
Published as a conference paper at ICLR 2025

DOF: A DIFFUSION FACTORIZATION FRAMEWORK FOR
OFFLINE MULTI-AGENT REINFORCEMENT LEARNING

Chao Liab∗, Ziwei Dengab∗, Chenxing Linab, Wenqi Chene, Yongquan Fuc,
Weiquan Liuabd, Chenglu Wenab, Cheng Wangab, Siqi Shenab†
aFujian Key Laboratory of Sensing and Computing for Smart Cities,
School of Informatics, Xiamen University (XMU), China
bKey Laboratory of Multimedia Trusted Perception and Efficient Computing, XMU, China
cSchool of Computer, National University of Defense Technology, China
dCollege of Computer Engineering, Jimei University, China
eSchool of Information and Software Engineering,
The University of Electronic Science and Technology of China
{chaoli,dengziwei,lincx1123}@stu.xmu.edu.cn,
{siqishen,cwang,clwen,wqliu}@xmu.edu.cn, {yongquanf}@nudt.edu.cn,
{chenwenqi}@std.uestc.edu.cn

ABSTRACT

Diffusion models have been widely adopted in image and language generation
and are now being applied to reinforcement learning. However, the application
of diffusion models in offline cooperative Multi-Agent Reinforcement Learning
(MARL) remains limited. Although existing studies explore this direction, they
suffer from scalability or poor cooperation issues due to the lack of design prin-
ciples for diffusion-based MARL. The Individual-Global-Max (IGM) principle
is a popular design principle for cooperative MARL. By satisfying this principle,
MARL algorithms achieve remarkable performance with good scalability. In this
work, we extend the IGM principle to the Individual-Global-identically-Distributed
(IGD) principle. This principle stipulates that the generated outcome of a multi-
agent diffusion model should be identically distributed as the collective outcomes
from multiple individual-agent diffusion models. We propose DoF, a diffusion
factorization framework for Offline MARL. It uses noise factorization function
to factorize a centralized diffusion model into multiple diffusion models. We
theoretically show that the noise factorization functions satisfy the IGD principle.
Furthermore, DoF uses data factorization function to model the complex rela-
tionship among data generated by multiple diffusion models. Through extensive
experiments, we demonstrate the effectiveness of DoF. The source code is available
at https://github.com/xmu-rl-3dv/DoF.

1 INTRODUCTION

Generative diffusion models (Ho et al., 2020; Song et al., 2021b) have achieved great success in
multiple domains such as image generation (Rombach et al., 2022). Due to the powerful modeling
ability of generative modeling, researchers have applied diffusion model (Ajay et al., 2023) to
generate decisions in the reinforcement learning domain. In this domain, offline reinforcement
learning approaches (Fujimoto et al., 2019; Kumar et al., 2020; Shao et al., 2023; Yang et al., 2021)
learn policies from offline data logged by the operational system. With access to such data, for
reinforcement learning, diffusion models can be used to learn a probabilistic model of trajectories or
actions (Ajay et al., 2023; Janner et al., 2022; He et al., 2023; Wang et al., 2023).

The success of diffusion model in offline reinforcement learning domain (Ajay et al., 2023) motivates
us to apply it in cooperative multi-agent reinforcement learning (MARL). There are a few diffusion-
based MARL approaches that exist. In MADIFF (Zhu et al., 2024), a centralized diffusion process
(CDG) is trained to generate joint trajectories. During execution, the same CDG is used to generate

∗Equal contribution
†Corresponding author

1

https://github.com/xmu-rl-3dv/DoF

Published as a conference paper at ICLR 2025

(a) Diffusion with provided goal (d) DoF(b) Independent Diffusion (c) MADIFF

Ground Truth Generation

Figure 1: Landmark Covering Game: three agents must reach different landmarks, avoiding collisions. (a)
Each agent (Ajay et al., 2023) goes to a distinct goal provided by human. (b) Independent Diffusion Agents are
independently trained and tested. (c) MADIFF: multi-agent plan trajectories using diffusion (Zhu et al., 2024).
(d) DoF: agents cooperatively plan trajectories that closely match trajectories of (a). A circle is the position of a
sampled point of an agent’s trajectory. Each color represents a distinct agent.

trajectories for each agent. It suffers from the scalability issue that the state and the action space
increase exponentially with the number of agents. Another avenue of applying diffusion (Li et al.,
2023) to MARL is to learn an independent diffusion model for each agent. Although this approach
is scalable, it suffers from poor-cooperative issues that each independent diffusion model does not
fully consider cooperation. It is challenging to address the scalability and poor-cooperative issues of
diffusion models in cooperative MARL (Chen et al., 2024).

In MARL, the centralized training with decentralized execution (CTDE) paradigm is widely adopted.
Under this paradigm, the individual-global-max (IGM) principle (Rashid et al., 2018) is proposed to
address the scalability and poor-cooperative challenges. The IGM principle requires that the collective
greedy selection of action of each individual agent is equivalence to the optimal action of a whole
multi-agent system. Many excellent algorithms (Rashid et al., 2020a; Son et al., 2019; Qiu et al.,
2021) satisfied the IGM principle have been developed. However, the IGM principle is developed for
value-based MARL (Hernandez-Leal et al., 2018), not for diffusion-based MARL. Moreover, the
IGM principle is only applicable for methods that learn factorized policies (Rashid et al., 2018; Shen
et al., 2022; Wang et al., 2021; Rashid et al., 2020a). It is unsuitable for planning-based methods (Ajay
et al., 2023) that generate (or predict) future outcomes and plan based on predictions. A more general
principle than the IGM principle is lacking for diffusion-based MARL.

To address the above limitations, we propose the Individual-Global-identically-Distribute (IGD)
principle, which is a generalization of the IGM principle if the diffusion process can generate
deterministic actions exactly. It requires that the collectively generated outcome of each individual
agent follows the same distribution as the generated outcome of a whole multi-agent system. Given a
diffusion method that satisfies the IGD principle, a centralized diffusion model (CDM) can be used to
generate high-return data (e.g., trajectories or actions). Once trained, the CDM, parameterized by
θtot, is factored into multiple small decentralized diffusion models (DDM), each parameterized by θi.
During execution, each agent uses a decentralized diffusion model to generate data. The collection of
each agent’s generated data follows the same distribution as the high-return data generated by the
CDM. The IGD principle is flexible, applying to both factorized policies and planners.

In this work, we propose DoF, a diffusion factorization framework for offline MARL. The same
as other diffusion models, the forward process of DoF gradually adds noise into data, whereas its
backward process does the opposite. DoF utilizes a noise factorization function to ensure that the
noise of multi-agent is equivalent to the combination of the noise of each agent. We show theoretically
that the noise factorization function satisfies the IGD principle. As shown in Figure 1, DoF generates
data that matches ground truth better than other methods, which demonstrates the effectiveness of
the noise factorization function. Further, DoF utilizes a data factorization function to model the
relationship among data generated by agents.

For evaluation, we conduct extensive experiments on the StarCraft II MARL tasks (Samvelyan et al.,
2019; Ellis et al., 2023), the Multi-Particle Environment (MPE) (Lowe et al., 2017b), Multi-Agent
Mujoco (de Witt et al., 2020), and several illustrative examples. The experimental results demonstrate
the effectiveness of DoF.

2

Published as a conference paper at ICLR 2025

2 BACKGROUND

2.1 DEC-POMDPS

We consider cooperative multi-agent reinforcement learning tasks, which can be modeled as De-
centralized Partially Observable Markov Decision Processes (Dec-POMDPs) (Oliehoek & Amato,
2016). In this work, agents do not communication. The Dec-POMDPs is represented as tuple
G = ⟨S, {Ui}Ni=1, P, r, {Oi}Ni=1, {σi}Ni=1, N, γ⟩ for N agents. Please refer to Appendix A.1 for
details.

2.2 THE INDIVIDUAL-GLOBAL-MAX PRINCIPLE

For Dec-POMDPs, value function factorization methods learn factorized Q value functions, which are
used for the execution of each agent. The Individual-Global-Max (IGM) principle proposed in (Son
et al., 2019) is essential for the realization of value function factorization. It is defined as follows.

Definition 1 (IGM). For a joint state-action value function Qjt : T N ×UN 7→ R, where τtot ∈ T N

is a joint action-observation history and u ∈ UN is the joint action, if there exist individual state-
action functions [Qi : Ti × Ui 7→ R]Ni=1, such that the following conditions are satisfied

argmax
u

Qjt(τtot,u) = (argmax
u1

Q1(τ1, u1), . . . , argmax
uN

QN (τN , uN)), (1)

then, [Qi]
N
i=1 satisfy IGM for Qjt under τ . We can state that Qjt(τtot,u) can be factorized in terms

of [Qi(τi, ui)]
N
i=1.

2.3 DIFFUSION MODELS

Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020) are a type of generative model that
learns the data distribution p(x0) from a dataset D. It consists of the forward noising process and the
reverse denoising process. In the forward noising process, the data-generating procedure is modeled
by p(xk+1|xk) := N (

√
αkx

k, (1− αk)I), where x0 is a data sample, αk ∈ R determines the level
of noise add to data xk. The reverse denoising process is a trainable process which can be modeled
as pθ(xk−1|xk) := N (µθ(x

k, k),Σk), where µθ(x
k, k) is a function of xk and noise ϵθ(xk, k).

N (µ,Σ) is a Gaussian distribution with its mean µ and variance Σ. DDPM (Ho et al., 2020) uses the
following loss function to train the reverse denoising process.

L(θ) = Ek∼[1,K],ϵ∼N (0,I)[|ϵ− ϵθ(xk, k)|2] (2)

The noise model ϵθ(xk, k) estimates the noise ϵ ∼ N (0, I) added to x0 for xk. Once the noise
model is learned, it can be used to generate data. Please refer to Appendix A.2 for details.

3 RELATED WORK

Offline reinforcement learning algorithms (Fujimoto et al., 2019; Yang et al., 2021; Kumar et al.,
2020; Chen et al., 2021; Janner et al., 2021; Meng et al., 2023; Tseng et al., 2022) learn policies from
static operational logs, which circumstances the need for costly online exploration. DoF learns policy
from static operational logs too.

In cooperative multi-agent reinforcement learning (MARL), the widely used IGM principle requires
agents to work together for a common goal. This work introduces the IGD principle as a generalization
of IGM. To satisfy IGM, researchers have proposed various multi-agent reinforcement learning
(MARL) value factorization methods (Sunehag et al., 2018; Rashid et al., 2018; Son et al., 2019;
Rashid et al., 2020a; Sun et al., 2021; Qiu et al., 2021; Haoyuan et al., 2024), which decompose a
joint Q-value function into individual Q-values for each agent. These factorization methods, along
with value/policy regularization and heuristics, have also been adapted for offline MARL (Yang et al.,
2021; Jiang & Lu, 2021; Fujimoto & Gu, 2021; Shao et al., 2023; Pan et al., 2022), but they often
suffer from value function approximation and off-policy learning issues.

Diffusion-based approaches make decisions by generating trajectories or actions. Diffuser (Janner
et al., 2022) generates trajectories through classifier-guide diffusion (Dhariwal & Nichol, 2021) and

3

Published as a conference paper at ICLR 2025

acts according to generated trajectories. Decision Diffuser (Ajay et al., 2023) enhances Diffuser by
using classifier-free guidance (Ho & Salimans, 2021). DiffusionQL (Wang et al., 2023) uses diffusion
models to generate actions. Although these approaches are flexible and high-performing, they are
not scalable for cooperative multi-agent scenarios. For multi-agent settings, DOM2 (Li et al., 2023)
uses an independent DiffusionQL diffusion process to make decision for each agent without fully
considering cooperation.

The closest work to us is MADIFF (Zhu et al., 2024). It learns a centralized diffusion model (CDM)
to generate trajectories. During execution, each agent uses the same CDM to generate trajectories.
DoF learns a CDM, which can be factorized into multiple smaller diffusion models that are used by
each agent. During decentralized execution, the input complexity of the MADIFF diffusion model is
o(n), where n is the number of agents, whereas the input complexity of the DoF diffusion model is
o(1). DoF achieves better scalability than MADIFF, thanks to the noise factorization function. Please
refer to Appendix A.3 for more discussion.

4 DOF: A DIFFUSION FACTORIZATION FRAMEWORK FOR OFFLINE MARL

4.1 MOTIVATING EXAMPLE

In Figure 1, three agents need to cooperatively explore all three landmarks in a short time while
avoiding collisions. The most ideal case is that each cooperative agent goes to its closest distinct
landmark. Figure 1(a) shows an implementation of the ideal case. Each agent is trained using a
decision diffuser (Janner et al., 2022) with a human-given goal. In this Figure, the positions of each
agent from 10 episodes are depicted as colored dots. Figure 1(b) shows the results for independent
diffusion (ID), where cooperation is not considered. Each agent learns independently, which leads
to many collisions. Figure 1(c) shows the result for MADIFF. It performs better than ID but causes
collisions, too. Figure 1(d) depicts the results of DoF. For MARL, it is important for agents to
collaboratively generate data that mimic cooperative behaviors in ground truth data.

4.2 THE INDIVIDUAL-GLOBAL-IDENTICALLY-DISTRIBUTED PRINCIPLE

Under the centralized training with decentralized execution (CTDE) paradigm, the IGM principle is
widely followed to address the scalability issues and to promote cooperation. Through satisfying the
IGM principle, the collection of greedy local actions of decentralized agents is equal to the optimal
jointed actions of centralized multi-agents. Similarly, for diffusion-based MARL, it is important to
learn the decentralized diffusion process aligned with the centralized diffusion process. However, the
IGM principle is designed for value-based methods, so it is not suitable for diffusion-based methods.
A design principle that generalizes the IGM principle is needed. We extend the IGM principle to the
Individual-Global-identically-Distributed (IGD) principle, which is defined as follows.
Definition 2 (IGD). For a joint total distribution pθtot(x

0
tot) :=

∫
pθtot(x

0:K
tot)dx

1:K
tot . which is called

the reverse process, defined as a Markov chain pθtot(x
0:K
tot) := p(xK

tot)
∏K

k=1 pθtot(x
k−1
tot |xk

tot) with
learned Gaussian distribution starting as p(xK

tot) = N (0, I) ∈ RN×d, where xtot is the generated
data, N is the number of agent, d is data dimension, K is the diffusion steps. After pθtot

(x0
tot) is

learned to model ground truth distribution, if there exists a joint individual distribution function
[pθi(x

0
i) :=

∫
pθi(x

0:K
i)dx1:K

i]Ni=1, where xk
i ∈ Rd is the data generated by agent i, xK

i ∼ N (0, I),
such that the following conditions are satisfied.

N∏
i=1

pθi
(x0

i) = pθtot
(x0

tot) θi ⊂ θtot (3)

It indicates that the collection of generated samples x0
i , identically distributed as x0

tot. We can
state that [pθi

(x0
i)]

N
i=1 satisfy IGD for pθtot

(x0
tot) and the diffusion model pθtot

(x0
tot) is generatively

factorized by diffusion models [pθi(xi)]
N
i=1.

The IGD principle is a generalization of the popular Individual-Global-Max (IGM) principle if the
diffusion process generates deterministic actions exactly. Let’s take an optimal discrete action genera-
tion (OAG) case as an example. If we view the generated data xtot as the optimal joint action ūtot =
argmaxutot

Qtot(τtot, utot), and each xi as the optimal local action ūi = argmaxui
Qi(τi, ui). The

IGD principle requires that
∏N

i=1 p(xi) = p(xtot). For the OAG case, the IGD principle requires that

4

Published as a conference paper at ICLR 2025

[𝑎𝑖
𝑡]𝑖=1

𝑁 …
[𝜏𝑖

𝑡]𝑖=1
𝑁

………

………

𝒙
𝑁

𝑘
𝒙

1

𝑘
𝒙

2

𝑘
𝒌

𝒑𝜽𝟐
(𝒙𝒌−𝟏|𝒙𝒌)𝒑𝜽𝟏

(𝒙𝒌−𝟏|𝒙𝒌) 𝒑𝜽𝑵
(𝒙𝒌−𝟏|𝒙𝒌)

𝜺
1

𝜃1
𝜺

𝑁

𝜃𝑁

𝒙
1

0
𝒙

0

𝑁

𝜺
2

𝜃2

𝒙
0

2

Noise Factorization

𝜺𝒕𝒐𝒕
𝜽𝒕𝒐𝒕 = 𝒇(𝜺𝟏

𝜽𝟏 , … , 𝜺𝒏
𝜽𝑵)

𝒙𝒕𝒐𝒕
𝒌−𝟏 = 𝒇(𝒙𝟏

𝒌−𝟏, … , 𝒙𝑵
𝒌−𝟏)

Data Factorization

𝒙𝒕𝒐𝒕
𝟎 = 𝒉(𝒙𝟏

𝟎, … , 𝒙𝑵
𝟎)

𝒙
𝑡𝑜𝑡

0

𝜺
𝑡𝑜𝑡

𝑘

𝒙
𝑡𝑜𝑡

𝑘 − 1

𝒌 = 𝟏, 𝟐, … , 𝑲

Trajectory Policy

𝒙
1

𝑘-1

2
𝒙

𝑘-1

Agents

𝑥= [𝜏𝑖
𝑡−1]𝑖=1

𝑁 𝑥=[𝑎𝑖
𝑡−1]𝑖=1

𝑁

𝒙
𝑘-1

𝑁

𝒑𝜽𝒊
(𝒙𝒌−𝟏|𝒙𝒌) 𝒑𝜽𝒊

(𝒙𝒌−𝟏|𝒙𝒌)

(a） (b） (c）

Figure 2: DoF Overview: (a) Diffusion Factorization: in each diffusion (forward and backward) step 1 ≤ k ≤ K,
the noise factorization function f is used to factorize the noises ϵki and intermediate data xk−1

i . In the last
backward step k = 0, we apply the data factorization function h to model the complex relationship among data
generated by each agent. (b) DoF Trajectory Agent: generating trajectory for planning. (c) DoF Policy Agent:
generating actions for execution.∏N

i=1 p(argmaxui
Qi(τi, ui)) = p(argmaxutot

Qtot(τtot, utot)), which is an extension of the IGM
principle. For more details, please refer to Theorems 4 and 5 in the Appendix B.

