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ABSTRACT

Due to practical constraints such as partial observability and limited communica-
tion, Centralized Training with Decentralized Execution (CTDE) has become the
dominant paradigm in cooperative Multi-Agent Reinforcement Learning (MARL).
However, existing CTDE methods often underutilize centralized training or lack
theoretical guarantees. We propose Multi-Agent Guided Policy Optimization
(MAGPO), a novel framework that better leverages centralized training by in-
tegrating centralized guidance with decentralized execution. MAGPO uses an
autoregressive joint policy for scalable, coordinated exploration and explicitly
aligns it with decentralized policies to ensure deployability under partial observ-
ability. We provide theoretical guarantees of monotonic policy improvement and
empirically evaluate MAGPO on 43 tasks across 6 diverse environments. Results
show that MAGPO consistently outperforms strong CTDE baselines and matches or
surpasses fully centralized approaches, offering a principled and practical solution
for decentralized multi-agent learning.

1 INTRODUCTION

Cooperative Multi-Agent Reinforcement Learning (MARL) provides a powerful framework for solv-
ing complex real-world problems such as autonomous driving (Zhou et al., 2020), traffic management
(Singh et al., 2020), and robot swarm coordination (Hüttenrauch et al., 2019; Zhang et al., 2021a).
However, MARL faces two fundamental challenges: the exponential growth of the joint action space
with the number of agents, which hinders scalability, and the requirement for decentralized execution
under partial observability, which complicates policy learning.

A widely adopted solution is Centralized Training with Decentralized Execution (CTDE) (Oliehoek
et al., 2008; Kraemer & Banerjee, 2016), where agents are trained using privileged global information
but execute independently based on local observations. CTDE forms the foundation of many
state-of-the-art MARL algorithms and typically incorporates a centralized value function to guide
decentralized policies or utility functions during training. This setup allows algorithms to benefit
from global context without violating the constraints of decentralized deployment.

Parallel efforts in single-agent RL have explored similar ideas in the context of Partially Observable
Markov Decision Processes (POMDPs) (Oliehoek & Amato, 2016). Two main approaches have
emerged: asymmetric actor-critic (Pinto et al., 2018), which uses full-state information in the critic but
restricts the actor to partial observations; and teacher-student learning, where a teacher policy trained
with privileged information supervises a student policy that learns to act under partial observability.

These insights have recently inspired the Centralized Teacher with Decentralized Student (CTDS)
paradigm in MARL (Zhao et al., 2024). CTDS combines a centralized critic with a teacher policy
that outputs joint actions based on the global state. These actions are then distilled into decentralized
policies for execution. While CTDS shows promise—particularly in enabling coordinated exploration
and better utilization of centralized training—it faces two key challenges. First, training a centralized
teacher faces scalability problems due to the exponential size of the joint action space. Second,
even with a strong teacher, the decentralized policies may suffer from the imitation gap (Weihs
et al., 2021): student policies operating under partial observability may fail to replicate the teacher’s
behavior, leading to degraded performance. In MARL, this issue is exacerbated by policy asymmetry,
where the space of decentralized behaviors cannot fully capture the teacher’s joint strategy.

To overcome these limitations, we propose Multi-Agent Guided Policy Optimization (MAGPO), a
novel framework that bridges centralized training and decentralized execution through a principled
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and MARL-specific design. MAGPO addresses the scalability and policy asymmetry problem by
constraining a centralized, autoregressive guider policy to remain closely aligned with decentralized
learners throughout training. The guider policy allows agents to act sequentially conditioned on
previous actions, utilizing global information and coordinated data collection (Wen et al., 2022;
Mahjoub et al., 2025). The alignment ensures that the coordination strategies developed under
centralized supervision remain realizable by decentralized policies, thus mitigating the imitation
gap that undermines prior CTDS approaches. Unlike a direct extension of single-agent GPO (Li
et al., 2025), MAGPO introduces structural mechanisms tailored to multi-agent learning, including
sequential joint action modeling and decentralization-aligned updates, while preserving scalability
and parallelism. We provide theoretical guarantees of monotonic policy improvement and empirically
evaluate MAGPO across 43 tasks in 6 diverse environments. Results show that MAGPO consistently
outperforms strong CTDE baselines and even matches or exceeds fully centralized methods, estab-
lishing it as a theoretically grounded and practically deployable solution for MARL under partial
observability.

2 BACKGROUND

2.1 FORMULATION

We consider Decentralized Partially Observable Markov Decision Process (Dec-POMDP) (Oliehoek
& Amato, 2016) in modeling cooperative multi-agent tasks. The Dec-POMDP is characterized by
the tuple ⟨N ,S,A, r,P,O,Z, γ⟩, where N is the set of agents, S is the set of states, A is the set of
actions, r is the reward function, P is the transition probability function, Z is the individual partial
observation generated by the observation function O, and γ is the discount factor. At each timestep,
each agent i ∈ N receives a partial observation oi ∈ Z according to O(s; i) at state s ∈ S. Then,
each agent selects an action ai ∈ A according to its action-observation history τi ∈ (Z × A)∗,
collectively forming a joint action denoted as a. The state s undergoes a transition to the next state
s′ in accordance with P(s′|s,a), and agents receive a shared reward r. Assuming an initial state
distribution ρ ∈ ∆(S), the goal is to find a decentralized policy π = {πi}ni=1 that maximizes the
expected cumulative return:

Vρ(π) ≜ Es∼ρ[Vπ(s)] = E[
∞∑
t=0

γtrt|s0 ∼ ρ]. (1)

This work follows the Centralized Training with Decentralized Execution (CTDE) paradigm (Oliehoek
et al., 2008; Kraemer & Banerjee, 2016). During training, CTDE allows access to global state to
stabilize learning. However, during execution, each agent operates independently, relying solely on
its local action-observation history.

In centralized training, we can therefore optimize a joint policy µ(a | s) that coordinates all agents
while enabling joint exploration. To update this joint policy, we will consider the policy mirror
descent (PMD) objective (Shani et al., 2019):

µ(k+1) = argmax
µ

{
ηk⟨∇Vρ(µ

(k)), µ⟩ − 1

1− γ
Ddρ(µ(k))(µ, µ

(k))

}
, (2)

where ηk is the step size, ρ ∈ ∆(S) is an arbitrary state distribution, dρ(µ(k)) is the discounted
state-visitation distribution under µ(k), and Ddρ(µ(k)) denotes the corresponding weighted Bregman
divergence. Conceptually, PMD can be viewed as a class of preconditioned policy gradient methods.
Choosing the Bregman divergence to be the Euclidean distance or the Kullback–Leibler (KL)
divergence recovers projected policy gradient and natural policy gradient (NPG) (Kakade, 2001),
respectively. Thus, PMD provides a unifying framework that encompasses many modern policy-based
RL algorithms, including TRPO (Schulman et al., 2015a) and PPO (Schulman et al., 2017). We build
upon this formulation to develop our theoretical results in Section 4.1.

