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ABSTRACT

Generative flow networks utilize the flow matching loss to learn a stochastic pol-
icy for generating objects from a sequence of actions, such that the probability of
generating a pattern can be proportional to the corresponding given reward. How-
ever, existing works can only handle single flow model tasks and cannot directly
generalize to multi-agent flow networks due to limitations such as flow estimation
complexity and independent sampling. In this paper, we propose the framework
of generative multi-flow networks (GMFlowNets) that can be applied to multiple
agents to generate objects collaboratively through a series of joint actions. Then,
the centralized flow network algorithm is proposed for centralized training GM-
FlowNets, while the independent flow network algorithm is proposed to achieve
decentralized execution of GMFlowNets. Based on the independent global con-
servation condition, the flow conservation network algorithm is then proposed
to realize centralized training with decentralized execution paradigm. Theoretical
analysis proves that using the multi-flow matching loss function can train a unique
Markovian flow, and the flow conservation network can ensure independent poli-
cies can generate samples with probability proportional to the reward function.
Experimental results demonstrate the performance superiority of the proposed al-
gorithms compared to reinforcement learning and MCMC-based methods.

1 INTRODUCTION

Generative flow networks (GFlowNets) Bengio et al. (2021b) can sample a diverse set of candidates
in an active learning setting, where the training objective is to approximate sample them proportion-
ally to a given reward function. Compared to reinforcement learning (RL), where the learned policy
is more inclined to sample action sequences with higher rewards, GFlowNets can perform better
on exploration tasks. Since the goal of GFlowNets is not to generate a single highest-reward action
sequence, but to sample a sequence of actions from the leading modes of the reward function Bengio
et al. (2021a). Unfortunately, currently GFlowNets cannot support multi-agent systems.

A multi-agent system is a set of autonomous, interacting entities that share a typical environment,
perceive through sensors and act in conjunction with actuators Busoniu et al. (2008). Multi-agent
reinforcement learning (MARL), especially cooperative MARL, are widely used in robotics teams,
distributed control, resource management, data mining, etc Zhang et al. (2021); Canese et al. (2021);
Feriani & Hossain (2021). Two major challenges for cooperative MARL are scalability and partial
observability Yang et al. (2019); Spaan (2012). Since the joint state-action space grows exponen-
tially with the number of agents, coupled with the environment’s partial observability and commu-
nication constraints, each agent needs to make individual decisions based on local action observa-
tion history with guaranteed performance Sunehag et al. (2017); Wang et al. (2020); Rashid et al.
(2018). In MARL, to address these challenges, a popular centralized training with decentralized ex-
ecution (CTDE) Oliehoek et al. (2008); Oliehoek & Amato (2016) paradigm is proposed, in which
the agent’s policy is trained in a centralized manner by accessing global information and executed
in a decentralized manner based only on local history. However, extending these techniques to
GFlowNets is not straightforward, especially in constructing CTDE-architecture flow networks and
finding IGM conditions for flow networks worth investigating.

In this paper, we propose Generative Multi-Flow Networks (GMFlowNets) framework for cooper-
ative decision-making tasks, which can generate more diverse patterns through sequential joint ac-
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tions with probabilities proportional to the reward function. Unlike vanilla GFlowNets, our method
analyzes the interaction of multiple agent actions and shows how to sample actions from multi-flow
functions. We propose the Centralized Flow Networks (CFN), Independent Flow Networks (IFN)
and Flow Conservation Networks (FCN) algorithms based on the flow matching condition to solve
GMFlowNets. CFN regards multi-agent dynamics as a whole for policy optimization, regardless
of combinatorial complexity and the demand for independent execution, while IFN suffers from
the flow non-stationary problem. In contrast, FCN takes full advantage of CFN and IFN, which is
trained based on the independent global conservation (IGC) condition. Since FCN has the CTDE
paradigm, it can reduce the complexity of flow estimation and support decentralized execution,
which is beneficial to solving practical cooperative decision-making problems.

Main Contributions: 1) We are the first to propose the concept of generative multi-flow networks
for cooperative decision-making tasks; 2) We propose three algorithms, CFN, IFN, and FCN, for
training GMFlowNets, which are respectively based on centralized training, independent execution,
and CTDE paradigm; 3) We propose the IGC condition and then prove that the joint state-action flow
function can be decomposed into the product form of multiple independent flows, and that a unique
Markovian flow can be trained based on the flow matching condition; 4) We conduct experiments
based on cooperative control tasks to demonstrate that the proposed algorithms can outperform
current cooperative MARL algorithms, especially in terms of exploration capabilities.

2 GMFLOWNETS: PROBLEM FORMULATION

2.1 PRELIMINARY

Let F : T 7→ R+ be a trajectory flow Bengio et al. (2021b), such that F (τ) can be interpreted as
the probability mass associated with trajectory τ . Then, we have the corresponding defined edge
flow F (s → s′) =

∑
s→s′∈τ F (τ) and state flow F (s) =

∑
s∈τ F (τ). The forward transition

probabilities PF for each step of a trajectory can then be defined as Bengio et al. (2021b)

PF (s | s′) = F (s → s′)

F (s)
.