The IGD principle requires more than diffusion process factorization. It also requires that the diffusion
process should match ground truth distribution by maximizing the likelihood of data via diffusion
learning objective. After the diffusion processes satisfying IGD are learned, they can be used to
generate data with desired properties through guidance.

The IGD principle is flexible. If we use diffusion to generate optimal policy, the IGD principle
becomes the Individual-Global-Optimal principle (Zhang et al., 2021). For generating optimal
risk-sensitive action, the IGD principle becomes the Risk-sensitive IGM principle (Shen et al., 2023).

4.3 DIFFUSION FACTORIZATION

The overview of the DoF method is depicted in Figure 2. In DoF, for the forward diffusion process,
each agent samples a noise ϵki ∈ Rd, and they are combined to form the joint noise ϵktot ∈ RN×d to
noisify the data xtot. In the backward diffusion process, the multi-agent system uses ϵθtottot (x

k
tot, k) ∈

RN×d to generate x0
tot, where xk

tot is the data generated in the k-th step. The forward joint noise
ϵktot, backward joint noise ϵθtottot , and joint data xtot is factorized through using a noise factorization
function f and a data factorization h, where are described as follows.

ϵktot = f(ϵk1 , ..., ϵ
k
N) 0 ≤ k ≤ K (4)

ϵθtottot (x
k
tot, k) = f(ϵθ11 (xk

1 , k), ..., ϵ
θN
N (xk

N , k)) 0 ≤ k ≤ K (5)

xk
tot = f(xk

1 , ...,x
k
N) 1 ≤ k ≤ K (6)

x0
tot = h(x0

1, ...,x
0
N) (7)

The noise factorization function f mixes the individual noise ϵki and data xk
i of each agent to form

joint noise ϵktot and joint data xk
tot. Thanks to f , after the noise model ϵθtot

tot (xk
tot, k), parameterized

by θtot is trained, it can be factored into multiple small noise models ϵθi
i (xk

i , k), each parameterized
by θi. θi ⊂ θtot ∀i, θi ∩ θj = ∅ i ̸= j. During execution, agent i uses the noise model ϵθii to
generate data, its input complexity (O(1)) is only 1/N of the input complexity (O(N)) of the joint
noise model ϵθtot , where N is the number of agents. In the last diffusion step, a data factorization
function h is applied to [x0i]

N
i=1 to form x0tot.

4.3.1 NOISE FACTORIZATION FUNCTION f

Noise factorization function f factorizes the joint noise ϵtot into multiple individual noises ϵi. In this
work, we consider two noise factorization functions: Concat and WConcat.

Concat uses the concatenation function ⊕ as f . Concat assumes that the noise can be decomposed
by dividing them according to data dimension. For example, given a noise ϵtot ∼ N (µ,θ) ∈ Rd×N ,

5

Published as a conference paper at ICLR 2025

the function f can factorize it into [ϵi]
N
i=1, where [ϵi] ∈ Rd, and ϵi = ϵtot[(i − 1) × d : i × d]. ϵi

consists of the elements from the (i− 1)× d-th dimension to the i× d− 1th dimension of ϵtot.

In diffusion probability models, the noise ϵtot must be a Gaussian Noise with diagonal covariance.
According to statistics, a concatenation of diagonal covariance Gaussian noises is still a Gaussian
noise. So we can use f to concatenate diagonal covariance Gaussian [ϵi]

N
i=1 into ϵtot. After training,

each agent i can use ϵθi
i (xk

i , k) to generate data x0
i , which can be used for making decisions. Albeit

the Concat function is simple, we show in Theorem 1 that the Concat noise factorization function
satisfied the IGD principle.
Theorem 1. A multi-agent diffusion model pθtot

(x0
tot)

pθtot
(x0

tot) :=

∫
pθtot

(x0:K
tot) dx

1:K
tot (8)

ϵktot = ⊕[ϵki]Ni=1 ϵ ∈ N (µ, σ) 0 ≤ k ≤ K (9)

xk
tot = ⊕[xk

i]
N
i=1 0 ≤ k ≤ K (10)

ϵθtot
tot (xk

tot, k) = ⊕[ϵ
θi
i (xk

i , k)]
N
i=1 (11)

is generatively factorized by [pθi(xi)]
N
i=1. The noise (ϵtot and ϵi) and the transition probability

(pθtot
(xk−1

tot |xk
tot) and pθi

(xk−1
i |xk

i)) follow diagonal Gaussian distributions. ⊕ is the Concat func-
tion. pθi(x

0
i) :=

∫
pθi(x

0:K
i) dx1:K

i . ϵti is the noise added during the forward process. ϵθi(x
k
i , k) is

used for the denoising process to predict the source noise ϵ0i ∼ N (0, I) that determines xk
i from x0

i .

WConcat is a weighted version of Concat. It assigns an agent-specific weight ki to ϵθi
i . We show in

Theorem 2 that WConcat satisfies the IGD principle. Please refer to Appendix B for proofs.

Algorithm 1 and Algorithm 2 present the pseudocode for the centralized training and decentralized
execution phases of the DoF algorithm, respectively.

Algorithm 1 Centralized Training
1: repeat
2: x0

tot ∼ q(xtot) (Sample global data)
3: k ∼ Uniform({1, . . . ,K}) (Diffusion step)
4: ϵ ∼ N (0, I) ∈ Rd×N (Sample global noise)
5: xk

tot =
√
αkxk−1

tot +
√

1− αkϵ
6: xk

i = xk
tot[(i− 1)× d : i× d], i ∈ [1, . . . , N]

7: ϵtot = f(ϵ1θ1(x
k
1 , k), . . . , ϵ

N
θN

(xk
N , k))

8: Take gradient descent step on:

∇θ∥ϵ− ϵtot∥2

9: until convergence

Algorithm 2 Decentralized Execution

1: xK
i ∼ N (0, I) (Initialize for each agent i)

2: for k = K, . . . , 1 do
3: ϵiθ(x

k
i , k) (Noise prediction by each agent i)

4: Update state for each agent i:

xk−1
i =

1√
αk

(
xk
i − 1− αk√

1− αk

ϵiθ(x
k
i , k)

)
+σkz,

where z ∼ N (0, I) if k > 1, else z = 0.
5: end for
6: return x0

i (Final trajectory or action for each
agent i)

4.3.2 DATA FACTORIZATION FUNCTION h

The noise factorization function f is used to learn factored diffusion processes. However, the
modeling power of f adopted in this work is limited. Thus, the generated x0tot may not match closely
as the real data. To improve the generation quality of xtot, the data factorization function h is used to
mix [x0i]

N
i=1 to make x0tot match real data closely.

The data factorization h could model more powerful data relationships than the noise factorization
function f . For example, if we consider each diffusion process generates individual Q value x0i =
Qi, and xtot as the joint Q value function Qtot, then h can be viewed as a value factorization
function (Rashid et al., 2020b) that modeling the relationship Qtot = h(Q1, ..., QN). Besides Concat
and WConcat, we explore the use of value factorization functions and their variants as h.

4.4 DOF AGENTS

DoF can be used for generating a trajectory for planning, and it can also be used for generating actions
for execution. To demonstrate the flexibility of DoF, we implement two agents based on agents of

6

Published as a conference paper at ICLR 2025

Decision Diffuser and DiffusionQL, respectively. When DoF is used for generating trajectories or
actions, we call these methods DoF-Trajectory or DoF-Policy, respectively.

DoF-Trajectory use observation history as the data for diffusion. The clean data xt,0tot used by the
centralized diffusion process is defined as.

xt,0
tot := [ot

tot,o
t+1
tot , . . . ,o

t+H−1
tot]0 (12)

where t is the time step of a MARL trajectory, ottot is the aggregated observations at t.

For each decentralized diffusion process i, the data xt,0
i = [ot

i,o
t+1
i , . . . ,ot+H−1

i]0 is used during
diffusion, where oti is the observation of agent i at t. Following (Ajay et al., 2023), we derive
a policy from x0,t

i by using an inverse dynamics model to estimate actions, which is defined as
ut
i := Dϕ(x

t,0
i ,xt+1,0

i), where D determines actions based on xt,0
i and xt+1,0

i . Please refer the
details of the agents in Appendix C.3.

DoF-Policy use continuous action as the data for diffusion. The data xt,0tot is the action uttot for the
multi-agent system. After the centralized diffusion process is trained, each agent i uses a factored
diffusion process, parameterized by θi to generate its action uti. Please refer the details of the agents
in Appendix C.4.

For diffusion process i, we use condition yi to guide generated data toward desired properties. In
cooperative MARL, a high-return value R suggests cooperative behaviors. Thus, R is included in
yi to guide the diffusion process to generate high-return data. Further, the local observation history
τi of agent i is included in the condition yi to make the generated data align with τi. For MADIFF,
condition yi includes R and τ itot, where τ itot = (z1, ..., τi, ..., zn), z1, ...zn are random noises.

5 EVALUATION

In this section, we evaluate (1) the ability to generate data that match ground truth by comparing DoF
against two diffusion-based MARL methods, (2) the importance of satisfying the IGD principle, (3)
the ability to learn effective MARL policies from offline data, (4) the scalability of diffusion-based
MARL. We justify the use of noise factorization and data factorization functions. In addition, we
study the impact of different diffusion methods (Appendix D.5), demonstrate the ability of DoF to
generate novel behaviors that satisfy multiple constraints (Appendix D.6), justify the use of condition
information (Appendix D.7).

Unless otherwise specified, WConcat is employed as both the noise factorization function and the
data factorization function. In default, the results for DoF-Trajectory are reported. Each experiment
is repeated with five different seeds. Please refer to the Appendix D for details.

5.1 ILLUSTRATIVE EXAMPLES

The ability to generate data that match the ground truth distribution is the core ability of diffusion-
based MARL methods. The studied diffusion-based MARL approaches are DoF, MADIFF, and
Independent Diffusion (ID). The agent of DoF is the same as that of ID.

We evaluate the algorithms on three multi-agent cooperation tasks: (a) A matrix game generating two
dimensional data, (b) A Landmark covering game, and (c) Q value generating Game. We demonstrate
the superiority of the generation ability of DoF thanks to the IGD principle and factorization functions.

5.1.1 A MATRIX GAME GENERATING TWO DIMENSIONAL DATA

The ground truth data consists of four two-dimension Gaussian distributed data. Their mean-value
located in the top-left, top-right, bottom-left, and bottom-right of a data plane, and their variance are
the same. The probability for generating the four Gaussian are 0.5, 0.2, 0.2, and 0.1, respectively.

Each agent is responsible for generating one dimension of the data. The closer the method mimics
the ground truth, the better the algorithm. The scatter plot of the generated data from each method is
depicted in Figure 3. The distribution of the data across quadrants is depicted in red in the center of
the graph.

7

Published as a conference paper at ICLR 2025

Figure 3: Generating two dimension data: (a) Ground Truth, (b) DoF, (c) MADIFF, (d) Independent Diffusion

400K 800K 1.2M 1.6M 2M
Training Steps

20

0

20

40

60

80

100

120

Av
er

ag
e

Re
tu

rn

(a)Average Return Comparison

DoF
MADIFF
Independent Diffusion

400K 800K 1.2M 1.6M 2M
Training Steps

0

5

10

15

20

25

30

co
lli

de

(b)Average Collisions Comparison
DoF
MADIFF
Independent Diffusion

400K 800K 1.2M 1.6M 2M
Training Steps

0

20

40

60

80

Av
er

ag
e

Re
tu

rn

(c)Average Return Comparison

DoF spread
DoF tag
DoF world
Independent Diffusion spread
Independent Diffusion tag
Independent Diffusion world

Figure 4: (a) Return and (b) Collisions for Trajectory Generation, (c) Return for Policy Generation.

Table 1: Payoff Matrix Games and Reconstructed Value Functions

u1

u2 A B

A 1.0 0.0
B 18.0 1.0

(a) Game Payoff Matrix 1

Q1
Q2 A B

A 0.9 0.0
B 17.9 1.2

(b) DoF

u1

u2 A B

A 4.0 0.0
B 14.0 2.0

(c) Game Payoff Matrix 2

Q1
Q2 A B

A 4.0 0.0
B 13.9 2.1

(d) DoF

As we can observe from Figure 3, DoF performs better than MADIFF and ID both visually and
quantitatively. The data generated by DoF aligns most closely with the ground truth in both the
scatter and probability distributions, with MADIFF performing the second. ID uses the same agent
as DoF, but without using noise factorization and data factorization. ID does not satisfy the IGD
principle. ID learns 2 separated diffusion processes, which cannot jointly model the data distribution
well. MADIFF does not satisfy the IGD principle. As discussed in Section 4.4 and Appendix A.3,
due to lack of factorization, each MADIFF agent uses a noisy condition yi to guide diffusion. It does
not generate data match the ground truth data well.

5.1.2 LANDMARK COVERING GAME

In the landmark covering game, the motivating example, the trajectories of each method are plotted
in Figure 1. It shows that DoF can generate trajectories similar to ground truth, whereas others do not.
Figure 4(a) shows that more power modeling ability of DoF lead to higher rewards than others. And
Figure 4(b) shows that the modeling ability of DoF lead to less collisions than others.

Further, we study the the action generation cases for the MPE dataset. As it is demonstrate in Figure 4
(c), DoF outperforms ID, which does not satisfy the IGD principle, by a large margins. This game
and the above games demonstrate the ability of DoF to generate data that matches ground truth, and
the importance of satisfying the IGD principle.

5.1.3 GENERATING Q VALUES

The goal of the two-agent game is to reconstruct a one-step payoff matrix Qtot (joint Q value
function) through two agents. Agent i use the diffusion process to generate individual utility
value Qi and they are mixed into Qtot = h(Q1, Q2), where h is the data factorization function
h(Q1, Q2) = k1Q1 +K2Q2. 0 < ki < 1 are modelled following QAtten (Yang et al., 2020). As
it is depicted in Table 1, DoF can reconstruct the payoff matrix Qtot well (including the optimal
policies). This demonstrates the flexibility of the DoF framework in generating different types of

8

Published as a conference paper at ICLR 2025

Table 2: The Average Return of the StarCraft Multi-Agent Benchmark (SMAC) Scenarios

Maps Data MABCQ MACQL MAICQ MADT MADIFF DoF
Good 3.7±1.1 19.1±0.1 18.7±0.7 19.0±0.3 19.3±0.5 19.8±0.2

3m Medium 4.0±1.0 13.7±0.3 13.9±0.8 15.8±0.5 16.4±2.6 18.6±1.2
Poor 3.4±1.0 4.2±0.1 8.4±2.6 4.2±0.1 10.3±6.1 10.9±1.1
Good 4.8±0.6 5.4±0.9 19.6±0.2 18.5±0.4 18.9±1.1 19.6±0.3

8m Medium 5.6±0.6 4.5±1.5 17.9±0.5 18.2±0.1 16.8±1.6 18.6±0.8
Poor 3.6±0.8 3.5±1.0 11.2±1.3 4.8±0.1 9.8±0.9 12.0±1.2
Good 2.4±0.4 7.4±0.6 11.0±0.6 16.8±0.1 16.5±2.8 17.7±1.1

5m_vs_6m Medium 3.8±0.5 8.1±0.2 10.6±0.6 16.1±0.2 15.2±2.6 16.2±0.9
Poor 3.3±0.5 6.8±0.1 6.6±0.2 7.6±0.3 8.9±1.3 10.8±0.3
Good 7.7±0.9 17.4±0.3 18.3±0.2 18.1±0.1 15.9±1.2 18.5±0.8

2s3z Medium 7.6±0.7 15.6±0.4 17.0±0.1 15.1±0.2 15.6±0.3 18.1±0.9
Poor 6.6±0.2 8.4±0.8 9.9±0.6 8.9±0.3 8.5±1.3 10.0±1.1
Good 5.9±0.3 7.8±0.5 13.5±0.6 12.8±0.2 7.1±1.5 12.8±0.8

3s5z_vs_3s6z Medium 6.5±0.5 8.5±0.6 11.5±0.2 11.6±0.3 5.7±0.6 11.9±0.7
Poor 6.1±0.6 5.9±0.4 7.9±0.2 5.6±0.3 4.7±0.6 7.5±0.2

Good 10.1±0.2 12.9±0.2 14.2±0.3 13.8±0.3 14.7±2.2 16.1±0.8
2c_vs_64zg Medium 9.9±0.2 11.6±0.1 12.0±0.1 11.8±0.2 12.8±1.2 13.9±0.9

Poor 9.0±0.2 10.2±0.1 9.8±0.3 10.1±0.5 10.8±1.1 11.5±1.1

data. Moreover, this demonstrates that DoF can promote agent coordination through monotonicity
among individual generated content xi and joint generated content xtot.

5.2 COMPARISON STUDY

We evaluate the ability of DoF to learn effective MARL policies on the SMAC (Samvelyan et al.,
2019), SMACv2 (Ellis et al., 2023), MPE (Lowe et al., 2017b), and MA-Mujoco (de Witt et al., 2020)
environments against seven multi-agent algorithms.

The seven algorithms used for comparison are from three categories: (I) Offline MARL:
MABCQ (Jiang & Lu, 2021), MACQL (Kumar et al., 2020), MAICQ (Yang et al., 2021), OMAR (Pan
et al., 2022), and MA-TD3-BC (Fujimoto & Gu, 2021). (II) Transformer-based offline MARL:
MADT (Meng et al., 2023). (III) Diffusion-based offline MARL: MADIFF (Zhu et al., 2024).

5.2.1 SMAC AND SMACV2

As shown in Table 2, DoF achieves the best performance across most of the datasets. MABCQ
perform poorly. MACQL and MAICQ achieve good results on some good datasets but failed on
moderate and poor datasets. Compared to these value-based algorithm, through using diffusion to
generate trajectories, DoF does not learn value functions thus does not suffer from the challenges of
value function approximation and off-policy learning. MADIFF, a diffusion-based approach, is able
to model trajectory distributions and consider cooperation in some scenarios. However, it performs
poorly in heterogeneous environments (e.g., 3s5z_vs_3s6z). DoF performs better than it thanks to the
use of noise and data factorization functions. See Appendix D.3.1 for details and the win rate metric.