2.2 RELATED WORKS

CTDE. CTDE methods can be broadly categorized into value-based and policy-based approaches.
Value-based methods typically employ a joint value function conditioned on the global state and
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joint action, alongside individual utility functions based on local observations and actions. These
functions often satisfy the Individual-Global-Max (IGM) principle (Son et al., 2019), ensuring that
the optimal joint policy decomposes into locally optimal policies. This line of work is known as
value factorization, and includes methods such as VDN (Sunehag et al., 2017), QMIX (Rashid et al.,
2020), QTRAN (Son et al., 2019), QPLEX (Wang et al., 2021a), and QATTEN (Yang et al., 2020).
Policy-based methods, in contrast, typically use centralized value functions to guide decentralized
policies, allowing for direct extensions of single-agent policy gradient methods to multi-agent settings.
Notable examples include COMA (Foerster et al., 2018), MADDPG (Lowe et al., 2017), MAA2C
(Papoudakis et al., 2020) and MAPPO (Yu et al., 2022). Additionally, hybrid methods that combine
value factorization with policy-based training have been proposed, such as DOP (Wang et al., 2021b),
FOP (Zhang et al., 2021b), and FACMAC (Peng et al., 2021). While CTDE has achieved strong
empirical performance, most existing methods leverage global information only through the value
function. We refer to these as vanilla CTDE methods, as they do not fully exploit the potential of
centralized training.

CTDS. More recently, researchers have explored extending the teacher-student framework from
single-agent settings to multi-agent systems, leading to the Centralized Teacher with Decentralized
Students (CTDS) paradigm (Zhao et al., 2024; Chen et al., 2024; Zhou et al., 2025). In this framework,
a centralized teacher policy—accessing global state and acting jointly—collects high-quality trajec-
tories and facilitates more coordinated exploration. CTDS methods offer stronger supervision than
vanilla CTDE methods. However, due to observation asymmetry (Weihs et al., 2021) and policy space
mismatch, the learned decentralized policies may still suffer from suboptimal performance—issues
that we explore further in the next section.

HARL. In contrast to vanilla CTDE and CTDS methods—many of which lack theoretical guaran-
tees—another line of research focuses on Heterogeneous Agent Reinforcement Learning (HARL),
where agents are updated sequentially during training (Zhong et al., 2023). This formulation under-
pins algorithms such as HATRPO and HAPPO (Kuba et al., 2022) and HASAC (Liu et al., 2025).
While HARL provides better theoretical guarantees and stability, it requires agents to be heteroge-
neous and updated one at a time. As a result, these methods lack parallelism which is important in
large-scale MARL tasks and cannot exploit parameter sharing, which has proven effective in many
MARL applications (Gupta et al., 2017; Terry et al., 2020; Christianos et al., 2021a).

CTCE. Centralized Training with Centralized Execution (CTCE) approaches treat the multi-agent
system as a single-agent problem with a combinatorially large action space. Beyond directly applying
single-agent RL algorithms to MARL, a promising direction in CTCE has been to use transformers
(Vaswani et al., 2017) to frame multi-agent trajectories as sequences (Chen et al., 2021). This has
led to the development of powerful transformer-based methods such as Updet (Hu et al., 2021),
Transfqmix (Gallici et al., 2023), and other offline methods (Meng et al., 2023; Tseng et al., 2022;
Zhang et al., 2022). Two representative online methods are Multi-Agent Transformer (MAT) (Wen
et al., 2022) and Sable (Mahjoub et al., 2025), which currently achieve state-of-the-art performance in
cooperative MARL tasks. CTCE methods offer strong theoretical guarantees (Wen et al., 2022) and
impressive empirical results. However, they fall short in practical settings that demand decentralized
execution, where each agent must act based solely on its local observation and policy.

3 PROBLEMS OF CURRENT CTDS

In this section, we examine the limitations of using a centralized teacher to supervise decentralized
student policies. Two key challenges arise in this setting: asymmetric observation spaces and
asymmetric policy spaces.

The first challenge—asymmetric observation spaces—is shared with single-agent POMDPs involving
privileged information and has been extensively studied in prior work (Warrington et al., 2020; Weihs
et al., 2021; Shenfeld et al., 2023; Li et al., 2025). When the teacher relies on privileged information
that is unavailable (and not inferable) to the student, the student cannot faithfully reproduce the
teacher’s behavior. Instead, it learns to approximate the conditional expectation of the teacher’s action
given the observable input (Weihs et al., 2021; Warrington et al., 2020). This typically results in an
“averaged” behavior that can be significantly suboptimal.
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Figure 1: Illustrative example showing three different MARL settings.

The second challenge—asymmetric policy spaces—is unique to the multi-agent setting. It arises from
the structural mismatch between the teacher’s policy (typically joint and expressive) and the students’
policies (factorized and decentralized). We illustrate this challenge through a simple example shown
in Figure 1. Consider a cooperative task where three agents must each output an integer such that
their sum equals a target value of 10. Each agent acts once, and the system succeeds only if the total
sum is exactly 10. We compare three MARL frameworks:

(A) Vanilla CTDE. Agents share a centralized value function but act independently via decentralized
policies. Suppose all three agents use the same deterministic policy πi(·|10) = 3, producing a total
of 9—which fails the task. Because each agent observes the same global state and optimizes the same
objective, they may all simultaneously increase their action to 4 in the next update, producing 12, still
failing. Lacking inter-agent coordination signals, the agents struggle to determine which one should
adjust its action. This leads to classic miscoordination, requiring random trial-and-error exploration
and memorization of rare successful configurations to eventually coordinate.

(B) CTCE. Agents act sequentially, observing previous agents’ actions before choosing their own.
Suppose the first agent updates its action to 4 and the second still picks 3. The third agent, having
observed both previous actions, selects 3 and achieves the correct total. Sequential execution
effectively transforms the multi-agent coordination problem into a single-agent decision-making
process over a joint policy. This makes coordination straightforward and stable, without repeated
random exploration. However, this setting assumes centralized execution, which is often infeasible in
real-world applications requiring decentralization.

