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Abstract

With the rapid development of social media,001
the wide dissemination of fake news on social002
media is increasingly threatening both individ-003
uals and society. In the dynamic landscape of004
social media, fake news detection aims to de-005
velop a model trained on news reporting past006
events. The objective is to predict and iden-007
tify fake news about future events, which often008
relate to subjects entirely different from those009
in the past. However, existing fake detection010
methods exhibit a lack of robustness and cannot011
generalize to unseen events. To address this, we012
introduce Future ADaptive Event-based Fake013
news Detection (FADE) framework. Specif-014
ically, we train a target predictor through an015
adaptive augmentation strategy and graph con-016
trastive learning to make more robust overall017
predictions. Simultaneously, we independently018
train an event-only predictor to obtain biased019
predictions. Then we further mitigate event020
bias by obtaining the final prediction by sub-021
tracting the output of the event-only predictor022
from the output of the target predictor. En-023
couraging results from experiments designed024
to emulate real-world social media conditions025
validate the effectiveness of our method in com-026
parison to existing state-of-the-art approaches.027

1 Introduction028

With the rapid development of the Internet, social029

media has become a platform for people to express030

their opinions and obtain information. While bene-031

ficial in many ways, this trend has also led to the032

proliferation of fake news. Nowadays, fake news033

has become more and more common in the era of034

mobile internet and social media since viewing and035

spreading fake news become much easier. Worse,036

the spread of fake news has been found to par-037

tially shape a country’s public opinion, leading to038

economic loss and serious political consequences.039

Thus, fake news detection becomes a crucial prob-040

lem waiting to be solved.041
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Figure 1: Comparing between event-mixed and event-
separated settings, mean accuracy based on 10 different
runs of each approach (PSA-S and PSA-M are meth-
ods designed specifically for event-separated scenarios,
hence, their performance was not tested under event-
mixed settings)

In real-world scenarios, a fake news detection 042

model is trained on news reporting past events 043

and expected to detect fake news pieces about fu- 044

ture events. In the realm of social media, trending 045

events are inherently dynamic and ever-changing, 046

fake news is often crafted around current hot-button 047

events that capture public attention. In other words, 048

the training and testing data is non-independent 049

and identically distributed (non-iid). The conversa- 050

tion graph of news within different events exhibits 051

entirely distinct propagation structures and node 052

attributions, which places high demands on the ro- 053

bustness of the detecting model. However, most ex- 054

isting methods assume that the training and testing 055

news pieces are sampled iid from the same static 056

news environment. They utilize an experimental 057

setup based on this assumption to test model perfor- 058

mance, which we refer to as event-mixed fake news 059

detection. This setup leads to their actual detection 060

capabilities being seriously overestimated. 061

After comparative experiments, we found that 062

existing methods generally perform well under 063

event-mixed experimental setup. However, in 064

event-separated fake news detection (Wu and Hooi, 065

2022), where the test data contains news pieces 066

from a set of events unseen during training, their 067

accuracy drops significantly by over 40% as shown 068
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in 1. This startling result indicates that current069

