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ABSTRACT

This paper introduces a structured, adaptive-length deep representation called
Neural Eigenmap. Unlike prior spectral methods such as Laplacian Eigenmap that
operate in a nonparametric manner, Neural Eigenmap leverages NeuralEF (Deng
et al., 2022) to parametrically model eigenfunctions using a neural network. We
show that, when the eigenfunction is derived from positive relations in a data
augmentation setup, applying NeuralEF results in an objective function that re-
sembles those of popular self-supervised learning methods, with an additional
symmetry-breaking property that leads to structured representations where fea-
tures are ordered by importance. We demonstrate using such representations as
adaptive-length codes in image retrieval systems. By truncation according to fea-
ture importance, our method requires up to 16× shorter representation length than
leading self-supervised learning ones to achieve similar retrieval performance. We
further apply our method to graph data and report strong results on a node repre-
sentation learning benchmark with more than one million nodes.

1 INTRODUCTION

Automatically learning representations from unlabelled data is a long-standing challenge in machine
learning. Often, the motivation is to map data to a vector space where the geometric distance re-
flects semantic closeness. This enables, for example, retrieving semantically related information via
finding nearest neighbors, or discovering concepts with clustering. One can also pass such represen-
tations as inputs to supervised learning procedures, which removes the need for feature engineering.

Traditionally, spectral methods that estimate the eigenfunctions of some integral operator (often
induced by a data similarity metric) were widely used to learn representations from data (Burges
et al., 2010). Examples of such methods include Multidimensional Scaling (Carroll & Arabie, 1998),
Laplacian Eigenmaps (Belkin & Niyogi, 2003), and Local Linear Embeddings (Roweis & Saul,
2000). However, these approaches are less commonly employed today than deep representation
learning methods that leverage deep generative models or a self-supervised training scheme (Oord
et al., 2018; Radford et al., 2018; Caron et al., 2020; Chen et al., 2020a).

There are two primary reasons we believe that contribute to the lesser use of spectral methods today.
First, many spectral algorithms operate in a nonparametric manner, such as computing the eigende-
composition of a full similarity matrix between all data points. This makes them difficult to scale
to large datasets. Second, the performance of learned representations is highly dependent on the
similarity metric used to construct the integral operator. However, picking an appropriate metric for
high-dimensional data can itself be a very challenging problem.

In this work, we revisit the approach of using eigenfunctions for representation learning. Unlike past
efforts that estimated eigenfunctions in a nonparametric way, we take a different path by leveraging
the NeuralEF method (Deng et al., 2022) to parametrically approximate eigenfunctions. Specifically,
a deep neural network is trained to approximate dominant eigenfunctions from large-scale data.
This learned representation, which we term Neural Eigenmap, inherits the principled theoretical
motivation of eigenfunction-based representation learning while at the same time gains the flexibility
and scalability advantages of deep learning methods.

Our contributions are three-fold:

1



Under review as a conference paper at ICLR 2024

• We uncover a formal connection between NeuralEF and self-supervised learning (SSL)—applying
NeuralEF with a similarity metric derived from data augmentation (Johnson et al., 2022) leads to
an objective function that resembles popular self-supervised learning (SSL) methods while also
exhibiting an additional symmetry-breaking property. This property enables learning structured
representations ordered by feature importance. This ordered structure is lost in other SSL algo-
rithms (HaoChen et al., 2021; Balestriero & LeCun, 2022; Johnson et al., 2022) and gives Neural
Eigenmap a key advantage in adaptively setting representation length for best quality-cost tradeoff.
In image retrieval tasks, it uses up to 16 times shorter code length than SSL-based representations
while achieving similar retrieval precision.

• We show that, even in representation learning benchmarks where the ordering of features is ig-
nored, our method still produces strong empirical performance—it consistently outperforms Bar-
low Twins (Zbontar et al., 2021), which can be seen as a less-principled approximation to our
objective, and is competitive with a range of strong SSL baselines on ImageNet (Deng et al.,
2009) for linear probe and transfer learning tasks.

• We establish the conditions when NeuralEF can learn eigenfunctions of indefinite kernels, en-
abling a novel application of it to graph representation learning problems. On a large-scale node
property prediction benchmark (Hu et al., 2020), Neural Eigenmap outperforms classic Laplacian
Eigenmap and GCNs (Kipf & Welling, 2016) with decent margins, and its evaluation cost at test
time is substantially lower than GCNs.

2 NEURAL EIGENFUNCTIONS FOR REPRESENTATION LEARNING

Eigenfunctions are the central object of interest in many scientific and engineering domains, such
as solving partial differential equations (PDEs) and the spectral methods in machine learning. Typi-
cally, an eigenfunction ψ of the linear operator T satisfies

Tψ = µψ, (1)

where µ is a scalar called the eigenvalue associated with ψ. In this work, we focus on the kernel
integral operator Tκ : L2(X , p) → L2(X , p),1 defined as

(Tκf)(x) =

ˆ
κ(x,x′)f(x′)p(x′) dx′. (2)

Here the kernel κ can be viewed as an infinite-dimensional symmetric matrix and thereby Equa-
tion (1) for Tκ closely resembles a matrix eigenvalue problem.

In machine learning, the study of eigenfunctions and their relationship with representation learning
dates back to the work on spectral clustering (Shi & Malik, 2000) and Laplacian Eigenmaps (Belkin
& Niyogi, 2003). In these methods, the kernel κ is derived from a graph that measures similarity
between data points—usually κ is a variant of the graph adjacency matrix. Then, for each data point,
the outputs of eigenfunctions associated with the k largest eigenvalues are collected as a vector
ψ(x) ≜ [ψ1(x), ψ2(x), . . . , ψk(x)]. These vectors prove to be optimal embeddings that preserve
local neighborhoods on data manifolds. Moreover, the feature extractor ψj for each dimension is
orthogonal to others in function space, so redundancy is desirably minimized. Following Belkin &
Niyogi (2003), we call ψ(x) the eigenmap of x.