(C) CTDS. Now consider distilling a successful CTCE policy from (B) into decentralized student
policies. If the teacher’s policy is deterministic and factorizable (e.g., always producing [4, 3, 3]),
CTDS can recover an optimal decentralized solution. However, a CTCE teacher may exploit stochastic
strategies. For instance, the first agent samples x ∈ {3, 4} at random, the second agent always outputs
3, and the third agent—having seen the first two actions—outputs 7− x, ensuring the total is always
10. While this is optimal under CTCE, it cannot be factored into independent policies: CTDS would
learn two independent stochastic policies for the first and third agents, leading to failures such as
[4, 3, 4]. If the first CTCE agent selects 3 or 4 with equal probability, the distilled decentralized policy
succeeds only 50% of the time.

This example highlights the core failure mode: coordination patterns encoded in the teacher’s joint
policy are lost when forced into a decentralized representation. To address these limitations, we
propose a new approach that constrains the teacher’s policy during training, preventing it from
exploiting unrepresentable coordination strategies while still allowing it to guide decentralized
learners effectively.

4 METHOD

We introduce Multi-Agent Guided Policy Optimization (MAGPO), a framework that leverages a
centralized, sequentially executed guider policy to supervise decentralized learners while keeping
them closely aligned. MAGPO is designed to combine the coordination benefits of centralized
training with the deployment constraints of decentralized execution.

4
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We begin by presenting the theoretical formulation and guarantee of monotonic policy improvement
in the tabular setting. For clarity, we initially assume full observability—i.e., all agents observe the
global state s, reducing the setting to a cooperative Markov game (Littman, 1994). We will return to
the partially observable case in the subsequent implementation section.

4.1 MULTI-AGENT GUIDED POLICY OPTIMIZATION

Our algorithm maintains a centralized guider policy with an autoregressive structure over agent actions:
µ(a|s) = µi1(ai1 |s)µi2(ai2 |s, ai1) . . . µin(ain |s,ai1:n−1), where i1:m (with m ≤ n) denotes an
ordered subset {i1, ..., im} of the agent set N , specifying the execution order. The decentralized
learner policy is defined as: π(a|s) =

∏n
j=1 π

ij (aij |s) for any ordering i1:n, implying that all agents
act independently.

Building on this structure, MAGPO optimizes the centralized guider and decentralized learner policies
through an iterative four-step procedure inspired by the GPO framework (Li et al., 2025):

• Data Collection: Roll out the current guider policy µk to collect trajectories.
• Guider Training: Update the guider µk to µ̂k by maximizing RL objective.
• Learner Training: Update the learner πk to πk+1 by minimizing the KL distance DKL(π, µ̂k).
• Guider Backtracking: Set µk+1 = πk+1 for all states s.

The first step allows MAGPO to perform coordinated exploration using a joint policy. In the second
step, the guider is updated using the Policy Mirror Descent (PMD) framework (Xiao, 2022), which
solves the following optimization:

µ̂k = argmax
µ

{ηk⟨Qµk(s, ·),µ(·|s)⟩ − DKL(µ(·|s),µk(·|s))} , (3)

where Qµk is the Q-function of guider and ηk is the learning rate. As discussed in Section 2.1, PMD
is a general policy gradient framework that subsumes popular algorithms such as PPO and TRPO.
Here, we adopt PMD for theoretical clarity and instantiate it using PPO-style updates in our practical
implementation. Additional details are provided in Appendix A. In the final step, we perform guider
backtracking, where the guider is reset to the current learner policy. Theoretically, this is always
feasible since any decentralized policy π defines a valid autoregressive joint policy µ by simply
ignoring the conditioning on past actions.

Based on the framework introduced above, we have the following theorem for MAGPO.
Theorem 4.1 (Monotonic Improvement of MAGPO). Let (πk)

∞
k=0 be the sequence of joint learner

policies obtained by iteratively applying the four steps of MAGPO. Then,

Vρ(πk+1) ≥ Vρ(πk), ∀k, (4)

where Vρ is the expected return under initial state distribution ρ.

Proof. See Appendix A.

In contrast to CTDS and standard CTDE methods like MAPPO, MAGPO provides a provable
guarantee of policy improvement. This result can be understood intuitively: the guider identifies a
policy that improves return in the full joint space using PMD. The learner then projects this policy
into the decentralized policy space via KL minimization. Since the target was chosen via projected
gradient, the resulting learner policy also improves return.

To further clarify the structure of MAGPO, we show that its learner updates can be interpreted
as sequential advantage-based updates—a procedure known to ensure monotonic improvement in
multi-agent settings (Kuba et al., 2022). We begin with the following lemma:
Lemma 1 (Multi-Agent Advantage Decomposition (Kuba et al., 2022)). In any cooperative Markov
game, given a joint policy π, for any state s, and any agent subset i1:m, the following equations hold:

Ai1:m
π (s,ai1:m) =

m∑
j=1

A
ij
π (s,a

i1:j−1 , aij ), (5)

5
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where
Ai1:m

π (s,aj1:k ,ai1:m) ≜ Qj1:k,i1:m(s, ,aj1:k ,ai1:m)−Qj1:k(s,aj1:k) (6)

for disjoint sets j1:k and i1:m. The state-action value function for a subset is defined as

Qi1:m(s,ai1:m) ≜ Ea−i1:m∼π−i1:m

[
Q(s,ai1:m ,a−i1:m)

]
. (7)

Using this, we derive the following:

Corollary 4.2 (Sequential Update of MAGPO). The update for any individual policy πij with ordered
subset i1:j can be written as:

π
ij
k+1 = argmax

πij

E
ai1:j−1∼π

i1:j−1
k+1 ,aij∼πij

[
A

ij
π (s,a

i1:j−1 , aij )
]
− 1

ηk
DKL(π

ij , π
ij
k ) (8)

Proof. See Appendix A.

This shows that MAGPO’s learner updates are equivalent to performing sequential advantage-
weighted policy updates. Importantly, unlike methods such as HARL which update agents one at a
time, MAGPO allows for simultaneous updates of all agent policies. This enables parallel training
and improves scalability to large agent populations. Moreover, HARL requires heterogeneous agents
to guarantee policy improvement, while MAGPO works with either homogeneous or heterogeneous
agents, allowing it to benefit from parameter sharing—a widely adopted practice that significantly
improves efficiency and generalization in MARL (Gupta et al., 2017; Terry et al., 2020; Christianos
et al., 2021a).

4.2 PRACTICAL IMPLEMENTATION

In this subsection, we describe the practical implementation of MAGPO. Our implementation is
based on the original GPO-Clip framework, extended to the multi-agent setting. The key difference is
that the guider in MAGPO is a sequential execution policy. Since MAGPO is compatible with any
autoregressive CTCE method, we do not specify the exact encoder, decoder, or attention mechanisms
used. Instead, we present general training objectives for both the guider and learner components.