SMACv2 improves SMAC with more stochasticity. Its contents are procedurally generated with
heterogeneous agents. In the Appendix D.3.2, Table 10 shows that DoF achieves the best results.

5.2.2 MULTI-AGENT PARTICLE ENVIRONMENTS (MPE) AND MULTI-AGENT MUJOCO

For MPE, the results are shown in Table 11 in the Appendix. MADIFF and OMAR perform the second
and the third in most cases. MADIFF performs well in good-quality datasets but under-perform in
low-quality datasets. DoF demonstrates the best performance across various settings thanks to the
power modeling ability of diffusion and the effective collaborative strategies learned through noise
factorization and data factorization functions.

In the Appendix D.3.4, Table 13 presents the HalfCheetah results from MA-MuJoCo. DoF performs
best on the Medium dataset and ranks second on the Good and Poor datasets.

9

Published as a conference paper at ICLR 2025

Table 3: Scalability Experiment: Comparison of DoF and MADIFF for Different Numbers of Agents

Metric Method 4 Agents 8 Agents 16 Agents 32 Agents 64 Agents

GPU Memory (MB) DoF 1691 2123 2831 4322 5924
MADIFF 3121 5387 8412 14981 21862

Inference Time Cost (s) DoF 8.2 11.3 14.9 18.1 24.3
MADIFF 12.9 16.5 23.9 31.5 OOM

Reward DoF 60.12 75.91 120.31 154.62 210.42
MADIFF 63.78 70.42 113.49 148.34 OOM

Table 4: DoF with different Noise Factorization Function f

Maps Dataset Decentralized Centralized MADIFF DoF+MADIFF
Concat WConcat Dec-Atten QMix Atten

Good 19.7±0.6 19.8±0.5 4.3±2.3 3.8±1.3 19.8±0.4 19.3±0.5 19.7±0.4
3m Medium 17.8±2.1 18.0±1.0 4.5±1.8 4.2±1.5 18.0±1.4 16.4±2.6 18.2±1.1

Poor 10.6±1.6 11.4±0.7 3.2±1.5 3.5±1.4 11.3±1.3 10.3±1.5 10.8±1.2

Good 16.7±1.4 17.0±0.8 3.6±1.5 4.1±1.2 17.1±0.8 16.5±2.8 16.7±1.2
5m_vs_6m Medium 15.6±1.1 15.9±1.2 2.5±1.6 2.9±1.4 15.9±0.6 15.2±2.6 15.7±0.9

Poor 9.8±1.1 10.7±0.8 2.9±1.4 2.3±1.1 10.2±0.7 8.9±1.3 10.0±0.8

5.3 SCALABILITY AND ABLATION STUDY

Scalability Evaluation We evaluate DoF and MADIFF in a customized environment developed
based on MAgent (Zheng et al., 2018) with increasing number of agents. The experimental results are
depicted in Table 3. It shows that through diffusion factorization, DoF achieves better scalability than
MADIFF. When the number of agents reaches 64, MADIFF encounters out-of-memory (OOM) error,
whereas DoF does not. We also conducted scalability evaluation on network parameters, inference
time, and rewards. Please refer to Appendix D.3.5 for details.

Noise Factorization function f . We study the impact of different f , which can be categorized into
decentralized and centralized execution functions. The experimental results are depicted in Table 4.
Additional comparisons of Noise Factorization Function f on more complex maps are provided in
Appendix D.4. Please refer to Appendix D.4 for more details.

For decentralized functions, after the noise model ϵθtot
tot is learned, it can be factored into multiple

noise models ϵθi
i . For centralized functions, the noise model cannot be factored, and it should be

executed centrally. For decentralized functions, The WConcat function performs better than Concat.
For Dec-Atten, it is trained using an attention mechanism. During decentralized execution, the
weights of f considering other agents are omitted, which causes its poor performance. For centralized
functions, the Atten function based on the attention mechanism performs the best. The QMix function
performs poorly. This is due to the fact that through using QMix, the resulting noise may no longer
be Gaussian noise, which is required for diffusion. Please refer to Appendix C.1 for details of f .

To demonstrate the flexibility of DoF, we introduce f into MADIFF by replacing the DoF-trajectory
agent with the MADIFF agent. The new method, DoF+MADIFF, performs better than MADIFF.

Data factorization function h. We study the impact of three functions: Concat, WConcat, and Atten.
The results are depicted in Appendix Table 18. The experimental results show that Weight-Concat
performs better than Concat but slightly weaker than Atten.

6 CONCLUSION

For diffusion-based multi-agent reinforcement learning (MARL), we extend the Individual-Global-
Max (IGM) principle to the Individual-Global-identically-Distributed (IGD) principle, requiring that
outcomes from a centralized diffusion process match those from combined individual processes. By
satisfying this principle, after a diffusion model is learned, it can be factorized into multiple small
diffusion models. We propose DoF, which employs the noise factorization function to decompose a
joint noise into individual noises, and use the data factorization function to model data relationships.
We prove that these noise factorization functions satisfy the IGD principle. Experiments on multiple
benchmarks demonstrate DoF’s effectiveness.

10

Published as a conference paper at ICLR 2025

ACKNOWLEDGEMENT

This work was partially supported by the Fundamental Research Funds for the Central Universi-
ties (No. 20720230033); by the National Natural Science Foundation of China (No. 62401225);
by PDL (2022-PDL-12); by Xiaomi Young Talents Program, by the Fujian Provincial Natural
Science Foundation of China (No. 2024J01115); by Natural Science Foundation of Xiamen,
China (No. 3502Z202472018); the Jimei University Scientific Research Start-up Funding Project
(No.ZQ2024034). We would like to thank the anonymous reviewers for their valuable suggestions.

REFERENCES

Anurag Ajay, Yilun Du, Abhi Gupta, Joshua B. Tenenbaum, Tommi S. Jaakkola, and Pulkit Agrawal.
Is conditional generative modeling all you need for decision making? In ICLR, 2023.

Jiayu Chen, Bhargav Ganguly, Yang Xu, Yongsheng Mei, Tian Lan, and Vaneet Aggarwal. Deep
generative models for offline policy learning: Tutorial, survey, and perspectives on future directions.
Transactions on Machine Learning Research, 2024. ISSN 2835-8856. URL https://openreview.
net/forum?id=Mm2cMDl9r5. Survey Certification.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter Abbeel,
Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence
modeling. In NeurIPS, volume 34, pp. 15084–15097, 2021.

Christian Schroeder de Witt, Bei Peng, Pierre-Alexandre Kamienny, Philip Torr, Wendelin Böhmer,
and Shimon Whiteson. Deep multi-agent reinforcement learning for decentralized continuous
cooperative control. volume 19, 2020.

Prafulla Dhariwal and Alexander Quinn Nichol. Diffusion models beat gans on image synthe-
sis. In NeurIPS, pp. 8780–8794, 2021. URL https://proceedings.neurips.cc/paper/2021/hash/
49ad23d1ec9fa4bd8d77d02681df5cfa-Abstract.html.

Benjamin Ellis, Jonathan Cook, Skander Moalla, Mikayel Samvelyan, Mingfei Sun, Anuj Mahajan,
Jakob N. Foerster, and Shimon Whiteson. Smacv2: An improved benchmark for cooperative
multi-agent reinforcement learning. In NeurIPS, 2023.

Claude Formanek, Asad Jeewa, Jonathan P. Shock, and Arnu Pretorius. Off-the-grid MARL: datasets
and baselines for offline multi-agent reinforcement learning. In AAMAS, pp. 2442–2444, 2023.

Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning. In
NeurIPS, volume 34, pp. 20132–20145, 2021.

Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-
critic methods. In International conference on machine learning, pp. 1587–1596. PMLR, 2018.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
exploration. In ICML, pp. 2052–2062. PMLR, 2019.

Qin Haoyuan, Ma Chennan, Deng Mian, Liu Zhengzhu, Mei Songzhu, Liu Xinwang, Wang Cheng,
and Shen Siqi. The dormant neuron phenomenon in multi-agent reinforcement learning value
factorization. In Advances in Neural Information Processing Systems, 2024.

Hado Hasselt. Double q-learning. volume 23, 2010.

Haoran He, Chenjia Bai, Kang Xu, Zhuoran Yang, Weinan Zhang, Dong Wang, Bin Zhao, and Xue-
long Li. Diffusion model is an effective planner and data synthesizer for multi-task reinforcement
learning. In NeurIPS, 2023.

Pablo Hernandez-Leal, Bilal Kartal, and Matthew E. Taylor. Is multiagent deep reinforcement
learning the answer or the question? A brief survey. CoRR, abs/1810.05587, 2018. URL
http://arxiv.org/abs/1810.05587.

Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. In NeurIPS, 2021.

11

https://openreview.net/forum?id=Mm2cMDl9r5
https://openreview.net/forum?id=Mm2cMDl9r5
https://proceedings.neurips.cc/paper/2021/hash/49ad23d1ec9fa4bd8d77d02681df5cfa-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/49ad23d1ec9fa4bd8d77d02681df5cfa-Abstract.html
http://arxiv.org/abs/1810.05587

Published as a conference paper at ICLR 2025

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic mod-
els. In NeurIPS, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
4c5bcfec8584af0d967f1ab10179ca4b-Abstract.html.

Michael Janner, Qiyang Li, and Sergey Levine. Offline reinforcement learning as one big sequence
modeling problem. In NeurIPS, pp. 1273–1286, 2021. URL https://proceedings.neurips.cc/paper/
2021/hash/099fe6b0b444c23836c4a5d07346082b-Abstract.html.

Michael Janner, Yilun Du, Joshua B. Tenenbaum, and Sergey Levine. Planning with diffusion for
flexible behavior synthesis. In ICML, volume 162, pp. 9902–9915, 2022.

Jiechuan Jiang and Zongqing Lu. Offline decentralized multi-agent reinforcement learning. arXiv
preprint arXiv:2108.01832, 2021. URL https://arxiv.org/abs/2108.01832.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning. In NeurIPS, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
0d2b2061826a5df3221116a5085a6052-Abstract.html.

Zhuoran Li, Ling Pan, and Longbo Huang. Beyond conservatism: Diffusion policies in offline
multi-agent reinforcement learning. arXiv preprint arXiv:2307.01472, 2023. URL https://arxiv.
org/abs/2307.01472.

Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, Pieter Abbeel, and Igor Mordatch. Multi-agent actor-
critic for mixed cooperative-competitive environments. In NeurIPS, pp. 6379–6390, 2017a.

Ryan Lowe, Yi I Wu, Aviv Tamar, Jean Harb, OpenAI Pieter Abbeel, and Igor Mordatch. Multi-agent
actor-critic for mixed cooperative-competitive environments. volume 30, 2017b.

Calvin Luo. Understanding diffusion models: A unified perspective. CoRR, abs/2208.11970, 2022.
doi: 10.48550/ARXIV.2208.11970. URL https://doi.org/10.48550/arXiv.2208.11970.

Linghui Meng, Muning Wen, Chenyang Le, Xiyun Li, Dengpeng Xing, Weinan Zhang, Ying Wen,
Haifeng Zhang, Jun Wang, Yaodong Yang, and Bo Xu. Offline pre-trained multi-agent decision
transformer. Mach. Intell. Res., 20(2):233–248, 2023. doi: 10.1007/S11633-022-1383-7. URL
https://doi.org/10.1007/s11633-022-1383-7.

Frans A. Oliehoek and Christopher Amato. A Concise Introduction to Decentralized POMDPs.
Springer Briefs in Intelligent Systems. Springer, 2016.

Ling Pan, Longbo Huang, Tengyu Ma, and Huazhe Xu. Plan better amid conservatism: Offline
multi-agent reinforcement learning with actor rectification. In ICML, pp. 17221–17237. PMLR,
2022.

Bei Peng, Tabish Rashid, Christian Schroeder de Witt, Pierre-Alexandre Kamienny, Philip Torr,
Wendelin Böhmer, and Shimon Whiteson. Facmac: Factored multi-agent centralised policy
gradients. In NeurIPS, volume 34, pp. 12208–12221, 2021.

Wei Qiu, Xinrun Wang, Runsheng Yu, Rundong Wang, Xu He, Bo An, Svetlana Obraztsova, and
Zinovi Rabinovich. RMIX: learning risk-sensitive policies for cooperative reinforcement learning
agents. In NeurIPS, pp. 23049–23062, 2021. URL https://proceedings.neurips.cc/paper/2021/hash/
c2626d850c80ea07e7511bbae4c76f4b-Abstract.html.

Tabish Rashid, Mikayel Samvelyan, Christian Schröder de Witt, Gregory Farquhar, Jakob N. Foerster,
and Shimon Whiteson. QMIX: monotonic value function factorisation for deep multi-agent
reinforcement learning. In ICML, 2018.

Tabish Rashid, Gregory Farquhar, Bei Peng, and Shimon Whiteson. Weighted QMIX: expanding
monotonic value function factorisation for deep multi-agent reinforcement learning. In NeurIPS,
2020a.

Tabish Rashid, Mikayel Samvelyan, Christian Schröder de Witt, Gregory Farquhar, Jakob N. Foerster,
and Shimon Whiteson. Monotonic value function factorisation for deep multi-agent reinforcement
learning. CoRR, abs/2003.08839, 2020b. URL https://arxiv.org/abs/2003.08839.

12

https://proceedings.neurips.cc/paper/2020/hash/4c5bcfec8584af0d967f1ab10179ca4b-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/4c5bcfec8584af0d967f1ab10179ca4b-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/099fe6b0b444c23836c4a5d07346082b-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/099fe6b0b444c23836c4a5d07346082b-Abstract.html
https://arxiv.org/abs/2108.01832
https://proceedings.neurips.cc/paper/2020/hash/0d2b2061826a5df3221116a5085a6052-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/0d2b2061826a5df3221116a5085a6052-Abstract.html
https://arxiv.org/abs/2307.01472
https://arxiv.org/abs/2307.01472
https://doi.org/10.48550/arXiv.2208.11970
https://doi.org/10.1007/s11633-022-1383-7
https://proceedings.neurips.cc/paper/2021/hash/c2626d850c80ea07e7511bbae4c76f4b-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/c2626d850c80ea07e7511bbae4c76f4b-Abstract.html
https://arxiv.org/abs/2003.08839

Published as a conference paper at ICLR 2025

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In CVPR, pp. 10674–10685. IEEE, 2022.
doi: 10.1109/CVPR52688.2022.01042. URL https://doi.org/10.1109/CVPR52688.2022.01042.

Mikayel Samvelyan, Tabish Rashid, Christian Schröder de Witt, Gregory Farquhar, Nantas Nardelli,
Tim G. J. Rudner, Chia-Man Hung, Philip H. S. Torr, Jakob N. Foerster, and Shimon Whiteson.
The starcraft multi-agent challenge. In AAMAS, pp. 2186–2188, 2019.

Jianzhun Shao, Yun Qu, Chen Chen, Hongchang Zhang, and Xiangyang Ji. Coun-
terfactual conservative Q learning for offline multi-agent reinforcement learn-
ing. In NeurIPS, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/
f3f2ff9579ba6deeb89caa2fe1f0b99c-Abstract-Conference.html.

Siqi Shen, Mengwei Qiu, Jun Liu, Weiquan Liu, Yongquan Fu, Xinwang Liu, and Cheng Wang. Resq:
A residual q function-based approach for multi-agent reinforcement learning value factorization.
In NeurIPS, 2022.

Siqi Shen, Chennan Ma, Chao Li, Weiquan Liu, Yongquan Fu, Songzhu Mei, Xinwang
Liu, and Cheng Wang. Riskq: Risk-sensitive multi-agent reinforcement learning value
factorization. In NeurIPS, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/
6d3040941a2d57ead4043556a70dd728-Abstract-Conference.html.

Jascha Sohl-Dickstein, Eric A. Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In ICML, volume 37 of JMLR Workshop and
Conference Proceedings, pp. 2256–2265. JMLR.org, 2015. URL http://proceedings.mlr.press/v37/
sohl-dickstein15.html.

Kyunghwan Son, Daewoo Kim, Wan Ju Kang, David Hostallero, and Yung Yi. QTRAN: learning to
factorize with transformation for cooperative multi-agent reinforcement learning. In ICML, 2019.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In ICLR.
OpenReview.net, 2021a. URL https://openreview.net/forum?id=St1giarCHLP.

Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, and
Ben Poole. Score-based generative modeling through stochastic differential equations. In ICLR.
OpenReview.net, 2021b. URL https://openreview.net/forum?id=PxTIG12RRHS.

Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. In ICML,
volume 202 of Proceedings of Machine Learning Research, pp. 32211–32252. PMLR, 2023. URL
https://proceedings.mlr.press/v202/song23a.html.

Wei-Fang Sun, Cheng-Kuang Lee, and Chun-Yi Lee. DFAC framework: Factorizing the value
function via quantile mixture for multi-agent distributional q-learning. In ICML, 2021.

Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Vinícius Flores Zambaldi,
Max Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z. Leibo, Karl Tuyls, and Thore Graepel.
Value-decomposition networks for cooperative multi-agent learning based on team reward. In
AAMAS, 2018.

Wei-Cheng Tseng, Tsun-Hsuan Johnson Wang, Yen-Chen Lin, and Phillip Isola. Offline multi-agent
reinforcement learning with knowledge distillation. In NeurIPS, 2022.

Siddarth Venkatraman, Shivesh Khaitan, Ravi Tej Akella, John Dolan, Jeff Schneider, and Glen
Berseth. Reasoning with latent diffusion in offline reinforcement learning. In ICLR. OpenRe-
view.net, 2024. URL https://openreview.net/forum?id=tGQirjzddO.

Jianhao Wang, Zhizhou Ren, Terry Liu, Yang Yu, and Chongjie Zhang. Qplex: Duplex dueling
multi-agent q-learning. In ICLR, 2021.

Zhendong Wang, Jonathan J. Hunt, and Mingyuan Zhou. Diffusion policies as an expressive
policy class for offline reinforcement learning. In ICLR. OpenReview.net, 2023. URL https:
//openreview.net/pdf?id=AHvFDPi-FA.