Our work builds upon the observation that eigenmaps can serve as good representations. But, unlike
previous work that solves Equation (1) in a nonparametric way—by decomposing a gram matrix
computed on all data points—we approximate ψ(x) with a neural network. Our parametric approach
makes it possible to learn eigenmaps for a large dataset like ImageNet, meanwhile also enabling
straightforward out-of-sample generalization. This is discussed further in the next section.

We leverage the NeuralEF algorithm, proposed by Deng et al. (2022) as a function-space gener-
alization of EigenGame (Gemp et al., 2020), to approximate the k principal eigenfunctions of a
kernel using neural networks (NNs). In detail, NeuralEF introduces k NNs ψi, i = 1, ..., k,2 which

1X denotes the support of observations and p(x) is a distribution over X . L2(X , p) is the set of all square-
integrable functions w.r.t. p.

2We abuse ψi to represent the NN approximating the i-th principal eigenfunction if there is no misleading.

2



Under review as a conference paper at ICLR 2024

are ended with L2-BN layers (Deng et al., 2022), a variant of batch normalization (BN) (Ioffe &
Szegedy, 2015), and optimizes them simultaneously by:

max
ψj

Rj,j − α

j−1∑
i=1

R2
i,j for j = 1, . . . , k (3)

where
Ri,j ≜ Ep(x)Ep(x′)[κ(x,x

′)ψi(x)ψj(x
′)]. (4)

In practice, there is no real obstacle for us to use a single shared neural network ψ : X → Rk with k
outputs, each approximating a different eigenfunction. In this sense, we rewrite R in a matrix form:

R ≜ Ep(x)Ep(x′)[κ(x,x
′)ψ(x)ψ(x′)⊤]. (5)

This work adopts this approach as it improves the scaling with k and network size.

Learning eigenfunctions provides a unifying surrogate objective for unsupervised deep representa-
tion learning. Moreover, the representation given by ψ is ordered and highly structured—different
components are orthogonal in the function space and those associated with large eigenvalues pre-
serve more critical information from the kernel.

3 FROM NEURAL EIGENFUNCTIONS TO SELF-SUPERVISED LEARNING

Recent work on the theory of self-supervised learning (SSL) has noticed a strong connection be-
tween representations learned by SSL and spectral embeddings of data computed from a predefined
augmentation kernel (HaoChen et al., 2021; Balestriero & LeCun, 2022; Johnson et al., 2022). In
these works, a clean data point x̄ generates random augmentations (views) according to some aug-
mentation distribution p(x|x̄). Neural networks are trained to maximize the similarity of represen-
tations across different augmentations. Johnson et al. (2022) defined the following augmentation
kernel based on the augmentation graph constructed by HaoChen et al. (2021):

κ(x,x′) ≜
p(x,x′)

p(x)p(x′)
, (6)

where p(x,x′) ≜ Epd(x̄)[p(x|x̄)p(x′|x̄)] and pd is the distribution of clean data. p(x,x′) char-
acterizes the probability of generating x and x′ from the same clean data through augmentation,
which can be seen as a measure of semantic closeness. p(x), p(x′) are the marginal distributions of
p(x,x′). It is easy to show that this augmentation kernel is positive semidefinite.

Plugging the above definition of κ(x,x′) into Equation (4) yields

R = Ep(x,x′)[ψ(x)ψ(x
′)⊤] ≈ 1

B

B∑
b=1

ψ(xb)ψ(x
+
b )

⊤. (7)

Here, xb and x+
b are two independent samples from p(x|x̄b) with x̄1, x̄2, . . . , x̄B being a minibatch

of data points. Define ψXB
≜ [ψ(x1), ψ(x2), · · · , ψ(xB)] ∈ Rk×B and ψX+

B
similarly. The

optimization problems in Equation (3) for learning neural eigenfunctions can then be implemented
in auto-differentiation frameworks (Baydin et al., 2018) using a single “surrogate” loss—a function
that we can differentiate to obtain correct gradients for all maximization problems in Equation (3):

ℓ(XB ,X
+
B) = −

k∑
j=1

(
ψXBψ

⊤
X+

B

)
j,j

+ α

k∑
j=1

j−1∑
i=1

(
ψ̂XBψ

⊤
X+

B

)2
i,j
. (8)

Here ψ̂XB
denotes a constant fixed to the value ofψXB

during gradient computation, corresponding
to the fixed ψi involved in the j optimization problem in Equation (3). Throughout this work, we will
use the hat symbol to denote a value that is regarded as constant when we are computing gradients.
In auto-differentiation libararies, this can be implemented with a stop-gradient operation.

Learning ordered representations. As proven by Deng et al. (2022), the above objective function
results in each component of ψ converging to a unique eigenfunction ordered by the corresponding
eigenvalue. E.g., the first dimension of the output of ψ aligns with the eigenfunction of the largest
eigenvalue. This bears similarity to PCA, where the principal components contain most information
of the kernel and are orthogonal to each other.
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Linear probe evaluation. We can view the above optimization problem as a kind of SSL algo-
rithm as it learns representations from mutiple views (augmentations) of data. For SSL methods, a
gold standard for quantifying the quality of the learned representations is their linear probe perfor-
mance, where a linear head is employed to classify the representations to semantics categories. Yet,
the linear probe does not take advantage of ordered representations, as suggested by HaoChen et al.
(2021) as well. Even if the representation is replaced by the output of an arbitrary span of eigenfunc-
tions, the linear classifier weight can be simply adjusted to produce the same classifier. This implies
that replacing ψ̂XB

with ψXB
in Equation (8) (which changes the optimal solution to arbitrary span

of eigenfunctions) does not affect the optimal classifier and may actually ease optimization because
it relaxes the ordering constraints. So, we adapt the loss specifically for linear probe tasks as follows:

ℓlp(XB ,X
+
B) = −

k∑
j=1

(
ψXBψ

⊤
X+

B

)
j,j

+ α

k∑
j=1

j−1∑
i=1

(
ψXBψ

⊤
X+

B

)2
i,j
. (9)

Connection to Barlow Twins (Zbontar et al., 2021). Interestingly, the SSL objective defined in
Barlow Twins can be written using ψXB

and ψX+
B

:

ℓBT(XB ,X
+
B) =

k∑
j=1

[
1−

(
ψXBψ

⊤
X+

B

)
j,j

]2
+ λ

k∑
j=1

∑
i̸=j

(
ψXBψ

⊤
X+

B

)2
i,j
, (10)

where λ denotes a trade-off coefficient. This objective makes a close analogy to ours defined in
Equation (9). For the first term, our objective directly maximizes diagonal elements, but Barlow
Twins pushes these elements to 1. Although they have a similar effect, the gradients and optimal
solutions of the two problems can differ. For the second term, we penalize only the lower-diagonal
elements while Barlow Twins concerns all off-diagonal ones. With this, we argue the objective of
Barlow Twins is an approximation of our objective function for linear probe.

This section builds upon the kernels of HaoChen et al. (2021) and Johnson et al. (2022). The spectral
contrastive loss (SCL) of HaoChen et al. (2021) only recovers the subspace spanned by eigenfunc-
tions, so their learned representation does not exhibit an ordered structure as ours. Moreover, as will
be shown in Section 6.2, our method empirically benefits more from a large k than SCL. Concurrent
to our work, the extended conference version of Johnson et al. (2022) also applied NeuralEF to the
kernel of Equation (6) (Johnson et al., 2023). However, they focused on the optimality of the rep-
resentation obtained by kernel PCA and only tested NeuralEF as an alternative in synthetic tasks.
In contrast, our work extends NeuralEF to larger-scale problems such as ImageNet-scale SSL and
graph representation learning and discusses the benefit of ordered representation for image retrieval.

4 GRAPH REPRESENTATION LEARNING WITH NEURAL EIGENFUNCTIONS

In a variety of real-world scenarios, the observations do not exist in isolation but are related to
each other. Their relations are often given as a graph. Assume we have a graph dataset (X,A),
where X ≜ {xi}ni=1 denotes the node set and A is the graph adjacency matrix. We define D =

diag(A1n) and the normalized adjacency matrix Ā ≜ D−1/2AD−1/2. In spectral clustering (Shi
& Malik, 2000), it was shown that the eigenmaps produced by principal eigenvectors of Ā are
relaxed cluster assignments of nodes that minimize the graph cut. This motivates us to use them as
node representations in downstream tasks. However, computing these node representations requires
eigendecomposition of the n-by-n matrix Ā and hence does not scale well. Moreover, it cannot
handle out-of-sample predictions where we need the representation of a novel test example.

We propose to treat Ā as the gram matrix of the kernel κ̇(x,x′) on X and apply NeuralEF to learn
its k principal eigenfunctions. However, unlike the augmentation kernel from the last section, the
normalized adjacency matrix can be indefinite3 for an arbitrary graph. Fortunately, we have the
following theorem showing the NeuralEF algorithm could still find the k principal eigenfunctions
for indefinite kernels as long as it has no less than k − 1 positive eigenvalues.
Theorem 1 (Extend NeuralEF for processing indefinite kernels). Suppose the kernel κ̇ has at least
k − 1 positive eigenvalues. And let

R ≜ Ep(x)Ep(x′)[κ̇(x,x
′)ψ(x)ψ(x′)⊤]. (11)

3One might point out that the graph Laplacian is always positive semidefinite. However, in this case, the
eigenmaps should be generated by eigenfunctions with the k smallest eigenvalues.
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Then, the optimization problem defined in Equation (3) has κ̇’s k principal eigenfunctions as the so-
lution, of which the j-th component is the eigenfunction associated with the j-th largest eigenvalue.

We know the normalized adjacency matrix has no less than k − 1 positive eigenvalues when the
graph contains at least k − 1 disjoint subgraphs (Marsden, 2013), and real-world datasets usually
meet this condition. Under this condition, the final surrogate loss for node representation learning
using a mini-batch of nodes XB as well as the corresponding normalized adjacency ĀB is then

ℓ(XB , ĀB) =

k∑
j=1

(
ψXB

ĀBψ
⊤
XB

)
j,j

− α

k∑
j=1

j−1∑
i=1

(
ψ̂XB

ĀBψ
⊤
XB

)2
i,j
. (12)

This makes Neural Eigenmap easily scale up to real-world graphs with millions of nodes.

Comparison with other graph embedding methods. Compared to classic nonparametric graph
embedding methods like Laplacian Eigenmaps (Belkin & Niyogi, 2003) and node2vec (Grover &
Leskovec, 2016), our method enables flexible NN-based out-of-sample prediction. Besides, the
training cost of our model is more tolerable than them as they usually entail matrix decomposition
whose computational complexity is typically O(n3) w.r.t. the number of nodes n. Compared to
graph neural networks (Kipf & Welling, 2016; Hamilton et al., 2017), our model has substantially
faster forward/backward passes, which is especially important for the test phase, because it avoids
aggregating information from the graph. Stochastic training is also more straightforward with our
method, and the unsupervised nature makes our method benefit from massive unlabeled data.