methods lack effective detection capabilities when070

confronted with fake news from unseen events in071

real-world social media scenarios. We believe the072

deficiencies of existing models primarily lie in two073

aspects: (1) Insufficient Robustness: news un-074

der different events often exhibit vastly different075

propagation structures. For instance, news about076

celebrity gossip or popular culture tends to form flat077

propagation trees, whereas news on political or so-078

cial issues often results in trees with greater depth.079

Additionally, news from different events can have080

vastly different textual feature distributions. Exist-081

ing methods inadequately consider these variations,082

resulting in a lack of robustness when dealing with083

unseen events. This limitation hinders their ability084

to effectively detect fake news in such scenarios.085

(2) Inadequate Generalization: within each event,086

there are numerous highly similar keyword-sharing087

samples with the same class label. As shown in088

Figure 2, among all 48 news samples in the event089

’E689’, they all have the class label ’True’, with 46090

of them sharing the keywords ’white house’ and091

’rainbow’. Similarly, the event ’CIKM_1000737’092

includes 80 news items labeled ’True’, of which093

78 contain the keyword ’paul walker’. Existing094

methods utilize these keywords as spurious cues095

for inference. While such models perform well in096

event-mixed detection, they lack generalizability097

when faced with unseen events.098

To bridge the event gap between news pieces099

in different periods and achieve more generalized100

and robust detection, we propose a FADE frame-101

work for fake news detection in this paper. Overall,102

our framework consists of a target predictor and an103

event-only predictor, each trained independently.104

(1) Target Predictor: data augmentation is a com-105

mon training strategy that enhances the robustness106

of models by generating a diverse range of train-107

ing samples. We propose an efficient graph aug-108

mentation strategy named adaptive augmentation,109

which generates the most challenging augmented110

samples in the representation space. We then use111

high-quality augmented training data to train a tar-112

get predictor through graph contrastive learning,113

thereby providing robust predictions. (2) Event-114

Only Predictor: common debiasing methods like115

adversarial debiasing and reweighting, which are116

employed during the training stage for debiasing,117

are not suitable for the task of fake news detection118

due to the excessive number of event categories119

involved. To address this challenge, inspired by the120

Potential Outcomes Model (Sekhon, 2008), we pro- 121

pose to train an event-only predictor and use it for 122

debiasing during the inference stage. Specifically, 123

in training the event-only predictor, we incorpo- 124

rate an average pooling layer for samples under 125

the same event. This enables it to generate pre- 126

dictions driven by event biases. We regard the 127

prediction from the target predictor as a combina- 128

tion of unbiased features and biases inherent in the 129

news. Consequently, we obtain the final debiased 130

prediction by subtracting the event-label biased pre- 131

diction from the target predictor’s prediction during 132

the inference stage. 133

Overall, the main contributions can be summa- 134

rized as follows: 135

• We innovatively propose an adaptive augmenta- 136

tion strategy to produce the most demanding aug- 137

mentations in the representation space, achieving 138

significant performance gains while avoiding the 139

need for manually designing augmentation strate- 140

gies and intensities for different news datasets. 141

• We further introduce an inference stage debiasing 142

method, indirectly obtaining unbiased inferences 143

through the combination of biased predictions. 144

This approach effectively enhances the frame- 145

work’s generalizability when dealing with news 146

within unseen events. 147

• To our best knowledge, we are the first to effec- 148

tively address fake news detection in an event- 149

separated setting. Our empirical findings illus- 150

trate that our framework markedly surpasses ex- 151

isting state-of-the-art baselines. 152

2 Related Works 153

2.1 Fake news Detection Methods 154

Recently, many methods have been put forward 155

for fake news detection. Yu et al. (2017) propose a 156

Convolutional Neural Network (CNN) based model 157

to extract key features scattered among an input se- 158

quence to identify fake news. Liu et al. (2018) 159

andYu et al. (2019), utilizing the attention mech- 160

anism, have significantly improved fake news de- 161

tection accuracy. The RvNN-based rumor detec- 162

tion introduced by Ma et al. (2018) employs both 163

bottom-up and top-down propagation trees to learn 164

the embedding of a fake news propagation structure. 165

Building upon this, Bi-GCN (Bian et al., 2020) inte- 166

grates a Graph Convolutional Network (GCN) into 167

existing structures, marking the first application of 168
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Event Content Label
as sun goes down, white house lights up rainbow

colors to celebrate scotus ruling

the white house takes on rainbow hues in 

celebrating

there will be cool photos of the white house with rainbow

colors tonight but hard to top this one by chuck kennedy.

see the white house light up as a rainbow to 

celebrate gay marriage

if they can light up the white house like a rainbow for gay pride, 

it sure as hell better be red, white & blue for independence day.

E689 True

“paul walker‘s character in fast and the furious was 

named ”brian“,brian from family guy also died this week.

my heart goes out to loved ones and fans of paul walker, 

who died in a car wreck saturday. 

rip roger rodas the man who died with paul walker 

in the fatal car crash

paul walker died shortly after attending a charity 

event for his organization reach out worldwide

r.i.p paul walker, why are people making jokes about his 

death? not funny at all!

CIKM_1000737 True

Figure 2: In the news content within the same event,
there are numerous repeated keywords that can be used
as spurious cues between the event and the label. The
bolded words represent the repeated keywords.