13

https://doi.org/10.1109/CVPR52688.2022.01042
http://papers.nips.cc/paper_files/paper/2023/hash/f3f2ff9579ba6deeb89caa2fe1f0b99c-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/f3f2ff9579ba6deeb89caa2fe1f0b99c-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/6d3040941a2d57ead4043556a70dd728-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/6d3040941a2d57ead4043556a70dd728-Abstract-Conference.html
http://proceedings.mlr.press/v37/sohl-dickstein15.html
http://proceedings.mlr.press/v37/sohl-dickstein15.html
https://openreview.net/forum?id=St1giarCHLP
https://openreview.net/forum?id=PxTIG12RRHS
https://proceedings.mlr.press/v202/song23a.html
https://openreview.net/forum?id=tGQirjzddO
https://openreview.net/pdf?id=AHvFDPi-FA
https://openreview.net/pdf?id=AHvFDPi-FA

Published as a conference paper at ICLR 2025

Yaodong Yang, Jianye Hao, Ben Liao, Kun Shao, Guangyong Chen, Wulong Liu, and Hongyao
Tang. Qatten: A general framework for cooperative multiagent reinforcement learning. CoRR,
abs/2002.03939, 2020. URL https://arxiv.org/abs/2002.03939.

Yiqin Yang, Xiaoteng Ma, Chenghao Li, Zewu Zheng, Qiyuan Zhang, Gao Huang, Jun Yang, and
Qianchuan Zhao. Believe what you see: Implicit constraint approach for offline multi-agent
reinforcement learning. In NeurIPS, pp. 10299–10312, 2021. URL https://proceedings.neurips.cc/
paper/2021/hash/550a141f12de6341fba65b0ad0433500-Abstract.html.

Tianhao Zhang, Yueheng Li, Chen Wang, Guangming Xie, and Zongqing Lu. FOP: factorizing
optimal joint policy of maximum-entropy multi-agent reinforcement learning. In ICML, volume
139, pp. 12491–12500. PMLR, 2021. URL http://proceedings.mlr.press/v139/zhang21m.html.

Lianmin Zheng, Jiacheng Yang, Han Cai, Ming Zhou, Weinan Zhang, Jun Wang, and Yong Yu.
Magent: A many-agent reinforcement learning platform for artificial collective intelligence. In
AAAI, pp. 8222–8223, 2018. doi: 10.1609/AAAI.V32I1.11371. URL https://doi.org/10.1609/aaai.
v32i1.11371.

Zhengbang Zhu, Minghuan Liu, Liyuan Mao, Bingyi Kang, Minkai Xu, Yong Yu, Stefano Ermon, and
Weinan Zhang. Madiff: Offline multi-agent learning with diffusion models. CoRR, abs/2305.17330,
2024.

14

https://arxiv.org/abs/2002.03939
https://proceedings.neurips.cc/paper/2021/hash/550a141f12de6341fba65b0ad0433500-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/550a141f12de6341fba65b0ad0433500-Abstract.html
http://proceedings.mlr.press/v139/zhang21m.html
https://doi.org/10.1609/aaai.v32i1.11371
https://doi.org/10.1609/aaai.v32i1.11371

Published as a conference paper at ICLR 2025

Appendix
A BACKGROUND AND COMPARING RELATED WORK

A.1 DEC-POMDPS

In this study, we investigate cooperative multi-agent reinforcement learning scenarios, which can
be effectively modeled using Decentralized Partially Observable Markov Decision Processes (Dec-
POMDPs) (Oliehoek & Amato, 2016), a framework that handles environments where multiple agents
must make coordinated decisions based on partial observations and incomplete information. A
Dec-POMDP is formally represented by the tuple G = ⟨S, {Ui}Ni=1, P, r, {Oi}Ni=1, {σi}Ni=1, N, γ⟩
for N agents.

Here, S represents a finite set of states, encapsulating all possible environmental configurations. Each
agent i interacts with the environment using a set of discrete actions Ui. At any discrete time t, the
joint action of all agents is ut ∈ UN = U1× . . .×UN , leading to a state transition to st+1 ∈ S based
on the transition function st+1 ∼ P (· | st,ut). Each agent receives a reward rt from this transition,
critical for learning optimal policies.

Due to partial observability, each agent i receives a local observation oti ∼ σi(st), reflecting limited
state information and complicating decision-making. The environment’s partial observability is
captured in each agent’s local action-observation history τi = (Oi × Ui)∗, extending from the start
to the time horizon T . The joint policy π = ⟨π1, . . . , πN ⟩ maps each agent’s history to action
probabilities.

A.2 BACKGROUND ON DIFFUSION MODELS

Diffusion models have recently emerged as a powerful class of generative models, particularly
successful in image and audio synthesis (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al.,
2021b). A diffusion model typically involves two main components: a forward (noising) process that
gradually perturbs data, and a backward (denoising) process that learns to invert this perturbation to
recover or generate new samples.

Forward Noising Process. Given an initial data point x0 ∼ q(x0) from the empirical data distribu-
tion, the forward diffusion process adds noise step by step to produce a sequence of latent variables
{x1, x2, . . . , xK}. Each transition follows a Gaussian:

q(xk | xk−1) = N
(
xk;
√
αk xk−1, (1− αk)I

)
, k = 1, . . . ,K, (A.1)

where αk ∈ (0, 1) is a schedule parameter controlling the extent of noise injection at step k. After K
steps, xK becomes nearly an isotropic Gaussian variable if αk is chosen such that (1−αk) sums to a
sufficiently large variance.

Backward Denoising Process. To generate new samples, one starts from Gaussian noise xK ∼
N (0, I) and sequentially denoises via the reverse Markov chain:

pθ(x
k−1 | xk) = N

(
xk−1; µθ(x

k, k), Σθ(x
k, k)

)
, (A.2)

where θ encapsulates the learned parameters. The mean µθ(x
k, k) and variance Σθ(x

k, k) are
trained (e.g., via variational bounds (Ho et al., 2020) or score matching (Song et al., 2021b)) to
approximate the true reverse distribution q(xk−1 | xk) as closely as possible. After K denoising
steps, one obtains x0 ≈ x̃0 as a generated sample.

The choice of Gaussian transitions in both forward and backward processes is not arbitrary but
rather arises from practical and theoretical considerations. First, isotropic Gaussian noising is
mathematically convenient, allowing closed-form derivations and efficient sampling. Second, the
reverse-time formulation exploits properties of Gaussian distributions to make the training objective
tractable. For more detailed derivations and discussions, see DDPM.

Hence, our use of Gaussian transitions in both the forward and backward stages of the Markov process
aligns with the standard setup in DDPM and related diffusion-based generative models, rather than
introducing a novel contribution in this work.

15

Published as a conference paper at ICLR 2025

A.3 DIFFERENCES AMONG DOF, MADIFF, AND INDEPENDENT DIFFUSION

Here we discuss the differences among DoF, MADIFF and Independent Diffusion.

Table 5: Comparison of DoF, MADIFF, and Independent Diffusion Algorithms

Methods Decentrally executed Input complexity IGD Num. of Processes

DoF (f=Concat) Yes O(1) Yes n

DoF (f=WConcat) Yes O(1) Yes n

MADIFF-D Yes O(n) No 1
MADIFF-C No O(n) NA 1

Independent Diffusion Yes O(1) No n

In Table 5, Decentrally Executed indicates whether the trained agent can be executed decentrally
without communication. Input Complexity is the input dimension for each trained backward diffusion
step with respect to the number of agents n. All the methods listed in this table use U-net as its main
neural network. Different from DoF and Independent Diffusion, the U-net used by MADIFF consists
of an attention mechanism. IGD indicates whether following the IGD principle. NA is short for not
applicable. For methods that cannot be decentrally executed, the IGD principle is not applicable for
them. Num. of Processes indicates whether the number of factored diffusion processes.

f is the noise factorization introduced in Section 4.3.1, and their details are described in Section C.1.
In this table, we compare different noise factorization functions f for DoF.

In DoF (f=Concat), the per-step backward-diffusion noise ϵθtot is the concatenation of individual
noises ϵi. It is expressed as ϵθtot = (ϵθ1, ..., ϵ

θ
N). In other words, ϵθtot[(i − 1) × d : i × d] = ϵθi . For

execution, each agent i decentrally generates its noise ϵθi using its noise model to generate xi, which
could be an action or a trajectory.

f=WConcat extends the basic f=Concat by introducing a learnable weight variable ki, making the
overall noise term ϵtot[(i− 1)× d : i× d] = kiϵi. f=WConcat follows the paradigm of centralized
training and decentralized execution. During execution, each agent generates xi based on the noise ϵi
and the corresponding weight variable ki, i.e., kiϵi. f=WConcat satisfies the IGD principle.

f=Concat and f=Wconcat learn n diffusion processes. Each process is used by a separate agent i to
generate xi conditioned on observation τi and a return value R. For each agent, its input complexity
is O(1) with respect to the number of agents. The agents of f=Concat and f=WConcat can be
executed decentrally.

MADIFF trains 1 diffusion process for all the agents. After the diffusion process is trained. Each
agent uses the same diffusion process to generate data. There are two variants of MADIFF; they
differ in the way the process is used for execution.

The centralized execution variant, MADIFF-C, conditions on aggregated observation-history τtot =
(τ1, ..., τn) and a return value R to generate data xtot. MADIFF-C can generate data that matches the
original data distribution. If R is high, MADIFF-C can sample high-return data. Its input complexity
is O(n).

The decentralized execution variant (the default variant), MADIFF-D conditions on τ itot and a return
value R to generate data xi. τ itot = (z1, ..., τi, ..., zn), where τi is the local observation-history of i,
and z1, ...zn are random noises. As agent i can only observe τi, except for the i-th element, all the
other elements in τ itot are filled with random noise. Its signal-to-noise ratio is low, only 1/n. Thanks
to the modeling ability of the diffusion model, MADIFF can still generate data. However, it is unclear
how the generated data matches the original data distribution. Moreover, we show theoretically that
MADIFF does not satisfy the IGD principle. The input complexity of MADIFF-D is O(n). The input
complexity is n times higher than that for DoF(f=Concat) and DoF (f=WConcat).

If we consider the combination of the diffusion model and inverse dynamics as the MADIFF-D
agent network, then the condition τ itot can be regarded as the input for this agent network. What we
mean by random noise is that there is a large amount of noise x̃ ∈ N (0, I) in the input τ itot for the

16

Published as a conference paper at ICLR 2025

MADIFF-D agent. We have borrowed the Formula 8 of MADIFF as follows, where the left part is
denoted as X and the right part as X0.

X =



x̃0K,t, · · · , x̃0K,t+H−1
... · · ·

...
Oi

t, · · · , x̃iK,t+H−1
... · · ·

...
x̃NK,t, · · · , x̃NK,t+H−1


Iterative K diffusion steps

=⇒ X0 =



Ô0
t , · · · , Ô0

t+H−1
... · · ·

...
Oi

t, · · · , Ôi
t+H−1

... · · ·
...

ÔN
t , · · · , ÔN

t+H−1

 ,
(A.3)

The input τ itot for the MADIFF-D agent network corresponds to the first column of X . In τ itot, except
for the i-th entry Oi

t, the other N − 1 entries consist of random noise x̃ ∈ N (0, I). Therefore,
MADIFF-D contains more noise compared to DoF, which limits its ability to fully utilize the learned
coordination. Once the input τ itot is provided to the agent network, the left column of X0 (the
condition) is improved through multiple diffusion steps (the teammate modeling mechanism of
MADIFF), as shown in the first column of X0. However, because MADIFF-D’s condition consists of
significant noise, its performance is unsatisfactory despite the use of the attention mechanism inside
the diffusion process during training.

The random noise we refer to is the noise present in the input to the MADIFF-D agent network, not
the noise generated during the diffusion process within the network itself. This excess noise in the
input reduces the effectiveness of the coordination learned through diffusion. In contrast, MADIFF-C
performs better than MADIFF-D as it suffers from less input noise. However, MADIFF-C is not
scalable and faces limitations such as the curse of dimensionality in Multi-Agent Reinforcement
Learning (MARL).

In Independent Diffusion (ID), each diffusion process is trained to mimic the behavior of all the
agents rather than a specific agent due to the lack of noise and data factorization. For example, for a
two-agent scenario, process 1 learns the behaviors of agents 1 and 2, and so does process 2. With the
use of noise and data factorization, the diffusion process i will learn the behaviors of agent i rather
than that of all the agents. As ID does not tried to model the collective behaviors, it does not satisfy
the IGD principle.

DOM2 (Li et al., 2023) adopts an actor-critic MARL approach. Each actor is developed base on
DiffuionQL (Wang et al., 2023). The corresponding critic (the Q function) of each actor are learned
independently without considering others. As the critic does not fully taken into account the other
agents, the learned agents do not fully consider cooperation.

B THE INDIVIDUAL-GLOBAL-IDENTICALLY-DISTRIBUTED PRINCIPLE

Definition 1 (IGD). For a joint total distribution pθtot(x
0
tot) :=

∫
pθtot(x

0:K
tot)dx

1:K
tot . which is called

the reverse process, defined as a Markov chain pθtot(x
0:K
tot) := p(xK

tot)
∏K

k=1 pθtot(x
k−1
tot |xk

tot) with
learned Gaussian distribution starting as p(xK

tot) = N (0, I) ∈ RN×d, where xtot is the generated
data, N is the number of agent, d is data dimension, K is the diffusion steps. After pθtot

(x0
tot) is

learned, if there exists a joint individual distribution functions [pθi
(x0

i) :=
∫
pθi

(x0:K
i)dx1:K

i]Ni=1,
where xi ∈ Rd is the generated data, xK

i ∼ N (0, I), such that the following conditions are satisfied.

N∏
i=1

pθi(x
0
i) = pθtot(x

0
tot) θi ⊂ θtot (B.4)

It indicates that the collection of generated samples x0
i , identically distributed as x0

tot. We can
state that [pθi

(x0
i)]

N
i=1 satisfy IGD for pθtot

(x0
tot) and the diffusion model pθtot

(x0
tot) is generatively

factorized by diffusion models [pθi(xi)]
N
i=1.

17

Published as a conference paper at ICLR 2025

Theorem 1. A multi-agent diffusion model pθtot
(x0

tot)

pθtot
(x0

tot) :=

∫
pθtot

(x0:K
tot) dx

1:K
tot (B.5)

ϵktot = ⊕[ϵki]Ni=1 ϵ ∈ N (µ, σ) 0 ≤ k ≤ K (B.6)

xk
tot = ⊕[xk

i]
N
i=1 0 ≤ k ≤ K (B.7)

ϵθtot
tot (xk

tot, k) = ⊕[ϵ
θi
i (xk

i , k)]
N
i=1 (B.8)

is generatively factorized by [pθi
(xi)]

N
i=1. The noise (ϵtot and ϵi) and the transition probability

(pθtot(x
k−1
tot |xk

tot) and pθi(x
k−1
i |xk

i)) follow diagonal Gaussian distributions. ⊕ is the Concat func-
tion. pθi

(x0
i) :=

∫
pθi

(x0:K
i) dx1:K

i . ϵti is the noise added during the forward process. ϵθi
(xk

i , k) is
used for the denoising process to predict the source noise ϵ0i ∼ N (0, I) that determines xk

i from x0
i .

Proof. In the forward diffusion process, the global data xtot is modified as follows.

xktot =
√
ᾱkxk−1

tot +
√
1− ᾱkϵ (B.9)

ᾱk =

k∏
i=1

αk (B.10)

xk
tot = ⊕[xk

i]
N
i=1 0 ≤ k ≤ K (B.11)

We can view the data xki as it is polluted by adding noise to xk−1
i according to (B.13), where αk is a

pre-specified hyper-parameter, k is the diffusion step, ϵk−1 ∼ N (0, I).

xki = xktot[(i− 1)× d : i× d] i ∈ [1, ..N] (B.12)

xki =
√
ᾱkxk−1

i +
√

1− ᾱkϵk−1 (B.13)

After the model is trained, the noise model ϵθtottot (xtot, k) is factorized into multiple noise models
ϵθi
i (xi, k), θi ⊂ θtot ,θi ∩ θj = ∅. θtot = ⊕[θi]Ni=1. The noise model ϵθi

i (xi, k) can be used
for backward diffusion of xi. For the backward diffusion step, the probability pθi

(xk−1
i |xk

i) of
generating xk

i based on xk−1
i is defined as a Gaussian distribution described in (B.14). The mean

µθi
(xk

i , k) and the variance Σ(k) of the Gaussian distribution is defined in (B.15) and in (B.16).
Formulas (B.15) and (B.16) are adapted from Luo (2022).

pθi
(xk−1

i |xk
i) = N (xk−1

i ;µθi
(xk

i , k),Σ(k)) (B.14)

µθi
(xk

i , k) =
1√
αk

xk
i −

1− αk

√
1− ᾱk

√
αk

ϵθi

i (xk
i , k) (B.15)

Σ(k) =
(1− αt)(1− ᾱt−1)

1− ᾱt
I (B.16)

The backward probability pθi
(xk−1

i |xk
i) depends on θi only. For the factorization function Concat,

θi ∩ θj = ∅ i ̸= j. Thus, pθi
(xk−1

i |xk
i) is independent from pθj

(xk−1
j |xk

j). We can derive
in equation (B.17) the joint conditional probability is equal to the product of two independent
conditional probabilities.

pθi∪θj
(xk−1

i ,xk−1
j |xk

i ,x
k
j) = pθi

(xk−1
i |xk

i)× pθj
(xk−1

j |xk
j) i ̸= j (B.17)

The probability of backward denoising step of xtot is written as follows.

pθtot(x
k−1
tot |xk

tot) = pθ1∪,...,∪θN
(xk−1

1 , ...,xk−1
N |xk

1 , ...,x
k
N) (B.18)

= pθ1(x
k−1
1 |xk

1)× pθ2(x
k−1
2 |xk

2)× ...pθN
(xk−1

N |xk
N) (B.19)

=

N∏
i=1

pθi
(xk−1

i |xk
i) (B.20)

18

Published as a conference paper at ICLR 2025

The generation process of x0
tot, parameterized by θtot, can be written as a Markov chain as follows.

pθtot(x
0
tot) =

∫
pθtot(x

0:K
tot)dx

1:K
tot (B.21)

= p(xK
tot)

∫
pθtot(x

k−1
tot |xk

tot)dx
1:K
tot (B.22)

=

N∏
i=1

p(xK
i)

∫
pθtot(x

k−1
tot |xk

tot)dx
1:K
tot (xK

i ∼ N (0, I), xK
tot ∼ N (0, I)) (B.23)

=

N∏
i=1

p(xK
i)

∫ N∏
i=1

pθi
(xk−1

i |xk
i)dx

1:K
tot (B.24)

=

N∏
i=1

p(xK
i)

∫ N∏
i=1

pθi
(xk−1

i |xk
i)d

[
x1:K
1 ,x1:K

2 , ..., x1:KN

]
(B.25)

=

N∏
i=1

p(xK
i)

∫ N∏
i=1

pθi
(xk−1

i |xk
i)dx

1:K
1 dx1:K

2 ..., dx1:K
N (xi ∩ xj = ∅, i ̸= j)

(B.26)

= p(xK
1)

∫
pθ1(x

k−1
i |xk

i)dx
1:K
1 ...p(xK

N)

∫
pθN

(xk−1
N |xk

N)dx1:K
N (B.27)

= pθ1(x
0
1)pθ2(x

0
2)...pθN

(x0
N) (B.28)

=

N∏
i=1

pθi
(x0

i) (B.29)

We have shown that the probability pθtot(x
0
tot) of centrally generating x0

tot is equal to the product
of probability pθi

(x0
i) for generating x0

i decentrally.

