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Abstract
Ensuring trustworthiness in machine learning
(ML) systems is crucial as they become increas-
ingly embedded in high-stakes domains. This pa-
per advocates for the integration of causal meth-
ods into machine learning to navigate the trade-
offs among key principles of trustworthy ML, in-
cluding fairness, privacy, robustness, accuracy,
and explainability. While these objectives should
ideally be satisfied simultaneously, they are of-
ten addressed in isolation, leading to conflicts
and suboptimal solutions. Drawing on existing
applications of causality in ML that successfully
align goals such as fairness and accuracy or pri-
vacy and robustness, this position paper argues
that a causal approach is essential for bal-
ancing multiple competing objectives in both
trustworthy ML and foundation models. Be-
yond highlighting these trade-offs, we examine
how causality can be practically integrated into
ML and foundation models, offering solutions
to enhance their reliability and interpretability.
Finally, we discuss the challenges, limitations,
and opportunities in adopting causal frameworks,
paving the way for more accountable and ethi-
cally sound AI systems.

1. Introduction
In recent years, machine learning (ML) has made remark-
able strides, driving breakthroughs in natural language pro-
cessing (Achiam et al., 2023), computer vision (Brooks
et al., 2024), and decision-making systems (Jia et al.,
2024). These advancements have led to widespread adop-
tion across diverse domains, including healthcare (Singhal
et al., 2025), finance (Lee et al., 2024), education (Team
et al., 2024), and social media (Bashiri & Kowsari, 2024),

1Anonymous Institution, Anonymous City, Anonymous Re-
gion, Anonymous Country. Correspondence to: Anonymous Au-
thor <anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

CAUSAL
DISCOVERY

PRIOR CAUSAL
KNOWLEDGE

CAUSAL
AUDIT

FAIR

PRIVATE

ROBUST
EXPLAINABLE

ACCURATE

Figure 1: Causal Trustworthy ML Cycle: Causal ML can
leverage existing knowledge and causal auditing to en-
hance different components of trustworthiness: explain-
ability, fairness, privacy, and accuracy while simultane-
ously advancing understanding through causal discovery.

where ML models now play a crucial role in diagnostics,
algorithmic trading, personalized learning, and content rec-
ommendation.

Given their soaring influence, it has become a global pri-
ority to ensure ethical and trustworthy ML systems. Many
international regulations and frameworks (European Com-
mission, 2021; OECD, 2019; Group of Twenty (G20),
2019; Infocomm Media Development Authority, 2020)
seek to establish guidelines for fairness, explainability, ro-
bustness, and privacy protection. For the scope of our pa-
per, we are aware of different definitions of trustworthiness,
but will focus on five core dimensions that are both widely
recognized and directly relevant to causal reasoning: fair-
ness, privacy, robustness, explainability, and accuracy. We
will introduce these dimensions and highlight their trade-
offs and intersections below.

Fairness. Fairness in ML refers to the principle that
systems should make unbiased decisions that do not dis-
criminate against individuals or groups based on sensi-
tive attributes such as race, gender, or socioeconomic sta-
tus. ML systems have been shown to rely heavily on bi-
ased data, amplifying existing biases and leading to un-
equal outcomes (COMPAS, 2020). These systems often
exhibit reduced accuracy for minority or underrepresented
groups, further exacerbating disparities (Buolamwini &
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Gebru, 2018). Given the speed and scale of ML-enabled
decisions, ensuring fairness is essential to prevent perpetu-
ating and exacerbating societal inequalities at an unprece-
dented scale.

Privacy. Privacy in ML emphasizes the protection of in-
dividuals’ sensitive and personal data. It has been shown
that even after removing identifiers such as names, infor-
mation can still leak, and individuals can be reidentified
through indirect attributes and data triangulation(Sweeney,
2000; Narayanan & Shmatikov, 2008; Ohm, 2010; Dwork,
2006). Additionally, sensitive information can be recon-
structed from gradients during model training if data is not
handled privately (Zhu et al., 2019; Geiping et al., 2020;
Aono et al., 2017; Fredrikson et al., 2015). Privacy is cru-
cial for ensuring compliance with data protection laws and
safeguarding human rights. It also fosters trust for individ-
uals to be more willing to contribute their data for model
training if their safety and privacy were ensured.

Robustness. Robustness refers to the system’s ability to
perform reliably under varying conditions, including ad-
versarial attacks, noisy inputs, or distributional shifts. For
example, models often underperform when faced with dis-
tribution shifts, such as changes in data characteristics be-
tween training and deployment environments (Hendrycks
& Dietterich, 2019; Recht et al., 2019; Ovadia et al., 2019).
Additionally, human-undetectable noise added to images
can cause models to make incorrect predictions, highlight-
ing their vulnerability (Szegedy et al., 2014; Goodfellow
et al., 2015). Robustness is critical to ensuring the safety
and reliability of AI systems, particularly in high-stakes ap-
plications such as healthcare and autonomous driving.

Explainability. Explainability refers to the ability of AI
systems to provide clear and understandable reasoning be-
hind their decisions or predictions. Deep neural networks
(DNNs), often referred to as “black boxes,” are inherently
complex and difficult to interpret, making them hard to au-
dit and assess for fairness or correctness (Lipton, 2018;
Doshi-Velez & Kim, 2017; Rudin, 2019). Explainability
is closely tied to accountability, as it enables stakehold-
ers to evaluate and challenge AI outputs when necessary.
Furthermore, regulations such as the GDPR emphasize the
“right to explanation,” which requires that individuals be
informed about and understand how automated decisions
affecting them are made (European Comission, 2016).

Trade-offs and Intersections. The trustworthy ML land-
scape involves complex trade-offs and interdependencies
between key objectives such as fairness, privacy, accuracy,
robustness, and explainability. Improving one aspect of-
ten comes at the expense of another, such as the trade-
off between privacy and accuracy in differential privacy,
where noise added to protect data reduces model accu-
racy (Xu et al., 2017; Carvalho et al., 2023). Similarly,

achieving fairness frequently requires sacrificing predic-
tive performance or resolving conflicts between competing
fairness notions, such as demographic parity and equalized
odds (Friedler et al., 2021; Kim et al., 2020). Trade-offs
also arise in explainability and accuracy, as complex mod-
els like DNNs excel in performance but lack interpretabil-
ity. Meanwhile, the relationship between fairness and pri-
vacy is nuanced, with evidence showing they can either
conflict, as noise may lead to disparate outcomes, or com-
plement each other by reducing bias (Pujol et al., 2020;
Dwork et al., 2011).