Guider Update. As introduced in the previous section, the guider policy (parameterized by ϕ)
is first optimized to maximize the RL objective, and then aligned with the learner policy. This is
achieved via an RL update augmented with a KL constraint:

L(ϕ) = − 1

Tn

n∑
j=1

T−1∑
t=0

[
min

(
r
ij
t (ϕ)Ât, clip(rijt (ϕ), ϵ, δ)Ât

)
−m

ij
t DKL

(
µ
ij
ϕ (·|st,a

i1:j−1
t ), π

ij
θ (·|oijt )

)]
,

(9)
where

r
ij
t (ϕ) =

µ
ij
ϕ (a

ij
t |st,a

i1:j−1

t )

µ
ij
ϕold

(a
ij
t |st,a

i1:j−1

t )
, m

ij
t (δ) = I

(
µ
ij
ϕ (a

ij
t |st,a

i1:j−1

t )

π
ij
θ (a

ij
t |o

ij
t )

/∈
(
1

δ
, δ

))
,

and

clip(rijt (ϕ), ϵ, δ) = clip

(
clip

(
µ
ij
ϕ (a

ij
t |st,a

i1:j−1
t )

π
ij
θ (a

ij
t |oijt )

,
1

δ
, δ

)
π
ij
θ (a

ij
t |oijt )

µ
ij
ϕold

(a
ij
t |st,a

i1:j−1
t )

, 1− ϵ, 1 + ϵ

)
. (10)

This objective has two modifications compared to the standard one: a double clipping function
clip(·, ϵ, δ) and a mask function mij (δ), both controlled by a new hyperparameter δ > 1 , which
bounds the ratio between guider and learner policies within ( 1δ , δ). The inner clip in the double
clipping function stops the gradient when the advantage signal encourages the guider to drift too far
from the learner. The mask function ensures the KL loss is only applied when this ratio constraint
is violated. The advantage estimate Ât is computed via generalized advantage estimation (GAE)
(Schulman et al., 2015b) with value functions.

6
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Figure 2: The sample efficiency curves aggregated per environment suite, where dashed lines represent
the CTCE methods. For each environment, results are aggregated over all tasks and the min–max
normalized inter-quartile mean with 95% stratified bootstrap confidence intervals are shown.
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Figure 3: The overall aggregated probability of improvement for MAGPO compared to other baselines
for that specific environment. A score of more than 0.5 where confidence intervals are also greater
than 0.5 indicates statistically significant improvement over a baseline for a given environment
(Agarwal et al., 2021).

Learner Update. The learner policy π, parameterized by θ, is updated with two objectives: (i)
behavior cloning toward the guider policy, and (ii) an RL auxiliary term to directly improve return
from the collected trajectories.

L(θ) = 1

Tn

n∑
j=1

T−1∑
t=0

[
DKL

(
π
ij
θ (·|oijt ), µ

ij
ϕ (·|st,a

i1:j−1
t )

)
− λmin

(
r
ij
t (θ)Ât, clip(rijt (θ), 1− ϵ, 1 + ϵ)Ât

) ]
,

(11)
where

r
ij
t (θ) =

π
ij
θ (a

ij
t |oijt )

µ
ij
ϕold

(a
ij
t |st,a

i1:j−1
t )

. (12)

The auxiliary RL objective helps maximize the utility of collected trajectories. Since the behavior
policy (guider) is kept close to the learner, this term approximates an on-policy objective. In principle,
we could apply sequential updates to each individual policy—analogous to HAPPO—to preserve
the theoretical guarantees of monotonic improvement. However, this makes the learner updates
non-parallelizable and incompatible with parameter sharing. Since no performance benefits are
observed from using HAPPO, we instead adopt a MAPPO-style update: all learners share parameters
and are updated jointly and in parallel. The auxiliary RL term can be treated as optional and controlled
by λ.

5 EXPERIMENTS

We evaluate MAGPO by comparing it against several SOTA baseline algorithms from the literature.
Specifically, we consider two CTCE methods—Sable (Mahjoub et al., 2025) and MAT (Wen et al.,
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Figure 4: MAGPO performance varies with the choice of guider and the regularization ratio δ.

2022)—two CTDE baselines—MAPPO (Yu et al., 2022) and HAPPO (Kuba et al., 2022)—and a
vanilla implementation of on-policy CTDS, which can be viewed as MAGPO without double clipping,
masking, and the RL auxiliary loss. For the joint policy in both MAGPO and CTDS, we use Sable as
the default backbone. All algorithms are implemented using the JAX-based MARL library Mava
(de Kock et al., 2023).

Evaluation & Hyperparameters. We follow the evaluation protocol from Mahjoub et al. (2025).
Each algorithm is trained with 10 independent seeds per task. Training is conducted for 20 million
environment steps, with 122 evenly spaced evaluation checkpoints. At each checkpoint, we record
the task-specific metrics (e.g., mean episode return and win rate) over 32 evaluation episodes. For
task-level results, we report the mean and 95% confidence intervals. For aggregate performance
across entire environment suites, we report the min-max normalized interquartile mean (IQM) with
95% stratified bootstrap confidence intervals. The hyperparameters are tuned on each task for each
algorithm, which are detailed in Appendix C.3.

Environments. We evaluate MAGPO on a diverse suite of JAX-based multi-agent benchmarks,
including 4 tasks in CoordSum (introduced in this paper), 7 tasks in Level-based foraging (LBF)
(Christianos et al., 2021b), 4 tasks in Connector (Bonnet et al., 2024), 3 tasks in the Multi-agent Parti-
cle Environment (MPE) (Lowe et al., 2017), 15 tasks in Robotic Warehouse (RWARE) (Papoudakis
et al., 2020), and 10 tasks in The StarCraft Multi-Agent Challenge in JAX (SMAX) (Rutherford et al.,
2024). The CoordSum environment, introduced in this paper, reflects the didactic examples discussed
in Section 3, where agents must coordinate to output integers that sum to a given target without using
fixed strategies. A detailed description is provided in Appendix B.