GCN in social media rumor detection, and setting169

a new standard in performance.170

The common shortcoming of the aforemen-171

tioned methods is their inadequate consideration172

of model robustness and generalizability. GACL173

(Sun et al., 2022) makes a groundbreaking move174

by introducing contrastive learning into fake news175

detection, which, through the AFT module, en-176

hances the model’s robustness. Ma et al. (2022)177

proposes a hard positive sample pairs generation178

method (HPG) for conversation graphs, bolstering179

the model’s resistance to interference. Wu and180

Hooi (2022) improves model performance and gen-181

eralizability by integrating aggregated Publisher182

Style features as auxiliary information into their183

classification model. Furthermore, they introduce184

a more realistic social media fake news detection185

task, termed event-separated fake news detection.186

While these methods have made substantial strides187

toward improving classification model robustness188

and generalizability, their performance remains in-189

sufficient when dealing with the unseen events of190

real-world social media scenarios.191

2.2 Data Augmentation192

Data augmentation has been empirically validated193

as a highly effective strategy for enhancing the194

performance of deep learning models, particularly195

within the scope of classification tasks. For image196

data, an array of transformation or distortion tech-197

niques have been developed to generate a wealth198

of augmented samples. These techniques include199

but are not limited to flipping, cropping, rotation,200

scaling, and injection of noise, as well as transfor- 201

mations within the color space (Krizhevsky et al., 202

2012; Sato et al., 2015; Simard et al., 2003; Singh 203

et al., 2018). In the realm of text data, augmentation 204

methodologies generally fall into one of three cate- 205

gories: those based on paraphrasing (Madnani and 206

Dorr, 2010; Wang and Yang, 2015), those based on 207

the introduction of noise (Wei and Zou, 2019), and 208

those relying on the sampling of existing data(Min 209

et al., 2020). These data augmentation techniques 210

have found broad application in the realm of deep 211

learning, where they are employed to counteract 212

overfitting and promote the robustness of deep neu- 213

ral network models. 214

Although image and text augmentations have 215

been widely explored, undertaking augmentations 216

for graphs presents more formidable challenges. 217

Predominant methodologies currently in existence 218

are rooted in the random alteration of graph struc- 219

tures or features, encompassing tactics such as ran- 220

dom node dropping, perturbing edges, or feature 221

masking (Hamilton et al., 2017; Wang et al., 2020; 222

You et al., 2020; Rong et al., 2019; Zhu et al., 2021). 223

Nevertheless, while these random transformations 224

have shown some effectiveness on certain bench- 225

mark datasets, their performance often falls short 226

when applied to the task of fake news detection. 227

2.3 Model Debiasing 228

Task-specific biases have been identified in many 229

tasks, such as pre-trained language models (Meade 230

et al., 2021), fact checking (Schuster et al., 2019; 231

Xu et al., 2023), recommendation (Chen et al., 232

2023), and the biases present in task datasets can 233

lead to models learning biased predictions. Debi- 234

asing methods primarily fall into two categories: 235

data-level processing (Dixon et al., 2018; Wei and 236

Zou, 2019) and model-level balancing strategies 237

(Kaneko and Bollegala, 2019; Kang et al., 2019). 238

For fake news detection, Zhu et al. (2022) proposes 239

a framework to mitigate entity bias from a cause- 240

effect perspective, while Wu and Hooi (2022) is the 241

first to identify event bias, which is the very bias 242

this paper aims to address. 243

3 Method 244

3.1 Problem Definition 245

Fake news detection is a classification task. The ob- 246

jective is to train a classifier using labeled instances 247

and then deploy this trained model to predict the 248

labels of unseen test instances. 249
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Figure 3: Overview of our FADE framework. In the training stage, given an input batch of data, we simultaneously
use it to train both the main classifier and the Event-Only classifier. The main classifier is trained using contrastive
loss and cross-entropy loss, while the event-only classifier is trained solely with cross-entropy loss. In the inference
stage, each sample is predicted separately using both the target predictor and the event-only predictor. We then
subtract the event-only prediction from the target prediction to obtain the debiased prediction, i.e., the final output.