Causality. One of the most influential causal frameworks
is Pearl’s structural causal models (SCMs), which provide a
systematic approach to reasoning about causality and inte-
grating it into machine learning (Pearl, 2009b). This frame-
work defines causality as the relationship between the vari-
ables where a change in one variable (the cause) directly
leads to a change in another variable (the effect). It estab-
lishes a directional and often mechanistic link, distinguish-
ing relationships arising from mere correlations.

A key component of Pearl’s framework is the use of di-
rected acyclic graphs (DAGs) and do-calculus, which offer
a structured representation of causal dependencies and a
formal method for performing causal inference. A causal
DAG, denoted as G = (V, E), consists of a set of nodes V
representing random variables and directed edges E encod-
ing causal relationships among the variables.

Unlike correlation-based approaches, causality provides a
framework for disentangling the underlying mechanisms
that drive observed phenomena, offering a deeper inter-
pretation of data. Causal frameworks have been success-
fully applied to audit and mitigate fairness (Kim et al.,
2021; Kilbertus et al., 2017; Loftus et al., 2018) and to im-
prove robustness (Schölkopf, 2022). The research about the
connection between causality and privacy is still very lim-
ited, but some emerging studies show potential for applica-
tions (Tschantz et al., 2020). Finally, explainability is one
of the core features of causality and comes pre-packaged
with the causal framework. Despite the promising applica-
tions of causality for individual requirements of trustwor-
thy AI, the potential to use causality to reconcile individ-
ual requirements of trustworthy ML remains largely under-
explored.

Position. Despite significant advancements in research on
individual dimensions of trustworthy ML such as fairness,
privacy, and explainability—there is a notable lack of ef-
forts to integrate these dimensions into a cohesive and uni-
fied framework. Each ethical principle addresses distinct
challenges, yet their interplay often involves intricate trade-
offs, particularly concerning model performance metrics
such as accuracy. For example, mitigating fairness-related
biases may require adjustments that compromise predictive
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precision, while enhancing explainability can impose con-
straints on model complexity. We argue that systematically
addressing these trade-offs is a critical step toward devel-
oping AI systems that are both ethically sound and opera-
tionally efficient. While causality has been applied to ad-
dress individual challenges such as fairness or interpretabil-
ity, its potential to address the intersection of these chal-
lenges has largely been overlooked (see Appendix A for a
detailed review). In this position paper, we argue that in-
tegrating causality into ML and foundation models of-
fers a way to balance multiple competing objectives of
trustworthy AI.

The structure of our paper is as follows. Section 2 analyzes
how causality can reconcile multiple dimensions of trust-
worthy ML and explores how it can be integrated. Sec-
tion 3 discusses how foundation models amplify existing
ML trade-offs and introduce new challenges, for which we
argue that causality provides a principled approach to over-
coming these issues, and propose strategies for integrating
causal reasoning into foundation models at different devel-
opment stages. Section 4 covers limitations in applying
causality to ML and foundation models and proposes fu-
ture research directions, and Section 5 includes alternative
views. Finally, Section 6 suggests key steps for advancing
causality in ML and foundation models.

2. Causality for Trustworthy ML
Trustworthy ML involves inherent trade-offs between core

objectives such as accuracy, fairness, robustness, privacy,
and explainability. Inevitable trade-offs can exist between
accuracy and other objectives, fairness and privacy, and
conflicting fairness notions. However, some other goals
may reinforce each other, such as explainability aiding fair-
ness assessment, and privacy enhancing robustness (Dwork
& Lei, 2009; Hopkins et al., 2022).

Causality provides a principled approach to navigating
these trade-offs by explicitly modeling data-generating pro-
cesses and clarifying assumptions. This section first ex-
plores causal formulations for these trade-offs, and then in-
troduce how causality can mitigate these tensions and sup-
port a more balanced approach to trustworthy ML.

2.1. Causality for Trade-offs in Trustworthy ML

In this section, we examine key trade-offs in trustworthy
ML and illustrate how causal approaches can help reconcile
these competing objectives.

Privacy vs. Accuracy. The differential privacy approach
relies on adding noise to the data which is controlled by
the parameter ϵ (the smaller value of ϵ corresponds to more
noise, while the larger value indicates less noise and less
privacy). Naturally, it hurts the accuracy of an algorithm

learned on the privatized data. It is yet unknown how to
avoid this fundamental trade-off between data protection
and the utility of the data (Xu et al., 2017; Carvalho et al.,
2023). One of ways how causality can inform privacy is
provided by (Tschantz et al., 2020). The authors define pri-
vacy violations as causal effects, emphasizing that private
information is leaked when an adversary can infer sensi-
tive attributes from observable data due to causal pathways.
Therefore, causal models can help identify, quantify, and
mitigate such risks, offering a more systematic alternative
to heuristic-based privacy measures.

By aligning privacy interventions with causal relationships,
models can obscure sensitive attributes (e.g., sex, race)
while preserving meaningful data dependencies, reducing
the negative impact on accuracy. For example, causal
graphs ensure that interdependent variables (e.g., age and
education) are randomized together to avoid unrealistic
combinations (e.g., “Age: 5; Education: Bachelor”). Pre-
venting such inconsistencies not only improves accuracy
but also reduces the likelihood of adversaries exploiting ob-
fuscation patterns, enhancing overall privacy protection.

Fairness vs. Accuracy. Most of the statistical fairness lit-
erature focuses on improving fairness metrics while pre-
serving accuracy as much as possible (Feldman et al., 2015;
Calders & Verwer, 2010; Wei & Niethammer, 2022; Wang
et al., 2021a). However, fairness often comes at the cost of
reduced accuracy, as mitigating bias may require either ob-
scuring predictive features that also contribute to discrim-
ination or constraining model predictions within fairness-
imposed boundaries (Pinzón et al., 2022; Cooper et al.,
2021; Zliobaite, 2015; Zhao & Gordon, 2022).

A key issue is that many fairness-accuracy trade-offs arise
from addressing correlations rather than causal relation-
ships. Causal models can resolve these tensions by dis-
tinguishing legitimate predictive factors from spurious dis-
criminatory pathways. By disentangling the direct and in-
direct effects of sensitive attributes on outcomes, causal in-
terventions can mitigate unfair biases without sacrificing
accuracy. For instance, counterfactual fairness ensures that
individuals receive the same prediction regardless of their
sensitive attributes in a counterfactual world where those
attributes are altered (Kusner et al., 2017).