Theorem 2. A multi-agent diffusion model pθtot(x
0
tot)

pθtot(x
0
tot) :=

∫
pθtot(x

0:K
tot) dx

1:K
tot (B.30)

ϵktot = ⊎[ϵki]Ni=1 ϵ ∈ N (µ, σ) 0 ≤ k ≤ K (B.31)

xk
tot = ⊎[xk

i]
N
i=1 0 ≤ k ≤ K (B.32)

ϵθtot
tot (xk

tot, k) = ⊎[ϵ
θi
i (xk

i , k)]
N
i=1 (B.33)

θtot = ⊕[θi]Ni=1 (B.34)

is generatively factorized by [pθi(xi)]
N
i=1. The noise (ϵtot and ϵi) and the transition probability

(pθtot
(xk−1

tot |xk
tot) and pθi

(xk−1
i |xk

i)) follow diagonal Gaussian distributions. ⊎ is the WConcat
function, and ⊕ is the Concat function. pθi

(x0
i) :=

∫
pθi

(x0:K
i) dx1:K

i . ϵti is the noise added
during the forward process. ϵθi(x

k
i , k) is used for the denoising process to predict the source noise

ϵ0i ∼ N (0, I) that determines xk
i from x0

i .

Proof. This theorem can be proved in the same way as the proof for Theorem 1

Theorem 3. The multi-agent diffusion model pθtot(x
0
tot) learned by MADIFF does not satisfy the

IGD principle.

Proof. The diffusion model learned by MADIFF is defined as follows.

pθtot(x
0
tot) :=

∫
pθtot(x

0:K
tot) dx

1:K
tot (B.35)

After the model is trained, the diffusion model used by agent i is pθi(x
0
i), it is the same as pθtot

(x0
tot),

parameterized by θtot. Thus, θi = θtot. It does not meet the factorization requirement of the IGD
principle that θi ⊂ θtot

19

Published as a conference paper at ICLR 2025

Theorem 4. IGD as a Generalization of the IGO Principle

The definition of the IGO Principle (Zhang et al., 2021): For an optimal joint policy π∗
tot(utot |

τtot) : T ×U → [0, 1], where τtot ∈ T is a joint trajectory, if there exist individual optimal policies
[π∗

i (ui | τi) : T × U → [0, 1]]
N
i=1, such that the following holds:

π∗
tot(utot | τtot) =

N∏
i=1

π∗
i (ui | τi), (B.36)

then we say that [πi]
N
i=1 satisfy IGO for πtot under τtot.

The IGD principle requires that
N∏
i=1

pθi(x
0
i) = pθtot(x

0
tot), (B.37)

where x0i is the generated data of agent i, and x0tot is the generated data of the whole multi-agent
system. Here, pθi(x

0
i) is the probability of x0i , and pθtot(x

0
tot) is the probability of x0tot.

We can use the IGD principle to generate multi-agent actions. Let us treat the generated data x0i as ui,
where ui is the action taken by agent i. Then, the probability pθi(ui) becomes πi(ui | τi), where πi
is the policy of agent i and τi is the local observation. Further, let us treat the generated total data
x0
tot as utot. The probability pθtot(utot) becomes πtot(utot | τtot), where πtot is the policy of the

multi-agent system, and τtot is the aggregated observations. Then the IGD principle becomes the
following formulas:

N∏
i=1

pθi(ui) = pθtot(utot), (B.38)

N∏
i=1

πi(ui | τi) = πtot(utot | τtot). (B.39)

The above formula requires that for any policy π, the total policy πtot is equal to the product of its
per-agent policies. By substituting the optimal policy π∗

i for the policy πi and the optimal total policy
π∗
tot for the policy πtot, we obtain the following formula:

N∏
i=1

π∗
i (ui | τi) = π∗

tot(utot | τtot), (B.40)

π∗
tot(utot | τtot) =

N∏
i=1

π∗
i (ui | τi). (B.41)

The formula is exactly the requirement of the IGO principle. Thus, we have shown that the IGD
principle is a generalization of the IGO principle.

Theorem 5. IGD as a Generalization of the IGM Principle.

We have shown that the IGD principle is a generalization of the IGO principle. And the IGO paper
Zhang et al. (2021) shows that the IGO principle is a generalizatioin of the IGM principle, thus the
IGD principle is a generalization of the IGM principle.

Theorem 6. IGD as a Generalization of the RIGM Principle.

The definition of the RIGM Principle (Shen et al., 2023): Given a risk metric ψα, a set of individual
return distribution utilities [Zi (τi, ui)]

N
i=1, and a joint state-action return distribution Ztot(τtot,utot),

if the following conditions are satisfied:

argmax
u

ψα (Ztot(τtot,utot)) =

[
argmax

u1

ψα (Z1(τ1, u1)) , . . . , argmax
uN

ψα (ZN (τN , uN))

]
,

(B.42)

20

Published as a conference paper at ICLR 2025

where ψα : Z ×R→ R is a risk metric such as the VaR or a distorted risk measure, α is its risk level.
Then, [Zi (τi, ui)]

N
i=1 satisfy the RIGM principle with risk metric ψα for Zjt under under τ . We can

state that Ztot(τtot,utot) can be distributionally factorized by [Zi (τi, ui)]
N
i=1 with risk metric ψα.

Let’s define probability functions πtot(utot | τtot) and πi(ui | τi). πtot(utot | τtot) = 1, when
utot = argmaxu ψα (Ztot(τtot,utot)), and it is 0 otherwise. For πi(ui | τi), πi(ui | τi) = 1, when
ui = argmaxu ψα (Zi(τi, ui)), otherwise 0. The RIGM principle becomes the following formula:

πtot(utot | τtot) =
N∏
i=1

πi(ui | τi). (B.43)

The same as the IGO case, we can use a diffusion model to generate risk-sensitive multi-agent
action. Let’s treat the generated data x0i as risk-sensitive action ui of agent i. Then, the probability
pθi(x

0
i) = pθi(ui) becomes πi(ui | τi), where πi is the risk-sensitive policy of agent i and τi is

the local observation. Further, let’s treat the generated total data x0
tot as utot. The probability

pθtot(xtot
0) = pθtot(utot) becomes πtot(utot | τtot), where πtot is the risk-sensitive policy of the

multi-agent system, and τtot is the aggregated observation.

N∏
i=1

pθi(x
0
i) = pθtot(x

0
tot), (B.44)

N∏
i=1

pθi(ui) = pθtot(utot), (B.45)

N∏
i=1

πi(ui | τi) = πtot(utot | τtot), (B.46)

πtot(utot | τtot) =
N∏
i=1

πi(ui | τi). (B.47)

We have shown that the IGD principle is a generalization of the general RIGM principle. Thus, the
IGD principle is a generalization of the RIGM principle.

C DOF ALGORITHM

In this section, we will provide a detailed explanation of the noise factorization functions proposed
in the main text. We will discuss the basic principles of each method, explaining the mathematical
models and algorithms that form the core of their functionality.

C.1 NOISE FACTORIZATION FUNCTIONS

C.1.1 f=CONCAT

In this section, we provide a detailed overview of the f=Concat noise factorization function. We start
with a noise term ϵtot ∼ N (µ,θ) ∈ Rd×N , where ϵtot is modeled as a Gaussian noise with mean
vector µ and covariance matrix θ, covering d×N dimensions. The mixer function f decomposes
ϵtot into N smaller noise vectors [ϵi]Ni=1, each ϵi ∈ Rd. This decomposition is specifically done as
ϵi = ϵtot[(i− 1)× d : i× d], meaning each ϵi contains the elements of ϵtot from the (i− 1)× d-th
dimension to the i × d − 1-th dimension. By this partitioning, we ensure that each ϵi retains the
properties of the original Gaussian noise within its respective subspace.

In diffusion probability models, the noise ϵtot must be Gaussian with diagonal covariance. This
requirement ensures that the noise components are uncorrelated and independently distributed across
different dimensions. A notable property of Gaussian noise with diagonal covariance is that the
concatenation of multiple such Gaussian noises remains Gaussian. Mathematically, if each ϵi follows
a Gaussian distribution with diagonal covariance, then the combined noise vector ϵtot formed by the
mixer function f also maintains a Gaussian distribution with diagonal covariance.

21

Published as a conference paper at ICLR 2025

We further analyze the statistical properties of Gaussian distributions. Assume ϵi ∼ N (µi, θi) for
i = 1, 2, · · · , N , where each θi represents a diagonal covariance matrix. When these noise vectors are
concatenated, the resulting noise vector ϵtot = ⊕N

i=1ϵi has a mean vector µtot = [µ1, µ2, · · · , µN]
and a block-diagonal covariance matrix θtot, where each block on the diagonal corresponds to θi.
This confirms that ϵtot remains Gaussian with diagonal covariance.

C.1.2 f=WCONCAT

In this section, we provide a detailed overview of the f=Wconcat noise factorization function, which
utilizes learnable weight variables to combine Gaussian noise. The mixing function f for f=Wconcat
is defined as follows:

ϵtot(x
k,y, k)[(i− 1)× d : i× d] = kiϵi(x

k
i ,y, k) (C.48)

Here, the coefficients ki are trained through learnable weight variables. For the f=Wconcat case,
since each ϵi follows a Gaussian distribution with diagonal covariance, the scaled noise term kiϵi
also retains a Gaussian distribution with diagonal covariance. Therefore, when the scaled vectors
kiϵi are concatenated, the resulting vector ϵtot = ⊕N

i=1kiϵi still follows a Gaussian distribution with
diagonal covariance.

C.1.3 f=ATTEN

In this section, we provide a detailed overview of the f=Atten noise factorization function, which
utilizes an attention mechanism to combine Gaussian noise. Specifically, the mixing function f for
f=Atten is defined as follows:

ϵtot(x
k,y, k)[(i− 1)× d : i× d] =

N∑
j=1

wj
i ϵj(x

k
j ,y, k) (C.49)

Here, wj
i are weights computed using a multi-head attention mechanism, reflecting the relative

importance of each source of noise in the current context.

The multi-head attention mechanism is widely used in natural language processing and computer
vision due to its ability to dynamically assign different weights to different inputs, thereby highlighting
significant information. In the f=Atten , the multi-head attention mechanism captures information
across different dimensions through multiple attention heads. Each attention head computes a set
of weights, and the results are then aggregated to generate the final combined noise. This design
enhances the model’s expressiveness and flexibility, making it more effective in handling complex
tasks.

Crucially, despite the complexity of the attention mechanism, the f=Atten function maintains the
statistical properties of Gaussian noise. Since a linear combination of diagonal covariance Gaussian
noises remains Gaussian, the total noise ϵtot generated using the mixing function f retains its
Gaussian distribution. This characteristic is vital for ensuring the stability and consistency of the
generation process.

However, the f=Atten method has certain limitations when it comes to decentralized execution.
During the backward denoising steps, each agent i needs access to the noise information from other
agents to generate its state xki . This requirement limits the applicability of the f=Atten method in
decentralized settings, as each agent cannot independently complete the denoising process.

C.1.4 f=QMIX

Similar to f=Atten, through using f=QMIX, each agent cannot independently complete the denoising
process. The f=QMIX noise factorization function adapts the QMIX architecture, to combine
Gaussian noise. This method employs a mixing network that takes individual agent noises as input
and produces a combined total noise. The mixing network’s weights are generated by a hypernetwork,
allowing for state-dependent mixing of noises.

C.1.5 LOSS FUNCTION FOR NOISE FACTORIZATION

In this section, we discuss the loss functions for different noise factorization functions: f=Concat,
f=WConcat.

22

Published as a conference paper at ICLR 2025

For f=Concat, the loss function is defined as follows:

L(θ, ϕ) :=Ek,τ∈D,β∼Bern(p)

[∥∥ϵ− ϵtotθ (xk(τ), (1− β)y(τ) + β∅, k)
∥∥2]

+ E(s,u,s′)∈D

[
∥u− fϕ(o, o′)∥

2
]

(C.50)

where
ϵtot

(
xk,y, k

)
[(i− 1)× d : i× d] = ϵi (xi,y, k) (C.51)

ϵθ represents the parameterized noise model applied across all agents.

For each trajectory τ , noise ϵ is sampled from a normal distribution N (0, I), and a timestep k is
selected from a uniform distribution U{1, . . . ,K}. A noisy array of states xk(τ) is constructed,
and the model predicts the noise as ϵ̂θ := ϵθ(xk(τ), y(τ), k). With probability p, the conditioning
information y(τ) may be ignored, and the inverse dynamics model fϕ(o, o′) is trained to predict
the action u leading from observation o to o′. The term ϵtotθ is a predicted noise function, and β,
sampled from a Bernoulli distribution, determines whether the condition y(τ) is used or replaced
by an empty set. The dataset D contains the trajectories utilized for training. This loss function
effectively balances the model’s capability to predict noise and capture the underlying dynamics of
the system.

For f=WConcat, the loss function is as follows:

L(θ, ϕ) := Ek,τ∈D,β∼Bern(p)

[∥∥ϵ− ϵtotθ (xk(τ), (1− β)y(τ) + β∅, k)
∥∥2]

+ E(s,u,s′)∈D

[
∥u− fϕ(o, o′)∥

2
]

(C.52)

where

ϵtot
(
xk,y, k

)
[(i− 1)× d : i× d] = kiϵi (xi,y, k) (C.53)

ki is trained through learnable weight variables, assigning a specific weight to each noise model.

C.2 DATA FACTORIZATION FUNCTIONS h

In this work, we use the data factorization function h to model relationship among generated data.
All the noise factorization function f (Concat, WConcat, Atten, and QMIX) can be used the data
factorization h.

For h = Concat, the data factorization function is as follows:

xtot[(i− 1)× d : i× d] = xi (C.54)

For h = WConcat, the data factorization function is as follows:

xtot[(i− 1)× d : i× d] = kixi (C.55)

ki is trained through learnable weight variables.

For h = Atten, the data factorization function is as follows:

xtot [(i− 1)× d : j × d] =
N∑
j=1

wj
ixj (C.56)

ki is trained through learnable weight variables.

For h = Qmix, the data factorization function is as follows:

xtot = h(x1, x2, · · · , xn) (C.57)

Where, h is monotonic non-linear function.

23

Published as a conference paper at ICLR 2025

C.3 DOF-TRAJECTORY

In the trajectory-based version of our reinforcement learning model, we focus on modeling states
using diffusion processes. Since action sequences in reinforcement learning are typically discrete and
noisy, while states are continuous, we apply the diffusion model to states rather than actions. The
state sequence within a trajectory segment is represented as:

xk(τ) := [ot, ot+1, . . . , ot+H−1]
k (C.58)

where k denotes the time step and t specifies the time of accessing states in trajectory τ . The sequence
xk(τ) is treated as a noisy state sequence over the H-step prediction horizon. In the forward training
process, to leverage the diffusion model for planning, the diffusion process is conditioned on the
trajectory return y(τ), employing unsupervised classification and low-temperature sampling, thereby
extracting high-probability optimal trajectories from a dataset containing suboptimal paths.

For multiple agents, we introduce a Noise factorization function f(·) to integrate the noise generated
by each agent’s diffusion model:

ϵθtot = f(ϵθ1 , ϵθ2 , . . . , ϵθn) (C.59)
Noise factorization functions can be stacking, attention mechanisms, or adaptive dynamic program-
ming, among others. To derive a policy from the sampled states, we use an inverse dynamics model
to estimate actions:

ut := Dϕ(ot, ot+1) (C.60)
The designed loss function aims to minimize noise prediction error and action prediction error:

L(θ, ϕ) :=Ek,τ∈D,β∼Bern(p)

[∥∥ϵ− ϵtotθ (xk(τ), (1− β)y(τ) + β∅, k)
∥∥2]

+ E(o,u,o′)∈D

[
∥u−Dϕ(o,o

′)∥2
] (C.61)

The loss function L(θ, ϕ) optimizes the model’s decision-making capability in complex environments.

Next, we will provide a detailed explanation of the implementation of DoF in Trajectory. The DoF
algorithm is described in Algorithm 3.

C.4 DOF-POLICY

DoP-Policy is a combination of the DiffusionQL algorithm and the noise and data factorization
functions. The DoF-Policy agent is built using the DiffusionQL (Wang et al., 2023) algorithm.
It is designed for continuous action domains only. DiffusionQL initially ensures that the Actor’s
behavior policy closely aligns with the offline dataset and subsequently enhances policy performance
through policy gradient optimization based on the Critic’s estimations. DOM2 Li et al. (2023),
extend the diffusion-QL to Offline MARL by learning a separated critic for each diffusion process.
It does not address inter-agent cooperation and credit assignment in multi-agent reinforcement
learning. Moreover, they overlook the environmental instability caused by interactions among agents
in multi-agent scenarios.

