

(
x̃ti , ti

)
︸                              ︷︷                              ︸

Ndata: non-linear

, (B.12)

where xθ
(
x̃ti , ti

)
=

x̃ti−σtiϵθ(x̃ti ,ti)
αti

. The first-order iteration of noise-prediction parameterization as
follows:

x̃ti−1 =
αti−1

αti
x̃ti︸  ︷︷  ︸

Lnoise: linear

+αti−1

(
σti−1

αti−1

−
σti

αti

)
ϵθ

(
x̃ti , ti

)
︸                             ︷︷                             ︸

Nnoise: non-linear

. (B.13)

Denote the Gaussian transition kernels governed by the iterative equations (B.12) and (B.13) as
p1

(
x̃ti−1 |x0

)
and p2

(
x̃ti−1 |x0

)
, respectively. In both iterations of equations (B.12) and (B.13), the

randomness of the linear term is solely related to the noise introduced in the iterations preceding
time step ti, whereas the randomness of the nonlinear term depends entirely on the noise at the
current time step ti. Since the noise introduced at each time step in DMs is independent, under this
assumption, the randomness of the linear term is independent of the randomness of the nonlinear term
in both iterations. Therefore, we will consider the variances of the linear and nonlinear components
separately. Formally, the variances of the linear terms for the two different iterations are, respectively,
as follows:

Var(Ldata | x0) =
σ2

ti−1

σ2
ti

Var(x̃ti | x0), Var(Lnoise | x0) =
α2

ti−1

α2
ti

Var(x̃ti | x0). (B.14)

For simplicity, we denote Var
(
x̃ti | x0

)
as Var

(
x̃ti

)
where appropriate. Based on monotonicity,

σti−1
σti

<
αti−1
αti

, as αt is monotonically decreasing with respect to time t and σt is monotonically
increasing with respect to time t. Therefore, Var (Ldata) < Var (Lnoise). Subsequently, we consider the
variance of the non-linear terms for both iterations. For clarity, we denote c(ti, ti−1) := αtiσti−1−αti−1σti .
Then,

σti−1

(
αti−1

σti−1

−
αti

σti

)
=
−1
σti

c(ti, ti−1), αti−1

(
σti−1

αti−1

−
σti

αti

)
=

1
αti

c(ti, ti−1). (B.15)

Thus, the variances of the nonlinear terms for the two different iterations are, respectively, as follows:

Var(Nnoise) =
c2(ti, ti−1)

α2
ti

· Var
(
ϵθ

(
x̃ti , ti

))
, Var(Ndata) =

(−c(ti, ti−1))2

σ2
ti

· Var
(
xθ

(
x̃ti , ti

))
. (B.16)

Note that

Var
(
xθ

(
x̃ti , ti

))
= Var

(
x̃ti − σtiϵθ

(
x̃ti , ti

)
αti

)
=
σ2

ti

α2
ti

Var
(
ϵti − ϵθ

(
x̃ti , ti

))
. (B.17)

as x̃ti = αtix0 + σtiϵti . Then,

Var(Ndata) =
(−c(ti, ti−1))2

σ2
ti

·
σ2

ti

α2
ti

Var
(
ϵti − ϵθ

(
x̃ti , ti

))
=

c2(ti, ti−1)
α2

ti

Var
(
ϵθ

(
x̃ti , ti

)
− ϵti

)
. (B.18)

Clearly, since ϵθ
(
x̃ti , ti

)
is designed to predict the injected noise into the clean data at time step ti,

and based on Eq. (2.4), the variance Var
(
ϵθ

(
x̃ti , ti

)
− ϵti

)
can theoretically approach arbitrarily small

values as the accuracy of the model’s estimation improves. Therefore, as Var
(
ϵθ

(
x̃ti , ti

)
− ϵti

)
<

Var
(
ϵθ

(
x̃ti , ti

))
, we have Var(Ndata) < Var(Nniose). Since the randomness of the linear term is inde-

pendent of that of the nonlinear term in both iterations, and given that Var (Ldata) < Var (Lnoise) and
Var(Ndata) < Var(Nniose), we have

0 ≤ Var(p1(x̃ti−1 | x0)) = Var(Ldata) + Var(Ndata) < Var(Lnoise) + Var(Nnoise) = Var(p2(x̃ti−1 | x0)).
(B.19)

Consequently, based on Eq. (3.10), which provides the conditional entropy formula for a Gaussian
distribution, we have Hp1 (x̃ti−1 | x0) < Hp2 (x̃ti−1 | x0). The proof is complete. □
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C Convergence Analysis of RE-based IterativeMethods

C.1 Assumption

Assumption 1: The total derivative d(k)
θ

(
xψ(τ), ψ(τ)

)
:= dkdθ(xψ(τ),ψ(τ))

d τk exists and is continuous if
necessary, where k is determined by the specific context.
Assumption 2: The function dθ

(
xψ(τ), ψ(τ)

)
is Lipschitz w.r.t. to its first parameter xψ(τ).