A compelling example comes from the COMPAS dataset,
where Black defendants were more likely to be classified
as high-risk for recidivism. Traditional statistical debi-
asing approaches treat race as a direct cause of the risk
score, but a causal analysis reveals that increased recidi-
vism risk is confounded by heightened policing in predom-
inantly Black neighborhoods. By explicitly modeling this
causal structure, fairness-enhancing interventions can ad-
just for the effect of over-policing, ensuring that predic-
tions reflect true recidivism risk rather than biased enforce-
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Figure 2: While trustworthy AI involves inherent trade-offs between its key components, causality can help mitigate these
tensions and enhance synergies.

ment patterns. This results in a more accurate and fairer
risk assessment (Chiappa, 2019; Zafar et al., 2017; Zhang
& Bareinboim, 2018).

Conflicting Notions of Fairness. Fairness in ML is often
constrained by conflicting definitions and measurement ap-
proaches. Friedler et al. (2021) highlight the fundamental
tension between the “what you see is what you get” and
“we are all equal” worldviews—where the former accepts
disparities based on observed merit, while the latter seeks
to correct historical inequalities. Causal graphs can crisply
formulate different notions of fairness (Nabi & Shpitser,
2018; Chen et al., 2024b), thus enabling feasible mitigation
via path-specific causal effects (Avin et al., 2005).

Kim et al. (2020) formalize fairness conflicts using the
fairness-confusion tensor, showing that notions like de-
mographic parity and equalized odds impose incompatible
constraints. The causal approach mitigates these conflicts
by focusing on fairness as a property of causal pathways
rather than statistical dependencies (Rahmattalabi & Xi-
ang, 2022). This allows for greater flexibility in aligning
fairness interventions with real-world causal mechanisms,
allowing better-informed choice of fairness metric.

Robustness vs. Accuracy. The trade-off between gener-
alizability and accuracy is rooted in the observation that
models trained to achieve high accuracy on a specific
dataset often overfit to the peculiarities of that distribu-
tion. This overfitting compromises their ability to gener-
alize to new, unseen distributions (Schölkopf, 2022). On
the contrary, causal models focus on invariant relationships
that hold across different environments, making them ro-
bust to distribution shifts. This robustness enhances the
model’s ability to generalize to unseen data, improving ac-
curacy in diverse settings. For example, causal represen-
tation learning disentangles stable causal factors, allowing
the model to maintain performance when data distributions
change. Moreover, Richens & Everitt (2024) prove that ro-
bust agents implicitly learn causal world models, further
emphasizing the intrinsic interdependency between robust-

ness and causality.

Explainability vs. Accuracy. Many complex algorithms,
such as deep neural networks (DNN) or random forest
(RF), have impressive predictive power but provide “black-
box” solutions that are hard to question or evaluate (Lon-
don, 2019; van der Veer et al., 2021). Causal models offer
inherently interpretable structures by quantifying the con-
tribution of each input feature to the output, providing clear,
human-understandable explanations. Causal recourse fur-
ther enhances explainabilit by offering actionable recom-
mendations for individuals affected by model decisions,
helping them achieve a more favorable outcome (Karimi
et al., 2021).

Fairness vs. Explainability. A particularly powerful ap-
proach within causal explainability is counterfactual expla-
nations, which help users understand model decisions by
asking “what if” questions. Counterfactual methods gener-
ate alternative scenarios where certain features are changed
while keeping others constant, allowing for a direct assess-
ment of how specific inputs influence predictions (Wachter
et al., 2017; Karimi et al., 2020). Counterfactual explana-
tions are particularly useful for fairness auditing as they can
help identify why certain groups are adversely affected and
guide corrective measures.

Privacy vs. Robustness. Adding noise without consider-
ing the data structure or causal relationships can obscure
meaningful patterns and introduce spurious correlations.
This indiscriminate noise can make models less robust to
unseen data, particularly under distribution shifts.

In contrast, causal models inherently emphasize invariant
relationships—patterns that are stable across various data
distributions. Noise that disrupts non-causal relationships
or spurious correlations can further enhance the robustness
of these models to shifts in data. Finally, some results show,
that causal models provide stronger guarantees for adver-
sarial robustness with lower epsilon in differential privacy,
thus allowing for lesser negative impact on accuracy (Tople
et al., 2020).
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Privacy vs. Fairness. Privacy mechanisms, such as
noise addition, can disproportionately impact minority
groups, leading to fairness concerns. Differentially Pri-
vate Stochastic Gradient Descent (DP-SGD), for example,
has been shown to degrade model accuracy more severely
for underrepresented groups, exacerbating fairness dispar-
ities (Bagdasaryan et al., 2019). However, Causal models
can guide privacy interventions by ensuring that noise is
applied in ways that do not disrupt fairness-critical rela-
tionships. For instance, a causal graph can reveal which
features or pathways should be preserved to maintain fair-
ness while protecting privacy.

Prediction Accuracy vs. Intervention Accuracy. One of
the key advantages of the causal framework is its ability
to support not just prediction but also intervention (Hernán
& Robins, 2020; Schölkopf, 2022). While predictive mod-
els are sufficient in some domains, many high-stakes appli-
cations—such as healthcare, policy-making, and personal-
ized treatment—require actionable interventions. In these
settings, understanding causal relationships is essential, as
the objective is not only to predict outcomes but also to in-
fluence them.

2.2. Integrating Causality into ML

Integrating causality into ML enables models to move be-
yond pattern recognition and learn underlying mechanisms
governing data. This section explores different approaches
to causal ML, ranging from explicitly constrained models
that follow predefined causal structures to methods that in-
fer causal relationships from data.

Causally Constrained ML (CCML). CCML refers to
approaches that explicitly incorporate causal relationships
into model training or inference as constraints or guiding
principles. Given a causal graph G = (V,E), where V
represents variables and E denotes directed edges encoding
causal relationships, the goal is to ensure that the learned
model f : X → Y adheres to the causal structure encoded
in G (Berrevoets et al., 2024; Zinati et al., 2024; Afonja
et al., 2024; Schölkopf et al., 2016).

Invariant feature learning (IFL). IFL relies on discovered
implicit or latent causal features and structures. The task
of Invariant Feature Learning (IFL) is to identify features
of the data X that are predictive of the target Y across a
range of environments E . From a causal perspective, the
causal parents Pa(Y ) are always predictive of Y under any
interventional distribution (Kaddour et al., 2022). IFL can
be achieved by regularizing the model or providing causal
training data that is free of confounding.

Disentangled VAEs. VAEs aim to decompose the data
X into disentangled latent factors Z that correspond to dis-
tinct underlying generative causes (Burgess et al., 2018). It

can be combined with interventional experiments in mech-
anistic interpretability that involve “switching off” specific
neurons or circuits to gain knowledge about causal work-
ings of the complex model (Leeb et al., 2022). Causality is
also used to audit models for fairness (Cornacchia et al.,
2023; Byun et al., 2024) or robustness (Drenkow et al.,
2024), providing insights into how decisions are influenced
by sensitive variables and under distribution shifts.