Given an news instance set C = {c1, c2, ..., cm}250

of size m, each instance ci can be delineated as251

ci = {ri, wi
1, w

i
2, ..., w

i
ni−1, Pi}. Here, ni denotes252

the count of posts in ci with ri being the source253

post, each wi
j denotes the j-th comment post, and254

Pi denotes the propagation structure.255

To each instance ci, there corresponds a ground-256

truth label yi ∈ {R,N} (i.e. Rumor or Non-257

Rumor) and an event label ei. In some cases, fake258

news detection is defined as a four-class classifi-259

cation task, correspondingly, yi ∈ {N,F, T,R}260

(i.e. Non-rumor, False Rumor, True Rumor, and261

Unverified Rumor). The label ei encapsulates the262

event associated with the instance ci.263

To represent the propagation structure, we trans-264

late each instance ci to a graph Gi = (Vi,Xi,Ai).265

Vi = {ri, wi
1, w

i
2, ..., w

i
ni−1} denotes the vertex set.266

Xi ∈ Rni×d denotes the text features of each ver-267

tex, which are embedded using a pre-trained BERT268

model. Ai ∈ {0, 1}ni×ni is the adjacency matrix.269

Specifically, aijk = 1 indicates a reply relationship270

between post j and post k, else aijk = 0.271

Given these definitions, the dataset for fake272

news detection can be expressed as S =273

{(G1, y1, e1), (G2, y2, e2), . . . , (Gm, ym, em)}.274

We define the set of events in the training set275

as Etr and the set of events in the test set as Ete.276

When Etr ∩ Ete ̸= ∅, we refer to such tasks as277

event-mixed fake news detection. Conversely,278

when Etr ∩ Ete = ∅, we term these tasks as279

event-separated fake news detection.280

3.2 Model Overview 281

Figure 3 illustrates the overview of the FADE 282

framework. It comprises a training stage and an 283

inference stage. In the training stage, the target 284

predictor (a combination of the GCN-based target 285

encoder and classifier) is trained through adaptive 286

augmentation and graph contrastive learning, en- 287

abling them to make predictions with strong gener- 288

alizability and robustness. Meanwhile, the event- 289

only predictor (a combination of the GCN-based 290

event-only encoder and classifier) is trained using 291

event-mean pooling, to ensure that the predictions 292

are predominantly derived from event bias. In the 293

inference stage, we subtract the prediction of the 294

event-only predictor from that of the target predic- 295

tor to obtain the final debiased prediction. 296

3.3 GCN-based Encoder 297

Leveraging the power of Graph Convolutional Net- 298

work (GCN) (Kipf and Welling, 2016), we extract 299

graph-level representations from structured data. 300

The computational formula for the l-th layer with 301

weight matrix W(l) is: 302

H(l+1) = σ
(
D̃− 1

2 ÃD̃
1
2H(l)W(l)

)
, (1) 303

where Ã = A + In, is the adjacency matrix of 304

the graph G with added self-connections. IN is the 305

identity matrix. D̃ is the degree matrix of Ã, D̃ii = 306∑
j Ãij , and H0 = X . σ(·) denotes an activation 307
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function. To get graph-level representations from308

node-level representations, we use:309

R = Pooling(HL). (2)310

where L is the number of layers, and the Pooling311

function is a permutation invariant function, such as312

mean or add. Additionally, RO denotes the original313

graph representations. Furthermore, both the target314

encoder and the event-only encoder are identical315

GCN-based Encoders.316

3.4 Adaptive Graph Augmentation317

Existing data augmentation strategies rely on man-318

ually selecting and combining several basic aug-319

mentations like node dropping, edge perturbation,320

attribute masking, and subgraph extraction with321

manually set intensities. These strategies are not322

sufficiently powerful and lack universality across323

different datasets. To address this issue, we propose324

a powerful, efficient, and versatile augmentation325

strategy namely adaptive augmentation. Specifi-326

cally, we perform the augmentation in the represen-327

tation space by adding a perturbation to the origi-328

nal representation RO. In our experiment, we first329

calculate the centroid and the average Euclidean330

distance between each original representation and331

the centroid as d by the following formula:332

d =
1

N

N∑
i=1

∥ 1

N

N∑
j=1

RO
j −RO

i ∥2. (3)333

where N denotes the number of samples. Then334

in the generation process, each time, we stochasti-335

cally generate multiple random unit vectors. Each336

unit vector is represented by υ. Then, we use unit337

vectors to calculate augmented representations for338

each news sample. The augmented representation,339

denoted as RA, is computed as:340

RA = RO + dυ. (4)341

To ensure the intensity of the perturbation re-342

mains within a reasonable range, we use the label343

y as a constraint. Let the target predictor predict344

the label of each augmented representation of a345

news sample, represented as ŷ. From the pool of346

augmented representations, we aim to select the347

most demanding one, i.e., the one that lies clos-348

est to the decision boundary of the target classifier,349

while ensuring that ŷ = y.350

3.5 Target Predictor 351

In this subsection, we describe the training stage 352

of the target predictor. First, we input RO into the 353

target classifier for prediction as OT = F (RO), 354

where OT ∈ RL denotes the predicted class dis- 355

tribution by target classifier (L is the number of 356

class) and F (·) denotes the target classifier. The 357

objective function for the target predictor combines 358

both the contrastive loss and the cross-entropy loss. 359

The cross-entropy loss (LCE) is defined as follow: 360

LCE = −
∑

(RO
i ,yi)∈S

CE(Φ(F (RO
i ), yi)), (5) 361

where CE denotes cross-entropy loss, Φ(·) is Soft- 362

max. The contrastive loss (LCL) is defined as: 363

LCL =
−(PO

i )TPA
i

∥PO
i ∥2∥PA

i ∥2
. (6) 364

here, we adopt a multi-layer projection head to get 365

projection vectors PO and PA from original repre- 366

sentations RO and augmented representations RA. 367

Combining Eq.5, 6, our overall objective function 368

for the main predictor can be written as follows: 369

argmin
Θ

L = LCE + αLCL, (7) 370

where Θ denotes parameters of the target en- 371

coder and classifier, α denotes the trade-off hyper- 372

parameter to balance contrastive loss and classifi- 373

cation loss. 374

3.6 Event-Only Predictor 375

In this subsection, we describe the training stage 376

of the event-only predictor. To train an Event-Only 377

model that generates predictions driven by label- 378

event spurious correlations, we incorporate an aver- 379

age pooling layer for samples under the same event. 380

We aggregate the origin representation encoded by 381

the event-only encoder of each sample within event 382

ei as follows: 383

RE = Mean({R′O
j }

mi
j=1), (8) 384

where R′O denotes the original representation en- 385

coded by event-only encoder, Mean denotes the 386

average pooling, and RE denotes the event-average 387

representation for each event. 388

Subsequently, we use RE as the representation 389

for each sample, inputting it into the event-only 390
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Statistic Twitter15 Twitter16 PHEME