C.2 The Proof of Theorem 4.1 for convergence order

Let us review the RE-based iteration as follows:

f (x̃ti−1 ) = f (x̃ti ) + hti
(
γdθ

(
x̃si , si

)
+ (1 − γ)dθ

(
x̃ti , ti

))
+

h2
ti

2
Fθ(si, ti),

where Fθ(si, ti) := dθ(x̃si ,si)−dθ(x̃ti ,ti)
ĥti

, ĥti := κ(si) − κ(ti).

Proof. Denotes x̂t = f (x̃t). The RE-based iteration can be decomposed into:

x̂µ = x̂ti + htidθ
(
x̃ti , ti

)
+

h2
ti

2
Fθ(si, ti),

and
x̂ti−1 = x̂µ + γhti

(
dθ

(
x̃si , si

)
− dθ

(
x̃ti , ti

))
.

Clearly, x̂µ = x̂ti + O(h3
ti ) based on the Taylor expansion in Eq. (3.4). Since the model dθ (x̃t, t)

satisfies the Lipschitz assumption with respect to x̃t, then

∥x̂ti−1 − x̂µ∥ = ∥γhti
(
dθ

(
x̃si , si

)
− dθ

(
x̃ti , ti

))
∥

= L1ĥti∥dθ
(
x̃si , si

)
− dθ

(
x̃ti , ti

)
∥

≤ L2ĥti∥x̃si − x̃ti∥ = O(|ĥti |
3).

(C.1)

Subsequently, by the triangle inequality, we have

∥x̂ti−1 − x̂ti∥ = ∥x̂ti−1 − x̂µ + x̂µ − x̂ti∥ ≤ ∥x̂ti−1 − x̂µ∥ + ∥x̂µ − x̂ti∥ = O(|hti |
3), (C.2)

where the last equality holds because |hti | ≥ |ĥti |.
Therefore, we prove that the local error of the RD-based iteration is of the same order as the
corresponding Taylor expansion. Consequently, the RE-based iteration in Eq. 4.1 is a second-order
convergence algorithm. The proof is complete. □

C.3 The Proofs of Lemma 4.1 and Lemma 4.2

Proof. Without loss of generality,

∂ ∥A − σh (λF1 + (1 − λ)F2)∥2F
∂λ

=
∂
(
vec⊤ (A − σh (λF1 + (1 − λ)F2)) vec (A − σh (λF1 + (1 − λ)F2))

)
∂λ

=2 vec⊤
(
∂ (A − σh (λF1 + (1 − λ)F2))

∂λ

)
vec (A − σh (λF1 + (1 − λ)F2))

=2 vec⊤ (−σh (F1 − F2)) vec (A − σh (λF1 + (1 − λ)F2))

Let ∂∥A−σh(λF1+(1−λ)F2)∥2F
∂λ

= 0, we have

vec⊤ (F1 − F2) vec (σhλ (F1 − F2) − (A − σhF2)) = 0. (C.3)

Therefore,

λ =
vec⊤ (F1 − F2) vec (A − σhF2)
σh vec⊤ (F1 − F2) Vec (F1 − F2)

. (C.4)

The proof is complete. □
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C.4 The Convergence Analysis of RE-based iteration in Algorithm 1

Let us review the RE-based iteration in Algorithm 1 as follows:

f (x̃ti−1 ) = f (x̃ti ) + htidθ
(
x̃ti , ti

)
+

h2
ti

2
ζiBθ(ti)

= f (x̃ti ) + htidθ
(
x̃ti , ti

)
+

h2
ti

2
ζi

(
ηi

2
Bθ(si, ti) +

(
1 −

ηi

2

)
Bθ(ti, li)

)
= f (x̃ti ) + hti

(
ηi

2
dθ

(
x̃ti , ti

)
+

(
1 −

ηi

2

)
dθ

(
x̃ti , ti

))
+

h2
ti

2
ζi

(
ηi

2
Bθ(si, ti) +

(
1 −

ηi

2

)
Bθ(ti, li)

)
,

where Bθ(ti, ti+1) =
dθ(x̃ti ,ti)−dθ(x̃ti+1 ,ti+1)

hti+1
.

We now analyze the convergence properties of this RE-based iteration scheme and establish its
convergence order. We have the following result.

Theorem C.1 The RE-based iteration in Algorithm 1 achieves second-order global convergence
with local error O(h3

ti ).

Proof. Denote x̂t = f (x̃t). The RE-based iteration in Algorithm 1 can be decomposed as:

x̂ti−1 = x̂ti +
ηi

2
x̂µ1 +

(
1 −

ηi

2

)
x̂µ2

=
ηi

2

(
x̂ti + x̂µ1

)
+

(
1 −

ηi

2

) (
x̂ti + x̂µ2

)
,

where

x̂µ1 = htidθ(x̃ti , ti) +
h2

ti

2
ζiBθ(si, ti), x̂µ2 = htidθ(x̃ti , ti) +

h2
ti

2
ζiBθ(ti, li).