GFlowNets aims to train a neural network to approximate the trajectory flow function with the output
proportional to the reward function based on the flow matching condition Bengio et al. (2021b):∑

s′∈Parent(s)

F (s′ → s) =
∑

s′′∈Child(s)

F (s → s′′) ,

where Parent(s) and Child(s) denote the parent set and child set of state s, respectively. In this way,
for any consistent flow F with the terminating flow as the reward, i.e., F (s → sf ) = R(s) with sf
being the final state and s being the terminating state (can be transferred directly to the final state),
a policy π defined by the forward transition probability satisfies π (s′ | s) = PF (s′ | s) ∝ R(x).

2.2 PROBLEM FORMULATION

A multi-agent directed graph is defined as a tuple (S,A) with S being a set of state and A =
A1×· · ·×Ak denoting the set of joint edges (also called actions or transitions), which consists of all
possible combinations of the actions available to each agent. A trajectory in such a graph is defined
as a sequence (s1, ..., sn) of elements of S. A corresponding multi-agent directed acyclic graph
(MADAG) is defined as a multi-agent directed graph with unequal pairs of states in the trajectory.
Given an initial state s0 and final state sf , we name a trajectory τ = (s0, ..., sf ) ∈ T starting from
s0 and ending in sf as the complete trajectory, where T denotes the set of complete trajectories.

We consider a partially observable scenario, where the state s ∈ S is shared by all agents, but it is
not necessarily fully observed. Hence, each agent i ∈ I selects an action ai ∈ Ai based only on
local observations oi made of a shared state s ∈ S. In this way, we define the individual edge/action
flow F (oit, a

i
t) = F (oit → oit+1) as the flow through an edge oit → oit+1, and the joint edge/action

flow is defined by F (st,at) = F (st → st+1) with at = [a1t , ..., a
k
t ]

T . The state flow F (s) : S 7→ R
is defined as F (s) =

∑
τ∈T 1s∈τF (τ). Based on the flow matching condition Bengio et al. (2021b),
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we have the state flow equal to the inflows or outflows, i.e.,

F (s) =
∑

s′,a′:T (s′,a′)=s
F (s′,a′) =

∑
s′∈Parent(s)

F (s′ → s) (1)

F (s) =
∑

a∈A
F (s,a) =

∑
s′′∈Child(s)

F (s → s′′) , (2)

where T (s′,a′) = s denotes an action a′ that can transfer state s′ to attain s. To this end, generative
multi-flow networks (GMFlowNets) are defined as learning machines that can approximate trajec-
tory flow functions in MADAG, with outputs proportional to the predefined reward function, trained
based on flow matching conditions in equation 1 and equation 2.

3 GMFLOWNETS: ALGORITHMS

3.1 CENTRALIZED FLOW NETWORK

Given such a MADAG, to train a GMFlowNet, a straightforward approach is to use a centralized
training approach to estimate joint-flows, named Centralized Flow Network (CFN) algorithm, where
multiple flows are trained together based on the flow matching conditions. In particular, for any state
s in the trajectory, we require that the inflows equal the outflows. In addition, the boundary condition
is given by the flow passing through the terminating state s based on the reward R(s). Assuming we
have a sparse reward setting, i.e., the internal states satisfy R(s) = 0 while the final state satisfies
A = ∅, then we have the flow consistency equation:∑

s,a:T (s,a)=s′

F (s,a) = R (s′) +
∑

a′∈A(s′)

F (s′,a′) . (3)

Lemma 1 Define a joint policy π that generates trajectories starting in state s0 by sampling actions
a ∈ A(s) according to

π(a|s) = F (s,a)

F (s)
, (4)

where F (s,a) > 0 is the flow through allowed edge (s,a), which satisfies the flow consistency
equation in equation 3. Let π(s) be the probability of visiting state s when starting at s0 and
following π. Then we have (a) π(s) = F (s)

F (s0)
; (b) F (s0) =

∑
sf

R(sf ); (c) π(sf ) =
R(sf )∑
s′
f
R(s′f )

.

Proof: The proof is trivial by following the proof of Proposition 2 in Bengio et al. (2021a).

We have Lemma 1, which shows that a joint flow function can produce π(sf ) = R(sf )/Z correctly
when the flow consistency equation is satisfied. Then we can use a TD-like objective to optimize
the joint flow function parameter θ:

Lθ(τ) =
∑

s′∈τ ̸=s0

 ∑
s,a:T (s,a)=s′

Fθ(s,a)−R (s′)−
∑

a′∈A(s′)

Fθ (s
′,a′)

2

. (5)

Note that optimizing equation 5 is not straightforward. On the one hand, in each iteration, we need
to estimate the flow in the order of O(|Ai|N )1, which leads to exponential complexity. The joint
flow estimation method may get stuck in local optima and can hardly scale beyond dozens of agents.
On the other hand, joint flow networks require all agents to sample jointly, which is impractical since
in many applications the agents only have access to their own observations.

3.2 INDEPENDENT FLOW NETWORK

To reduce the complexity and achieve the independent sampling of each agent, a simple way is to
treat each agent as an independent agent, so that each agent can learn its flow function in the order of

1For simplicity, here we consider homogeneous agents, i.e.,Ai = Aj , ∀i, j ∈ N . Moreover, heterogeneous
agents also face the problem of combinatorial complexity.
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Figure 2: Framework of GMFlowNets. For each state, each agent obtains its own observation and
computes its independent flow to sample actions. During training, the agent seeks the parent nodes
for computing inflows and outflows, and performs policy optimization through flow matching.