In DiffusionQL, the diffusion policy represents each agent’s action ui, based on its observation, as
a Gaussian distribution xi. This is achieved by utilizing a reverse process of conditional diffusion
model to represent πθi as

πθi(ui | oi) = pθi(u
0:K
i | oi) = N (uK

i ;0, I)

K∏
k=1

pθi(u
k−1
i | uk

i ,oi), (C.62)

where pθi(u
k−1
i | uk

i ,oi) can be reparameterized as N (uk−1
i ;µθi(u

k
i ,oi, k),Σθi(u

k
i ,oi, k))

whose mean constructed as

µθi(u
k
i ,oi, k) =

1
√
αi

(
uk
i −

βk√
1− ᾱk

ϵθi(u
k
i ,oi, k)

)
. (C.63)

To gain ground action u0
i of each agent, we need to start sampling from uK

i ∼ N (0, I) to u0
i via

uk−1
i | uk

i =
uk
i√
αk
− βk√

αk(1− ᾱk)
ϵθi(u

k
i ,oi, k) +

√
βkϵ, ϵ ∼ N (0, I), for : k = K, . . . , 1.

(C.64)

24

Published as a conference paper at ICLR 2025

Algorithm 3 DOF
Training Process
Initialize: Offline dataset D, Agent Nums N , Inverse Dynamic fϕ, Batch Size M .

1: for n = 1 to n_epoch do
2: Sample trajectory sequence [τi]Ni=1 of H and condition [yi(τ i)Ni=1] from D with batch sizeM
3: Sample noise ϵ ∼ N (0, I)
4: for each Agent i ∈ N do do
5: Sample a timestep t ∼ U{1, · · · , T}
6: Construct a noisy array of states xt(τi)
7: Predict the noise ϵ̂iθ := ϵiθ(xt(τi, y(τi), t)
8: Omit the condition y(τi) with probability βi ∼ Bern(pi)
9: end for

10: ϵtotθ ← f(ϵθ1 , ϵθ2 , . . . , ϵθN)
11: otot ← h(o1, o2, . . . , oN) (oi is the local observation of agent i, it is the first element of τ0i)

12: Get theL(θ, ϕ) := Ek,τ∈D,β∼Bern(p)

[
∥ϵ− ϵtot

θ (xk(τ), (1− β)y(τ) + β∅, k)∥2
]
+Es,u,s′ ∈

D
[
||u− fϕ(o, o′)||2

]
13: Update [ϵi]Ni=1 model
14: end for
Trajectory sampling Process

1: Input: Noise model ϵθ, Inverse Dynamic Iϕ, guidance scale w, History length C, condition y
2: Initialize h← Queue(length = C); t← 0
3: while not done do do
4: Observe joint observation o; h.insert(o); Initialize τK ∼ N (0, αI)
5: for t = T to 1 do do
6: τt[: length (h)]← h
7: for agent i ∈ {1, 2, . . . , N} do
8: ϵ̂i ← ϵiθ

(
τ it , t

)
+ ω

(
ϵiθ

(
τ it , y

i, t
)
− ϵiθ

(
τ it , t

))
9: end for

10: ϵ̂totθ ← f(ϵ̂θ1 , ϵ̂θ2 , . . . , ϵ̂θN)
11:

(
µtot
t−1,Σ

tot
t−1

)
← Denoise (τt, ϵ̂

tot
θ)

12: τ tott−1 ∼ N (µtot
t−1, αΣ

tot
t−1)

13: end for
14: otot ← h(o1, o2, . . . , oN) (oi is the local observation of agent i, it is the first element of τ0i)
15: for agent i ∈ {1, 2, · · · , N} do
16: uit ← fϕi

(
oit, o

i
t+1

)
17: end for
18: Execute ut in the environment; t← t+ 1
19: end while

Through the noise factorization function f , DoF-Policy factorizes the global noise ϵtotθ into noises
ϵθi generated by each agent’s diffusion model via

ϵθi := ϵθi(
√
αkui +

√
1− αkϵ,oi, k), i ∈ (1, n) (C.65)

ϵtotθ = f(ϵθ1 , ϵθ2 , . . . , ϵθn) (C.66)
where the f is the noise factorization function, enabling the agent to account for the non-stationarity
of the environment caused by other agents’ behaviors during training. Consequently, in both policy
learning and action value function training, we attained global training goal policy π∗ with parameters
θ by considering global information to minimize the loss function L(θ):

L(θ) = Ldiff(θ) + Lpg(θ) (C.67)

= Eϵ∼N (0,I),(s,u)∼D
[
||ϵ− ϵtotθ ||2

]
− α · Es∼D,u0∼πθ

[
QΦ(s,u

0)
]

(C.68)

where the second term Lpg(θ) can utilize various methods while in this case we follow the
DiffusionQL (Wang et al., 2023) to learn QΦ(s,u

0) for policy improvement, and the α =
η

E(s,u)∼D [|QΦ(s,u0)|] is a hyperparameter to balance the two loss terms.

25

Published as a conference paper at ICLR 2025

During execution, each agent samples its own action through the diffusion model based on the IGD
principle and Equation(C.63). This allows for decentralized execution of the agents.

The DoF-P algorithm is described in Algorithm 4.

Algorithm 4 DOF-POLICY

Training Process
Initialize: Offline dataset D, Agent Nums N , Policy network πθ, Critic network QΦ (double Q-
learning Hasselt (2010) could be added), and target network πθ′ , QΦ′ .

1: for n = 1 to n_epoch do
2: Sample mini-batch B = {(ON

t ,UN
t , rt,ON

t+1)} ∼ D
Critic learning

3: for each Agent i ∈ N do
4: Sample action u0

t+1,i ∼ πθ′
i
(ut+1,i | ot+1,i)

5: end for
6: utot ← h(u1,u2, . . . ,uN)
7: Update QΦ by Q-learning method

Policy learning
8: for each Agent i ∈ N do do
9: Sample a timestep k ∼ U{1, · · · ,K}

10: Sample a random noisy distribution of action xki
11: Predict the noise ϵθi := ϵθi(

√
αkui +

√
1− αkϵ,oi, k)

12: end for
13: ϵtotθ ← f(ϵθ1 , ϵθ2 , . . . , ϵθN)
14: Update policy network πθ by Equation C.67
15: Update the two target networks πθ′ and QΦ′ through soft update.
16: end for

D EXPERIMENT DETAILS

D.1 EXPERIMENTAL SETUP

We select four categories of MARL algorithms for comparison: (I) uses online algorithms to train
offline datasets, such as QMIX (Rashid et al., 2018). (II) offline multi-agent reinforcement learning
algorithms based on the Centralized Training with Decentralized Execution (CTDE) paradigm, in-
cluding MABCQ (Jiang & Lu, 2021), MACQL (Kumar et al., 2020), MAICQ (Yang et al., 2021),
and OMAR (Pan et al., 2022), and MA-TD3-BC (Fujimoto & Gu, 2021). These methods optimize
multi-agent collaborative strategies by combining the advantages of centralized training and decen-
tralized execution. (III) Offline multi-agent algorithms based on the Decision Transformer, such as
MADT (Meng et al., 2023). (IV) Offline multi-agent reinforcement learning algorithms based on
diffusion models: MADIFF (Zhu et al., 2024), DOM2(Li et al., 2023), and Independent Diffusion.
These methods use diffusion models to generate more effective multi-agent strategies. To demonstrate
robustness, was tested with experiments using five different seeds.

The work used for comparison is listed as shown in table 6.

D.1.1 COMPUTING RESOURCES

The experiments are conducted on a high-performance computing cluster equipped with multiple
NVIDIA GeForce RTX 3090 GPUs, which provide the necessary computational power. The CPUs

1https://github.com/oxwhirl/pymarl
2https://github.com/instadeepai/og-marl
3https://github.com/instadeepai/og-marl
4https://github.com/YiqinYang/ICQ
5https://github.com/ling-pan/OMAR
6https://github.com/sfujim/TD3_BC
7https://github.com/ReinholdM/Offline-Pre-trained-Multi-Agent-Decision-Transformer
8https://github.com/zbzhu99/madiff

26

https://github.com/oxwhirl/pymarl
https://github.com/instadeepai/og-marl
https://github.com/instadeepai/og-marl
https://github.com/YiqinYang/ICQ
https://github.com/ling-pan/OMAR
https://github.com/sfujim/TD3_BC
https://github.com/ReinholdM/Offline-Pre-trained-Multi-Agent-Decision-Transformer
https://github.com/zbzhu99/madiff

Published as a conference paper at ICLR 2025

Table 6: Baseline algorithms

Algorithms Brief Description

QMIX1 (Rashid et al., 2018) Facilitates a monotonic combination of individual agent utilities.

MABCQ2 (Jiang & Lu, 2021) Offline decentralized multi-agent reinforcement learning using value
deviation and transition normalization for coordinated policies.

MACQL3 (Kumar et al., 2020) Prevents overestimation by adjusting Q-values for policy samples
and dataset state-action pairs.

MAICQ4 (Yang et al., 2021) Mitigates extrapolation error by trusting only dataset-provided
state-action pairs

OMAR5 (Pan et al., 2022) Combining first-order and zero-order methods improves
conservative value function optimization.

MA-TD3+BC6 (Fujimoto & Gu, 2021) A behavior cloning term is added to TD3 (Fujimoto et al., 2018) to
regularize the policy.

MADT7 (Meng et al., 2023) uses transformer-based offline RL to integrate global information
into agents’ policies via centralized critic gradients.

MADIFF8 (Zhu et al., 2024) incorporates attention mechanisms into Unet diffusion models to
model trajectories. The version we adopt is MADIFF-D.

used in the cluster are Intel(R) Xeon(R) Silver 4216 processors, each running at 2.10GHz. To ensure
the robustness of our results, we run the DoF algorithm five times with different random seeds in each
experimental setup. In the MPE environment, a single run of the DoF algorithm takes approximately
5 hours to complete, with convergence typically achieved within the first 1 to 2 hours.

D.1.2 HYPERPARAMETERS OF DOF

We implement DoF based on the source code of MADIFF, Decision Diffuser, and DiffusionQL.

The hyperparameters of the DoF for trajectory-generation are shown in Table 7. The hyperparameters
of DoF algorithm for policy-generation are shown in Table 8.

DoF-Trajectory As shown in Table 7, the learning rate is set to 0.0002, which dictates the step
size for each parameter update. The condition guidance weight is selected from {1.2, 1.4, 1.6, 1.8},
depending on the task requirements. The number of diffusion steps is chosen from {100, 200, 300},
based on the specific task, and adjusts the model’s reliance on conditional information during
generation. The planning horizon is set to 20, representing the number of future time steps considered
by the model for planning and prediction. The history horizon is set to 8, indicating the number of
past time steps used for decision making. The condition dropout is set to 0.25, randomly dropping
parts of the conditional information during training to prevent overfitting and enhance the model’s
generalization ability. The agent share noise is set to False, meaning different agents do not share
noise during training, which helps improve the diversity and robustness of the multi-agent system.
The discount factor is set to 0.99 for calculating the discounted future rewards, allowing the model to
consider both immediate and future rewards in long-term planning. The loss type is set to L2, using
mean squared error as the loss function, which penalizes larger deviations more heavily and helps
reduce significant prediction errors. The batch size is set to 32, indicating the number of samples
used in each training iteration.

DoF-Policy As shown in Table 8, we use values of {1e−3, 1e−4, 1e−5} for the policy learning
rate of the Adam optimizer, while a fixed learning rate of 3e−4 is used for the Q-networks’ Adam
optimizer. The parameter τ is set to 0.005, which is the update rate for the target networks. For η
in the loss function L(θ), we use a fixed value of 0.5 to balance the two loss terms. The diffusion
step is set to K = 10 for action inference. We normalize the action space to [−1, 1] using the
hyperparameter max action. The model is evaluated 200 times in total, with evaluations occurring
every 1,000 training steps.

Next, we will provide a detailed introduction of the experimental environments for MPE, SMAC, and
MA mujoco in Sections D.1.4, D.1.3, and D.1.5, and explain the sources of the offline datasets.

27

Published as a conference paper at ICLR 2025

Table 7: Hyperparameter Settings for DoF in Trajectory

Hyper-parameter Value
learning rate 0.0002

horizon 20
history horizon 8

condition dropout 0.25
condition guidance weight 1.2
number of diffusion steps 200

discount 0.99
loss type L2
batch size 32

agent share noise False
optimizer Adam optimizer

Table 8: Hyperparameter Settings for DoF in Policy

Hyper-parameter Value
diffusion Step 10

discount 0.99
max action 1.0

beta schedule linear
τ 0.005
η 0.5

learning rete 0.0003
eval iterations 200

train iterations step 1000
optimizer Adam optimizer

D.1.3 STARCRAFT MULTI-AGENT CHALLENGE (SMAC) AND SMACV2

The SMAC environment (Samvelyan et al., 2019) is a widely used benchmark for evaluating co-
operative multi-agent reinforcement learning (MARL) algorithms. In SMAC, two teams engage in
real-time battles, with one controlled by built-in AI and the other by learned multi-agent policies.
Agents must independently make decisions while cooperating to achieve victory. The environment
includes diverse scenarios with varying difficulty based on unit composition, terrain constraints, and
team balance. It features both homogeneous settings, where all agents share the same unit type, and
heterogeneous settings, where different unit types require coordinated strategies. We evaluate our
approach on six SMAC maps: 3m, 8m, 5m_vs_6m, 2c_vs_64zg, 2s3z, and 3s5z_vs_3s6z, covering
both symmetric and asymmetric matchups as well as homogeneous and heterogeneous unit composi-
tions. This variety allows for a comprehensive assessment of an algorithm’s capability to coordinate
agents in diverse combat settings.

SMACv2 (Ellis et al., 2023) is an updated version of the SMAC benchmark, designed specifically for
research in cooperative multi-agent reinforcement learning (MARL). The update introduces three
major changes: randomizing start positions, randomizing unit types, and adjusting unit sight and
attack ranges. The first two changes address a key limitation of the original SMAC benchmark, which
is its lack of sufficient randomness in many maps, making it less challenging for modern MARL
algorithms. The adjustment to unit sight and attack ranges increases agent diversity and aligns these
attributes more closely with their actual values in StarCraft, enhancing the benchmark’s realism and
complexity. We conducted experiments on three SMACv2 scenarios: terran_5_vs_5, zerg_10_vs_10,
and zerg_5_vs_5.

Dataset: We utilized the datasets from the off-the-grid offline dataset (Formanek et al., 2023), where
each map is divided into three datasets: good, medium, and poor, based on the quality of the joint
policies. This dataset enhances diversity by leveraging several different joint policies and adding a
small amount of exploration noise.

28

Published as a conference paper at ICLR 2025

D.1.4 MULTI-AGENT PARTICLE ENVIRONMENT (MPE)

MPE (Lowe et al., 2017a) is a straightforward multi-agent particle environment where particles can
perform continuous observations and discrete actions. The experiments described in this study utilized
three distinct environments. The Spread environment comprises three agents and three landmarks;
the agents must learn to avoid collisions while covering all landmarks. The Tag environment includes
one pre-trained prey, three predators, and two obstacles. The predators must cooperate to apprehend
the faster prey. The World environment also includes one pre-trained prey and three predators; the
prey agent needs to locate food on the map and can hide in a forest to avoid detection.

Dataset: The dataset used in this study, collected by OMAR (Pan et al., 2022), consists of multiple
datasets of varying quality, developed by introducing noise into the behavioral policy in MATD3 to
enhance diversity. Random-quality datasets were generated using a randomly initialized policy for
one million steps. The medium replay dataset was obtained by recording all samples in the buffer
when training reached a medium performance level. The medium and expert datasets were derived
from either a partially pretrained policy with a medium performance level or a fully trained policy.

We normalized the average scores of MPE tasks to better compare the performance of different
algorithms, as shown in Table 1. We used expert scores and random scores as the benchmarks for
normalization. Let the original episodic return be S. The normalized score Snorm is calculated using
the formula Snorm = 100 × (S−Srandom)

(Sexpert−Srandom)
, where Srandom is the score obtained by a random policy

and Sexpert is the score obtained by an expert policy. This normalization formula follows the work
of Pan et al. [2022] and Fu et al. [2020], ensuring the method’s reliability and validity. For specific
MPE tasks, we used the following expert and random scores: for the Spread task, the expert and
random scores are 516.8 and 159.8, respectively; for the Tag task, the expert and random scores are
185.6 and −4.1, respectively; and for the World task, the expert and random scores are 79.5 and
−6.8, respectively.

D.1.5 MULTI-AGENT MUJOCO (MA MUJOCO)

MA Mujoco (Peng et al., 2021) is based on the Mujoco physics engine and provides a high-precision
multi-agent simulation platform. The robots are composed of multiple intelligent agents that must
learn to cooperate to move faster while maintaining balance. We conducted experiments using the
2-agent halfcheetah (2halfcheetah) configuration, where two different agents control the front half
and the back half of the cheetah, respectively.

Dataset: We utilized the datasets from the off-the-grid offline dataset (Formanek et al., 2023), where
each map is categorized into three datasets: good, medium, and poor, based on the quality of the joint
policies.

D.2 ILLUSTRATIVE EXAMPLES

We demonstrate the superiority of DoF’s generation capability under the IGD principle through three
tasks: (a) a matrix game generating two-dimensional data, (b) the Landmark covering game, and
(c) the Q-value generation game. We will now provide a detailed introduction to the setup of each
environment.

D.2.1 A MATRIX GAME GENERATING TWO DIMENSIONAL DATA

The Matrix-like Game is a simple experimental environment designed to study the generation
capabilities of three algorithms: DoF, MADIFF, and Independent Diffusion. In this game, we
developed a multi-agent system where each agent is responsible for generating a different dimension
of the data, learning to reproduce the ground-truth data. The ground-truth data consists of four sets
of two-dimensional Gaussian-distributed data, with their means located at the top-left (-0.75, 0.75),
top-right (0.75, 0.75), bottom-left (-0.75, -0.75), and bottom-right (-0.75, 0.75) of the data plane, all
with a variance of 0.05. These four sets of data are generated with different probabilities: 0.5 for the
top-left, 0.2 for the top-right, 0.2 for the bottom-left, and 0.1 for the bottom-right.