Let us now consider the case of x̂ti + x̂µ1 . Denote

x̂1,ti−1 = x̂ti + x̂µ1 , x̂µ3 = x̂ti + htidθ(x̃ti , ti) +
h2

ti

2
Bθ(si, ti).

Then x̂1,ti−1 = x̂µ3 + (ζi − 1)
h2

ti
2 Bθ(si, ti). Note that x̂µ3 = x̂ti + O(h3

ti ) and Bθ(si, ti) = O(hti ) based on
the Taylor expansion in Eq. (3.4). Therefore, we have

∥x̂1,ti−1 − x̂ti∥ =

∥∥∥∥∥x̂µ3 − x̂ti +
ζi − 1

2
h2

ti Bθ(si, ti)
∥∥∥∥∥

≤ ∥x̂µ3 − x̂ti∥ +

∥∥∥∥∥ζi − 1
2

h2
ti Bθ(si, ti)

∥∥∥∥∥
= O(h3

ti ) + L1O(h3
ti ) = O(h3

ti ),

(C.5)

where L1 is a constant because ζi can be bounded by 1. Denote x̂2,ti−1 = x̂ti + x̂µ2 . Symmetrically, we
obtain

∥x̂2,ti−1 − x̂ti∥ = O(h3
ti ). (C.6)

Now, combining the results, we obtain

∥x̂ti−1 − x̂ti∥ =

∥∥∥∥∥ηi

2
(
x̂1,ti−1 − x̂ti

)
+

(
1 −

ηi

2

) (
x̂2,ti−1 − x̂ti

)∥∥∥∥∥
≤
ηi

2
∥x̂1,ti−1 − x̂ti∥ +

(
1 −

ηi

2

)
∥x̂2,ti−1 − x̂ti∥

=
ηi

2
O(h3

ti ) +
(
1 −

ηi

2

)
O(h3

ti ) = O(h3
ti ).

(C.7)

Thus, we have shown that the local error of the RE-based iteration in Algorithm 1 is O(h3
ti ). Conse-

quently, the RE-based iteration in Algorithm 1 achieves second-order global convergence. The proof
is complete. □
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D Experiment Details
In our experiments, we utilize several standard pre-trained models. Specifically, we employ the
discrete denoising diffusion probabilistic model Ho et al. (2020), the continuous score-based model
Song et al. (2021b), and the uncond EDM model Karras et al. (2022), all trained on CIFAR-10
Krizhevsky (2009). For larger-scale evaluations on high-dimensional data, we adopt the pre-trained
models trained on ImageNet dataset Deng et al. (2009) from the baseline method Dhariwal & Nichol
(2021). Additionally, we use the pre-trained Latent Diffusion Model and Stable Diffusion model
Rombach et al. (2021), where the latter is trained on the LAION-5B dataset Schuhmann et al. (2022)
using CLIP Radford et al. (2021) text embeddings as conditioning signals.

D.1 Experimental Computational Resources and Data
All experiments were conducted on NVIDIA GPUs. For high-dimensional datasets like ImageNet,
we utilized the NVIDIA GeForce RTX 3090 GPU with 24GB VRAM, experiments were performed
on NVIDIA TITAN X (Pascal) with 12GB VRAM. To ensure fair comparison with prior work, we
maintained consistent pre-trained models and experimental settings across both scenarios. We list
some of the datasets and codes used in Table 4.

Table 4: Some of the datasets and codes used.

Name URL
CIFAR10 https://www.cs.toronto.edu/ kriz/cifar.html
LSUN-Bedroom https://www.yf.io/p/lsun
ImageNet-256 https://www.image-net.org
ScoreSDE https://github.com/yang-song/score sde pytorch
EDM https://github.com/NVlabs/edm
Guided-Diffusion https://github.com/openai/guided-diffusion
Latent-Diffusion https://github.com/CompVis/latent-diffusion
Stable-Diffusion https://github.com/CompVis/stable-diffusion
DPM-Solver https://github.com/LuChengTHU/dpm-solver
DPM-Solver++ https://github.com/LuChengTHU/dpm-solver
UniPC https://github.com/wl-zhao/UniPC
DPM-Solver-v3 https://github.com/thu-ml/DPM-Solver-v3

D.2 Sampling Schedules
Sampling schedules in DMs define how the noise scale evolves during inference and play a crucial role
in balancing sample quality and computational efficiency. Several widely used schedules include the
Time-uniform schedule Ho et al. (2020); Song et al. (2021b), the LogSNR schedule Lu et al. (2022a),
and the EDM schedule Karras et al. (2022). Although optimized schedules have been proposed Xue
et al. (2024); Sabour et al. (2024), they typically require significant computational resources for
optimization. In our experiments, we follow the default schedule of the baseline methods.

D.3 Parameterization settings of the Sampling Process
In the sampling process of DMs, various parameterization settings are used to define the target
prediction at each iteration step. Below, we list the adopted parameterizations:
Noise prediction parameterization Ho et al. (2020): This parameterization directly predicts the noise
injected during the forward diffusion process. The connection to the score function is formalized as:

ϵθ (xt, t) = −σt∇x log qt (xt) , (D.1)

where ∇x log qt (xt) denotes the score function Song et al. (2021b).
Data prediction parameterization Kingma et al. (2021): This parameterization estimates the clean
data x0 from the noisy input xt at a given time step t. The predicted data satisfies:

xθ(xt, t) =
xt − σtϵθ(xt, t)

αt
. (D.2)

Although these parameterizations have practical predictive value, they may insufficiently minimize
discretization errors. Building upon earlier DPM-Solver versions Lu et al. (2022a;b), DPM-Solver-v3
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Zheng et al. (2023a) extends the parameterization strategy by incorporating empirical model statistics
(EMS). The continuous-time formulation is as follows:

dxλ
dλ
=

(
α̇λ
αλ
− lλ

)
xλ − (σλϵθ(xλ, λ) − lλxλ) , (D.3)

where λ represents the continuous-time parameter, and lλ is an optimized prior statistics term.
In this paper, we employ the default parameterization of the baseline method in all of our experiments.