O(|Ai|). We call this approach the Independent Flow Network (IFN) algorithm, which reduces the
exponential complexity to linear. However, due to the non-stationarity of the flow (see Definition 1),
it is difficult for this algorithm to train a high-performance GMFlowNet.

Definition 1 (Flow Non-Stationary) Define the independent policy πi as

πi(ai|oi) =
Fi(oi, ai)

F (oi)
, (6)

where ai ∈ Ai(oi) and Fi(oi, ai) is the independent flow of agent i. The flow consistent equation
can be rewritten as ∑

oi,ai:T (oi,ai,a−i)=o′i

Fi(oi, ai) = R(oi, ai) +
∑

a′
i∈A(o′i)

Fi(o
′
i, a

′
i), (7)

where −i represents other agents except agent i, and R(oi, ai) represents the reward with respect to
state s and action ai.

Note that the transition function T (oi, ai, a−i) = o′i in equation 7 is also related to the actions of
other agents, which makes estimating parent nodes difficult. In addition, the reward of many multi-
agent systems is the node reward R(s), that is, we cannot accurately estimate the action reward
R(oi, ai) of each node. This transition uncertainty and spurious rewards can cause the flow non-
stationary property. This makes it difficult to assign accurate rewards to each action, and thus, it is
difficult to train independent flow network with a TD-like objective function.
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Figure 1: The performance of the
centralized training and indepen-
dent learning on Hyper-grid task.

As shown in Figure 1, compared to the centralized training
method, it is almost difficult for the independent method to
learn a better sampling policy. One way to improve the per-
formance of independent flow networks is to design individual
reward functions that are more directly related to the behavior
of individual agents. However, this approach is difficult to im-
plement in many environments because it is difficult to deter-
mine the direct relationship between individual performance
and overall system performance. Even in the case of a sin-
gle agent, only a small fraction of the shaped reward function
aligns with the true objective.

3.3 FLOW CONSERVATION NETWORK

In this subsection, we propose the Flow Conservation Network (FCN) algorithm to reduce the com-
plexity and simultaneously solve the flow non-stationary problem. FCN aims to learn the optimal
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value decomposition from the final reward by back-propagating the gradients of the joint flow func-
tion F through deep neural networks representing the individual flow function Fi,∀i ∈ N . The
specific motivation for FCN is to avoid flow non-stationarity problems and reduce complexity. To
start with, we have the following Definition 2, which shows the Individual Global Conservation
(IGC) condition between joint and individual edge flows.

Definition 2 (Individual Global Conservation) The joint edge flow is a product of individual edge
flows, i.e.,

F (st,at) =
∏
i

Fi(o
i
t, a

i
t).

Then, we propose the following flow decomposition theorem.

Theorem 1 Let the joint policy be the product of the individual policy {πi}ki=1, where πi with
respect to the individual flow function Fi(oi, ai), i.e.,

πi(ai|oi) =
Fi(oi, ai)

Fi(oi)
, ∀i = 1, · · · , k. (8)

Assume that the individual flow Fi(oi, ai) satisfies the condition in Definition 2. Define a flow
function F̂ , if all agents generate trajectories using independent policies πi, i = 1, ..., k and the
matching conditions

∀s′ > s0, F̂ (s′) =
∑

s∈P(s′)

F̂ (s → s′) and ∀s′ < sf , F̂ (s′) =
∑

s′′∈C(s′)

F̂ (s′ → s′′) (9)

are satisfied. Then, we have:
1) π(sf ) ∝ R(sf );
2) F̂ uniquely defines a Markovian flow F matching F̂ such that

F (τ) =

∏n+1
t=1 F̂ (st−1 → st)∏n

t=1 F̂ (st)
. (10)

Theorem 1 states two facts. First, the joint state-action flow function F (s,a) can be decomposed
into the product form of multiple independent flows. Second, if any non-negative function satisfies
the flow matching conditions, a unique flow is determined. On this basis, we can design algorithms
for flow decomposition based on conservation properties. Each agent maintains a neural network to
estimate the flow of its actions, then calculates the joint flow function through the flow conservation
condition, and trains the model with the relevant reward function. In this case, each agent maintains a
flow estimation network with the above architecture, which only estimates (|Ai|) flows. Compared
with the centralized flow estimation network, we can reduce the complexity to O(N(|Ai|)). By
combining Fi(oi, ai), we can get an unbiased estimate of F (s,a) to calculate a TD-like objective
function. Next, we illustrate the overall training process.

During the individual sampling process, each agent samples trajectories using its own policy and
composes a batch of data for joint training. During the joint training process, the system allows to
call of the independent flow functions of each agent and uses the joint reward function to train the
flow network. After training, each agent gets a trained independent flow network to meet the needs
of independent sampling. In particular, for each sampled state, we first seek their parent nodes and
corresponding observations and independent actions. Then, we compute the estimated joint flow
F̂ (s,a) by the flow consistency equation:

F̂ (s,a) = exp

(
k∑

i=1

log F̂i(oi, ai; θi)

)
, (11)

where θi is the model parameter of the i-th agent, which can be trained based on equation 5 as:

L̃(τ ; θ) =
∑

s′∈τ ̸=s0

 ∑
s,a:T (s,a)=s′

F̂ (s,a)−R (s′)−
∑

a′∈A(s′)

F̂ (s′,a′)