5 RELATED WORK

Self-supervised learning (SSL) has sparked great interest in computer vision. Different methods de-
fine different pretext tasks to realize representation learning (Doersch et al., 2015; Wang & Gupta,
2015; Noroozi & Favaro, 2016; Zhang et al., 2016; Pathak et al., 2017; Gidaris et al., 2018). More
recent approaches train Siamese nets (Bromley et al., 1993) to model image similarities via con-
trastive objectives (Hadsell et al., 2006; Wu et al., 2018; Oord et al., 2018; Chen et al., 2020a; He
et al., 2020; Caron et al., 2020; Tomasev et al., 2022) or non-contrastive ones (Grill et al., 2020;
Chen & He, 2021; Caron et al., 2021; Bardes et al., 2022; Garrido et al., 2022; Bardes et al., 2021).
However, due to the existence of trivial constant solutions, popular SSL methods usually introduce
empirical tricks such as large batches, asymmetric mechanisms, and momentum encoders to prevent
representation collapse. In contrast, Neural Eigenmap removes the requirement for these tricks and
builds on more grounded theoretical foundations. We also note that cross-modality representation
learning methods like CLIP (Radford et al., 2021) can align the representation space of images and
texts and have sparked a variety of practical applications (Shen et al., 2021; Agarwal et al., 2021;
Zhou et al., 2021a). Adjusting Neural Eigenmap to cover this kind of contrastive learning deserves
further investigation. More recently, transformer-based SSL methods emerge (Bao et al., 2021; Zhou
et al., 2021b; He et al., 2022; Assran et al., 2022; Zhou et al., 2022; Fang et al., 2023). They routinely
operate on the image patches and usually learn by masked token prediction or its variant.

Theoretical understanding of SSL has gained increasing attention due to the importance of such
a learning paradigm. A seminal work by HaoChen et al. (2021) connects contrastively learned
representations to the spectral embeddings of the normalized adjacency matrix of an augmentation
graph. However, the developed spectral contrastive loss (SCL) only recovers the subspace spanned
by eigenfunctions, causing the representation to lose an ordered structure. Subsequently, Johnson
et al. (2022) incorporate NT-XEnt and NTLogistic losses into this theoretical framework, but a
scalable algorithm for recovering the principal eigenfunctions of the relevant kernel has not been
derived. In addition, Balestriero & LeCun (2022) relate two other popular SSL methods, Barlow
Twins and VICReg, to spectral analysis methods, and establish a connection between SimCLR and
Kernel ISOMAP. Tian (2022) explains contrastive learning as a game between a max player and
a min player, and demonstrates a relationship between contrastive losses and PCA for deep linear
networks. Furthermore, there have been non-trivial efforts to understand SSL theoretically using
techniques beyond spectral learning (Arora et al., 2019; Bansal et al., 2020; Lee et al., 2021; Tian
et al., 2020; Tosh et al., 2021; Tsai et al., 2020; Wang & Isola, 2020).

6 EXPERIMENTS

In this section, we apply Neural Eigenmap to diverse scenarios to empirically study its behaviors.
Neural Eigenmap is easy to implement and we will release the code after acceptance.
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Figure 1: Visualization of retrieval results on COCO with the representations yielded by Neural Eigenmap.
Neural Eigenmap is trained on ImageNet and has not been tuned on COCO. The five rows correspond to using
the first 4, 8, 16, 32, and 64 entries of the neural eigenmaps for retrieval, respectively. In each row, the first
image is a query, and the rest are the top 10 images closest to it over the set.

6.1 ADAPTIVE-LENGTH CODES FOR IMAGE RETRIEVAL

Neural Eigenmap learns structured representations where features are ordered by their relative im-
portance. It can be reassuringly truncated without losing critical information of the original data.
Here, we exploit this property to perform adaptive compression of representations in image retrieval,
where a short code length can significantly reduce retrieval burden (both the memory cost for storage
and the time needed to find the top-M closest samples).

We train Neural Eigenmap on ImageNet using the augmentation kernel with the neural eigenfunction
defined as a ResNet-50 (He et al., 2016) encoder followed by a 2-layer MLP projector with hidden
and output dimension 40964 (i.e., k = 4096) for 100 epochs. The augmentation and optimization
recipes are identical to those in SimCLR (Chen et al., 2020a). We set α = 0.005 for k = 4096 and
linearly scale it for other values of k (e.g., when k = 8192, we set α to 0.0025). After training,
we evaluate the learned representations on COCO, NUS-WIDE (Chua et al., 2009), PASCAL VOC
2012 (Everingham et al.), and MIRFLICKR-25000 (Huiskes & Lew, 2008) by performing image
retrieval based on standard data splits. We highlight that no further fine-tuning is performed.

Images whose representations have the largest cosine similarity with the query ones are returned. We
evaluate the results by mean average precision (mAP) and precision with respect to the top-M re-
turned images. We set M = 5000 for COCO and NUS-WIDE, and set M = 100 for PASCAL VOC
2012 and MIRFLICKR-25000. The returned images are considered to be relevant to the query im-
age when at least one class labels of them match. We include Neural Eigenmap w/o stop grad and
SCL as two baselines because (i) the comparison between Neural Eigenmap and Neural Eigenmap
w/o stop grad can reflect that learning ordered eigenfunctions leads to structured representations;
(ii) SCL is effective in learning representations as revealed by previous studies and is also related to
spectral learning. We experiment with codewords of various lengths. For Neural Eigenmap, we use
the elements with small indices in the representations. The representations of Neural Eigenmap w/o
stop grad and SCL are non-structured, so we randomly sample elements to perform retrieval and
report the average results and error bars over 10 runs.

We present the results in Figure 2 and Figure 6 in Appendix. As shown, Neural Eigenmap requires
up to 16× fewer representation dimensions than the competitors to achieve similar retrieval perfor-
mance. We also note that the retrieval performance of Neural Eigenmap drops when the code length
is too high. This is probably because the NeuralEF objective has trouble recovering the eigenfunc-
tions associated with small eigenvalues (Deng et al., 2022), so the tailing components may contain
useless information. A potential solution is to add perturbations to the kernel to remove small eigen-
values, making all eigenfunctions more accurately recoverable. We leave this as future work.