Double Machine Learning (DML). DML provides an-
other causal approach by leveraging modern ML tech-
niques for estimating high-dimensional nuisance parame-
ters while preserving statistical guarantees in causal infer-
ence (Chernozhukov et al., 2018). DML decomposes the
estimation problem into two stages: (1) predicting con-
founders using ML models and (2) estimating the causal
effect using residualized outcomes.

Causal Discovery. Finally, ML can be leveraged for causal
inference or to discover causal knowledge from observa-
tional data. For instance, methods for causal discovery
use statistical patterns to infer causal relationships, with
notable examples including (Spirtes et al., 2000; Shimizu
et al., 2006; Janzing & Schölkopf, 2010; Peters et al., 2011;
Hauser & Bühlmann, 2012; Le et al., 2016).

All of the above forms a causal ML cycle (Figure 1) in
which ML is enhanced by causal knowledge, controlled by
causal tools, and finally contributes to enriching scientific
knowledge. We include a supplementary introduction to
causality and causal ML in Appendices C and D.

3. Causality for Trustworthy Foundation
Models

Foundation models, including state-of-the-art multimodal
systems like Large Language Models (LLMs) and vision-
language models, have demonstrated exceptional capabili-
ties across diverse tasks (Achiam et al., 2023; Team et al.,
2023; Radford et al., 2023; Brooks et al., 2024). However,
their reliability remains a concern due to issues like spu-
rious correlations, hallucinations, and unequal representa-
tion. Trade-offs and causality in trustworthy foundation
models remain underexplored as compared to traditional
ML. In this section, we explore the potential for causality
to improve fairness, explainability, privacy, and robustness
in foundation models following slightly different taxonomy
than in the previous section due to their unique challenges.

3.1. Dimensions of Trustworthy Foundation Models

In this section, we examine foundation model-specific
trade-offs between key dimensions of trustworthy AI and
illustrate how causal approaches can soften those tensions.

Fairness vs. Accuracy. Causal frameworks have be-
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come integral to fairness interventions in LLMs by iden-
tifying and mitigating pathways that lead to unfair predic-
tions (Madhavan et al., 2023a; Cotta & Maddison, 2024).
Counterfactual fairness ensures that sensitive attributes
(e.g., gender, race) do not causally influence outcomes. For
example, in job recommendation systems, counterfactual
fairness guarantees identical recommendations for equally
qualified candidates regardless of their gender (Madhavan
et al., 2023a). Methods like causal disentanglement iso-
late sensitive features from output-relevant causal factors,
ensuring that spurious correlations, such as gender biases
in job roles, do not propagate through the model (Zhou
et al., 2023a; Chen et al., 2024a). SCMs further enable
fairness-aware fine-tuning by disentangling causal effects.
However, striving for diversity has been shown to introduce
non-factual output in text-to-image models. In early 2024,
Google’s AI tool, Gemini, faced criticism for generating
historically inaccurate images, such as depicting America’s
Founding Fathers as Black individuals and Nazis as racially
diverse (Vincent, 2024). Here, causality could help distin-
guish historically impossible scenarios from desirable di-
versity, ensuring both fairness and factual integrity in AI-
generated content. Mode collapse is another foundation
model-specific fairness issue where models generate overly
generic outputs, reducing diversity and disproportionately
omitting minority group representations. Causal modeling
can potentially help preserve minority information by ex-
plicitly capturing causal relationships, preventing spurious
correlations from erasing underrepresented patterns.

Robustness vs. Accuracy. Causal frameworks address
robustness by training models to rely on invariant causal
relationships while penalizing reliance on dataset-specific
spurious features (Wu et al., 2024). For instance, instead
of associating ”doctor” with ”male,” causal invariance en-
forces reliance on task-relevant features like medical termi-
nology (Zhou et al., 2023a). Causal regularization further
discourages attention to non-causal patterns during infer-
ence achieving better accuracy and robustness.

Privacy vs. Attribution. Causal approaches to privacy fo-
cus on detecting and severing pathways involving person-
ally identifiable information (PII) in LLMs. Causal obfus-
cation uses SCMs to identify and block sensitive pathways
(e.g., names, locations) during training or inference (Chu
et al., 2024). Unlike traditional privacy-preserving mech-
anisms that indiscriminately apply noise or randomization,
it ensures that only privacy-sensitive dependencies are re-
moved, preserving essential predictive relationships.

Beyond conventional privacy concerns, attribution and
memorization pose significant challenges in foundation
models. Attribution is crucial in determining whether spe-
cific data—such as an artist’s work—has contributed to the
training of a model, enabling rightful recognition and com-

pensation. Memorization, on the other hand, prevents ef-
fective data removal, meaning that once a copyrighted work
is embedded into a model, it becomes difficult to erase
upon request. Causal auditing (Sharkey et al., 2024) poten-
tially offers a principled way to address these challenges
by providing a structured framework to verify whether a
given dataset—such as an artist’s work—has influenced the
model’s outputs. Unlike statistical correlation-based meth-
ods, which may falsely associate stylistic elements with
broader art movements, causal auditing can disentangle di-
rect influences from broader historical trends, ensuring that
attribution is based on actual data contributions rather than
incidental similarities.

Explainability vs. Capability. Although foundation mod-
els demonstrate remarkable capabilities in various tasks,
their outputs often lack interpretability, making it difficult
to understand or explain their reasoning. Causal models
can help quantify how much each input feature contributes
to a specific output, providing a clear and interpretable
explanation. By modeling causal chains, we can explain
how different stages of the LLM (e.g., embedding, atten-
tion layers, output logits) interact to produce a final de-
cision (Bagheri et al., 2024). This creates a step-by-step
explanation of the model’s reasoning process. Another do-
main that is related to causality is mechanistic interpretabil-
ity. Mechanistic interpretability seeks to decode the inner
workings of LLMs by analyzing their architecture, weights,
and activation patterns (Conmy et al., 2023). Causality en-
hances this understanding by identifying cause-effect rela-
tionships within these mechanisms. Causality can identify
specific pathways in neural circuits that contribute to cer-
tain outputs (Palit et al., 2023; Parekh et al., 2024). For
example, specific neurons or attention heads affect token
predictions, revealing the factors driving outputs.

3.2. Integrating Causality in Foundation Models

This section delves into practical applications of causality
in FMs across three key stages: pre-training, post-training,
and auditing. We conclude with a discussion of the practi-
cal advantages and limitations of the proposed approaches.

Pre-training: Causal data augmentation. Synthetic
datasets with explicit causal structures, such as counter-
factual examples or causal-transformable text data, can be
used to augment training data. Counterfactual data aug-
mentation introduces scenarios where causal relationships
differ from spurious correlations, helping models learn true
causal dependencies instead of misleading patterns (Web-
ster et al., 2020; Chen et al., 2022).