In generative multi-agent reinforcement learning (MARL), generating data that matches the ground
truth is a key metric for evaluating the performance of algorithms. We used the DoF, MADIFF, and
Independent Diffusion algorithms to generate data, and assessed their performance by analyzing the

29

Published as a conference paper at ICLR 2025

Table 9: Payoff matrix of one-step matrix games and reconstructed value functions to approximate the optimal
policy.

u1
u2 A B

A 1.0 0.0
B 18.0 1.0

(a) Game Payoff matrix 1

Q1
Q2 A B

A 0.6 0.0
B 19.0 0.4

(b) h=Concat

Q1
Q2 A B

A 0.9 0.0
B 17.9 1.2

(c) h=Atten

u1
u2 A B

A 4.0 0.0
B 14.0 2.0

(d) Game Payoff matrix 2

Q1
Q2 A B

A 3.2 0.2
B 15.2 1.4

(e) h=Concat

Q1
Q2 A B

A 4.0 0.0
B 13.9 2.1

(f) h=Atten

200K 400K 600K 800K 1M
Training Progress

0

5

10

15

20

Av
er

ag
e

Re
tu

rn

(a) 3m
DoF Good
DoF Medium
DoF Poor

200K 400K 600K 800K 1M
Training Progress

0

5

10

15

20

Av
er

ag
e

Re
tu

rn

(b) 5m_vs_6m
DoF Good
DoF Medium
DoF Poor

Figure 5: SMAC Return Curves: (a) 3m environment, (b) 5m_vs_6m environment.

data distribution generated by each method and how well it matched the ground truth. The result are
depicted in Figure 3.

D.2.2 LANDMARK COVERING GAME

In this game, three agents must cooperative cover three landmarks without collision in short-time.
This game is developed based the mpe-spread environment. In order to ensure the uniformity of the
assessment and reduce random interference, we fixed the initial position of the agent and landmarks
in the game. For each algorithm, we ran 10 iterations of planning, each iteration with 10 trajectory
samples per agent, and visualized these trajectory points using different colors. The goal was for
agents to learn to select the nearest landmark while avoiding overlap, exhibiting cooperative behavior.

D.2.3 GENERATING Q VALUE

The goal of the game is to reconstruct the one-step payoff matrixQtot through two agents. Agent i use
the diffusion process to generate individual utility valueQi and they are mixed intoQtot = h(Q1, Q2),
where h is the data factorization function. We consider two data factorization functions: Concat and
Atten. The results are depicted in Table 9. DoF can reconstruct the payoff matrix Qtot well. The
Atten function performs better than the Concat function.

D.3 COMPARISON RESULTS

Table 10: The Average Return of the SMACv2 Scenarios

Map Data BC MABCQ MACQL MAICQ MADIFF DoF
terran_5_vs_5 replay 7.3±1.0 13.8±4.4 11.8±0.9 13.7±1.7 13.3±1.8 15.4±1.3
Zerg_5_vs_5 replay 6.8±0.6 10.3±1.2 10.3±3.4 10.6±0.7 10.2±1.1 12.0±1.1

terran_10_vs_10 replay 7.4±0.5 12.7±2.0 11.8±2.0 14.4±0.7 13.8±1.3 14.6±1.1

30

Published as a conference paper at ICLR 2025

Table 11: The Average Return of the Multi-agent Particle Environments (MPE)

Dataset Task MAICQ MA-TD3+BC MACQL OMAR MADIFF DoF DoF-P
Spread 101.4±3.4 110.3±3.3 85.3±4.6 113.9±2.6 120.1±6.3 136.4±3.9 126.3±3.1

Expert Tag 95.2±10.1 113.1±11.6 84.3±10.2 115.8±13.6 120.8±11.3 125.6±8.6 120.1±6.3
World 98.5±21.8 95.3±18.3 65.4±20.2 113.4±23.1 124.7±20.1 135.2±19.1 138.4±20.1
Spread 29.3±5.5 32.3±3.8 35.3±10.3 45.0±18.8 67.5±8.5 75.6±8.7 60.5±8.5

Medium Tag 58.3±18.0 63.3±25.6 62.3±27.8 55.3±16.7 78.6±12.3 86.3±10.6 83.9±9.6
World 69.9±20.1 72.4±9.3 56.4±6.4 69.2±21.5 80.1±13.4 85.2±11.2 86.4±10.6
Spread 13.7±5.6 14.4±5.8 19.2±6.4 35.3±14.0 48.4±3.4 57.4±6.8 48.1±3.6

Md-Replay Tag 29.5±21.8 25.7±20.1 23.9±16.2 52.4±18.3 57.4±13.4 65.4±12.5 51.7±10.1
World 12.0±9.1 15.4±8.1 21.3±10.3 42.6±28.2 51.6±12.1 58.6±10.4 58.1±11.5
Spread 5.3±3.4 8.8±4.4 20.5±5.8 30.4±8.2 20.6±7.6 35.9±6.8 34.5±5.4

Random Tag 2.2±2.6 3.7±3.5 2.7±4.4 10.9±3.8 13.3±3.4 16.5±6.3 14.8±3.2
World 1.0±2.2 2.8±3.5 2.4±3.2 9.2±3.6 6.1±2.2 13.1±2.1 15.1±3.0

Table 12: The win rate for the SMAC Scenarios

Maps Data QMIX MABCQ MACQL MAICQ MADT MADIFF DoF

Good 0.0 0.0 0.92 0.88 0.91 0.94 0.96
3m Medium 0.0 0.0 0.25 0.28 0.60 0.63 0.82

Poor 0.0 0.0 0.0 0.0 0.0 0.0 0.06

Good 0.0 0.0 0.0 0.93 0.86 0.90 0.94
8m Medium 0.0 0.0 0.0 0.75 0.81 0.65 0.83

Poor 0.0 0.0 0.0 0.05 0.0 0.0 0.08

Good 0.0 0.0 0.0 0.04 0.68 0.66 0.72
5m_vs_6m Medium 0.0 0.0 0.0 0.0 0.62 0.58 0.62

Poor 0.0 0.0 0.0 0.0 0.0 0.0 0.03

Good 0.0 0.0 0.70 0.78 0.76 0.60 0.78
2s3z Medium 0.0 0.0 0.56 0.68 0.50 0.56 0.70

Poor 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Good 0.0 0.0 0.0 0.21 0.18 0.0 0.18
3s5z_vs_3s6z Medium 0.0 0.0 0.0 0.08 0.09 0.0 0.10

Poor 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Good 0.0 0.0 0.18 0.38 0.24 0.42 0.61
2c_vs_64zg Medium 0.0 0.0 0.14 0.17 0.06 0.18 0.23

Poor 0.0 0.0 0.0 0.0 0.0 0.0 0.05

D.3.1 SMAC

In offline multi-agent reinforcement learning, the SMAC return metric is commonly used to evaluate
performance. To provide a more comprehensive assessment of our algorithm, we also evaluated
the win rate. While win rate is a meaningful indicator of performance, especially in environments
with well-structured data, offline multi-agent reinforcement learning presents additional challenges,
often resulting in lower win rates compared to online methods. In cases where the dataset quality
is poor and returns are consistently low (e.g., below 11), the win rate may drop to 0, reducing the
comparability between algorithms in these settings.

The SMAC win rate results we present are shown in the table 12. In the Good and Medium datasets,
DoF achieved the best win rate in most environments. In simpler environments, such as the 3m and
8m environments in the Good dataset, DoF’s win rate was about 96%, followed by the MADIFF
and MAICQ algorithms. In the 3m environment, MADIFF’s win rate was 94%, while in the 8m
environment, MAICQ’s win rate was 93%. In the 5m_vs_6m and 2c_vs_64zg environments, DoF
achieved the best win rates. In heterogeneous environments, such as the 2s3z and 3s5z_vs_3s6z
environments, both the DoF and MAICQ algorithms achieved the best win rates.

To further analyze, we plotted the return curves for all datasets on the 3m and 5m_vs_6m maps.
During training, we saved the models periodically throughout the diffusion process, training for a
total of 1 million steps and saving a model every 30,000 steps. In the sampling phase, we evaluated
each saved Diffusion model and recorded the corresponding return data, as shown in Figure 5.

As shown in Figure 5, in the Good dataset, DoF converges around 200,000 to 300,000 steps, with
some fluctuations around the mean afterward. In the Medium dataset, the DoF algorithm only begins

31

Published as a conference paper at ICLR 2025

400K 800K 1.2M 1.6M 2M
Training Progress

20

0

20

40

60

80

100

120

Av
er

ag
e

Re
tu

rn

simple_spread (expert)

DoF-P
MAICQ
MA-TD3+BC
MACQL
OMAR

400K 800K 1.2M 1.6M 2M
Training Progress

0

20

40

60

80

100

120

Av
er

ag
e

Re
tu

rn

simple_tag (expert)

DoF-P
MAICQ
MA-TD3+BC
MACQL
OMAR

400K 800K 1.2M 1.6M 2M
Training Progress

0

20

40

60

80

100

120

140

Av
er

ag
e

Re
tu

rn

simple_world (expert)

DoF-P
MAICQ
MA-TD3+BC
MACQL
OMAR

400K 800K 1.2M 1.6M 2M
Training Progress

10

0

10

20

30

40

50

60

Av
er

ag
e

Re
tu

rn

simple_spread (medium)
DoF-P
MAICQ
MA-TD3+BC
MACQL
OMAR

400K 800K 1.2M 1.6M 2M
Training Progress

0

20

40

60

80

Av
er

ag
e

Re
tu

rn

simple_tag (medium)

DoF-P
MAICQ
MA-TD3+BC
MACQL
OMAR

400K 800K 1.2M 1.6M 2M
Training Progress

0

20

40

60

80

Av
er

ag
e

Re
tu

rn

simple_world (medium)

DoF-P
MAICQ
MA-TD3+BC
MACQL
OMAR

400K 800K 1.2M 1.6M 2M
Training Progress

10

0

10

20

30

40

50

Av
er

ag
e

Re
tu

rn

simple_spread (medium-replay)
DoF-P
MAICQ
MA-TD3+BC
MACQL
OMAR

400K 800K 1.2M 1.6M 2M
Training Progress

0

10

20

30

40

50

60

Av
er

ag
e

Re
tu

rn

simple_tag (medium-replay)
DoF-P
MAICQ
MA-TD3+BC
MACQL
OMAR

400K 800K 1.2M 1.6M 2M
Training Progress

10

0

10

20

30

40

50

60

Av
er

ag
e

Re
tu

rn

simple_world (medium-replay)

DoF-P
MAICQ
MA-TD3+BC
MACQL
OMAR

400K 800K 1.2M 1.6M 2M
Training Progress

20

10

0

10

20

30

Av
er

ag
e

Re
tu

rn

simple_spread (random)
DoF-P
MAICQ
MA-TD3+BC
MACQL
OMAR

400K 800K 1.2M 1.6M 2M
Training Progress

2.5

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Av
er

ag
e

Re
tu

rn

simple_tag (random)
DoF-P
MAICQ
MA-TD3+BC
MACQL
OMAR

400K 800K 1.2M 1.6M 2M
Training Progress

5

0

5

10

15

Av
er

ag
e

Re
tu

rn

simple_world (random)
DoF-P
MAICQ
MA-TD3+BC
MACQL
OMAR

Figure 6: Training Curves of DoF-P, MAICQ, MA-TD3+BC, and OMAR in MPE

to slowly converge around 600,000 steps. In comparison, for the Poor dataset, DoF exhibits larger
fluctuations, but the return curve still shows an upward trend.

D.3.2 SMACV2

We further evaluated our algorithm on the SMACv2 replay dataset in three scenarios: terran_5_vs_5,
zerg_10_vs_10, and zerg_5_vs_5. As shown in Table 10, DoF algorithm outperforms other ap-
proaches, achieving state-of-the-art (SOTA) performance across these benchmarks.

D.3.3 MPE

In Figure 6, we present the training curves of DoF-Policy (DoF-P) in the Multi-Agent Particle
Environment (MPE). These graphs cover the performance across three different environments and
four distinct datasets. We compare the training results of four algorithms: DoF-P, MAICQ, MA-
TD3+BC, and OMAR. The solid lines in the graphs represent the mean values, while the shaded
areas indicate the variance, providing insight into the central tendency and variability of the model
performance. It is worth noting that the DoF-P algorithm displayed here employs the DoF-concat
noise decomposition method.

32

Published as a conference paper at ICLR 2025

Table 13: The Average Return of the Multi-Agent MuJoCo Benchmark

Maps Data MACQL MAICQ OMAR MA-TD3+BC DoF
Good 2886.2±651.7 3044.2±311.4 3124.2±411.4 3412.7±281.3 3400.1±310.5

HalfCheetah-v2 Medium 1243.2±455.1 2621±281.4 2864.3±322.4 3011.2±178.6 3123.1±161.7
Poor 1045.3±376.7 744.3±141.7 1968.1±141.7 1651.9±156.1 1869.9±129.8

As shown in Figure 6, it is evident that DoF-P achieves superior performance in the presented
experimental results, consistently outperforming the MAICQ, MA-TD3+BC, MACQL, and OMAR
algorithms. Notably, DoF-P demonstrates a faster convergence rate, particularly in the simple_world
environment, where it converges in just 400,000 steps. In contrast, OMAR achieves the second-best
results in most environments.

D.3.4 MULTI-AGENT MUJOCO (MA MUJOCO)

Table 13 depicts the experimental results for the HalfCheetah task of MA-MuJoCo (de Witt et al.,
2020). DoF performs the best in the Medium dataset, and ranks second in the Good and Poor datasets.

D.3.5 SCALABILITY EVALUATION

We have developed a customized combat game based on MAgent (Zheng et al., 2018) environment,
a grid-world specifically designed for large-scale multi-agent reinforcement learning. The combat
game is a drone combat game, where multiple drones fight against other drones controlled by in-game
AI. The goal of the game is to train RL controlled drones to defeat all the opponent drones. In
this game, each drone agent has a 120° observation field and a smaller 120° attack range. It is a
cooperative MARL game, all the agents share the same reward: 1 point for hitting an enemy drone,
10 for neutralizing one, and 50 for eliminating all enemy drones. Negative rewards are assigned
to following scenarios: -1 for being hit, -10 for being neutralized, and -3 if no enemy drones are
taken down in a timestep. This large-scale environment presents significant challenges in agent
coordination, requiring drones to cooperate effectively to maximize enemy drone elimination while
minimizing their own casualties. We consider multiple game scenarios with different number of
drones fighting against the same number of agents. For example, the 64x64 scenario indicates 64
drones fighting against 64 opponents. For each scenario, we train agents using MADDPG (Lowe
et al., 2017a) for 2,000 episodes (with 550 steps on average), and the replay logs are collected for
offline training.

We conducted the Scalability Experiment: Comparison of DoF and MADIFF for Different Numbers
of Agents in the main text. As shown in Table 3, this experiment compares GPU Memory, Inference
Time Cost, and Reward for both DoF and MADIFF across different numbers of agents. Specifically,
Inference Time Cost represents the total time taken for a single inference, which includes the time
for the entire process of generating samples using the model, with a batch size of 32 and 200
diffusion steps. GPU Memory measures the memory usage for running the model, and Reward
reflects the performance of the agents during the game. The results demonstrate that through
diffusion factorization, DoF achieves better scalability than MADIFF. DoF consistently uses less
GPU Memory and achieves faster Inference Time Cost compared to MADIFF, particularly as the
number of agents increases. In terms of Reward, DoF maintains high performance, outperforming
MADIFF in larger-scale scenarios. These results validate the efficiency and scalability of DoF in
comparison to MADIFF.

To further evaluate the scalability, we compare the network parameter efficiency of MADIFF and
DoF. Table 14 presents a comparison of network parameter counts (in MB) across different numbers
of agents, aimed at evaluating the model’s parameter efficiency and scalability. We measure the
network parameter counts per agent to directly compare how both methods scale as the number of
agents increases.

We also investigate the inference time costs of various baseline methods. Table 15 provides a
comparison of inference time (in seconds) for DoF with enhanced sampling techniques alongside
other baseline approaches. Specifically, we explore sampling acceleration techniques such as DDIM
and Consistency Model, and include comparisons with non-diffusion methods (e.g., MACQL and
MABCQ) to offer a more comprehensive view of the computational trade-offs involved.

33

Published as a conference paper at ICLR 2025

Table 14: Network Parameter Count (in MB) Comparison Between DoF and MADIFF for Different Numbers of
Agents

Metric Method 4 agents 8 agents 16 agents 32 agents 64 agents

Network Parameter Count MADIFF 109 MB 135 MB 174 MB 228 MB 310 MB
DoF 71 MB 72 MB 76 MB 81 MB 91 MB

Table 15: Inference Time Cost (s) for Different Methods Across Agent Configurations

Metric Method 4 agents 8 agents 16 agents 32 agents 64 agents

Inference Time Cost (s)

DoF(DDPM) 8.2s 11.3s 14.9s 18.1s 24.3s
DoF(DDIM) 5.1s 7.8s 9.6s 12.2s 14.8s

DoF(consistency model) 1.3s 1.4s 1.6s 1.9s 2.4s
MACQL 1.1s 1.2s 1.2s 1.3s 1.5s
MABCQ 1.1s 1.2s 1.3s 1.4s 1.6s
MADIFF 12.9s 16.5s 23.9s 31.5s Out Of Memory

Good Medium Poor
(a) Inference Time on SMAC 3m Map

0

4

8

12

16

Ti
m

e

12.65
13.12

12.41

7.32

8.10
7.56

10.56 10.34

11.2411.24
11.85

11.42

MADIFF f=Concat f=Atten f=QMIX

Good Medium Poor
(b) Inference Time on SMAC 8m Map

0

5

10

15

20

Ti
m

e

18.55 18.41 18.02

13.82
13.12 12.73

16.61 16.34
17.0217.15 16.98 16.67

MADIFF f=Concat f=Atten f=QMIX

Figure 7: Diffusion Inference Time in SMAC Environment

Table 16 shows the reward comparisons using the same sets of methods. By comparing rewards
across different sampling techniques (e.g., DDPM, DDIM, and Consistency Model) and non-diffusion
methods, we can observe variations in both performance and efficiency. These experiments high-
light the effectiveness of advanced sampling strategies and underscore the importance of selecting
appropriate techniques under different computational constraints.