2

. (12)
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Note that the above loss may encounter the problem that the magnitude of the flow on each node in
the trajectory does not match, for example, the flow of the root node is large, while the flow of the
leaf node is very small. To solve this problem, we here adopt the idea of log-scale loss introduced
in Bengio et al. (2021a), and modify equation 12 as

L̃(τ, ϵ; θ) =
∑

s′∈τ ̸=s0

(log [ϵ+ Inflows]− log [ϵ+ Outflows]) , (13)

where

Inflows :=
∑

s,a:T (s,a)=s′

exp
[
log F̂ (s,a; θ)

]
=

∑
s,a:T (s,a)=s′

exp

[
k∑

i=1

log F̂i(oi, ai; θi)

]

Outflows := R (s′) +
∑

a′∈A(s′)

exp
[
log F̂ (s′,a′; θ)

]
= R (s′) +

∑
a′

exp

[
k∑

i=1

log F̂i(o
′
i, a

′
i; θi)

]
,

and ϵ is a hyper-parameter that helps to trade-off large and small flows, which also avoids the nu-
merical problem of taking the logarithm of tiny flows.

3.4 DISCUSSION: RELATIONSHIP WITH MARL

Interestingly, there are similar independent execution algorithms in the multi-agent reinforcement
learning scheme. Therefore, in this subsection, we discuss the relationship between flow conser-
vation networks and multi-agent RL. The value decomposition approach has been widely used in
multi-agent RL based on IGM conditions, such as VDN and QMIX. For a given global state s and
joint action a, the IGM condition asserts the consistency between joint and local greedy action
selections in the joint action-value Qtot(s,a) and individual action values [Qi(oi, ai)]

k
i=1:

argmax
a∈A

Qtot(s,a) =

(
arg max

a1∈A1

Q1(o1, a1), · · · , arg max
ak∈Ak

Qk(ok, ak)

)
,∀s ∈ S. (14)

Assumption 1 For any complete trajectory in an MADAG τ = (s0, ..., sf ), we assume that
Qµ

tot(sf−1,a) = R(sf )f(sf−1) with f(sn) =
∏n

t=0
1

µ(a|st) .

Remark 1 Although Assumption 1 is a strong assumption that does not always hold in practical
environments. Here we only use this assumption for discussion analysis, which does not affect the
performance of the proposed algorithms. A scenario where the assumption directly holds is that we
sample actions according to a uniform distribution in a tree structure, i.e., µ(a|s) = 1/|A(s)|. The
uniform policy is also used as an assumption in Bengio et al. (2021a).

Lemma 2 Suppose Assumption 1 holds and the environment has a tree structure, based on the IGC
and IGM conditions we have:
1) Qµ

tot(s,a) = F (s,a)f(s);
2) (argmaxai

Qi(oi, ai))
k
i=1 = (argmaxai

Fi(oi, ai))
k
i=1.

Based on Assumption1, we have Lemma 2, which shows the connection between the IGC condition
and the IGM condition. This action-value function equivalence property helps us better understand
the multi-flow network algorithms, especially showing the rationality of the IGC condition.

4 RELATED WORKS

Generative Flow Networks: GFlowNets is an emerging generative model that could learn a pol-
icy to generate the objects with a probability proportional to a given reward function. Nowadays,
GFlowNets has achieved promising performance in many fields, such as molecule generation Ben-
gio et al. (2021a); Malkin et al. (2022); Jain et al. (2022), discrete probabilistic modeling Zhang
et al. (2022) and structure learning Deleu et al. (2022). This network could sample the distribution
of trajectories with high rewards and can be useful in tasks when the reward distribution is more
diverse. This learning method is similar to reinforcement learning (RL) Sutton & Barto (2018), but
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Algorithm 1 Flow Conservation Network (FCN) Algorithm

Input: MADAG ⟨S,A,P,R, N⟩, Number of iteration T , Sample size B, Initial flow function F 0
i , ∀i =

1, · · · , k, Parameters.
1: for iteration t = 1, · · · , T do
2: \\ Individual sampling process
3: Sample observations {(obi , a′,b

i , Rb)}Bb=1 based on the individual flow function Fi for all agents
4: \\ Joint training process
5: Seek all parent nodes {pb} of the global state {sb}Bb=1 and calculate the inflow F (sb,ab)
6: Calculate the outflow Y b = Rb(s) +

∑
a∈A(s) F (s,a) by the flow conservation condition

7: Update the individual flow function: {F̃i} ← argmin{Fi}ki=1

1
B
[Y b − F (sb,ab)]2

8: end for
9: Define the joint sampling policy as the product of the individual policies {πi}ki=1 w.r.t. {Fi}ki=1

Output: flow function F̃T and individual sampling policy {πi}ki=1

RL aims to maximize the expected reward and usually only generates the single action sequence
with the highest reward. Conversely, the learned policies of GFlowNets can achieve that the sam-
pled actions are proportional to the reward and are more suitable for exploration. This exploration
ability makes GFNs promising as a new paradigm for policy optimization in the RL field, but there
are many problems, such as solving multi-agent collaborative tasks.