#Source tweets 1,490 818 6,425
#Events 298 182 9
#Users 276,663 173,487 48,843
#Posts 331,612 204,820 197,852
#Non-rumors 374 205 4,023
#False rumors 370 205 2,402
#Unverified rumors 374 203 -
#True rumors 372 205 -

Table 1: Statistics of the datasets

classifier for prediction. This process yields pre-391

dictions that are entirely derived from the bias as-392

sociated with label-event correlations, as OE =393

F ′(RE), where OE ∈ RL denotes the predicted394

class distribution by the event-only classifier (L is395

the number of class) and F ′(·) denotes the event-396

only classifier. Then we define the loss function for397

the event-only predictor as follows:398

LE = −
∑

(OE
i ,yi)∈S

(CE(Φ(OE
i , yi)) (9)399

Then, our overall objective function for the event-400

only predictor can be written as argmin
θ

LE , where401

θ denotes the parameters of the event-only encoder402

and classifier.403

3.7 Debias in inference stage404

After the training stage, we have obtained a target405

predictor capable of making overall predictions OT406

using both unbiased and biased features in news407

pieces, and an event-only predictor that makes pre-408

dictions OE merely based on event biases.409

To reduce event-label bias, inspired by the Po-410

tential Outcomes Model, we subtract OE from OT411

with a bias coefficient β and obtain the debiased412

output OD.413

OD = OT − βOE (10)414

OD reduces biased predictions and retains unbiased415

ones, thereby achieving a debiasing effect.416

4 Experiments417

4.1 Experiment Settings418

4.1.1 Dataset419

We put our proposed model to the test using three420

publicly accessible, real-world fake news detection421

datasets: Twitter15, Twitter16, and PHEME, de-422

tailed statistics are shown in Table 1. all of which423

Twitter15

Method Acc.
U N T F
F1 F1 F1 F1

BERT 36.02±4.80 40.20±3.00 60.14±3.30 10.23±5.80 25.44±6.50

BiGCN 37.91±2.58 43.84±3.75 51.84±3.77 17.20±3.14 27.16±7.04

GACL 54.01±1.18 56.13±2.06 88.14±1.94 13.24±8.88 38.22±2.97

PSA-S 59.36±1.73 92.35±0.91 45.81±4.10 36.23±4.69 52.66±2.97

PSA-M 58.97±0.87 88.30±0.56 41.83±2.62 42.14±2.08 52.47±2.03

FADE 71.81±2.50 56.80±1.44 92.10±1.34 66.42±2.17 63.68±1.97

Table 2: Metrics ± STD (%) comparison under our
experiment setting, averaged over 10 runs. The highest
results are highlighted with bold , while the second
highest results are marked with underline

Twitter16

Method Acc.
U N T F
F1 F1 F1 F1

BERT 41.87±5.60 45.00±3.00 52.00±5.02 43.00±3.61 52.00±5.30

BiGCN 44.29±1.34 46.86±2.90 44.81±2.34 53.76±4.49 25.43±2.97

GACL 71.26±2.18 79.73±1.76 81.83±0.93 59.68±7.36 58.11±2.68

PSA-S 65.43±0.95 95.05±0.80 46.66±1.64 61.22±1.49 55.62±2.35

PSA-M 61.47±1.74 93.91±0.28 20.97±8.51 62.21±1.86 55.08±3.93

FADE 77.72±0.48 83.06±2.26 83.68±1.35 74.14±2.19 63.01±3.90

Table 3: Metrics ± STD (%) comparison under our
experiment setting, averaged over 10 runs.