Pre-training: Causal Representation Learning. By dis-
entangling causal factors from non-causal ones, models
can learn representations that separate meaningful causal
features from irrelevant associations. Techniques such as
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causal embedding methods (Rajendran et al., 2024; Jiang
et al., 2024), which can use training data annotated with
causal labels, can guide models in identifying and prior-
itizing true causal relationships. This has been shown to
reduce reliance on spurious correlations, such as gender-
biased occupational associations (Zhou et al., 2023b).

Pre-training: Entity interventions. SCMs can be used to
intervene on specific entities (e.g., replacing “Joe Biden”
with “ENTITY-A”) during pre-training (Wang et al., 2023),
thus reducing entity-based spurious associations while pre-
serving causal relationships in the data.

Pre-training: Loss function. Modifying the pre-training
loss function to penalize reliance on confounders can help
align models with causal principles. For instance, fine-
tuning models on embeddings pre-trained with debiased
token representations has shown promise for causal learn-
ing (Kaneko & Bollegala, 2021; Guo et al., 2022; He et al.,
2022; Wang et al., 2023).

Post-training: Fine-tuning. Fine-tuning on datasets
specifically designed to highlight causal reasoning (e.g.,
datasets emphasizing cause-effect linguistic patterns) en-
sures that models learn causal-invariant patterns. Further,
counterfactual data samples can also improve the fine-
tuning. Synthetic counterfactual examples improve the
model’s robustness to spurious correlations, similar to pre-
training, but with better sample size efficiency. Frame-
works like DISCO (Chen et al., 2022) generate diverse
counterfactuals during fine-tuning to enhance OOD gen-
eralization for downstream tasks. Causally Fair Language
Models (CFL) (Madhavan et al., 2023b) use SCM-based
regularization to detoxify outputs or enforce demograph-
ically neutral generation during post-training. Wang &
Culotta (2020) use causal reasoning to separate genuine
from spurious correlations by computing controlled direct
effects, ensuring robust performance.

Post-training: Alignment. RLHF can be adapted to in-
clude causal interventions, allowing feedback to act as in-
strumental variables that correct biased model behavior.
Causality-Aware Alignment (CAA) (Xia et al., 2024) incor-
porates causal interventions to reduce demographic stereo-
types during fine-tuning with alignment objectives. Ex-
tending RLHF with causal alignment to support dynamic,
context-sensitive interventions could help address biases
that evolve. Integrating causal reasoning into the reward
model’s decision-making process, by critiquing the output
of LLM using a reward model or a mixture of reward mod-
els that control for specific confounders or spurious corre-
lations can potentially improve the downstream reasoning
abilities potentially mitigating hallucinations.

Auditing and Evaluation. Causality provides a struc-
tured framework for auditing privacy risks by identify-

ing whether sensitive user data contributes to model out-
puts. This is particularly important for privacy regulations
like GDPR’s “right to be forgotten” (European Comission,
2016), where users can request their data to be removed
from an AI system. However, verifying whether an LLM
has truly forgotten a user’s data is a complex challenge,
as models can memorize training information in ways that
are difficult to detect through standard evaluation metrics.
One key approach in privacy auditing is using causal attri-
bution, which assesses whether a specific data point influ-
enced a given output. By using do-calculus, privacy audi-
tors can evaluate how an output changes when a particular
data source is removed. This enables a principled test of
whether an LLM has truly forgotten a user’s data.

Practical Considerations. In supervised fine-tuning and
alignment, the downstream task and its causal relationships
are often known, allowing for more targeted interventions
on confounding variables and even the collection of task-
specific data to refine causal structures. Additionally, since
post-training typically requires less data than pre-training,
integrating causal insights becomes more feasible. Pre-
training offers the advantage of learning broad represen-
tations from diverse data, but it is difficult to enforce causal
constraints due to the lack of explicit task definitions and
causal structures. Auditing is particularly useful for detect-
ing biases, ensuring fairness, and validating robustness in
real-world scenarios. Unlike pre-training and fine-tuning,
auditing does not require modifying the training pipeline,
making it a cost-effective way to introduce causal reason-
ing retrospectively.

4. Challenges and Opportunities
Despite its advantages, there are many challenges when ap-
plying causality to trustworthy ML, including reliance on
strong causal assumptions and limited availability of a pri-
ori causal knowledge, particularly in the form of DAGs.
Foundation models bring further complications due to their
scale, high-dimensional data, and the difficulty of validat-
ing causal structures. We outline key obstacles in integrat-
ing causality into ML and foundation models and suggest
strategies to overcome them.

Availability of Causal Knowledge. A major challenge
in causal ML is the limited availability of causal knowl-
edge, particularly in the form of DAGs. Expert-constructed
DAGs may suffer from subjectivity and scalability issues,
while ML-based causal discovery is constrained by iden-
tifiability assumptions and noise sensitivity. However, re-
cent hybrid approaches combining classical causal discov-
ery with LLM-based reasoning offer promising solutions.

Causal Transportability. Scientific knowledge often lacks
direct applicability across different populations, making
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causal transportability essential. Pearl and Bareinboim’s
DAG-based framework adjusts causal knowledge for new
settings using targeted data collection (Pearl & Barein-
boim, 2011b; Bareinboim & Pearl, 2014; Pearl & Barein-
boim, 2011a). Building on this, Binkyte et al. (2024) pro-
pose an expectation-maximization (EM) approach to adapt
causal knowledge for target demographic applications.

Potentially Unresolvable Tensions. Not all tensions in
trustworthy AI can always be fully resolved. For in-
stance, stronger privacy protections often reduce model
utility (Dwork et al., 2014; Bassily et al., 2014). Sim-
ilarly, explainability may sometimes come at the cost of
accuracy, and robustness can conflict with fairness in cer-
tain scenarios. However, causality provides a structured
approach to evaluating these trade-offs, making it possible
to quantify their impact and identify cases where full rec-
onciliation is not feasible. Importantly, it is crucial to be
transparent about these limitations, as this fosters societal
trust, promotes accountability, and enables more informed
decision-making in AI development.

Challenges in Causal Foundation Models. One founda-
tion model-specific challenge is concept superposition, par-
ticularly in LLMs, where multiple meanings are entangled
within a single representation, complicating causal reason-
ing (Elhage et al., 2022). Vision models exhibit this issue
to a lesser extent due to their structured data formats. Being
aware of superposition is imporant for effectively integrat-
ing causality.