D.4 Evaluating Sampling Efficiency and Image Quality in GenerativeModels
The Fréchet Inception Distance (FID) Heusel et al. (2017) evaluates the quality and diversity of
generated images by comparing the statistical distributions of generated and real images in a feature
space. It uses a pre-trained Inception-v3 network to extract features Szegedy et al. (2016), computing
the mean µ and covariance Σ for both distributions. Specifically, µg and Σg represent the mean and
covariance of features from generated images, while µr and Σr correspond to real images. Specifically,
FID is calculated as:

FID = ∥µg − µr∥
2 + Tr

(
Σg + Σr − 2(Σg · Σr)1/2

)
. (D.4)

Lower FID values indicate higher similarity between generated and real distributions, reflecting better
image quality Ho et al. (2020); Song et al. (2021b); Dhariwal & Nichol (2021).
The Number of Function Evaluations (NFE) measures computational efficiency by counting neural
network function calls during sampling Song et al. (2021b;a); Bao et al. (2022); Lu et al. (2022a);
Karras et al. (2022). Lower NFE values indicate faster sampling.
Balancing FID and NFE is crucial for practical applications where both high-quality outputs and
computational efficiency are required. Joint evaluation of these metrics provides a comprehensive
perspective: FID assesses distribution fidelity, while NFE evaluates algorithmic efficiency.
In this paper, we adopt the evaluation framework used in prior studies Lu et al. (2022a;b), combining
FID and NFE to jointly assess the quality of generated images and the computational efficiency of
sampling algorithms. This comprehensive approach, validated in several studies Dhariwal & Nichol
(2021); Song et al. (2021b); Lu et al. (2022a); Karras et al. (2022), offers a standardized benchmark
for comparing different generative models and sampling methods.

D.5 Conditional Sampling in DiffusionModels
Conditional sampling in DMs enables controlled generation by incorporating conditioning information
(e.g., class labels or text) into the sampling process. This is achieved by modifying the noise
predictor ϵθ(xt, t, c) to guide generation toward satisfying condition c. Two main approaches exist:
classifier-free guidance Ho & Salimans (2021) and classifier guidance Dhariwal & Nichol (2021).
Classifier-free guidance (CFG) combines conditional and unconditional predictions:

ϵCFG
θ (xt, t, c) := (1 + w)ϵθ(xt, t, c) − wϵθ(xt, t, ∅), (D.5)

where ∅ denotes the unconditional case and w > 0 is the guidance scale. This method is simple and
efficient as it requires no additional models.
Classifier guidance (CG) uses an auxiliary classifier pϕ(c | xt, t):

ϵCG
θ (xt, t, c) := ϵθ(xt, t) − sσt∇xt log pϕ(c | xt, t), (D.6)

where s controls guidance strength and σt is the noise level at time t. While computationally more
expensive, this approach can provide finer control over the conditioning process.
In our experiments, we adopt the default guidance approach of the baseline method.

D.6 Single-step Iteration Details
Our goal is to validate that variance-driven conditional entropy reduction can improve the denoising
diffusion process. Compared to iterations based on traditional truncated Taylor expansions, RE-
based iterations achieve better sampling performance, as demonstrated in DPM-Solver. This is
because DPM-Solver iterations represent a specific instantiation of RE-based iterations, as shown
in Proposition 3.3. Nevertheless, through extensive experiments on CIFAR-10 Krizhevsky (2009),
CelebA 64 Liu et al. (2015), and ImageNet 256 Deng et al. (2009), we validated that RE-based
iterations can further improve the denoising diffusion process by minimizing conditional variance.
In this validation experiment, we adopt DPM-Solver Lu et al. (2022a) as our baseline. Since
the single-step iteration mechanism only requires the information from the starting point to the
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information before the endpoint, RE-based iterations depend on prior variance assumptions to reduce
the conditional variance between iterations. Below, based on the principle of minimizing conditional
variance, we demonstrate how to select parameters under the assumption of prior variance.
For clarity, we simplify the RE-based iteration in Eq. (4.1) as follows:

f (x̃ti−1 ) = f (x̃ti ) + hti

((
γi +

ri

2

)
dθ

(
x̃si , si

)
+

(
1 − γi −

ri

2

)
dθ

(
x̃ti , ti

))
, (D.7)

where ri =
hti

ĥti
. To reduce variance of iteration (D.7) in each step, we configure the parameter γi in

accordance with the effective variance reduction interval prescribed in Proposition 4.1. Based on
Proposition 4.1, since γi ∈

[
SNR(ti)

SNR(ti)+SNR(si)
, max{2·SNR(ti), SNR(si)}

SNR(ti)+SNR(si)

]
, when considering only γi in isolation,

we recommend three specific selections of prior parameter γi: γi =
SNR(ti)

SNR(ti)+SNR(si)
and γi =

1
2 . Due to

ri ∈
[
1, 4 SNR(si)

SNR(ti)+SNR(si)

]
based on Proposition 3.2. Based on the proof in B.1, when considering only ri

in isolation, a ponential optimal value for ri is given by 2 SNR(si)
SNR(ti)+SNR(si)

. We recommend three specific

selections of prior parameter ri: ri = 1 and ri =

√
2 SNR(si)

SNR(ti)+SNR(si)
. Based on empirical performance,

we recommend the combinations
(
ri = 1, γi =

1
2

)
or

(
ri =

√
2 SNR(si)

SNR(ti)+SNR(si)
, γi =

SNR(ti)
SNR(ti)+SNR(si)

)
.