Cooperative Multi-agent Reinforcement Learning: There are already many MARL algorithms
to solve collaborative tasks, two extreme algorithms are independent learning Tan (1993) and cen-
tralized training. Independent training methods regard the influence of other agents as part of the
environment, but the team reward function is usually difficult to measure the contribution of each
agent, resulting in the agent facing a non-stationary environment Sunehag et al. (2017); Yang et al.
(2020). On the contrary, centralized training treats the multi-agent problem as a single-agent coun-
terpart. Unfortunately, this method exhibits combinatorial complexity and is difficult to scale beyond
dozens of agents Yang et al. (2019). Therefore, the most popular paradigm is centralized training
and decentralized execution (CTDE), including value-based Sunehag et al. (2017); Rashid et al.
(2018); Son et al. (2019); Wang et al. (2020) and policy-based Lowe et al. (2017); Yu et al. (2021);
Kuba et al. (2021) methods. The goal of value-based methods is to decompose the joint value
function among agents for decentralized execution, which requires satisfying the condition that the
local maximum of each agent’s value function should be equal to the global maximum of the joint
value function. VDN Sunehag et al. (2017) and QMIX Rashid et al. (2018) propose two classic and
efficient factorization structures, additivity and monotonicity, respectively, despite the strict factor-
ization method. QTRAN Son et al. (2019) and QPLEX Wang et al. (2020) introduce extra design
for descomposition, such as factorization structure and advantage function. The policy-based meth-
ods extend the single-agent TRPO Schulman et al. (2015) and PPO Schulman et al. (2017) into the
multi-agent setting, such as MAPPO Yu et al. (2021), which has shown the surprising effectiveness
in cooperative, multi-agent games. The goal of these algorithms is to find the policy that maximizes
the long-term reward, however, it is difficult for them to learn more diverse policies, which can
generate more promising results.

5 EXPERIMENTS

We first verify the performance of CFN on a multi-agent hyper-grid domain where partition func-
tions can be accurately computed. We then compare the performance of IFN and FCN with standard
MCMC and some RL methods to show that their sampling distributions better match normalized
rewards. All our code is implemented by the PyTorch Paszke et al. (2019) library. We reimplement
the multi-agent RL algorithms and other baselines.

5.1 HYPER-GRID ENVIRONMENT

We consider a multi-agent MDP where states are the cells of a N -dimensional hypercubic grid of
side length H . In this environment, all agents start from the initialization point x = (0, 0, · · · ), and
is only allowed to increase coordinate i with action ai. In addition, each agent has a stop action.
When all agents choose the stop action or reach the maximum H of the episode length, the entire
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Figure 3: L1 error and Mode Found performance of different algorithms on various Hyper-grid
environments. Top and bottom are respectively Mode Found (higher is better) and L1 Error (lower
is better). Left: Hyper-Grid v1, Middle: Hyper-Grid v2, Right: Hyper-Grid v3.

system resets for the next round of sampling. The reward function is designed as

R(x) = R0 +R1

∏
j

I (0.25 < |xj/H − 0.5|) +R2

∏
j

I (0.3 < |xj/H − 0.5| < 0.4) , (15)

where x = [x1, · · · , xk] includes all agent states, the reward term 0 < R0 ≪ R1 < R2 leads a
distribution of modes. By changing R0 and setting it closer to 0, this environment becomes harder
to solve, creating an unexplored region of state space due to the sparse reward setting. We conducted
experiments in Hyper-grid environments with different numbers of agents and different dimensions,
and we use different version numbers to differentiate these environments, the higher the number, the
more the number of dimensions and proxies. Moreover, the specific details about the environments
and experiments can be found in the appendix.

We compare CFN and FCN with a modified MCMC and RL methods. In the modified MCMC
method Xie et al. (2021), we allow iterative reduction of coordinates on the basis of joint action
space, and cancel the setting of stop actions to form a ergodic chain. As for RL methods, we con-
sider the maximum entropy algorithm, i.e., multi-agent SAC Haarnoja et al. (2018), and a previous
cooperative multi-agent algorithm, i.e., MAPPO, Yu et al. (2021). Note that the maximum entropy
method uses the Softmax policy of the value function to make decision, so as to explore the state
of other reward, which is related to our proposed algorithm. To measure the performance of these
methods, we define the empirical L1 error as E[p(sf ) − π(sf )] with p(sf ) = R(sf )/Z being the
sample distribution computed by the true reward function. Moreover, we can consider the mode
found theme to demonstrate the superiority of the algorithm.

Environment MAPPO MASAC MCMC CFN FCN v1 FCN v2

Hyper-Grid v1 2.0 1.84 1.78 2.0 2.0 2.0
Hyper-Grid v2 1.90 1.76 1.70 1.85 1.85 1.82
Hyper-Grid v3 1.84 1.66 1.62 1.82 1.82 1.78

Table 1: The best reward found of different methods.

Figure 3 illustrates the performance superiority of our proposed algorithm compared to other meth-
ods in the L1 error and mode found. For FCN, we consider two different decision-making methods,

8



Under review as a conference paper at ICLR 2023

the first is to sample actions independently, called FCN v1, and the other is to combine these poli-
cies for sampling, named FCN v2. We find that on small-scale environments shown in Figure 3-Left,
CFN can achieve the best performance, because CFN can accurately estimate the flow of joint ac-
tions when the joint action space dimension is small. However, as the complexity of the joint action
flow that needs to be estimated increases, we find that the performance of CFN degrades, but the
independently executed method still achieves good estimation and maintains the speed of conver-
gence, as shown in Figure 3-Middle. Note that RL-based methods do not achieve the expected
performance, their performance curves first rise and then fall, because as training progresses, these
methods tend to find the highest rewarding nodes rather than finding more patterns. In addition, as
shown in Table 1, both the reinforcement learning method and our proposed method can achieve
the highest reward, but the average reward of reinforcement learning is slightly better for all found
modes. Our algorithms do not always have higher rewards than RL, which is reasonable since the
goal of GMFlowNets is not to maximize rewards.