We further visualize some retrieval results on COCO in Figure 1. They are consistent with the
quantitative results. We can see the results quickly become satisfactory when the code length exceeds

4We apply batch normalization (Ioffe & Szegedy, 2015) and ReLU to the hidden layer.
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Figure 2: Retrieval mAP varies w.r.t. representation dimensionality.

Table 2: ImageNet linear probe accuracy varies w.r.t.
batch size. All methods use a 2-layer MLP projector
of dimension 2048. BT refers to Barlow Twins.

Batch size SCL BT Neural Eigenmap

256 63.0 57.6 60.5
512 64.6 60.3 63.3
1024 65.6 61.8 65.7
2048 66.5 60.4 66.8

Table 3: ImageNet linear probe accuracy varies w.r.t.
the dimension of the 2-layer MLP projector. All
methods adopt a batch size of 2048.

Projector dim. SCL BT Neural Eigenmap

2048 66.5 60.4 66.8
4096 67.1 63.9 67.7
8192 NaN 66.2 68.4

8, which implies that the first few elements of our representations already contain rich semantics of
the input. Refer to Appendix B.3 for the comparison between our methods and another baseline that
combines SCL and principal component analysis (PCA).

6.2 UNSUPERVISED VISUAL REPRESENTATION LEARNING

Table 1: Comparisons on ImageNet linear
probe accuracy (%) with the ResNet-50 encoder
pre-trained for 100 epochs. The results of Sim-
CLR, SwAV, MoCo v2, BYOL, and SimSiam
are from (Chen & He, 2021). The result of
SCL is from (HaoChen et al., 2021), and that of
Barlow Twins is reproduced by ourselves. As
shown, our method outperforms all baselines.

Method batch size top-1 accuracy

SimCLR 4096 66.5
SwAV 4096 66.5
MoCo v2 256 67.4
BYOL 4096 66.5
SimSiam 256 68.1
SCL 384 67.0
Barlow Twins 2048 66.2
Neural Eigenmap 2048 68.4

Linear Probe. We follow the setups of Section 6.1.
We train a supervised linear classifier on the repre-
sentations yielded by the ResNet-50 encoder and then
test it. We compare to popular SSL methods includ-
ing SimCLR (Chen et al., 2020a), SwAV (Caron et al.,
2020), MoCo v2 (Chen et al., 2020b), BYOL (Grill
et al., 2020), SimSiam (Chen & He, 2021), spectral
contrastive loss (SCL) (HaoChen et al., 2021), and
Barlow Twins (Zbontar et al., 2021), with the results
reported in Table 1. As shown, Neural Eigenmap can
beat all baselines. The performance gain of Neural
Eigenmap over Barlow Twins reflects the merits of
our formulation. We note that SimSiam, with a batch
size of 256, is also well-performing, so it may be pre-
ferred when resources are constrained. Yet, the smaller
batch size would substantially increase the training
time. Our method should be preferred when the mem-
ory cost is not a concern, such as on a standard lab
server with multiple GPUs.

SCL and Barlow Twins deploy similar learning objectives with Neural Eigenmap, so we opt to
take a closer look at their empirical performance.5 We reproduce them to place them under the same
training protocol as Neural Eigenmap for a fair comparison. In particular, we have tuned the trade-off
hyper-parameter λ in Barlow Twins, which plays a similar role with the α in our method. We present
the results in Table 2 and Table 3. When fixing the hidden and output dimension of the projector
as 2048, we see that increasing batch size enhances the performance of all three methods (except
for the batch size 2048 for Barlow Twins). Compared to the other two methods, a medium batch
size like 1024 or 2048 can yield significant gains for Neural Eigenmap. Meanwhile, when fixing the
batch size as 2048, all methods yield better accuracy when using a higher projector dimension (but

5VICReg borrows the covariance criterion from Barlow Twins and the two methods perform similarly, so
we only include Barlow Twins into our studies.
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Table 4: Transfer learning on COCO detection and instance segmentation. All unsupervised methods are
pre-trained on ImageNet for 200 epochs using ResNet-50. Mask R-CNNs (He et al., 2017) with the C4-
backbone (Girshick et al., 2018) are built given the pre-trained models and fine-tuned in COCO 2017 train (1×
schedule), then evaluated in COCO 2017 val. The results of the competitors are from Chen & He (2021).

Pre-training method COCO detection COCO instance seg.
AP50 AP AP75 APmask

50 APmask APmask
75

ImageNet supervised 58.2 38.2 41.2 54.7 33.3 35.2
SimCLR 57.7 37.9 40.9 54.6 33.3 35.3
MoCo v2 58.8 39.2 42.5 55.5 34.3 36.6
BYOL 57.8 37.9 40.9 54.3 33.2 35.0
SimSiam, base 57.5 37.9 40.9 54.2 33.2 35.2
SimSiam, optimal 59.3 39.2 42.1 56.0 34.4 36.7
Barlow Twins 59.0 39.2 42.5 56.0 34.3 36.5
Neural Eigenmap 59.6 39.9 43.5 56.3 34.9 37.4

Figure 3: The top 10 samples from the ImageNet validation set that predominantly excite the first 8 principal
neural eigenfunctions.

SCL failed to converge when setting the dimension to 8192). We can see that NEigenmap benefits
more from a higher output dimension than SCL.

Table 5: Comparisons on ImageNet linear probe
accuracy with various training epochs.

Method 100 ep 200 ep 400 ep

SimSiam 68.1 70.0 70.8
Neural Eigenmap 68.4 70.3 71.5

We next study if a longer training procedure would
result in higher linear probe performance. We com-
pare Neural Eigenmap to SimSiam because it is
strongest baseline in Table 1. The results are shown
in Table 5. Neural Eigenmap consistently outper-
forms SimSiam as we increase the training epochs.