Table 16: Reward Comparison for Different Methods Across Agent Configurations

Metric Method 4 agents 8 agents 16 agents 32 agents 64 agents

Reward

DoF(DDPM) 60.1 75.9 120.3 154.6 210.4
DoF(DDIM) 61.3 73.8 118.5 151.7 208.3

DoF(consistency model) 55.3 70.2 116.3 148.9 202.1
MACQL 50.7 65.6 100.3 135.1 190.6
MABCQ 42.1 49.4 90.4 119.2 162.3
MADIFF 63.8 70.4 113.5 148.3 Out Of Memory

D.3.6 INFERENCE TIME

We evaluate the inference time, which refers to the duration taken by the diffusion model to complete
one reverse process during sampling. This process involvesN diffusion steps, and for this experiment,
we set N = 200. Our primary focus is to compare the inference times of DoF using different noise
factorization function f (f=Concat, f=Atten, and f=QMIX) and MADIFF.

Experiments were conducted on the 3m and 8m maps of the SMAC environment. The detailed results
are shown in Figure 7. As illustrated, the inference time for f=Concat is faster than both f=Atten
and f=QMIX. On the 3m map, executing a single reverse process takes approximately 7.32 seconds,

34

Published as a conference paper at ICLR 2025

Table 17: Performance Comparison Across Different Maps and Methods

Maps Dataset f = Concat f = WConcat f = Atten

Good 12.0±0.8 12.8±0.8 14.7±0.7
3s5z_vs_3s6z Medium 10.4±0.7 11.9±0.7 12.6±0.6

Poor 7.0±0.2 7.5±0.2 8.4±0.3

Good 15.7±0.9 16.1±0.8 18.0±0.6
2c_vs_64zg Medium 13.3±0.8 13.9±0.9 14.7±0.7

Poor 11.2±0.9 11.5±1.1 12.0±0.6

while on the 8m map, it takes around 13.82 seconds. The inference times for f=Attn and f=QMIX
are similar, with around 11 seconds on the 3m map and approximately 17 seconds on the 8m map.
MADIFF has the slowest inference time, taking around 12.65 seconds on the 3m map and 18.55
seconds on the 8m map. This experiment confirms that DoF achieves faster inference times than
MADIFF, and that the noise factorization method f=Concat outperforms f=Atten and f=QMIX
in terms of inference speed. f=Concat performs the fastest thanks to its ability to factor diffusion
process.

D.4 ABLATION STUDY

How does the Noise Factorization Function f Affect Agent Performance? In the main text (see
Table 4), we briefly compared different noise factorization functions f and observed that decentralized
functions like WConcat generally outperform simpler approaches such as Concat, while centralized
attention-based functions Atten excel but require centralized execution.

To further investigate the impact of noise factorization functions f , Table 17 presents the results
of using the noise factorization functions f = WConcat and f = Atten in the homogeneous
2c_vs_64zg and heterogeneous 3s5z_vs_3s6z environment. Notably, the centralized attention-based
method (f = Atten) demonstrates a clear performance advantage over the WConcat approach
(f = WConcat), particularly in this challenging heterogeneous setting.

How does the Data Factorization Function h Affect Agent Performance? In this experiment,
we compare three data factorization methods: Concat, WConcat, and Atten. Concat uses a simple
concatenation operation to combine individual agent data; WConcat builds upon Concat by adding
learnable weights; while Atten employs an attention mechanism for more sophisticated data integra-
tion. We conducted tests on the SMAC 3m, 5m_vs_6m, 3s5z_vs_3s6z, and 2s3z scenarios, using
datasets of varying quality (Good, Medium, and Poor). As shown in Table 18, WConcat and Atten
consistently outperform Concat across all four scenarios and dataset qualities. The performance
gap is particularly noticeable in more complex maps, indicating that the weighted concatenation
method WConcat and the attention-based approach Atten are more effective at capturing inter-agent
relationships and extracting relevant information from the joint state.

How Does Parameter Sharing Affect Agent Performance? Similar to other MARL approaches,
we use parameter sharing for the agent network. The parameters of the noise prediction network ϵθi
are shared among agents too. In this way, θi = θj , i ̸= j. To discern whether the performance
improvement is due to parameter sharing or noise factorization, we study the performance of DoF
without parameter sharing for the noise prediction network on the SMAC 3m and 5m_vs_6m scenarios.
The results are depicted in Table 19. DoF without parameter-sharing is depicted as DoF (No_share).
As shown in the Table 19, there is no significant difference between the parameter-sharing and
the non-parameter-sharing approaches. This suggests that parameter sharing plays a minor role in
multi-agent cooperation tasks.

How sensitive is DoF to different hyper-parameters? We investigate the impact of different hyper-
parameters for the DoF trajectory. Figure 8 shows the results for different diffusion steps, history
horizons, and conditional guidance scales. As shown in Figure 8 (a), Longer diffusion steps does
not always lead to higher returns. Using a longer history horizon H does not always lead to better
performance, as it is depicted in Figure 8 (b). Horizon H = 24 performs better than H = 36. As it
is depicted in Figure 8 (c), the conditional guidance scale does not lead to significant performance
differences.

35

Published as a conference paper at ICLR 2025

Table 18: Ablation Study on Data Factorization Functions h Across Different Maps

Maps Dataset h = Concat h = WConcat h = Atten
Good 19.7±0.6 19.8±0.2 19.9±0.1

3m Medium 17.8±2.1 18.6±1.2 18.7±1.0
Poor 10.6±1.6 10.9±1.1 10.8±0.9

Good 15.8±1.4 17.7±1.1 18.2±0.9
5m_vs_6m Medium 14.9±1.1 16.2±0.9 16.8±0.8

Poor 9.8±1.1 10.8±0.3 11.0±0.5

Good 11.3±0.9 12.8±0.8 15.2±0.7
3s5z_vs_3s6z Medium 9.4±0.7 11.9±0.7 12.8±0.5

Poor 6.8±0.3 7.5±0.2 8.2±0.3

Good 15.5±1.0 18.5±0.8 19.5±0.3
2s3z Medium 14.8±0.8 18.1±0.9 18.5±0.3

Poor 9.6±1.1 10.0±1.1 10.2±0.7

Table 19: DoF w/wo for Parameter Sharing

Maps Dataset Share No_share

Good 19.8±0.2 19.7±0.5
3m Medium 18.6±1.2 18.1±0.7

Poor 10.9±1.1 11.2±0.4

Good 17.7±1.1 17.5±0.8
5m_vs_6m Medium 16.2±0.9 16.3±0.7

Poor 11.4±0.7 10.8±0.9

(a) Diffusion Steps (b) History Horizon (c) Conditional Guidance Scale

Figure 8: Sensitive analyze: (a) Diffusion Steps, (b) History Horizon, and (c) Conditional Guidance Scale.

(a) Linear vs. Non-linear

Figure 9: Comparison of linear and non-linear noise combination methods in the SMAC 3m environment. The
non-linear method underperforms due to non-Gaussian noise profiles. Each subplot shows the average episode
reward over training steps. The shaded regions indicate the standard deviation of the rewards.

Can we use Monotonic-increasing Noise Factorization Methods? The normal distribution is
linearly additive, so we can use the linear combination of noises in DoF to form a larger noise.
However, it is unclear whether monotonic increasing mixers such as QMIX (Rashid et al., 2018)
can be used for noise factorization. To investigate the impact of the monotonic increasing noise

36

Published as a conference paper at ICLR 2025

factorization combination method, we conducted experiments in the SMAC 3m environment using
good, medium, and poor datasets. In this experiment, we use QMIX as the noise factorization method.
It is depicted as DoF (QMIX) in Figure 9. As it is shown in the figure, using the monotonic increasing
function as the mixer hurt the performance of DoF significantly. This is due to the fact that through
using such a monotonic increasing mixer, the resulting noise may no longer be Gaussian noise, which
is required during the diffusion process.

D.5 DIFFERENT DIFFUSION GENERATION PROCESSES

The diffusion model is computationally intensive despite its flexible modeling ability; in DoF, we
leverage the modeling ability of the diffusion model to model the cooperative behaviors among agents.
As a generation-based MARL approach, our work relies on generation models to generate data. In
this work, we use DDPM (Ho et al., 2020). The major testing time of DDPM is spent on the long
diffusion steps to sample data. Our work can be built on recent advancements of the diffusion model
to accelerate the sampling time. For example, DDIM (Song et al., 2021a) can reduce the sampling
steps significantly with a performance drop. The consistency model (Song et al., 2023) requires only
one sampling step.

The experimental results for DoF and MADIFF using DDPM and DDIM on SMAC 3m, using
different steps, are shown in Table 20 and Table 21. As shown in Table 20, the testing time is lower
with fewer diffusion steps. The diffusion step 50 achieves the lowest testing time at the cost of the
lowest return. The testing time of MADIFF is always longer than that of DoF. And MADIFF always
performs weaker than DoF. For Table 21, it shows that using DDIM leads to faster testing time. We
observe similar trends demonstrated in Table 20.

Table 20: Comparison for DoF and MADIFF across Diffusion Steps with DDPM in SMAC 3m.

Diffusion Step Time (DoF) Time (MADIFF) Reward (DoF) Reward (MADIFF)
50 515.4 689.4 13.5 12.7

100 625.8 925.8 16.4 15.1
200 1018.8 1413.6 19.3 19.1
300 1492.8 1679.4 19.2 19.0

Table 21: Comparison for DoF and MADIFF Across Diffusion Steps with DDIM in SMAC 3m.

Diffusion Step Cost Time (DoF) Cost Time (MADIFF) Reward (DoF) Reward (MADIFF)
50 367.2 475.2 11.8 11.3

100 533.4 738.6 15.8 14.7
200 813.6 1185.6 19.1 19.0
300 1124.4 1304.4 18.9 18.8

The training time and testing time of DoF can be further reduced by following the approach of
StableDiffusion (Rombach et al., 2022) and LatentDiffusin (Venkatraman et al., 2024). They use a
Variation Auto Encoder (VAE) to encode input data into latent space with a lower dimensions than
before. The diffusion is happens in the latent space. In the end of diffusion, the data is recovered
using a decoder from the latent space. We implement this idea and named it as DoF+VAE, and
conduct experiment on the SMAC 3m good dataset. The VAE compress the data from 33 dimensions
to 17 dimensions. The experimental results are shown in table 22.

Table 22: Comparison of Training Time and Return for DoF and DoF+VAE on SMAC 3m Good Dataset

Method Training Time Return
DoF 48h 18.96

DoF+VAE 39h 15.80

Table 22 shows that with the use of VAE, the training time is reduced from 48h to 39h, a decrease of
approximately 27%, with a 16.6% decline in performance. This suggests that within an acceptable
range of performance loss, using a VAE to compress data can effectively reduce training time and

37

Published as a conference paper at ICLR 2025

Figure 10: DoF is able to generate novel behaviors through using multiple constraints. (a) Dataset 1: data is
located in upper half-circle (0◦ ≤ α < 180◦), (b) Dataset 2: data is located in lower-half-circle 180◦ ≤ α <
360◦, and (c) Generated data: full circle 0◦ ≤ α < 360◦

enhance training efficiency, particularly in scenarios where resources are limited or there is a high
demand for rapid training.

D.6 SATISFY MULTIPLE CONSTRAINTS

Consider a multi-agent system comprising two agents: one responsible for learning the angle α,
and the other for learning the radius r. These two agents work collaboratively to generate point
distributions in a two-dimensional plane. We are given two datasets, each representing different
constraint conditions. As shown in Figure 10: (a) 0◦ ≤ α < 180◦: In the first dataset, the angle agent
is constrained to learn within the upper half-circle. (b) 180◦ ≤ α < 360◦: In the second dataset, the
angle agent is constrained to learn within the lower half-circle. (c) 0◦ ≤ α < 360◦: In the generation
phase, we demonstrate how the two agents collaborate to generate a complete circular distribution.

In this work, we train two diffusion models for the two datasets: model A for the upper half-circle
dataset, with constraint (1, 0), model B for the lower half-circle dataset, with constraint (0, 1). Each
model can be factored into two diffusion models for generating data. After factorization, one model
is used to generate the radius r, and another model is used to generate the angle α. During generation,
we utilize the model A and B to generate novel data, the full circle, with the constraint (1, 1). We
follow the approach of Decision Diffusion (Please refer to its Appendix D) to guide the factored
diffusion processes to generate data following multiple constraints.

Figure 10 illustrates that the multi-constraints diffusion processes generate a point distribution
covering the entire circle. This example demonstrates the flexibility and adaptability of our approach
in handling multi-agent systems, where different agents are responsible for different parameters but
can collaboratively satisfy complex constraint conditions.

D.7 CONDITIONING ON LOCAL OBSERVATIONS

After the diffusion processes satisfying the IGD principle are learned, they can be used to generate
data with desired properties with guidance. Researchers (Ho & Salimans, 2021) have shown that
using classifier-free guidance can lead to better performance. In this work, we adopt classifier-free
guidance to guide the agent to learn cooperative behaviors.

For diffusion process i, we use condition yi to guide the generation process toward desired properties.
In cooperative MARL a high-return value R suggests cooperative behaviors, thus R is included
into yi to guide the diffusion process to generate high-return data. Further, we include the local
observation history τi of each agent into the condition yi to make the generate data aligns with its
local observation.

Table 23 presents an ablation study on the condition of our proposed method. We compare the
performance of DoF with two different types of conditions: return value R only, return R and
local observation τi. The results demonstrate that using both R and τi as condition yI consistently

38

Published as a conference paper at ICLR 2025

Table 23: Ablation Study on Condition Components

Datasets DoF R DoF R and τi

3m medium 7.34 ± 0.89 18.58 ± 1.22
5m6m medium 4.79 ± 0.64 16.22 ± 0.83

8m medium 6.66 ± 0.86 18.64 ± 0.86

outperforms the return-only condition across all tested scenarios. This justify the selection of using
both R and τi as guidance to guide generation process toward desired cooperative behaviors.

E DISCUSSION

E.1 DIFFUSION-BASED METHODS AND OUT-OF-DISTRIBUTION (OOD) SCENARIOS

Diffusion-based methods exhibit certain advantages in handling out-of-distribution (OOD) situations.
When using DoF-Trajectory, from the perspective of trajectory modeling, diffusion methods bypass
the traditional Q-value estimation step commonly employed in reinforcement learning. This bypass
naturally alleviates the issue of Q-value overestimation, which is particularly prominent in offline
scenarios with limited or biased data. By mitigating this overestimation, diffusion methods effectively
address OOD challenges. On the other hand, when using DoF-Policy, from the perspective of policy
modeling, diffusion models model the distribution of the underlying policy well. In this way, it
effectively reduces extrapolation errors caused by sampling out-of-distribution actions.

E.2 POTENTIAL APPLICATIONS IN COMPETITIVE AND MIXED-MOTIVATION SCENARIOS

While our current work focuses on cooperative multi-agent reinforcement learning tasks, extending
diffusion-based methods to competitive or mixed-motivation scenarios is a valuable direction for
future research. In competitive settings, the diffusion process could condition on adversarial strategies
or payoff structures during sampling to model the interplay between competing agents. For mixed-
motivation scenarios, diffusion methods could incorporate both individual motivations and shared
objectives into the conditional space.

This enhancement would allow the model to capture the complexity and dynamics of such envi-
ronments more effectively. For example, in a competitive game, the diffusion model could learn
to anticipate and counter adversarial moves, while in mixed-motivation tasks, it could optimize
individual agent goals while ensuring collective success. Incorporating motivations into the diffusion
conditions provides a flexible mechanism to extend the applicability of our framework to these
challenging scenarios, paving the way for broader applications in multi-agent systems.

F LIMITATION

Our method may face challenges when applied to tasks with high-dimensional observations. While
our current experiments focus on standard MARL benchmarks, extending the approach to handle
more complex, high-dimensional observation spaces remains an open direction for future work.

39

	Introduction
	Background
	Dec-POMDPs
	The Individual-Global-Max Principle
	Diffusion Models

	Related Work
	DoF: A Diffusion Factorization framework for offline MARL
	Motivating Example
	The Individual-Global-identically-Distributed Principle
	Diffusion Factorization
	Noise Factorization Function f
	Data Factorization Function h

	DoF Agents

	Evaluation
	Illustrative Examples
	A Matrix Game Generating two Dimensional Data
	Landmark covering game
	Generating Q values

	Comparison Study
	SMAC and SMACv2
	Multi-agent Particle Environments (MPE) and Multi-Agent MuJoCo

	Scalability and Ablation Study

	Conclusion
	Background and Comparing Related Work
	Dec-POMDPs
	Background on Diffusion Models
	Differences among DoF, MADIFF, and Independent Diffusion

	The Individual-Global-identically-Distributed Principle
	DoF Algorithm
	Noise Factorization Functions
	f=Concat
	f=Wconcat
	f=Atten
	f=QMIX
	Loss Function for Noise Factorization

	Data Factorization Functions h
	DoF-Trajectory
	DoF-Policy

	Experiment Details
	Experimental Setup
	Computing Resources
	Hyperparameters of DoF
	StarCraft Multi-Agent Challenge (SMAC) and SMACv2
	Multi-agent particle environment (MPE)
	Multi-Agent Mujoco (MA Mujoco)

	Illustrative Examples
	A Matrix Game Generating two Dimensional Data
	Landmark covering game
	Generating Q Value

	Comparison Results
	SMAC
	SMACv2
	MPE
	Multi-Agent Mujoco (MA Mujoco)
	Scalability Evaluation
	Inference Time

	Ablation Study
	Different Diffusion Generation Processes
	Satisfy Multiple Constraints
	Conditioning on Local Observations

	Discussion
	Diffusion-based Methods and Out-of-Distribution (OOD) Scenarios
	Potential Applications in Competitive and Mixed-Motivation Scenarios

	Limitation