We compare the performance of RE-based iterations against several established solvers, including
DDPM Ho et al. (2020), Analytic-DDPM Bao et al. (2022), DDIM Song et al. (2021a), DPM-Solver
Lu et al. (2022a), F-PNDM Liu et al. (2022), and ERA-Solver Li et al. (2023). The comparative
results are presented in Figures 2, 3, and Table 1. Remarkably, this consistent improvement in the
conditional variance enhances image quality across various scenarios, as demonstrated by the ablation
study with γi = 1/2 and ri = 1 in Figures 2 and 3. Notably, compared to the 3.17 FID achieved
by DDPM with 1000 NFEs Ho et al. (2020) on CIFAR-10, our RE-based iteration achieves a 3.15
FID with only 84 NFE, establishing a new SOTA FID for this discrete-time pre-trained model while
realizing approximately 10× acceleration. A visual comparison is shown in Figure 4.

D.7 Multi-step Iteration Details
In this section, we explore the potential of variance-based conditional entropy reduction to further
enhance the denoising diffusion process. Unlike single-step mechanisms, multi-step iterations can
leverage information from previous steps, providing additional context. Building on this advantage,
we propose a training-free and efficient denoising iteration framework aimed at improving the
denoising diffusion process through variance-driven conditional entropy reduction. Specifically, the
framework minimizes conditional variance by reducing the discrepancies between actual states during
the denoising iterations.

Challenge. Formulating the optimization objective to achieve this goal presents a significant
challenge, requiring a mechanism that can effectively capture subtle state variations across iterations.
The key lies in developing an algorithm that can identify meaningful features from state differences
and transform these insights into signals that improve the denoising process. This involves not only
quantifying state differences but also understanding the underlying deep information patterns in these
variations, enabling more precise control over the denoising diffusion process.

Conditional Variance Analysis. Our analysis of the conditional variance reveals that the condi-
tional variance in gradient-based denoising iterations can be composed of two critical components:
the variance of the gradient estimation term itself and the variance between the gradient term and the
first-order term. Specifically, revisiting the unified multi-step iteration in Eq. (4.7) induced in Section
4.2:

f (x̃ti−1 ) = f (x̃ti ) + htidθ
(
x̃ti , ti

)
+

h2
ti

2
ζiB̄θ(ti; ui). (D.8)

This unified iteration can be rewritten as:

f (x̃ti−1 ) = f (x̃ti ) + hti

((
1 ∓

ζi

2
hti

hµi

)
dθ

(
x̃ti , ti

)
±
ζi

2
hti

hµi

dθ
(
x̃µi , µi

))
. (D.9)

As dθ
(
x̃µi , µi

)
and dθ

(
x̃ti , ti

)
are known in multi-step iterative mechanisms, the Var(x̃ti−1 |x̃ti ) is

determined by the value of ζi, since hti
hµi

is known. Inspired by Eq. (D.9), we observe that ζi balances the
variance between the gradient term and the first-order term, optimally reducing conditional variance
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by harmonizing their statistical characteristics. Therefore, we define G(ζi) = (1 − ζi)dθ
(
x̃ti , ti

)
+

ζidθ
(
x̃µi , µi

)
to balance the variance between these terms, as detailed in Section 4.3. Moreover,

the variance of the gradient term itself requires careful balancing, as established in Proposition 4.2.
Therefore, we introduced ηi to balance the variance between the differences gradient, as detailed in
Section 4.3.

Optimization Objective and Algorithm. Our optimization objective is formulated by considering
both the discrepancy between actual data states and the variation in gradient states. Building upon
these foundations, we outline this efficient conditional entropy reduction iteration mechanism driven
by variance minimization in Algorithm 1, which offers an effective means to integrate variance-
driven conditional entropy reduction into the denoising diffusion process by minimizing actual state
differences.

Practical Considerations. Our goal is to develop an iterative denoising sampling algorithm for pre-
trained diffusion models that requires neither additional training nor costly optimization procedures.
However, in the iterative scheme aimed at minimizing the variance-driven conditional entropy
reduction, we need to optimize the key parameters ζi and ηi that control the conditional variance of the
denoising iteration. As discussed in the main text, to balance optimality and computational efficiency,
we adopt an optimization-guided streamlined approach to obtain optimized variance-reduction control
parameters ζi and ηi. Specifically, the original optimization problem was a standard constrained
mathematical programming problem. We observed that the problem possesses a closed-form solution
when constraints are removed. Therefore, to directly obtain the optimized parameters in one step,
we choose to apply an nonlinear non-negative mapping to this closed-form solution, using the
mapped non-negative substitute as our final parameters. Since this non-negative substitute solution
has already achieved the objective of quantifying the differences between states, it can serve as an
effective alternative for parameter optimization, simultaneously ensuring computational efficiency
and preserving the capability to capture critical state variations.