5.2 SMALL MOLECULES GENERATION
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Figure 4: Performance of FCN and
MAPPO on molecules generation task.

Similar to Jin et al. (2018); Bengio et al. (2021a); Xie
et al. (2021), we consider the task of molecular generation
to evaluate the performance of FCN. For any given molec-
ular and chemical validity constraints, we can choose an
atom to attach a block. The action space is to choose
the location of the additional block and selecting the ad-
ditional block. And the reward function is calculated by
a pretrained model. We modify the environment to meets
the multi-agent demand, where the task allows two agents
to perform actions simultaneously depending on the state.
Although this approach is not as refined as single-agent
decision making, we only use it to verify the performance
of FCN. Figure 4 shows that the number of molecules
with the reward value greater than a threshold τ = 8
found by different algorithms, we can see that FCN can generate more molecules with high reward
functions over three independent runs.

6 CONCLUSION

In this paper, we discuss the policy optimization problem when GFlowNets meet the multi-agent
systems. Different from RL, the goal of GMFlowNets is to find diverse samples with probability
proportional to the reward function. Since the joint flow is equivalent to the product of independent
flow of each agent, we design a CTDE method to avoid the flow estimation complexity problem in
fully centralized algorithm and the non-stationary environment in the independent learning process,
simultaneously. Experimental results on Hyper-grid environments and small molecules generation
task demonstrate the performance superiority of the proposed algorithms.

Limitation and Future Work: Unlike multi-agent RL algorithms that typically use RNNs as the
value estimation network Hochreiter & Schmidhuber (1997); Rashid et al. (2018), RNNs are not
suitable for our algorithms for flow estimation. The reason is that the need to compute the par-
ent nodes of each historical state introduces additional overhead. Another limitation is that, like
the original GFlowNets, GMFlowNets are constrained by DAGs and discrete environments, which
makes GMFlowNets temporarily unavailable for multi-agent continuous control tasks. Therefore,
our future work is to design multi-agent continuous algorithms to overcome the above problems.
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A PROOF OF MAIN RESULTS

A.1 PROOF OF THEOREM 1

Theorem 1. Let the joint policy be the product of the individual policy {πi}ki=1, where πi with
respect to the individual flow function Fi(oi, ai), i.e.,

πi(ai|oi) =
Fi(oi, ai)

Fi(oi)
, ∀i = 1, · · · , k. (16)

Assume that the individual flow Fi(oi, ai) satisfies the condition in Definition 2. Define a flow
function F̂ , if all agents generate trajectories using independent policies πi, i = 1, ..., k and the
matching conditions

∀s′ > s0, F̂ (s′) =
∑

s∈P(s′)

F̂ (s → s′) and ∀s′ < sf , F̂ (s′) =
∑

s′′∈C(s′)

F̂ (s′ → s′′) (17)

are satisfied. Then, we have:
1) π(sf ) ∝ R(sf );
2) F̂ uniquely defines a Markovian flow F matching F̂ such that

F (τ) =

∏n+1
t=1 F̂ (st−1 → st)∏n

t=1 F̂ (st)
. (18)

Proof: We first prove the part 1). Since

F (st,at) =
∏
i

Fi(o
i
t, a

i
t),

then we have the global state flow as

F (st) =
∑
at∈A

F (st,at) =
∑
at∈A

∏
i

Fi(o
i
t, a

i
t). (19)

According to the flow definitions, the observation flow Fi(o
i
t) and individual observation flows have

the relationship:
Fi(o

i
t) =

∑
ai
t∈Ai

Fi(o
i
t, a

i
t). (20)

Hence, we have

k∏
i=1

Fi(o
i
t) =

k∏
i=1

 ∑
ai
t∈Ai

Fi(o
i
t, a

i
t)

 (21)

=
∑

a1
t∈A1

Fi(o
1
t , a

1
t ) · · ·

∑
ak
t ∈Ak

Fi(o
k
t , a

k
t ) (22)

=
∑

a1
t ,··· ,ak

t ∈A1×···×Ak

Fi(o
1
t , a

1
t ) · · ·Fi(o

k
t , a

k
t ) (23)

=
∑
at∈A

k∏
i=1

Fi(o
i
t, a

i
t), (24)

yielding F (st) =
∏

i Fi(o
i
t). Therefore, the joint policy

π(a|s) = F (st,at)

F (st)
=

∏
i Fi(o

i
t, a

i
t)

F (st)

=

∏
i Fi(o

i
t, a

i
t)∏

i Fi(oit)
=
∏
i

πi(ai|oi).
(25)
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Equation 25 indicates that if the conditions in Definition 2 is satisfied, we can establish the consis-
tency of joint and individual policies. Based on Lemma 1, we can conclude that the reward of the
generated state satisfies π(sf ) ∝ R(sf ) using the individual policy πi(ai|oi) of each agent.