5.1 MAIN RESULTS

Figure 2 presents the per-environment aggregated sample-efficiency curves. Our results show that
MAGPO achieves state-of-the-art performance across all CTDE methods and even outperforms
CTCE methods on a subset of tasks. Specifically, MAGPO surpasses all CTDE baselines on 32 out
of 43 tasks, and outperforms all baselines on 20 out of 43 tasks. Figure 3 reports the probability of
improvement of MAGPO over other baselines. MAGPO emerges as the most competitive CTDE
method and performs comparably to the SOTA CTCE method Sable in three benchmark environments.
Comparing MAGPO to CTDS reveals a significant performance gap in the CoordSum and RWARE
domains, suggesting that in these environments, the CTCE teacher may learn policies that are
not decentralizable—rendering direct policy distillation ineffective. Additional tabular results and
environment/task-level aggregation plots are provided in Appendix C.2.

5.2 ABLATIONS AND DISCUSSIONS

In this subsection, we discuss several key aspects and design choices of MAGPO.

Bridging CTCE and CTDE. MAGPO’s performance intuitively depends heavily on the capa-
bility of the guider, which corresponds to the performance of the underlying CTCE method. In
Figure 4(a), we evaluate MAGPO on two tasks where Sable and MAT exhibit different performance.
In simple spread 10ag, MAT performs significantly worse, resulting in poor performance of MAGPO
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Figure 5: The effect of RL auxiliary loss.

when using MAT as the guider. In contrast, on large-8ag, MAT outperforms Sable, leading to better
performance of MAGPO with MAT. This dependency could be seen as a limitation, but it actuall
serves as a core feature: MAGPO effectively bridges CTCE and CTDE. In many practical applications
that require decentralized policies, MAGPO enables advances in CTCE methods to directly benefit
CTDE methods as well—facilitating the co-development of both paradigms.

Effect of the Ratio δ. MAGPO introduces a hyperparameter δ to regulate the guider’s deviation
from the learner, which most strongly influences its performance. A smaller δ enforces a stricter
constraint, keeping the guider closer to the learner policy; a larger δ allows the guider more freedom,
potentially enabling it to explore regions of the policy space that are difficult or even unreachable
under decentralized constraints. In Figure 4(b), we assess MAGPO’s performance under varying
δ values on two tasks. In CoordSum-5x20-80, a smaller δ yields better performance because the
centralized guider tends to learn a policy that is not decentralizable, which must be restricted to
improve imitability. Conversely, in medium-4ag-hard, the guider policy is more directly imitable,
and restricting it too tightly hinders learning. These observations show the importance of tuning δ
based on the task’s structure and imitation feasibility.

Effect of RL Auxiliary Loss. MAGPO incorporates an RL auxiliary loss in the learner update
to better utilize collected data and stabilize learning. This component is not as important as the δ,
but a properly tuned λ can also improve performance, as shown in Figure 8(a). To understand this,
consider the guider’s RL objective is towards an undecentralizable direction and the learner pulls it
backward (due to the imitation constraint), then this back-and-forth may repeatedly stall progress.
By incorporating RL updates, the learner can “counter-supervise” the guider, helping it discover
more decentralizable update directions. Furthermore, in Figure 8(b), we test applying the same RL
auxiliary loss to a CTDS method. The results show limited benefit. This is because in CTDS, the
behavioral policy is the teacher, which is not enforced to align with the student. If the teacher-student
gap is too large, the collected data is off-policy, thus on-policy RL loss on the student provides little
benefit.

Observation asymmetry. While most of our analysis has focused on asymmetries in the policy and
action spaces, observation asymmetry is equally critical. In the current framework, CTCE methods
like MAT and Sable condition on the union of agents’ partial observations, whereas individual policies
are limited to their own local views. This mismatch creates an imitation gap, making direct imitation
methods like CTDS fail, even when the underlying joint policy is decentralizable. MAGPO addresses
this issue similar to the single-agent setting (Li et al., 2025), by controlling the divergence between
the guider and the learner through the parameter δ. In addition, privileged information—beyond
the union of partial observations—is often available during centralized training (e.g., the true global
state), although we do not explore it in this paper. Providing such privileged signals to the guider
could further enhance its ability to supervise decentralized policies under partial observability.

Model capacity. In addition to the policy and observation asymmetry we emphasize in the main
text, asymmetry can also arise from differences in model capacity between a teacher used at training
time and a student used at deployment. It is common in practice to train with higher-capacity
centralized models or teachers and then distill them into compact students for deployment (e.g.,
LLMs trained offline and distilled for latency-sensitive inference; VLA paired with lightweight
controllers that require high-frequency control). MAGPO provides a promising paradigm for this
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setting by constraining the teacher model imitable. Appendix C.4 contains a tentative experiment that
simulates the distillation/deployment constraint and shows that MAGPO degrades more gracefully
than CTDS when the deployed actor is compact. Further investigation is left to future work.

6 CONCLUSION

We presented MAGPO, a novel framework that bridges the gap between CTCE and CTDE in
cooperative MARL. MAGPO leverages a sequentially executed guider for coordinated exploration
while constraining it to remain close to the decentralized learner policies. This design enables
stable and effective guidance without sacrificing deployability. Our approach builds upon the
principles of GPO and introduces a practical training algorithm with provable monotonic improvement.
Empirical results across 43 tasks in 6 diverse environments demonstrate that MAGPO consistently
outperforms state-of-the-art CTDE methods and is competitive with CTCE methods, despite relying
on decentralized execution.
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THE USE OF LARGE LANGUAGE MODELS (LLMS)

LLMs are used to polish the paper writing.

A PROOFS

We will consider policy mirror descent (PMD) objective (Shani et al., 2019):

µ(k+1) = argmax
µ

{
ηk⟨∇Vρ(µ

(k)), µ⟩ − 1

1− γ
Ddρ(µ(k))(µ, µ

(k))

}
, (13)

where ηk is the step size, ρ ∈ ∆(S) is an arbitrary state distribution and dρ(µ
(k)) is the discounted

state-visitation distribution under the policy µ(k), Ddρ(µ(k)) is the weighted Bregman divergence.
Considering that

⟨∇Vρ(µ
(k)), µ⟩ =

∑
s∈S

⟨∇sVρ(µ
(k)), µ(·|s)⟩, (14)

we obtain

µ(k+1) = argmax
µ

{
1

1− γ

∑
s∈S

dρ(µ
(k))(ηk⟨Qµ(k)

(s, ·), µ(·|s)⟩ −D(µ(·|s), µ(k)(·|s)))

}
,

= argmax
µ

{∑
s∈S

(ηk⟨Qµ(k)

(s, ·), µ(·|s)⟩ −D(µ(·|s), µ(k)(·|s)))

}
.