Transfer Learning. We then evaluate the representation quality by transferring the features to
object detection and instance segmentation tasks on COCO (Lin et al., 2014). The models are pre-
trained for 200 epochs and then fine-tuned end-to-end on the target tasks following standard practice.
We base our experiments on the public codebase from MoCo6 (He et al., 2020) and tune only the
fine-tuning learning rate (and set it to 0.05) as suggested by Chen & He (2021). The results in
Table 4 demonstrate that Neural Eigenmap has better transferability than existing approaches. It
achieves leading results across tasks and metrics with clear gaps.

6.3 VISUALIZATION OF THE LEARNING EIGENFUNCTIONS

We visualize the neural eigenfunctions learned on ImageNet by examining which samples predom-
inantly excite them. In Figure 3, we present the top 10 samples from the validation set that elicit the
strongest responses for the first 8 neural eigenfunctions. An interesting observation is that samples

6https://github.com/facebookresearch/moco.
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Table 6: Comparisons on OGBN-Products test accuracy (%). The results of Neural Eigenmap refer to the
linear probe performance. The results of the baselines are based on non-linear classifiers.

Method 100% training labels 10% training labels 1% training labels

Plain MLP 62.16 ± 0.15 57.44 ± 0.20 47.76 ± 0.62
Laplacian Eigenmap + MLP 64.21 ± 0.35 58.99 ± 0.20 49.94 ± 0.30
Node2vec + MLP 72.50 ± 0.46 68.72 ± 0.43 61.97 ± 0.44
GCN 75.72 ± 0.31 73.14 ± 0.34 67.61 ± 0.48
Neural Eigenmap 78.33 ± 0.08 75.78 ± 0.46 68.04 ± 0.39

within the same row exhibit similar semantic structures, while variations between the rows suggest
potential orthogonality among the learned neural eigenfunctions. More results are in Appendix B.4.

6.4 NODE REPRESENTATION LEARNING ON GRAPHS

We then apply Neural Eigenmap to OGBN-Products (Hu et al., 2020), one of the most large-scale
node property prediction benchmarks, with 2, 449, 029 nodes and 61, 859, 140 edges. We omit
small-scale benchmarks since a large abundance of nodes are particularly important for Neural
Eigenmap to learn generalizable representations. We use the graph kernel and specify the neural
eigenfunction with a 11-layer MLP encoder followed by a projector. We set the encoder width to
2048 and equip it with residual connections (He et al., 2016) to ease optimization. The projector
is identical to that in Section 6.2. The training is performed on all nodes for 20 epochs using a
LARS (You et al., 2017) optimizer with batch size 16384, weight decay 0, and learning rate 0.3
(accompanied by a cosine decay schedule). We tune α according to the linear probe accuracy on
validation data and finally set it to 0.3.

After training, we assess the representations yielded by the encoder with linear probe. The training
of the linear classifier lasts for 100 epochs under a SGD optimizer with batch size 256, weight decay
10−3, and learning rate 10−2 (with cosine decay). We experiment with varying numbers of training
labels for performing linear probe to examine representation quality systematically. We compare to
two non-parametric node embedding approaches, Laplacian Eigenmap and node2vec: the computed
node embeddings are augmented to node features, on which MLP classifiers are trained. We include
two other baselines GCN and MLP, which are directly trained on raw node features. We base the
implementation on the public codebase7. MLP baselines all have three layers of width 512, and it is
empirically observed larger width cannot bring considerable gains.

Table 6 displays the comparison on test accuracy (summarized over 10 runs). Neural Eigenmap
has shown superior performance over the baselines across multiple settings. Laplacian Eigenmap +
MLP underperforms Neural Eigenmap because the representations yielded by Laplacian Eigenmap
contain only undecorated spectral information of the graph Laplacian, while the representations of
Neural Eigenmap are the outputs of the encoder, which correspond to a kind of harmonized Lapla-
cian Eigenmap according to the node features. Nevertheless, one limitation of Neural Eigenmap is
that its training cost is substantially higher than the baselines (due to the large encoder).

Test cost. In the test phase, Neural Eigenmap makes predictions through a forward pass, while
GCN still needs to aggregate information from the graph. Therefore, Neural Eigenmap is more
efficient than GCN at test time— GCN’s prediction time for a test datum is 0.3818s, while for
Neural Eigenmap this is 0.0013s (on an RTX 3090 GPU).

7 CONCLUSION

In this paper, we formulate unsupervised representation learning as training neural networks to
approximate the principal eigenfunctions of a pre-defined kernel. Our learned representations is
structured—features with smaller indices contain more critical information. This is a key advan-
tage that distinguishes our work from existing self-supervised learning methods. We provide strong
empirical evidence of the effectiveness of our structured representations on large-scale benchmarks.
Future directions may include designing suitable kernels for other data modalities such as video,
image-text pairs, and point clouds.

7
https://github.com/snap-stanford/ogb/tree/master/examples/nodeproppred/products.
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REPRODCIBILITY STATEMENTS

We submit the code for reproducing the results of image retrieval and linear probe. Please refer to
README.md for specific instructions.
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A PROOF

A.1 PROOF OF THEOREM 1

Lemma 1. Let µj denote the eigenvalues of κ̇ and δ the indicator function. Let µs ≜ infj≥1 µj and
assume µs > −∞. The kernel κ(x,x′) ≜ κ̇(x,x′)−µsδx=x′/

√
p(x)p(x′) is positive semidefinite

and has the same eigenfunctions as κ̇(x,x′).

Proof. Let (νj , ψj) denote an eigenpair of κ(x,x′). By the definition of eigenfunction, we haveˆ
κ(x,x′)ψj(x

′)p(x′)dx′ = νjψj(x).