have been gathered from Twitter, one of the most 424

prominent social media platforms in the US. In the 425

three datasets, graph topologies of posts are con- 426

structed based on users, sources, and comments. 427

For all three datasets, we employ the pre-training 428

model BERT to generate node embeddings. 429

4.1.2 Data Splitting 430

For all three datasets, we adhere to the principle 431

of event separation, ensuring that events do not 432

overlap among the training, testing, and validation 433

sets. Under this constraint, we strive to allocate 434

approximately 10% of the data for validation. The 435

remaining data is then divided into training and 436

test sets, aiming for a 3:1 ratio based on event IDs. 437

Our data splitting for the Twitter15 and Twitter16 438

datasets is consistent with the split detailed in Wu 439

and Hooi (2022). For the PHEME dataset, we use 440

the same dataset as in Sun et al. (2022), hence we 441

split the dataset ourselves according to the afore- 442

mentioned ratio. This data splitting ensures that the 443

data in both the test and validation sets belong to 444

unseen events, making it more closely aligned with 445

real-world scenarios. 446

4.1.3 Compared Methods 447

We compare with the following baselines: 448

BERT (Devlin et al., 2018) is a popular pre- 449

trained model that is used for fake news detection. 450

6



PHEME

Method Class Acc. Prec Rec F1

BERT
R

44.05±3.60
62.43±5.45 20.54±4.87 25.52±3.32

N 45.81±2.03 78.66±8.12 55.28±4.56

BiGCN
R

43.09±4.10
31.44±4.44 34.28±9.84 30.57±6.26

N 52.01±2.90 49.10±11.63 48.56±7.24

GACL
R

46.21±0.82
75.88±3.24 12.26±4.14 20.76±3.06

N 42.23±0.66 93.51±2.83 58.01±1.04

PSA-S
R

47.29±1.24
79.98±2.44 15.08±2.90 25.23±4.29

N 43.19±0.53 94.38±2.90 59.26±0.41

PSA-M
R

48.08±1.20
77.14±2.87 17.88±1.98 29.03±3.13

N 43.44±1.10 92.25±3.01 59.07±1.01

FADE
R

60.13±1.41
76.18±3.02 52.71±3.79 59.52±4.31

N 52.30±1.70 72.45±3.91 55.98±2.78

Table 4: Metrics ± STD (%) comparison under our
experiment setting, averaged over 10 runs.

BiGCN (Bian et al., 2020) is a GCN-based451

model that uses the two key features of news propa-452

gation and dispersion to capture the global structure453

of the news tree.454

GACL (Sun et al., 2022) is a GCN-based model455

using adversarial and contrastive learning for fake456

news detection.457

PSA (Wu and Hooi, 2022) is a text-based fake458

news classifier that can learn writing style and truth459

stance, thus enhancing its classification capability.460

PSA-S and PSA-M respectively represent the use461

of sum and mean as pooling functions.462

FADE is our proposed framework.463

4.1.4 Implementation Details.464

We implement our FADE framework and other465

baselines using PyTorch with CUDA 12.0 on an466

Ubuntu 20.04 server with NVIDIA RTX 3090 GPU467

and an AMD EPYC 7763 CPU. For optimization,468

we use Adam optimizers, with a learning rate of469

0.001 across all datasets. Batch sizes are set at470

510 for Twitter16, 3851 for PHEME, and 992 for471

Twitter15. Trade-off hyper-parameters are 10.0 for472

Twitter15 and Twitter16 and 1.0 for PHEME and473

the bias coefficient is 0.1 for all three datasets.474

4.2 Result and Discussion475

To ensure a fair comparison, we adopt the same476

evaluation criteria as GACL. We adopt the Accu-477

racy (Acc.), Precision (Prec.), Recall (Rec.), and478

F1-measure (F1) as our evaluation metrics. Table479

2,3,4 showcase the performance of all comparison480

methods on three public real-world datasets follow-481

ing our event-separated data split criteria.482

The BERT model, based on a self-attention483

Model
Twitter15 Twitter16 PHEME

Acc. Acc. Acc.

FADE 71.81±1.61 77.72±0.48 60.18±0.89

FADE w/o ADA 55.66±4.33 53.86±3.90 50.79±3.01

FADE w/o DBI 63.78±2.35 71.70±1.40 53.20±1.35

FADE w/ MUA 61.98±3.12 66.70±2.18 51.39±2.35

FADE w/ ADV 64.01±2.04 70.92±2.14 53.08±1.97

FADE w/ RWT 62.43±2.36 71.01±3.02 51.14±2.67

Table 5: Accuracy ± STD (%) comparison of ablation
study on the Twitter15, Twitter16 and PHEME, aver-
aged over 10 runs

mechanism, yields the poorest results. The GCN- 484

based models BiGCN and GACL, designed for 485

event-mixed detection, experience significant per- 486

formance declines in the event-separated setting. 487

BiGCN, focusing on bottom-up and top-down 488

structures, achieves only 41.76% average accuracy 489

across the datasets. Despite its AFT module aimed 490

at enhancing robustness, GACL also struggles in 491

event-separated detection. PSA, specifically devel- 492

oped for event-separated detection, underperforms 493

as well due to its exclusive reliance on textual con- 494

tent and overlooking news propagation structure. 495

The FADE proposed in this paper outperforms 496

all other compared methods, on all three datasets. 497

Compared to the current best-performing methods, 498

FADE has shown an improvement in accuracy by 499

12.45% on Twitter15, 6.46% on Twitter16, and 500

12.05% on the PHEME dataset. The superior- 501

ity of FADE stems from three reasons: (1) Our 502

adaptive augmentation strategy generates superior 503

augmented samples compared to other manually 504

designed augmentation. These high-quality sam- 505

ples, enhanced through graph contrastive learning, 506

significantly improve the model’s classification per- 507

formance and robustness. (2) In situations where 508

unbiased predictions cannot be directly obtained, 509

we indirectly mitigate the impact of event bias on 510

predictions by subtracting the event-only output, 511

which is derived directly from biases, from the tar- 512

get output that integrates both biased and unbiased 513

features. This effectively alleviates the influence 514

of event bias, enhancing the framework’s general- 515

ization performance. (3) We leverage the advanced 516

pre-training model, BERT, to generate embeddings. 517

4.3 Ablation Study 518

This section evaluates the impact of each module 519

in our study through ablation experiments. 520
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Figure 4: Accuracy ± STD (%) of perturbation experi-
ments on the Twitter15, Twitter16, and PHEME datasets
with different data perturbation rates (r), averaged over
10 random perturbation processes.
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Figure 5: Metrics ± STD (%) results of Hyperparameter
Analysis on the Twitter15, Twitter16 and PHEME with
different bias coefficients (β)