(15)

In this paper, we use KL divergence as a special case of Bregman divergence.
Theorem A.1 (Monotonic Improvement of MAGPO). A sequence (πk)

∞
k=0 of joint policies updated

by the four step of MAGPO has the monotonic property:

Vρ(πk+1) ≥ Vρ(πk), ∀k. (16)

Proof. Following the derivation from Xiao (2022), the PMD objective is

µ̂k = argmax
µ

{ηk⟨Qµk(s, ·),µ(·|s)⟩ − DKL(µ(·|s),µk(·|s))} , (17)

which admits the closed-form solution

µ̂k = µk(a|s)
exp (ηkQ

µk(s,a))

zk(s)

= πk(a|s)
exp (ηkQ

πk(s,a))

zk(s)
.

(18)

where we replace µk with πk due to the backtracking step.

Next, the learner update is defined as

πk+1(·|s) = argmin
π

DKL(π(·|s), µ̂(·|s)), (19)
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which guarantees the KL divergence decreases:

DKL(π
k(·|s), µ̂(·|s)) ≥ DKL(π

k+1(·|s), µ̂(·|s)) (20)

Eπk

[
logπk − logπk − ηkQ

πk

(s,a)
]
≥ Eπk+1

[
logπk+1 − logπk − ηkQ

πk

(s,a)
]

(21)

ηkEπk+1

[
Qπk

(s,a)
]
− ηkEπk

[
Qπk

(s,a)
]
≥ DKL(π

k+1(·|s),πk(·|s)) (22)

Then, by the performance difference lemma (Kakade & Langford, 2002), we obtain:

Vρ(πk+1)− Vρ(πk) =
1

1− γ
Es∼dρ(πk+1)

[
Eπk+1

[
Qπk

(s,a)
]
− Eπk

[
Qπk

(s,a)
]]

≥ 1

1− γ

1

ηk
Eπk+1

[
DKL(π

k+1(·|s),πk(·|s))
]

≥ 0.

(23)

Corollary A.2 (Sequential Update of MAGPO). The update of any individual policy πij with any
ordered subset i1:j can be written as:

π
ij
k+1 = argmax

πij

E
ai1:j−1∼π

i1:j−1
k+1 ,aij∼πij

[
A

ij
π (s,a

i1:j−1 , aij )
]
− 1

ηk
DKL(π

ij , π
ij
k ) (24)

Proof. We first decompose the guider policy in equation 18

µ̂k = πk(a|s)
exp (ηkQ

πk(s,a))

zk(s)

= πk(a|s) exp (ηkQπk(s,a)− ηkV
πk(s))

exp (ηkV
πk(s))

zk(s)

= πk(a|s) exp (ηkAπk(s,a)) /z̄k(s)

=

 n∏
j=1

π
ij
k (aij |s)

 exp

ηk

n∑
j=1

A
ij
π (s,a

i1:j−1 , aij )

 /z̄k(s)

=

n∏
j=1

π
ij
k (aij |s)

exp
(
ηkA

ij
π (s,ai1:j−1 , aij )

)
zik(s,a

i1:j−1)
.

(25)

This implies that the marginal guider policy for agent ij is:

µ̂ij (aij |s,ai1:j−1) = π
ij
k (aij |s)

exp
(
ηkA

ij
π (s,ai1:j−1 , aij )

)
zik(s,a

i1:j−1)
. (26)

Next, we decompose the KL divergence:

DKL(π(·|s), µ̂(·|s)) = Ea∼π [logπ(a|s)− log µ̂(a|s)]

= Ea∼π

log
 n∏

j=1

πij (aij |s)

− log

 n∏
j=1

µ̂ij (aij |s, ai1:j−1)


= Ea∼π

 n∑
j=1

log πij (aij |s)−
n∑

j=1

log µ̂ij (aij |s, ai1:j−1)


=

n∑
j=1

Eai1:j−1∼πi1:j−1 ,aij∼πij

[
log πij (aij |s)− log µ̂ij (aij |s, ai1:j−1)

]
.

(27)
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Although the objective is not directly decoupled, we observe that each policy πij is conditionally
independent of the subsequent agents given the prior ones. Therefore, we can sequentially optimize:

πi1
k+1 = argmin

πi1

Eai1∼πi1

[
log πi1(ai1 |s)− log µ̂i1(ai1 |s)

]
πi2
k+1 = argmin

πi2

E
ai1∼π

i1
k+1,a

i2∼πi2

[
log πi2(ai2 |s)− log µ̂i2(ai2 |s, ai1)

]
......

π
ij
k+1 = argmin

πij

E
ai1:j−1∼π

i1:j−1
k+1 ,aij∼πij

[
log πij (aij |s)− log µ̂ij (aij |s, ai1:j−1)

]
Substituting the expression for µ̂ij yields:

π
ij
k+1 = argmin

πij

E
ai1:j−1∼π

i1:j−1
k+1 ,aij∼πij

[
log πij (aij |s)− log µ̂ij (aij |s, ai1:j−1)

]
= argmin

πij

E
ai1:j−1∼π

i1:j−1
k+1 ,aij∼πij

[
log πij (aij |s)− log π

ij
k (aij |s))− ηkA

ij
π (s,a

i1:j−1 , aij )
]

= argmax
πij

E
ai1:j−1∼π

i1:j−1
k+1 ,aij∼πij

[
A

ij
π (s,a

i1:j−1 , aij )
]
− 1

ηk
DKL(π

ij , π
ij
k ),

(28)
which completes the proof.

B COORDSUM DETAILS

We introduce the CoordSum environment, a cooperative multi-agent benchmark designed to demon-
strate the flaw of CTDS and evaluate the performance of existing paradigm. In this environment, a
team of agents is tasked with selecting individual integers such that their sum matches a shared target,
while avoiding repeated patterns that can be exploited by an adversarial guesser.

Naming Convention Each task in the CoordSum environment is denoted as:

CoordSum-<num agents>× <num actions>− <max target>

where <num agents> is the number of agents in the team, <num actions> specifies the size of
each agent’s discrete action space, and <max target> is the maximum possible target sum.

Observation Space At each timestep t ∈ [1, 100], all agents receive the same observation: the
current target value target[t] ∼ U(0,<max target>). The observation also includes the current
step count.

Action Space Each agent selects an integer action from a discrete set:

Ai = {0, 1, . . . ,<num actions>− 1}

for i = 1, . . . ,<num agents>. The joint action is the vector of all agents’ selected integers.

Reward Function To encourage agents to coordinate without relying on fixed or easily predictable
strategies, the environment incorporates an opponent that attempts to guess the first agent’s action
using a majority vote over historical data. Specifically, for each target value, the environment records
the first agent’s past actions and uses the most frequent one as its guess. The reward at each timestep
is defined as follows:

• If the sum of all agents’ actions equals the current target:

– A reward of 2.0 is given if the opponent’s guess does not match the first agent’s action.
– A reward of 1.0 is given if the opponent’s guess does match the first agent’s action.