Another challenge is the lack of high-quality causal data.
Training foundation models with causal reasoning requires
datasets annotated with explicit causal structures or inter-
ventional data, which are scarce and expensive to produce.
Scalable methods for generating synthetic causal datasets
show a promising direction. Alternatively, focusing on
post-training methods allows causal interventions in a more
data-efficient way.

Additionally, the computational complexity of integrating
causal reasoning into foundation models poses a significant
challenge. For fine-tuning, low-rank adaptation methods
such as LoRA can be employed to reduce the number of
learnable parameters, making causal integration more effi-
cient without compromising performance (Hu et al., 2021).

5. Alternative View
Some may argue that different domains prioritize differ-
ent requirements for trustworthy ML, and there is no need
to reconcile them. However, this perspective is unlikely
to hold universally, as most real-world applications inter-
sect with multiple ethical and trustworthy ML principles,
such as fairness, privacy, and robustness, which must be
balanced to ensure reliable outcomes.

Another perspective suggests that causal properties can
emerge spontaneously by training larger models on vast
amounts of data. While this is possible, it is not guaranteed,
and more importantly, it provides no control over whether
or how these properties arise. In contrast, much of the sci-
entific causal knowledge already exists, and finding ways
to integrate this knowledge with machine learning models
offers a more resource-efficient, reliable, and explainable
pathway to achieving trustworthy ML.

6. Conclusion and Call for Action
Causal models offer a principled approach to trustworthy
AI by prioritizing relationships that are causally justified
and invariant across contexts. This approach reduces ten-
sions between competing objectives and can enhance mul-
tiple dimensions—privacy, accuracy, fairness, explainabil-
ity, and robustness—simultaneously, creating models that
are not only ethically sound but also practically effective.

To further advance trustworthy ML foundation models, we
emphasize the need for the following actions:

Incorporate Trade-off Awareness in Model Design: Ensure
that foundation models are developed with explicit consid-
eration of trade-offs between key trustworthy AI dimen-
sions—fairness, privacy, robustness, explainability, and ac-
curacy.

Leverage Causality to Resolve or Soften Trade-offs: Where
possible, integrate causal reasoning to disentangle compet-
ing objectives and mitigate conflicts.

Develop Scalable Methods for Causal Data Integration:
Encourage the development of algorithms and pipelines to
integrate causal knowledge into foundation models at scale.

Create and Share High-Quality Causal Datasets: Foster
initiatives to curate, annotate, and share datasets with ex-
plicit causal annotations or interventional information.

Advance Causal Discovery Techniques: Invest in research
to improve causal discovery algorithms. Hybrid ap-
proaches combining classical methods with LLM-based
contextual reasoning show a promising direction.

Benchmark and Evaluate Causal Models: Establish evalu-
ation frameworks that assess the ability of causal models to
balance trade-offs effectively and provide transparent justi-
fications for their decisions in high-stakes domains.

All these advancements are crucial for expanding the appli-
cation of causality in ML and foundation models, paving
the way for more balanced and trustworthy AI solutions.
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7. Impact Statement
This paper advocates for integrating causality into founda-
tion models to enhance fairness, privacy, robustness, and
explainability. By reducing reliance on spurious correla-
tions and improving decision-making, causal methods can
make AI systems more reliable, transparent, and aligned
with human values—especially in high-stakes domains like
healthcare, law, and finance. Adopting causality-driven AI
has the potential to improve trust, regulatory compliance,
and ethical governance, ultimately contributing to a more
fair, transparent, and socially beneficial technological land-
scape.
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A. Related work
The literature on trade-offs in ethical AI emphasizes the
inherent tensions and competing objectives involved in de-
signing and deploying AI systems that align with ethical
principles. The works of Sanderson et al. (2024); Whittle-
stone et al. (2019); Katirai & Nagato (2024) explore frame-
works for balancing fairness, accuracy, and other conflict-
ing priorities. Kemmerzell & Schreiner (2024) explore
trade-offs between robustness, accuracy, fairness, and pri-
vacy, and suggest data augmentation techniques that mini-
mize the trade-offs.

The surveys on the use of causality for trustworthy
AI (Ganguly et al., 2023; Rawal et al., 2024; Liu et al.,
2023) provide a comprehensive overview of the exist-
ing use cases. However, they do not discuss the need
for causality explicitly and do not focus on the role of
causality in alleviating tensions in trustworthy AI. Notably,
only Ganguly et al. (2023) overview the use of causality in
privacy and exclusively focuses on the adversarial robust-
ness through generalization. Discussions on causality for
ethical AI focusing on challenges and applications are pro-
vided in (Rahmattalabi & Xiang, 2022; Vallverdú, 2024).

Several works discuss the benefits of use of causality for
one or two of the aspects of trustworthy AI. Discussion
on the need for causality for fairness can be found in the
work of (Binkytė et al., 2022; Plecko & Bareinboim, 2024;
Makhlouf et al., 2024). The study by (Wang et al., 2021b;
Ehyaei et al., 2023) explored causality to enhance fairness
and robustness.

B. Causality. Frameworks and Definitions
The field of statistical causality encompasses a diverse
range of theories and approaches that often complement
or compete with each other, rather than forming a uni-
fied framework. Researchers have likened the current state
of statistical causality to ”probability theory before Kol-
mogorov” (Dawid, 2015). In practice, the application of
statistical causality typically involves combining tools and
methods from multiple frameworks. This section provides
an overview of the existing landscape, highlighting key the-
ories and definitions. Most approaches conceptualize cau-
sation either as a relationship revealed through linear re-
gression, grounded in the notion of real or hypothetical
interventions, or requiring a mechanistic understanding of
the underlying processes (Berzuini et al., 2012). In this
work, we primarily rely on the structural probabilistic mod-
els framework (Pearl, 2009a) and the potential outcomes
framework (Rubin, 2005). Below, we provide an overview
of these frameworks and briefly touch on other approaches
to causality. For technical definitions of relevant causal
concepts, refer to the Technical Preliminaries C.

B.1. Potential Outcome Framework

The potential outcomes framework is one of the earliest
formal theories of causal inference (Sjölander, 2012). It
defines causal effects as the difference in potential out-
comes under different levels of exposure or treatment (Ru-
bin, 2005). This framework uses the language of potential
outcomes to express causal effects in terms of joint distri-
butions of potential outcomes represented as random vari-
ables. Causal assumptions in this framework are encoded
as constraints on these distributions (Shpitser, 2012).

Potential outcomes can be categorized as factual (repre-
senting what actually occurred) or counterfactual (repre-
senting what would have occurred under different condi-
tions). For example, if an individual took a medication
and recovered, the factual outcome is ”recovery,” while the
counterfactual outcome represents what would have hap-
pened if the medication had not been taken. Since coun-
terfactual outcomes are inherently unobservable for an in-
dividual, estimating subject-specific causal effects is often
impractical (Sjölander, 2012).