Next, we prove the part 2). We first prove the necessity part. According to Definition 2 and Bengio
et al. (2021b) we have

F (s′) =
∏
i

Fi(o
i,′) =

∏
i

∑
oi∈P(oi,′)

Fi(o
i → oi,′) =

∑
o∈P(o′)

∏
i

Fi(o
i → oi,′),

F (s′) =
∏
i

Fi(o
i,′) =

∏
i

∑
oi,′′∈C(oi,′)

Fi(o
i,′ → oi,′′) =

∑
o′′∈C(o′)

∏
i

Fi(o
i,′ → oi,′′).

Then we prove the sufficiency part. We first present Lemma 3, which shows that∑
τ∈T0,s

PB(τ) =
∑

τ∈T0,s

∏
st→st+1∈τ

PB(st|st+1) = 1.

Lemma 3 (Independent Transition Probability) Define the independent forward and backward
transition respectively as

PF

(
oit+1|oit

)
:= Pi

(
oit → oit+1|oit

)
=

Fi

(
oit → oit+1

)
Fi

(
oit
) , (26)

and

PB

(
oit|oit+1

)
:= Pi

(
oit+1 → oit|oit+1

)
=

Fi

(
oit+1 → oit

)
Fi

(
oit+1

) . (27)

Then we have ∑
τ∈Ts,f

PF (τ) = 1,∀s ∈ S\{sf},∑
τ∈T0,s

PB(τ) = 1,∀s ∈ S\{s0},
(28)

where Ts,f is the set of trajectories starting in s and ending in sf and T0,s is the set of trajectories
starting in s0 and ending in s.

Define Ẑ = F̂ (s0) as the partition function and P̂F as the forward probability function. Then,
according to Proposition 18 in Bengio et al. (2021b), we have there exists a unique Markovian flow
F with forward transition probability function PF = P̂F and partition function Z, and such that

F (τ) = Ẑ

n+1∏
t=1

P̂F (st|st−1) =

∏n+1
t=1 F̂ (st−1 → st)∏n

t=1 F̂ (st)
, (29)

where sn+1 = sf . Thus, we have for s′ ̸= s0:

F (s′) = Ẑ
∑

τ∈T0,s′

∏
(st→st+1)∈τ

P̂F (st+1|st)

= Ẑ
F̂ (s′)

F̂ (s0)

∑
τ∈T0,s′

∏
(st→st+1)∈τ

P̂B(st|st+1) = F̂ (s′). (30)

Combining equation 30 with PF = P̂F , we have ∀s → s′ ∈ A, F (s → s′). Finally, for any Marko-
vian flow F ′ matching F̂ on states and edges, we have F ′(τ) = F (τ) according to Proposition 16
in Bengio et al. (2021b), which shows the uniqueness property. Then we complete the proof.
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A.2 PROOF OF LEMMA 2

Lemma 2. Suppose Assumption 1 holds and the environment has a tree structure, based on the IGC
and IGM conditions we have:
1) Qµ

tot(s,a) = F (s,a)f(s);
2) (argmaxai

Qi(oi, ai))
k
i=1 = (argmaxai

Fi(oi, ai))
k
i=1.

Proof: The proof is an extension of that of Proposition 4 in Bengio et al. (2021a). For any (s,a)
satisfies sf = T (s,a), we have Qµ

tot(s,a) = R(sf )f(s) and F (s,a) = R(sf ). Therefore, we have
Qµ

tot(s,a) = F (s,a)f(s). Then, for each non-final node s′, based on the action-value function in
terms of the action-value at the next step, we have by induction:

Qµ
tot(s,a) = R̂(s′) + µ(a|s′)

∑
a′∈A(s′)

Qµ
tot(s

′,a′; R̂)

(a)
= 0 + µ(a|s′)

∑
a′∈A(s′)

F (s′,a′;R)f(s′),
(31)

where R̂(s′) is the reward of Qµ
tot(s,a) and (a) is due to that R̂(s′) = 0 if s′ is not a final state.

Since the environment has a tree structure, we have

F (s,a) =
∑

a′∈A(s′)

F (s′,a′), (32)

which yields

Qµ
tot(s,a) = µ(a|s′)F (s,a)f(s′) = µ(a|s′)F (s,a)f(s)

1

µ(a|s′)
= F (s,a)f(s).

According to the IGC condition we have F (st,at) =
∏

i Fi(o
i
t, a

i
t), yielding

argmax
a

Qtot(s,a)
(a)
= argmax

a
logF (s,a)f(s)

(b)
= argmax

a

k∑
i=1

logFi(oi, ai)

(c)
=

(
arg max

a1∈Ai

F1(o1, a1), · · · , arg max
ak∈Ak

Fk(ok, ak)

)
,

(33)

where (a) is based on the fact F and f(s) are positive, (b) is due to the IGC condition. Combining
with the IGM condition

argmax
a∈A

Qtot(s,a) =

(
arg max

a1∈A1

Q1(o1, a1), · · · , arg max
ak∈Ak

Qk(ok, ak)

)
,∀s ∈ S. (34)

we can conclude that(
arg max

ai∈Ai

Fi(oi, ai)

)k

i=1

=

(
arg max

a1∈A1

Qi(oi, ai)

)k

i=1

.

Then we complete the proof.