• If the sum does not match the target, a reward of 0.0 is given.

The same reward is distributed uniformly to all agents.
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C FURTHER EXPERIMENTAL RESULTS

C.1 PER-TASK SAMPLE EFFICIENCY RESULTS

In Figure 7, we give all task-level aggregated results. In all cases, we report the mean with 95%
bootstrap confidence intervals over 10 independent runs.

C.2 PER-TASK TABULAR RESULTS

In Table 1, we provide absolute episode metric (Colas et al., 2018; Gorsane et al., 2022) over training
averaged across 10 seeds with std reported. The bolded value means the best performance across all
methods, while highlighted value represents the best among CTDE methods.

C.3 HYPERPARAMETERS

All algorithms were tuned on each task with a tuning budget of 40 trials using the Tree-structured
Parzen Estimator (TPE) implemented in the Optuna library (Akiba et al., 2019). Since some of the
tuned hyperparameters are provided in Mava (de Kock et al., 2023), we directly adopt them and
only tune the additional algorithms and tasks. Specifically, MAGPO and HAPPO in all tasks, all
algorithms in the newly introduced CoordSum tasks.

The default hyperparameters for all methods are listed in Table 2 and Table 3. The full hyperparameter
search spaces are provided in Table 4, Table 5, Table 6, and Table 7.
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Figure 6: Effect of model capacity on performance.

C.4 ADDITIONAL EXPERIMENT ON MODEL CAPACITY

We evaluate MAGPO, CTDS, and MAPPO on smacv2 5 units to study the effect of model capacity
mismatches between training and deployment. Specifically, we keep the size of all networks used
only during training (e.g., critics, centralized policies) fixed at their full-capacity configuration, and
vary only the hidden dimension of the deployable decentralized actors at evaluation time. This setting
mimics a common practical scenario where a large teacher is trained but must be distilled into a
smaller student for deployment due to compute or latency constraints.

As shown in Figure C.4, MAGPO consistently achieves higher returns than CTDS across all evaluated
actor capacities, and the performance gap grows as the deployed actor becomes smaller. When
compared to MAPPO, both MAGPO and CTDS — as teacher–student frameworks — better transfer
knowledge from a large teacher to a small student. These results suggest that directly distilling
from a large policy model is more effective than relying only on a value function for supervision,
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and that MAGPO provides a principled approach for mitigating the performance loss caused by
capacity-limited deployment.

Table 1: Performance comparison across tasks. Best overall value is bolded. Best among CTDE
methods are highlighted.

Task MAGPO CTDS HAPPO MAPPO MAT SABLE

C
oo

rd
Su

m 3x10-30 153.13 ± 1.41 111.98 ± 11.15 153.32 ± 1.89 156.37 ± 3.56 68.29 ± 16.80 153.70 ± 3.77

3x30-50 156.62 ± 1.59 76.27 ± 14.10 129.35 ± 5.22 158.05 ± 4.40 87.79 ± 8.79 125.04 ± 7.18

5x20-80 157.61 ± 3.89 19.62 ± 11.79 119.19 ± 10.05 142.51 ± 4.87 86.86 ± 8.01 48.35 ± 15.76

8x15-100 129.94 ± 8.47 23.96 ± 15.92 77.60 ± 5.09 127.32 ± 12.76 57.22 ± 4.97 28.91 ± 18.75

L
ev

el
B

as
ed

Fo
ra

gi
ng

15x15-3p-5f 0.99 ± 0.00 0.96 ± 0.02 0.91 ± 0.02 0.97 ± 0.02 0.91 ± 0.02 0.96 ± 0.01

15x15-4p-3f 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.99 ± 0.01 1.00 ± 0.00

15x15-4p-5f 0.99 ± 0.00 0.99 ± 0.00 0.89 ± 0.02 0.98 ± 0.01 0.97 ± 0.01 0.99 ± 0.00

2s-8x8-2p-2f-coop 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

2s-10x10-3p-3f 0.97 ± 0.01 0.87 ± 0.02 0.99 ± 0.01 1.00 ± 0.00 0.97 ± 0.01 0.99 ± 0.00

8x8-2p-2f-coop 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

10x10-3p-3f 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.99 ± 0.00 1.00 ± 0.00

M
aC

on
ne

ct
or con-5x5x3a 0.94 ± 0.01 0.93 ± 0.02 0.93 ± 0.02 0.87 ± 0.02 0.85 ± 0.02 0.92 ± 0.02

con-7x7x5a 0.76 ± 0.03 0.71 ± 0.05 0.67 ± 0.02 0.63 ± 0.02 0.62 ± 0.04 0.74 ± 0.03

con-10x10x10a 0.42 ± 0.03 0.37 ± 0.04 0.21 ± 0.03 0.30 ± 0.01 0.22 ± 0.05 0.39 ± 0.03

con-15x15x23a 0.02 ± 0.01 0.02 ± 0.01 0.00 ± 0.00 0.02 ± 0.01 0.00 ± 0.00 0.08 ± 0.01

M
PE

spread 3ag −6.10 ± 0.21 −6.34 ± 0.29 −6.63 ± 0.49 −6.72 ± 0.22 −6.59 ± 0.23 −4.92 ± 0.30

spread 5ag −18.67 ± 0.41 −20.38 ± 0.39 −23.42 ± 0.53 −22.84 ± 0.23 −25.30 ± 1.74−12.75 ± 0.91

spread 10ag −40.51 ± 0.80 −40.09 ± 0.73 −43.68 ± 0.55 −41.83 ± 0.52 −50.07 ± 1.72−36.93 ± 0.32