D.7.1 Ablation Study
Parameter settings. In our implementation, we primarily employ the sigmoid activation function,
which is one of the most prevalent activation functions in neural networks Rumelhart et al. (1986). Its
mathematical expression is as follows:

Sigmoid(x) =
1

1 + e−x . (D.10)

However, in our experiments, we found that the following improved version yields better results,
particularly for high-dimensional datasets:

ζi = Sigmoid
(
|ζ∗i | − µ

)
, (D.11)

where ζ∗i is computed using Eq. (4.16) and µ is a shift parameter introduced to fine-tune the solution
space.
Conceptually, µ serves as a dynamic sensitivity regulator, allowing for nuanced control over the
transformation of the activation function. By adjusting µ, the inflection point of the sigmoid function
can be shifted, effectively modulating the model’s responsiveness to input variations across different
regions of the input space. For high-dimensional datasets, this provides a principled mechanism for
adaptive sensitivity calibration. The shift parameter enables more precise capturing of subtle state
variations by expanding or contracting the function’s most sensitive transformation region.
Empirical results show that this approach achieves a judicious balance between computational
efficiency and the model’s ability to discern critical state transitions. Table 5 systematically examines
the impact of shift parameters on image generation performance in pre-trained diffusion models,
using comprehensive ablation experiments on the ImageNet-256 dataset. Key findings include:

• Global Performance Characteristics: A consistent downward trend in FID scores is observed
as NFE increases, indicating progressive refinement of sample quality. Performance differ-
ences among the tested shift parameters µ ∈ 0.25, 0.50, 0.75 remain marginal, reflecting the
robustness of the sampling process across configurations.

• Shift Parameter Behavior Across NFE Stages: Performance variations exhibit nuanced
characteristics:

– At lower NFE stages, performance differences between µ values are more pronounced.
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– As NFE increases, the performance of different µ values converges.
– Different µ values exhibit unique progression patterns at various guidance scales,

despite only marginal differences.
• Impact of Guidance Scale: The sensitivity to shift parameters varies with guidance scales:

– Lower guidance scales (e.g., s=2) slightly more pronounced performance variations
with µ, with a change magnitude of 0.05 FID at 20 NFE.

– As guidance scale increases (to s=3 and s=4), the influence of shift parameters becomes
subtler and more stable, with a change magnitude of 0.02 ∼ 0.03 FID at 20 NFE.

Table 5: We conducted ablation experiments with different shift parameters in Algorithm 1, using the
pre-trained model Dhariwal & Nichol (2021) on ImageNet-256 Deng et al. (2009). We report the
FID ↓ evaluated on 10k samples for various NFEs and and guidance scales.

Method Guidence Shift Parameter NFE
5 6 8 10 12 15 20

RE-2 s=2
µ = 0.25 13.96 10.97 8.85 8.18 7.82 7.51 7.27
µ = 0.50 13.98 10.98 8.84 8.14 7.79 7.48 7.25
µ = 0.75 14.01 11.00 8.83 8.10 7.80 7.54 7.32

RE-2 s=3
µ = 0.25 14.43 11.08 8.90 8.30 7.92 7.58 7.53
µ = 0.50 14.37 11.04 8.87 8.31 7.89 7.56 7.51
µ = 0.75 14.32 10.99 8.85 8.23 7.87 7.56 7.50

RE-2 s=4
µ = 0.25 17.80 12.91 9.73 8.75 8.51 8.01 7.92
µ = 0.50 17.57 12.73 9.61 8.66 8.35 8.01 7.93
µ = 0.75 17.39 12.57 9.55 8.61 8.41 8.01 7.94

In summary, the properties of the aforementioned shift parameters collectively ensure the convergence
and distinctiveness of our variance-driven conditional entropy reduction iterative scheme during the
sampling process. Specifically, although these subtle variations are negligible on ImageNet-256, their
distinctiveness is substantiated through experimental validation on stable diffusion model.

Reducing Conditional Variance with Prior ri. In multi-step iterations, we require a probing
step (an iteration step of Single-step Iteration Framework) to obtain the model value at the next
state. Reducing conditional variance is crucial for improving the stability and accuracy of iterative
algorithms, thus, we need to balance the conditional variance of the gradient term and the first-order
term (see the above Conditional Variance Analysis part). We found that while logSNR typically
performs well with larger step sizes, its advantages diminish as the NFE increases, as illustrated in
Figure 2 and Table 6. For clarity, we revisit the logSNR as follows:

rlogSNR(t) =
log αt

σt
− log αt+1

σt+1

log αt−1
σt−1
− log αt

σt

. (D.12)