A.3 PROOF OF LEMMA 3

Lemma 3 [Independent Transition Probability]. Define the independent forward and backward
transition respectively as

PF

(
oit+1|oit

)
:= Pi

(
oit → oit+1|oit

)
=

Fi

(
oit → oit+1

)
Fi

(
oit
) , (35)

and

PB

(
oit|oit+1

)
:= Pi

(
oit+1 → oit|oit+1

)
=

Fi

(
oit+1 → oit

)
Fi

(
oit+1

) . (36)
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Then we have ∑
τ∈Ts,f

PF (τ) = 1,∀s ∈ S\{sf},∑
τ∈T0,s

PB(τ) = 1,∀s ∈ S\{s0},
(37)

where Ts,f is the set of trajectories starting in s and ending in sf and T0,s is the set of trajectories
starting in s0 and ending in s.

Proof: When the maximum length of trajectories is not more than 1, we have∑
τ∈Ts,f

PF (τ) = 1. (38)

Then we have the following results by induction:∑
τ∈Ts,f

PF (τ) =
∑

s′∈C(s)

∑
τ∈Ts→s′,f

PF (τ) =
∑

o′∈C(o)

PF (o
′|o)

∑
τ∈Ts′,f

PF (τ)

=
∑
k

∑
o′i∈C(oi)

PF (o
′
i|oi)

∑
τ∈Ts′,f

PF (τ) = 1,
(39)

where C(·) is the children set of the current state or observation and the last equation is based on the
fact

∑
o′i∈C(oi) PF (o

′
i|oi) = 1. Since the proof process of PB is similar to that of PF , it is omitted

here.

B EXPERIMENTAL DETAILS

B.1 HYPER-GRID ENVIRONMENT

Here we present the experimental details on the Hyper-Grid environments. Figure 5 shows the curve
of the flow matching loss function with the number of training steps. The loss of our proposed
algorithm gradually decreases, ensuring the stability of the learning process. For some RL algo-
rithms based on the state-action value function estimation, the loss usually oscillates. This may be
because RL-based methods use experience replay buffer and the transition data distribution is not
stable enough. The method we propose uses an on-policy based optimization method, and the data
distribution changes with the current sampling policy, hence the loss function is relatively stable.
We set the same number of training steps for all algorithms for a fair comparison. Moreover, we list
the key hyperparameters of the different algorithms in Tables 2 3 4 5.
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Figure 5: The flow matching loss of different algorithm.

We study the effect of different reward in Figure 6. In particular, we set R0 = {10−1, 10−2, 10−4}
for different task challenge. A smaller value of R0 makes the reward function distribution more
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Figure 6: The effect of different reward R0 on different algorithm according to L1 error and mode
found.

sparse, which makes policy optimization more difficult Bengio et al. (2021a); Riedmiller et al.
(2018); Trott et al. (2019). As shown in Figure 6, we found that our proposed method is robust
with the cases R0 = 10−1 and R0 = 10−2. When the reward distribution becomes sparse, the
performance of the proposed algorithm degrades slightly.

Table 2: Hyper-parameter of MAPPO under different environments

Hyper-Grid-v1 Hyper-Grid-v2 Hyper-Grid-v3

Train Steps 20000 20000 20000
Agent 2 2 3

Grid Dim 2 3 3
Grid Size [8,8] [8,8] [8,8]

Actor Network Hidden Layers [256,256] [256,256] [256,256]
Optimizer Adam Adam Adam

Learning Rate 0.0001 0.0001 0.0001
Batchsize 64 64 64

Discount Factor 0.99 0.99 0.99
PPO Entropy 1e-1 1e-1 1e-1

Table 3: Hyper-parameter of MASAC under different environments

Hyper-Grid-v1 Hyper-Grid-v2 Hyper-Grid-v3

Train Steps 20000 20000 20000
Grid Dim 2 3 3
Grid Size [8,8] [8,8] [8,8]

Actor Network Hidden Layers [256,256] [256,256] [256,256]
Critic Network Hidden Layers [256,256] [256,256] [256,256]

Optimizer Adam Adam Adam
Learning Rate 0.0001 0.0001 0.0001

Batchsize 64 64 64
Discount Factor 0.99 0.99 0.99

SAC Alpha 0.98 0.98 0.98
Target Network Update 0.001 0.001 0.001
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Table 4: Hyper-parameter of FCN under different environments

Hyper-Grid-v1 Hyper-Grid-v2 Hyper-Grid-v3

Train Steps 20000 20000 20000
R2 2 2 2
R1 0.5 0.5 0.5

Grid Dim 2 3 3
Grid Size [8,8] [8,8] [8,8]

Trajectories per steps 16 16 16
Flow Network Hidden Layers [256,256] [256,256] [256,256]

Optimizer Adam Adam Adam
Learning Rate 0.0001 0.0001 0.0001

ϵ 0.0005 0.0005 0.0005

Table 5: Hyper-parameter of CFN under different environments

Hyper-Grid-v1 Hyper-Grid-v2 Hyper-Grid-v3

Train Steps 20000 20000 20000
Trajectories per steps 16 16 16

R2 2 2 2
R1 0.5 0.5 0.5

Grid Dim 2 3 3
Grid Size [8,8] [8,8] [8,8]

Flow Network Hidden Layers [256,256] [256,256] [256,256]
Optimizer Adam Adam Adam

Learning Rate 0.0001 0.0001 0.0001
ϵ 0.0005 0.0005 0.0005
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