At the population level, however, counterfactual outcomes
and causal effects can be estimated. Population-level
causal effects contrast outcomes when everyone receives a
treatment versus when no one does. Although only factual
outcomes are observed, randomization allows for causal ef-
fect estimation under the Stable Unit Treatment Value As-
sumption (SUTVA) (Sjölander, 2012). Randomization en-
sures that potential outcomes are statistically independent
of exposure, enabling identification of causal effects (Ru-
bin, 2005). These principles are formally established in the
literature (Rubin, 2005; Sjölander, 2012).

While the potential outcomes framework is widely used,
it has limitations. Pearl has critiqued the framework for
not providing systematic guidelines on which covariates to
include for adjustment (Pearl, 1988). He warns that in-
cluding all available covariates may inadvertently increase
bias, highlighting the need for caution when selecting ad-
justment variables.

B.2. Non-Parametric Structural Models (NPSEM)

The framework proposed by Pearl (Pearl, 2009a) is of-
ten celebrated for its coherence and robust formal foun-
dations (Dawid, 2010). Pearl integrates principles from
agency causality (focused on interventions), probabilis-
tic graphical models (Dawid, 2010), and counterfactual
reasoning (Sjölander, 2012). His approach balances
the probabilistic view of causality from Bayesian mod-
els and the deterministic view from structural equation
models (SEMs) common in econometrics and social sci-
ences (Pearl, 2009a).

The NPSEM framework represents causal relationships us-
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ing directed acyclic graphs (DAGs). A DAG G = (V, E)
consists of a set of variables V and directed edges E that
encode causal dependencies. The structure ensures no cy-
cles are formed. DAGs connect causal structure with joint
probability distributions via the Markov condition, which
states that each variable is conditionally independent of its
non-descendants given its parents.

DAGs not only capture conditional independence but also
distinguish causal from non-causal data-generating pro-
cesses. If a variable Y has an incoming edge from X , X
is a direct cause of Y . Indirect causation is mediated by
intermediate variables; for instance, if X influences Y via
Z, then Z is a mediator. The NPSEM framework also pro-
vides criteria for determining the identifiability of causal
quantities from observational data (Pearl, 2009a), making
it a powerful tool for causal inference (Shpitser, 2012).

B.3. Alternative Approaches

The sufficient cause framework views causation as a set
of sufficient conditions leading to an event (VanderWeele,
2012; Mackie, 1965). Unlike the potential outcomes
approach, which emphasizes causes, this framework fo-
cuses on effects (VanderWeele, 2012). Pearl extends this
by proposing probabilistic notions of necessity and suffi-
ciency (Pearl, 2009a).

The decision-theoretic approach incorporates stochastic
counterfactuals to facilitate inference transportability be-
tween observational and experimental settings (Berzuini
et al., 2012). This approach relaxes strong assumptions of-
ten required by potential outcomes (Dawid, 2015).

Finally, structural equation models (SEMs), rooted in de-
terministic relationships expressed through structural linear
equations, remain widely used but are limited by their para-
metric assumptions and inability to model complex, non-
linear causal relationships (Wright, 1921).

C. Causality: Technical Preliminaries
C.1. Causal Structures

Variables are represented by capital letters (e.g., X , Y ),
while specific values of variables are indicated using low-
ercase letters (e.g., A = a, W = w). Sets of variables and
their values are denoted by bold capital letters (e.g., V) and
bold lowercase letters (e.g., v), respectively.

A causal graph, denoted as G = (V, E), is a Directed
Acyclic Graph (DAG) consisting of a set of variables or
nodes V and edges E . Each edge X → Y signifies a causal
relationship, meaning changes in X directly influence Y .
Importantly, altering X impacts Y , but modifying Y does
not affect X .

Causal graphs include three foundational structures: medi-
ators, confounders, and colliders (Pearl, 2009b), as illus-
trated in Figure 3:

• Mediator: A variable W (Figure 3a) mediates the ef-
fect of X on Y . For instance, X → W → Y shows
X’s influence on Y through W . Mediators are also
called chain structures.

• Confounder: A variable C (Figure 3b) is a common
cause of X and Y , resulting in a non-causal correla-
tion between them. While X and Y are correlated in
this structure, X does not directly cause Y .

• Collider: A variable Z (Figure 3c) is influenced by
X and Y . Unlike the other structures, X and Y are
uncorrelated unless conditioned on Z. Colliders are
also known as v-structures.

X Y

W

(a) Mediator

X Y

C

(b) Confounder

X Y

Z

(c) Collider

Figure 3: Basic structures of causal graphs.

Mediation Analysis

Causal relationships often involve multiple pathways, re-
quiring mediation analysis to distinguish between them.
For example, the causal effect between X and Y can be
decomposed into:

• Direct effect: The path X → Y .

• Indirect effects: Paths such as X → R → Y and
X → E → Y .

• Path-specific effects: Effects through a specific path,
such as X → E → Y .

This decomposition is critical for fairness. A direct effect
of X on Y is typically considered unfair when X is a sen-
sitive attribute (e.g., gender or race). In contrast, indirect
effects may be fair or unfair, depending on the mediator.
For example:

• An indirect effect through a discriminatory variable
(R) is unfair.
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• An indirect effect through an acceptable explanatory
variable (E) is considered fair.

A variable is deemed a proxy (e.g., R) if it serves as a sub-
stitute for X and leads to the same discriminatory outcome.
Determining whether a variable is a proxy or an acceptable
mediator often requires domain expertise.

C.2. Causal Fairness Notions

Causal fairness aims to ensure that sensitive attributes, such
as race or gender, do not unfairly influence outcomes. Be-
low, we describe key causal fairness notions and their for-
mal definitions.

C.2.1. TOTAL EFFECT (TE)

Total Effect (TE) (Pearl, 2009b) is a causal fairness notion
that quantifies the overall effect of a sensitive attribute X
on an outcome Y . Formally, TE is defined as:

TEx1,x0
(y) = P (Y = y | do(X = x1))−P (Y = y | do(X = x0)),

(1)
where do(X = x) denotes an intervention that sets X to x.
TE measures the causal impact of changing X from x0 to
x1 on Y across all causal paths connecting X to Y .

C.2.2. MEDIATION ANALYSIS: NDE, NIE, AND PSE

Mediation analysis decomposes the causal effect of X on
Y into direct and indirect effects. This is essential for iden-
tifying the pathways through which X influences Y .