It follows thatˆ
κ̇(x,x′)ψj(x

′)p(x′)dx′ =

ˆ
κ(x,x′)ψj(x

′)p(x′)dx′ + µs

ˆ
δx=x′√
p(x)p(x′)

ψj(x
′)p(x′)dx′

= νjψj(x) +
µs√
p(x)

ˆ
δx=x′

√
p(x′)ψj(x

′)dx′

= νjψj(x) +
µs√
p(x)

√
p(x)ψj(x)

= (νj + µs)ψj(x).

Namely, (νj + µs, ψj) is an eigenpair of κ̇(x,x′). Since µs is the smallest eigenvalues of κ̇(x,x′),
we have νj + µs ≥ µs, then νj ≥ 0. Therefore, any eigenvalue of κ(x,x′) is non-negative.

Similar to the above, it is easy to show that any eigenfunction of κ̇(x,x′) will also be the eigenfunc-
tion of κ(x,x′), with eigenvalues shifted by −µs. Therefore, we conclude that the two kernels have
the same eigenfunctions.

Theorem 1. Suppose the kernel κ̇ has at least k − 1 positive eigenvalues. And let

R ≜ Ep(x)Ep(x′)[κ̇(x,x
′)ψ(x)ψ(x′)⊤]. (11)

Then, the optimization problem defined in Equation (3) has κ̇’s k principal eigenfunctions as the so-
lution, of which the j-th component is the eigenfunction associated with the j-th largest eigenvalue.

Proof. We reuse the notations in Lemma 1. When µs ≥ 0, the kernel is positive semidefinite and
the result follows directly from Deng et al. (2022, Theorem 1 and Eq. (14)). We prove the µs < 0
case in the following.

Denote by ψj : X → R the function corresponding to the j-th output entry of ψ and by [a] the set
of integers from 1 to a. Based on Lemma 1, we denote by (µj −µs, ϕj) the ground-truth eigenpairs
of the positive semidefinite κ(x,x′). NeuralEF (Deng et al., 2022) suggests simultaneously solving
the following k asymmetric maximization problems will make ψj converge to ϕj for all j ≤ k:

max
ψj

Rjj s.t.:Rij = 0, cj = 1,∀j ∈ [k], i ∈ [j − 1],

for Rij ≜
¨

ψi(x)κ(x,x
′)ψj(x

′)p(x′)p(x)dx′dx,

cj ≜
ˆ
ψj(x)ψj(x)p(x)dx.

Let Ṙij ≜
˜
ψi(x)κ̇(x,x

′)ψj(x
′)p(x′)p(x)dx′dx, we have

Rij = Ṙij − µs

¨
ψi(x)

δx=x′√
p(x)p(x′)

ψj(x
′)p(x′)p(x)dx′dx

= Ṙij − µs

ˆ ( ˆ
δx=x′ψj(x

′)
√
p(x′)dx′

)
ψi(x)

√
p(x)dx

= Ṙij − µs

ˆ
ψj(x)ψi(x)p(x)dx.
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With the constraint cj =
´
ψj(x)ψj(x)p(x)dx = 1, we have Rjj = Ṙjj − µs, and hence

maxψj Rjj s.t.: cj = 1 ⇔ maxψj Ṙjj s.t.: cj = 1. As a result, we can invoke the same proof as
in Deng et al. (2022, Appendix A.1) to show that solving maxψ1

Ṙ11 s.t.: c1 = 1 makes ψ1 converge
to ϕ1.

Next, we solve the optimization problem for Ṙ12. Under the condition ψ1 = ϕ1, we have

R12 =Ṙ12 − µs

ˆ
ψ1(x)ψ2(x)p(x)dx

=

¨
ψ1(x)κ̇(x,x

′)ψ2(x
′)p(x′)p(x)dx′dx− µs

ˆ
ψ1(x)ψ2(x)p(x)dx

=

ˆ
ψ2(x

′)p(x′)

ˆ
ψ1(x)κ̇(x,x

′)p(x)dxdx′ − µs

ˆ
ψ1(x)ψ2(x)p(x)dx

=

ˆ
ψ2(x

′)p(x′)

ˆ
ϕ1(x)κ̇(x,x

′)p(x)dxdx′ − µs

ˆ
ϕ1(x)ψ2(x)p(x)dx

=

ˆ
ψ2(x

′)p(x′)µ1ϕ1(x
′)dx′ − µs

ˆ
ϕ1(x)ψ2(x)p(x)dx

=µ1⟨ϕ1, ψ2⟩ − µs⟨ϕ1, ψ2⟩
=(µ1 − µs)⟨ϕ1, ψ2⟩,

where ⟨·, ·⟩ denotes the inner product defined as follows:

⟨φ,φ′⟩ =
ˆ
φ(x)φ′(x)p(x)dx for φ,φ′ ∈ L2(X , p).

Since µs < 0 < µi,∀i ∈ [k−1], the constraint (µ1−µs)⟨ϕ1, ψ2⟩ = 0 is equivalent to µ1⟨ϕ1, ψ2⟩ =
0. Namely, the constraint R12 = 0 can be replaced by Ṙ12 = 0.

We can apply similar analyses to Rij ,∀j ∈ [k], i ∈ [j − 1] to show that solving the following k
asymmetric maximization problems is equivalent to solving the NeuralEF optimization problems
for κ:

max
ψj

Ṙjj s.t.: Ṙij = 0, cj = 1,∀j ∈ [k], i ∈ [j − 1],

where Ṙij ≜
¨

ψi(x)κ̇(x,x
′)ψj(x

′)p(x′)p(x)dx′dx,

cj ≜
ˆ
ψj(x)ψj(x)p(x)dx.

Slacking the constraints on Ṙij as penalties and and implement the constraint on cj with L2-BN, we
obtain Theorem 1.
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A.2 PROOF OF EQUATION (7)

Proof.