FADE w/o ADA omits the adaptive augmenta-521

tion module and the contrastive learning loss, solely522

utilizing classification loss for training.523

FADE w/o DBI removes the step of utilizing524

the event-only predictor for debiasing during the525

inference phase.526

FADE w/ MUA indicates replacing the adap-527

tive augmentation in the FADE framework with a528

manually selected augmentation strategy.529

FADE w/ ADV denotes switching the debiasing530

method in FADE to adversarial debiasing.531

FADE w/ RWT signifies replacing the debiasing532

approach in FADE with reweighting debiasing.533

Table 5 shows the results of the ablation study.534

The removal of adaptive graph augmentation in535

FADE w/o ADA and the removal of the debias-536

ing module in FADE w/o DBI both result in a no-537

table performance drop. In FADE w/ MUA, we re-538

place the adaptive augmentation strategy in FADE539

with a manually selected augmentation strategy and540

choose the optimal intensity. However, the perfor-541

mance achieved is far below that of the complete542

FADE. In FADE w/ ADV and FADE w/ RWT, we543

respectively replace the debiasing strategy in FADE544

with adversarial debiasing and reweighting debias-545

ing. However, these two debiasing strategies fail to546

effectively reduce bias and even result in a certain547

degree of performance degradation. The above ex-548

perimental results demonstrate the effectiveness of549

the two modules in the FADE framework. 550

4.4 Perturbation Experiments 551

In this section, we assess the robustness of FADE 552

through experiments using perturbed graphs and 553

compare its performance with GACL and PSA-S. 554

GACL and PSA-S were selected for comparison 555

due to their exceptional performance. 556

We employed two perturbation methods: edge 557

perturbation and node feature masking, which sim- 558

ulate the structural and feature variations that news 559

might have under different events in social media. 560

The perturbation rate, denoted by r, quantifies the 561

intensity of these perturbations. 562

Results in Figure 4 reveal that FADE outper- 563

forms the other models across different perturba- 564

tion intensities. With disturbances up to 30%, 565

FADE’s accuracy remains stable, dropping by less 566

than 4% on Twitter16, under 2% on Twitter15, and 567

1% on PHEME. Impressively, even when 80% of 568

edges and node features are altered, FADE still 569

achieves 60.86% accuracy on Twitter16, 56.92% 570

on Twitter15, and 57.43% on PHEME. This af- 571

firms FADE’s robustness against variations in news 572

propagation structures and feature distributions. 573

4.5 Hyperparameter Analysis 574

In this section, we analyze the impact of the hy- 575

perparameter bias coefficient (β) on model per- 576

formance. As illustrated in Figure 5, the optimal 577

performance on all three datasets is achieved when 578

the target predictions and event-only predictions 579

are combined with an intensity of 0.1. 580

5 Conclusion 581

In this paper, we analyze how event-separated data 582

splitting more closely aligns with real-world so- 583

cial media fake news detection tasks. Then, we 584

demonstrate that current state-of-the-art methods 585

are ineffective in detecting fake news within un- 586

seen events. To better address this task, we pro- 587

pose a social media fake news detection frame- 588

work, FADE, which exhibits sufficient robustness 589

and generalizability when dealing with dynamic 590

and ever-changing events on social media. Specifi- 591

cally, we first trained a robust target predictor using 592

adaptive augmentation and graph contrastive learn- 593

ing. Then, we combined this with an independently 594

trained event-only predictor for further debiasing 595

during the inference stage. Experiments demon- 596

strate that FADE outperforms existing methods on 597

three real-world fake news detection datasets. 598
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6 Limitations599