R
ob

ot
W

ar
eh

ou
se

large-4ag 7.63 ± 0.98 5.00 ± 0.54 0.61 ± 0.54 3.02 ± 2.26 4.61 ± 0.25 6.22 ± 1.73

large-4ag-hard 4.56 ± 0.64 2.25 ± 1.50 0.00 ± 0.00 0.00 ± 0.01 2.28 ± 1.88 3.46 ± 1.80

large-8ag 10.40 ± 0.52 7.68 ± 0.69 0.00 ± 0.00 8.35 ± 0.66 14.72 ± 0.79 11.01 ± 0.51

large-8ag-hard 8.66 ± 0.61 4.32 ± 2.86 0.00 ± 0.00 3.38 ± 3.10 9.07 ± 0.71 9.22 ± 0.48

medium-4ag 11.46 ± 1.16 8.22 ± 0.56 4.04 ± 0.63 7.82 ± 3.24 7.62 ± 3.83 12.74 ± 1.44

medium-4ag-hard 8.49 ± 0.54 4.81 ± 0.79 3.75 ± 0.63 2.80 ± 2.77 4.64 ± 2.54 6.79 ± 1.34

medium-6ag 14.78 ± 3.28 8.49 ± 1.07 4.99 ± 0.82 12.13 ± 0.53 13.32 ± 0.63 12.97 ± 1.03

small-4ag 15.09 ± 0.71 11.07 ± 0.81 9.64 ± 2.43 10.52 ± 0.75 18.27 ± 0.53 16.47 ± 8.26

small-4ag-hard 11.48 ± 0.41 7.56 ± 1.02 6.50 ± 1.09 9.44 ± 0.35 9.68 ± 3.19 12.02 ± 1.20

tiny-2ag 19.70 ± 1.16 13.70 ± 1.96 10.93 ± 2.30 12.28 ± 5.86 17.06 ± 1.61 21.17 ± 1.24

tiny-2ag-hard 16.61 ± 0.99 9.23 ± 0.88 9.61 ± 3.09 13.60 ± 0.73 13.44 ± 2.41 15.93 ± 0.74

tiny-4ag 31.02 ± 1.95 14.42 ± 1.16 17.84 ± 2.17 26.29 ± 2.88 28.19 ± 1.02 43.56 ± 2.69

tiny-4ag-hard 20.49 ± 2.61 11.31 ± 0.88 16.66 ± 2.50 19.01 ± 1.31 20.54 ± 11.99 30.97 ± 1.65

xlarge-4ag 5.74 ± 0.71 3.02 ± 1.25 0.00 ± 0.00 3.73 ± 1.19 4.71 ± 0.43 3.76 ± 2.30

xlarge-4ag-hard 0.31 ± 0.64 0.12 ± 0.34 0.00 ± 0.00 0.00 ± 0.00 0.39 ± 1.01 0.70 ± 1.39

Sm
ax

2s3z 1.00 ± 0.00 0.99 ± 0.01 0.99 ± 0.01 1.00 ± 0.00 0.99 ± 0.00 1.00 ± 0.00

3s5z 0.99 ± 0.01 0.98 ± 0.01 0.98 ± 0.01 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.01

3s5z vs 3s6z 0.95 ± 0.02 0.89 ± 0.04 0.51 ± 0.11 0.91 ± 0.05 0.93 ± 0.03 0.94 ± 0.02

3s vs 5z 0.99 ± 0.01 0.97 ± 0.01 0.95 ± 0.01 0.99 ± 0.01 0.96 ± 0.01 0.99 ± 0.01

6h vs 8z 1.00 ± 0.00 0.99 ± 0.01 0.99 ± 0.00 1.00 ± 0.00 0.99 ± 0.01 1.00 ± 0.00

10m vs 11m 0.98 ± 0.02 0.80 ± 0.21 0.14 ± 0.03 0.39 ± 0.07 0.88 ± 0.19 0.83 ± 0.24

5m vs 6m 0.34 ± 0.35 0.15 ± 0.23 0.03 ± 0.01 0.28 ± 0.37 0.68 ± 0.36 0.59 ± 0.41

smacv2 5 units 0.83 ± 0.02 0.80 ± 0.03 0.68 ± 0.02 0.76 ± 0.02 0.82 ± 0.02 0.78 ± 0.03

smacv2 10 units 0.76 ± 0.05 0.65 ± 0.06 0.47 ± 0.06 0.76 ± 0.02 0.71 ± 0.04 0.65 ± 0.04

27m vs 30m 0.99 ± 0.01 0.99 ± 0.01 0.77 ± 0.05 0.83 ± 0.10 0.88 ± 0.09 1.00 ± 0.00
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Figure 7: Mean episode return with 95% bootstrap confidence intervals on all tasks.
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Table 2: Default hyperparameters for MAT and Sable.

Parameter Value
Activation function GeLU
Normalize Advantage True
Value function coefficient 0.1
Discount 0.99
GAE 0.9
Rollout length 128
Add one-hot agent ID True

Table 3: Default hyperparameters for HAPPO and MAPPO.

Parameter Value
Value network layer sizes [128,128]
Policy network layer sizes [128,128]
Number of recurrent layers 1
Size of recurrent layer 128
Activation function ReLU
Normalize Advantage True
Value function coefficient 0.1
Discount 0.99
GAE 0.9
Rollout length 128
Add one-hot agent ID True

Table 4: Hyperparameter Search Space for MAT.

Parameter Value
PPO epochs {2, 5, 10, 15}
Number of minibatches {1, 2, 4, 8}
Entropy coefficient {0.1, 0.01, 0.001, 1}
PPO clip ϵ {0.05, 0.1, 0.2}
Maximum gradient norm {0.5, 5, 10}
Learning rate {1e-3, 5e-4, 2.5e-4, 1e-4, 1e-5}
Model embedding dimension {32, 64, 128}
Number of transformer heads {1, 2, 4}
Number of transformer blocks {1, 2, 3}

Table 5: Hyperparameter Search Space for Sable.

Parameter Value
PPO epochs {2, 5, 10, 15}
Number of minibatches {1, 2, 4, 8}
Entropy coefficient {0.1, 0.01, 0.001, 1}
PPO clip ϵ {0.05, 0.1, 0.2}
Maximum gradient norm {0.5, 5, 10}
Learning rate {1e-3, 5e-4, 2.5e-4, 1e-4, 1e-5}
Model embedding dimension {32, 64, 128}
Number retention heads {1, 2, 4}
Number retention blocks {1, 2, 3}
Retention heads scaling parameter {0.3, 0.5, 0.8, 1}
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Table 6: Hyperparameter Search Space for HAPPO and MAPPO.

Parameter Value
PPO epochs {2, 4, 8}
Number of minibatches {2, 4, 8}
Entropy coefficient {0, 0.01, 0.00001}
PPO clip ϵ {0.05, 0.1, 0.2}
Maximum gradient norm {0.5, 5, 10}
Value Learning rate {1e-4, 2.5e-4, 5e-4}
Policy Learning rate {1e-4, 2.5e-4, 5e-4}
Recurrent chunk size {8, 16, 32, 64, 128}

Table 7: Hyperparameter Search Space for MAGPO.

Parameter Value
Double clip δ {1.1, 1.2, 1.3, 1.5, 2, 3}
RL auxiliary loss λ {0, 1, 2, 4, 8}
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Figure 8: Memory usage and agent scalability experiment.
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