R = Ep(x)Ep(x′)

[
κ(x,x′)ψ(x)ψ(x′)⊤

]
= Ep(x)Ep(x′)

[ p(x,x′)

p(x)p(x′)
ψ(x)ψ(x′)⊤

]
=

¨
p(x,x′)ψ(x)ψ(x′)⊤dxdx′

= Ep(x,x′)

[
ψ(x)ψ(x′)⊤

]
= Ep(x̄)Ep(x|x̄)p(x′|x̄)

[
ψ(x)ψ(x′)⊤

]
≈ 1

b

b∑
i=1

Ep(x|x̄i)p(x′|x̄i)

[
ψ(x)ψ(x′)⊤

]
≈ 1

b

b∑
i=1

ψ(xi)ψ(x
+
i )

⊤,

where x̄i are samples from p(x̄) and xi and x+
i are two independent samples from p(x|x̄i).

B MORE RESULTS

B.1 DISCUSSION ON THE ARCHITECTURE OF THE PROJECTOR FOR VISUAL
REPRESENTATION LEARNING

The projector trick is widely used in SSL (He et al., 2020; Chen et al., 2020a). We follow the trend
and add an MLP projector after the ResNet-50 encoder for representation learning on ImageNet.
We empirically diagnose the MLP projector and find that, when removing the MLP projector or
replacing it with a linear one or removing the BN after the hidden layer, Neural Eigenmap failed
to converge or performed poorly. This finding is partially consistent with the results in some SSL
works (e.g., Chen & He, 2021) and we conclude that an MLP projector with BNs in the hidden layer
plays an important role in the success of Neural Eigenmap for visual representation learning.

B.2 ORTHOGONALITY OF THE LEARNED EIGENFUNCTION APPROXIMATIONS

While it is challenging to directly verify the orthogonality and accuracy of the learned eigenfunctions
for the augmentation kernel, primarily due to the unavailability of data distribution densities used
to define this kernel, we conducted an additional experiment on the RBF kernel, which is more
amenable to analysis. We include the results in Figure 4, where we plot the learned eigenfunction
approximations alongside the ground truth. We also conducted an orthogonality check. As shown,
our learned approximations are accurate.

We consider Figures 2 and 6 as indirect evidence supporting that the learned eigenfunction approxi-
mations of the augmentation kernel are accurate (such that the features are ordered by eigenvalues).

B.3 COMPARE NEURAL EIGENMAP TO SCL+PCA FOR IMAGE RETRIEVAL

For the considered image retrieval task, it is a straightforward idea to apply PCA to SCL’s representa-
tions to induce structures. Then, we can select features according to the index to get adaptive-length
codes for image retrieval, as done in Neural Eigenmap. In this subsection, we test this proposal.
Specifically, based on SCL, we compute the principal components of ImageNet training set feature
covariances and use the components to project image features into a k-dimensional eigenspace for
retrieval. Table 7 and Table 8 display the performance comparison between this method and our
Neural Eigenmap.

As shown, our method outperforms this PCA-based approach for short code lengths, suggesting that
combining SCL with PCA is not optimal for recovering principal eigenfunctions of the augmentation
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Figure 4: Visualization of the learned neural eigenfunctions (EFs) by our approach for the RBF
kernel. The dashed lines represent the ground-truth eigenfunctions. We also provide the inner
products between them to verify the orthogonality. We use a 3-layer MLP of width 256 to define the
neural eigenfunctions in this experiment. We train on randomly sampled 1024 positions in the range
but test on uniformly sampled 2048 positions.

Table 7: Comparison of retrieval mAP on NUS-WIDE.

Code length 4 8 16 32

Our 0.6706 0.7213 0.7401 0.7446
SCL+PCA 0.4845 0.6679 0.7368 0.7579
SCL 0.5439 0.5866 0.5909 0.6207

Table 8: Comparison of retrieval mAP on COCO.

Code length 4 8 16 32

Our 0.5934 0.6420 0.6657 0.6832
SCL+PCA 0.4819 0.5645 0.6360 0.6902
SCL 0.4995 0.5714 0.5572 0.5882

kernel. Besides, we would like to point out that applying PCA as a post-processing step to self-
supervised learning methods would substantially increase the computational burden (e.g., it needs
to store the principal components apart from the network), which contradicts our paper’s goal of
avoiding expensive nonparametric approaches.

B.4 MORE VISUALIZATION OF THE LEARNING EIGENFUNCTIONS

To further explore the visualization of the learned eigenfunctions on ImageNet for the augmenta-
tion kernel, we optimize the input starting from random noise to maximize the function output. To
enhance interpretability, we incorporate Gaussian blur in the input, facilitating the emergence of
patterns recognizable by humans. The optimization results for the first 8 principal neural eigenfunc-
tions are shown in Figure 5. Although precise information may be challenging to discern from these
visualizations, we discover that different eigenfunctions exhibit distinct pattern preferences. This
finding aligns with our original intentions.

B.5 OTHER VISUALIZATIONS
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Figure 5: The optimized images that maximize the output of the first 8 principal neural eigenfunctions. The
optimization starts from random noise, and the inputs are augmented by Gaussian blur to encourage the emer-
gence of human-identifiable patterns.
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Figure 6: Retrieval precision varies w.r.t. representation dimensionality.
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Figure 7: Retrieval mAP varies w.r.t. representation dimensionality when using a small k (the hidden
dimension of the projector is 8192 while the output dimension is 128).
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Figure 8: Retrieval precision varies w.r.t. representation dimensionality when using a small k (the
hidden dimension of the projector is 8192 while the output dimension is 128).
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(a)

(b)

(c)

(d)

Figure 9: Visualization of retrieval results on COCO with the representations yielded by Neural
Eigenmap. The five rows correspond to using the first 4, 8, 16, 32, and 64 entries of the projector
outputs for retrieval, respectively. In each row, the first image is a query, and the rest are the top 10
images closest to it over the set.
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