This balance concept of logSNR leads to two potentially useful types of substitutions, which we
present as follows.
From the perspective of balancing variances, one might consider the following form:

rnormvar(t) =
(

Vart+1 − Vart

Vart+1

) / (
Vart − Vart−1

Vart

)
, (D.13)

where Vart can represent any assumed variance, and satisfies Vart > Vart−1. If Vart < Vart−1, then
simply swapping the roles of Vart and Vart−1 in Eq. (D.13) will suffice.
Another substitution idea is to change the function space of the step size, for example, to the arctangent
space:

rarctan(t) =
arctan(ht)

arctan(ht−1)
, (D.14)

where ht denotes the step size from t + 1 to t.
In our experiments, we observed that a nonlinear combination of these two substitutions leads to
improvements in certain scenarios. We define this nonlinear combination as refined ri, and the
ablation study of both logSNR and refined ri in the context of Algorithm 1 can be found in Table 6.
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Table 6: We conducted ablation experiments under different guidance scales and different random
seeds. Quantitative results of the gradient estimation-based denoising iterations using the pre-trained
model Dhariwal & Nichol (2021) on ImageNet-256 Deng et al. (2009). We report the FID↓ for 10k
samples evaluated under various numbers of function evaluations (NFEs). Bold values indicate the
best FID in each iteration step column, while italicized values represent the second best.

Method Model NFE
5 6 8 10 12 15 20

DPM-Solver++-2 16.39 12.77 9.92 8.88 8.31 8.03 7.76
DPM-Solver++-3 15.64 11.64 9.21 8.51 8.12 7.97 7.69
UniPC-2

Guided-Diffusion
15.15 11.79 9.41 8.63 8.16 7.93 7.71

UniPC-3
(s=2, seed=1234)

14.93 11.22 9.21 8.55 8.19 7.98 7.70
DPM-Solver-v3-2 14.88 11.21 9.17 8.51 8.12 7.90 7.67
DPM-Solver-v3-3 15.62 11.73 9.57 8.89 8.37 8.01 7.65
RE-2 (ri=logSNR) 13.94 10.96 9.02 8.38 8.01 7.83 7.54
RE-2 (refined ri) 14.21 11.21 9.05 8.34 7.97 7.80 7.48
DPM-Solver++-2 16.62 12.86 9.73 8.68 8.17 7.80 7.51
DPM-Solver++-3 15.69 11.65 9.06 8.29 7.94 7.70 7.48
UniPC-2

Guided-Diffusion
15.37 11.78 9.22 8.40 8.01 7.71 7.47

UniPC-3
(s=2, seed=3407)

15.05 11.30 9.07 8.36 8.01 7.72 7.47
DPM-Solver-v3-2 14.92 11.13 8.98 8.14 7.93 7.70 7.42
DPM-Solver-v3-3 15.51 11.77 9.37 8.67 8.18 7.73 7.52
RE-2 (ri=logSNR) 13.98 10.98 8.84 8.16 7.81 7.52 7.32
RE-2 (refined ri) 14.33 11.16 8.95 8.14 7.79 7.48 7.25
DPM-Solver++-2 16.27 12.40 9.55 8.66 8.18 7.84 7.61
DPM-Solver++-3 15.93 11.49 8.98 8.39 8.11 7.74 7.63
UniPC-2

Guided-Diffusion
15.44 11.64 9.11 8.46 8.17 7.75 7.62

UniPC-3
(s=3, seed=3407)

16.11 11.88 9.25 8.58 8.14 7.77 7.72
DPM-Solver-v3-2 17.97 12.04 9.17 8.40 8.11 7.76 7.67
DPM-Solver-v3-3 20.87 14.94 10.68 9.29 8.57 7.92 7.77
RE-2 (ri=logSNR) 14.37 11.04 8.87 8.37 7.89 7.56 7.51
RE-2 (refined ri) 15.93 11.94 9.21 8.31 7.89 7.58 7.54

D.7.2 Comparative Ablation Study of Denoising SamplingMethods.