Natural Direct Effect (NDE) (Pearl, 2001): The NDE
quantifies the direct effect of X on Y , bypassing any me-
diators. For a binary variable X with values x0 and x1, the
NDE is:

NDEx1,x0
(y) = P (yx1,Zx0

)− P (yx0
), (2)

where Z represents the set of mediator variables, and
P (yx1,Zx0

) is the probability of Y = y if X is set to x1

while the mediators are set to values they would take under
X = x0.

Natural Indirect Effect (NIE) (Pearl, 2001): The NIE
captures the influence of X on Y through mediators. It
is given by:

NIEx1,x0
(y) = P (yx0,Zx1

)− P (yx0
), (3)

where P (yx0,Zx1
) represents the probability of Y = y

when X = x0 but mediators take values they would un-
der X = x1.

Path-Specific Effect (PSE) (Pearl, 2009b; Chiappa, 2019;
Wu et al., 2019): The PSE isolates the causal effect of X

on Y transmitted through a specific path or set of paths π.
Formally, it is defined as:

PSEπ
x1,x0

(y) = P (yx1|π,x0|π )− P (yx0
), (4)

where P (yx1|π,x0|π ) is the probability of Y = y if X = x1

along path π, while other paths (π) remain unaffected by
the intervention.

C.2.3. NO UNRESOLVED DISCRIMINATION

No unresolved discrimination (Kilbertus et al., 2017) re-
quires that any causal effect of a sensitive attribute X on
an outcome Y occurs only through resolving (explanatory)
variables. A resolving variable, such as education level,
reflects a non-discriminatory influence of X on Y . The cri-
terion prohibits direct and proxy effects of X on Y .

C.2.4. NO PROXY DISCRIMINATION

No proxy discrimination (Kilbertus et al., 2017) ensures
that decisions are not influenced by variables R that act as
proxies for sensitive attributes X . Proxy discrimination is
absent if:

P (Y | do(R = r)) = P (Y | do(R = r′)), ∀r, r′ ∈ dom(R).
(5)

This guarantees that changes in R do not affect the outcome
Y if R is a proxy for X .

C.2.5. COUNTERFACTUAL FAIRNESS

Counterfactual fairness (Kusner et al., 2017) requires that
the outcome Y for an individual remains the same in both
factual and counterfactual scenarios. Formally, counterfac-
tual fairness holds if:

P (yx1
| V = v, X = x0) = P (yx0

| V = v, X = x0),
(6)

where V represents all other variables in the causal graph.
This definition ensures fairness at the individual level by
requiring that the sensitive attribute X does not influence
Y in any hypothetical scenario.

D. Causality and ML
The use of causality in AI falls mainly into one of two cat-
egories. The first approach is to employ artificial intelli-
gence to enhance the qualitative discovery and/or quantifi-
cation of causal connections from the data. The second one
is to use causal tools to improve Machine Learning (ML)
predictions. Next, we elaborate on both of these methods
to combine causality and ML.

D.1. ML for causality

Causal Discovery Most of the techniques for obtaining
causal quantities rely on knowing the causal structure of the
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data. It was previously assumed to be provided by experts.
Recent advances in causal discovery offer algorithmic tools
for recovering causal graphs from observational data. The
basis for causal discovery is the probabilistic and graphical
concepts of causality (Dawid, 2010). Two main groups of
causal discovery algorithms can be distinguished based on
their attempt to identify conditional or unconditional (in-
cluding pairwise) independencies in the distribution from
which the observational data is generated. The first cate-
gory includes constraints and score-based algorithms such
as PC (Le et al., 2016), FCI (Spirtes et al., 2000), and
GES (Hauser & Bühlmann, 2012). They usually produce
a partially oriented causal graph. The second category con-
sists of algorithms based on causal asymmetries such as
LiNGAM (Shimizu et al., 2006), and PNL (Zhang & Hy-
varinen, 2012). The algorithms based on Kolmogorov’s
(algorithmic) complexity assume that if knowing the short-
est compression of one variable does not reveal the shorter
compression of the other, two variables are considered in-
dependent (Janzing & Schölkopf, 2010; Schölkopf, 2022).
The summary of the principles and performance for pair-
wise causal discovery is provided by Mooij et al. (Mooij
et al., 2016). If the assumptions of the algorithms are satis-
fied, they are capable of identifying a unique causal graph
or a causal direction between the two variables.

ML Tools for Causal Inference Supervised or semi-
supervised machine learning methods can be used to es-
timate causal quantities from the data or for variable selec-
tion in situations with a high number of covariates (Kreif
& DiazOrdaz, 2019; Aoki & Ester, 2022). ML algorithms
such as, for example, logistic regression, bagging, random
forest, and others, can be beneficial in estimating propen-
sity scores used to estimate causal effects in the potential
outcome framework (Lee et al., 2010; Tu, 2019).

LLMs for Causal Discovery The recent advancements in
large language models (LLMs) have inspired their use in
causal discovery (Kıcıman et al., 2023; Kasetty et al., 2024;
Vashishtha et al., 2023; AI4Science & Quantum, 2023; Ab-
dulaal et al., 2023; Khatibi et al., 2024). Most of the above
methods involve the refinement of the statistically inferred
causal graph by LLM. However, emerging research shows
that, LLMs excel at synthesizing vast amounts of heteroge-
neous knowledge, making them well-suited for tasks that
require the integration of diverse datasets, such as con-
structing full causal graphs based on scientific literature in
diverse domains (Sheth et al., 2024; Afonja et al., 2024).

D.2. Causality for ML

One of the main arguments that motivated the use of causal-
ity for machine learning is that causal modeling can lead to
more invariant or robust models (Schölkopf, 2022). The
problem of overfitting and vulnerability to a domain shift

is a known problem in ML. It is intuitive that learning the
correlation between two phenomena, for example, rain and
umbrellas, will not help to predict rain in situations where
people prefer raincoats instead of umbrellas. A causal un-
derstanding of phenomena is more general to multiple cir-
cumstances. Following Pearl, ”...we may as well view our
unsatiated quest for understanding how data is generated or
how things work as a quest to acquire the ability to make
predictions under a wider range of circumstances, includ-
ing circumstances in which things are taken apart, reconfig-
ured, or undergo spontaneous change” (Pearl, 2009a). One
of the methods to combine the ML model with the causal
approach is to incorporate causal knowledge (usually in the
form of a complete or partial causal graph) in the learning
process (Berrevoets et al., 2023; 2022). Causal representa-
tion learning is an attempt to combine latent variables de-
rived from unstructured data and causal structure to arrive
at a more invariant or fair model (Schölkopf et al., 2021;
Mitrovic et al., 2020; Schölkopf, 2022; Wang et al., 2022).
The causal structure can also be used for feature selection,
assuming that it is known. Models based on direct causes
to predict the outcome are considered more robust (Tople
et al., 2020).
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