In this part, we discuss two limitations of our work.600

Firstly, some events possess only faint bias sig-601

natures, making it challenging for our event-only602

predictor to yield substantially biased predictions603

in these scenarios. This limitation means that dur-604

ing debiasing, subtracting these weak predictions605

might not significantly mitigate bias. Instead, it606

risks omitting valuable information from the target607

predictions. We leave the task of addressing debi-608

asing under varying levels of bias as an area for609

future work.610

Secondly, the field of Large Language Models611

(LLMs) like GPT-4 has seen rapid advancement612

in the past year. These models have demonstrated613

formidable capabilities in understanding context,614

generating coherent and relevant text, and even615

exhibiting a form of reasoning. However, a limi-616

tation of our current method is that it doesn’t har-617

ness these state-of-the-art LLMs to enhance feature618

quality or assist in predictions. Recognizing the po-619

tential of these developments, we aim to integrate620

LLMs into our future work on fake news detection,621

leveraging their advanced capabilities to further622

enhance our approach.623

7 Ethics Statement624

This article focuses on Twitter social media data.625

We use publicly available benchmark datasets for626

classification, which comply with Twitter’s regula-627

tions and were extracted using the official API. To628

ensure user privacy and data security, all dataset-629

related tweets were anonymized and URLs re-630

moved. Our research aims to analyze rumor de-631

tection methods to enhance information credibility632

on social media. Experimental results will be re-633

ported objectively and transparently, adhering to634

academic and ethical standards.635
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A Dataset Events Statistics 781

As illustrated in Figure 6, severe event-label spu- 782

rious correlations exist in the Twitter16 and Twit- 783

ter15 datasets. While large-size events encompass 784

more than 70% of samples in Twitter15 and Twit- 785

ter16 datasets, each event’s samples invariably have 786

the same class label. Meanwhile, the PHEME 787

dataset, comprising only 9 events, does not con- 788

sistently feature news with the same label within 789

each event. However, it still exhibits a strong ten- 790

dency for keyword-sharing. 791

B Class Imbalance 792

Overall, existing methods appear to be inadequate 793

when facing event-separated fake news detection, 794

and there is a significant class imbalance in their de- 795

tection capabilities across different categories. For 796

instance, PSA-M on the Twitter16 dataset shows 797

a stark disparity in F1 scores for Unverified news 798

and Non-rumors categories, at 93.91% and 20.97% 799

respectively. This vast difference indicates that the 800

model has a severe bias towards different categories 801

of news. We leave the exploration of this aspect for 802

future work. 803

C Propagation Structures Analysis 804

Figure 7 shows that the news in the top 10 events of 805

the Twitter15 dataset have vastly different propaga- 806

tion structures. They exhibit significant variations 807
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Figure 6: The size of largest events in Twitter15 and
Twitter16 datasets, most event labels directly correlate
with class labels, which shows strong event bias in fake
news detection datasets.

in both their average depth and the average propor-808

tion of edges directly connected to the root node in809

relation to the total number of edges. Additionally,810

events with a shallower average depth tend to have811

stronger node centrality.812

D Ablation Study Details813

In the FADE w/ MUA experiment, we selected814

three augmentation methods in our designed en-815

hancement strategy: random node dropping, per-816

turbing edges, and feature masking. After repeated817

experiments, the optimal augmentation intensity818

used was 0.15.819

In the FADE w/ ADV experiment, we replaced820

our debiasing method with the adversarial debias-821

ing approach designed according to reference Dai822

and Wang (2021). Specifically, we set up a dis-823

criminator fD to judge the event labels of the news,824

training it with an objective function as Eq.11. Sub-825

sequently, we conducted adversarial training of826

the encoder using the objective function in Eq.12.827
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Figure 7: The average depth and the average proportion
of edges directly connected to the root node in relation
to the total number of edges (%) of the top 10 events.

However, due to the excessive number of event 828

categories in the fake news dataset, the adversarial 829

training was ineffective in reducing bias. 830

min
θD

LS = −
∑

(Gi,ei)∈S

(CE(Φ(fD(Gi), ei))

(11) 831

where θD denotes the parameters of the discrimi- 832

nator. 833

min
θE ,θC

L =
∑

(RO
i ,yi)∈S

CE(Φ(F (RO
i ), yi))

−
∑

(Gi,ei)∈S

CE(Φ(fD(Gi), ei))
(12) 834

where θE denotes the parameters of the target en- 835

coder, θC denotes the parameters of the target clas- 836

sifier. 837

In the FADE w/ RWT experiment, we calculated 838

the weight of each sample according to the method 839

described in Eq.13. 840

w(Ri) =
1∑s

k=1
1(F (Ri)=yi)

s + γ
(13) 841

where s denotes event size, and γ is a scale hyper- 842

parameter. 843

11


	Introduction
	Related Works
	Fake news Detection Methods
	Data Augmentation
	Model Debiasing

	Method
	Problem Definition
	Model Overview
	GCN-based Encoder
	Adaptive Graph Augmentation
	Target Predictor
	Event-Only Predictor
	Debias in inference stage

	Experiments
	Experiment Settings
	Dataset
	Data Splitting
	Compared Methods
	Implementation Details.

	Result and Discussion
	Ablation Study
	Perturbation Experiments
	Hyperparameter Analysis

	Conclusion
	Limitations
	Ethics Statement
	Dataset Events Statistics
	Class Imbalance
	Propagation Structures Analysis
	Ablation Study Details