To validate the effectiveness of Algorithm 1 in improving the denoising diffusion process, we
conducted a comprehensive ablation study. We systematically compared various gradient estimation-
based denoising sampling methods on ImageNet-256, a high-dimensional and complex dataset, using
a baseline pre-trained model Dhariwal & Nichol (2021), employing multiple random seeds and
varying guidance scales, as detailed in Table 6. To ensure fairness, the evaluation followed the
standardized evaluation methodology outlined in D.4, with all methods were implemented using an
identical codebase and default settings. Each method was implemented on the NVIDIA GeForce
RTX 3090 GPU, utilizing a batch size of 25.
For the high-dimensional and complex ImageNet-256 dataset, advanced iterative methods such as
DPM-Solver++ Lu et al. (2022b), UniPC Zhao et al. (2024), and DPM-Solver-v3 Zheng et al. (2023a)
demonstrate steady performance improvements, progressively advancing the algorithm’s capabilities.
At NFE=5, the FID scores range from 16.62 (DPM-Solver++) to 14.88 (DPM-Solver-v3-2), and
at NFE=20 , they converge within a narrower range of 7.42 to 7.76. Note that, among these three
solvers, DPM-Solver-v3 differs from DPM-Solver++ and UniPC because it requires the extraction of
additional empirical model statistics (EMS). To ensure clarity and fairness in our comparison, we
categorize the three gradient-based sampling methods into two types for the purpose of discussing our
improvements. Compared to DPM-Solver++ and UniPC, our proposed Algorithm 1 (RE-2 method),
using both the log-SNR prior and the refined prior ri achieves consistently significant improvements,
especially at lower NFEs. For example, at NFE=5, the log-SNR prior achieves an FID of 13.94,
while the refined prior ri reaches 14.21, both clearly surpassing two gradient-based iterative methods,
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which range from 16.62 to 14.88. At higher NFEs, both prior ri continues to demonstrate superiority,
achieving SOTA performance with FID scores of 7.25 under the refined ri, outperforming these
methods (with scores ranging from 7.32 to 7.25).
We observe that, compared to DPM-Solver++ and UniPC, DPM-Solver-v3 improves sampling
performance on both high-dimensional and low-dimensional datasets by leveraging the concept of
dataset-specific EMS. Notably, the improvement is particularly pronounced on low-dimensional
datasets such as CIFAR-10 (see Table 3). Nevertheless, by applying the concept of variance-driven
conditional entropy reduction iterative approach to the DPM-Solver-v3 framework, we also achieved
improved performance, as presented in Table 3. Notably, on the pre-trained diffusion model on the
ImageNet 256 dataset, our proposed RE-2 method consistently improves sampling performance by
leveraging variance-driven conditional entropy reduction iterations, with greater generalizability
without requiring additional dataset-specific EMS. For instance, while DPM-Solver-v3 achieved the
best FID scores of 14.88 at NFE=5 and 7.42 at NFE=20, our method demonstrates improved FIDs of
13.98 at NFE=5 and 7.25 at NFE=20. Consequently, in contrast to DPM-Solver-v3, our algorithm
not only improves the sampling performance but also holds greater generalizability, a characteristic
particularly evident in our experiments on Stable Diffusion, as presented in Figure 7.
In summary, all ablation experiments on the general-purpose pre-trained model demonstrate that our
proposed variance-driven conditional entropy reduction iterative framework can consistently improve
denoising diffusion sampling. It achieves SOTA performance across different datasets and NFE levels,
outperforming benchmark gradient-based sampling methods.

E Sample Comparison in Pixel Space, Latent Space, and Stable Diffusion

(a) DPM-Solver-v3, 5 NFE , 12.22 FID. (b) RE-based, 5 NFE, 10.61 FID.

Figure 5: Random samples of EDM Karras et al. (2022) on CIFAR10 dataset with only 5 NFE. Within
the EMS-parameterized iterative framework provided by DPM-Solver-v3 Zheng et al. (2023a), the
RE-based iterative approach improves FID by balancing the conditional variance.

DPM-Solver++ UniPC DPM-Solver-v3 Algorithm 1
7.76 FID 7.71 FID 7.67 FID 7.48 FID

Figure 6: Random samples from the pretrained Guided-Diffusion model with 20 NFE on the ImageNet
256 dataset, Dhariwal & Nichol (2021).
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(a) Algorithm 1 (2m, s=0.75).

(b) Algorithm 1 (2m),s=0.5.

(c) Algorithm 1 (2m),s=0.1.

Figure 7: Random samples from Stable-Diffusion Rombach et al. (2022) with a classifier-free
guidance scale 7.5, using 10 number of function evaluations (NFE) and text prompt “A beautiful
castle beside a waterfall in the woods, by Josef Thoma, matte painting, trending on artstation HQ”.
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DPM-Solver++ UniPC DPM-Solver-v3 Algorithm 1(RE)

5
NFE

(a) UniPC, 25 NFE. (b) DPM-Solver-v3, 25 NFE. (c) RE, 25 NFE.

Figure 8: Random samples from Stable-Diffusion Rombach et al. (2021) with a classifier-free
guidance scale 7.5, with text prompt “environment living room interior, mid century modern, indoor
garden with fountain, retro, m vintage, designer furniture made of wood and plastic, concrete table,
wood walls, indoor potted tree, large window, outdoor forest landscape, beautiful sunset, cinematic,
concept art, sunstainable architecture, octane render, utopia, ethereal, cinematic light”.

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

NFE=5 NFE=10 NFE=15 NFE=25

DPM-
Solver
++
(Lu
et al.,
2022b)

UniPC
(Zhao
et al.,
2024)

DPM-
Solver-
v3
(Zheng
et al.,
2023a)

Algorithm
1
(RE)

Figure 9: Random samples from Stable-Diffusion Rombach et al. (2021) with a classifier-free
guidance scale 7.5, using 5, 10, 15, 25 NFEs and text prompt “tree house in the forest, atmospheric,
hyper realistic, epic composition, cinematic, landscape vista photography by Carr Clifton & Galen
Rowell, 16K resolution, Landscape veduta photo by Dustin Lefevre & tdraw, detailed landscape
painting by Ivan Shishkin, DeviantArt, Flickr, rendered in Enscape, Miyazaki, Nausicaa Ghibli,
Breath of The Wild, 4k detailed post processing, artstation, unreal engine”.
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DPM-
Solver++ (Lu
et al., 2022b)

UniPC Zhao
et al. (2024)

DPM-Solver-
v3 Zheng et al.

(2023a)

Algorithm 1

Figure 10: Random samples from Stable-Diffusion Rombach et al. (2022) with a classifier-free
guidance scale 7.5, using 50 NFE and text prompt “a photograph of an astronaut riding a horse”.
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