
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SPECEXIT: ACCELERATING LARGE REASONING
MODEL VIA SPECULATIVE EXIT

Anonymous authors
Paper under double-blind review

ABSTRACT

Despite their strong performance on reasoning tasks, large reasoning models
(LRMs) often suffer from overthinking, producing unnecessarily long outputs and
incurring high end-to-end latency, a significant limitation to their real-world de-
ployment. To address overthinking, early-exit mechanisms have been proposed
to terminate reasoning before typical completion, showing that this approach can
effectively shorten generation length with minimal impact on accuracy. However,
their reliance on probing mechanisms introduces a detection overhead that lim-
its their end-to-end latency gains and compromises their generalizability across
diverse problems. Inspired by the use of hidden states in speculative decoding,
we propose SpecExit, a novel framework that predicts both future tokens and an
early-exit signal directly from a lightweight draft model without probing over-
head. Our method offers significant improvements, achieving up to 66% genera-
tion length reduction and 2.5× end-to-end speedup compared with the speculative
decoding baseline, without compromising accuracy. Our method leverages the
inherent signals from hidden states to provide effective early-exit signals, sug-
gesting broader use of hidden states for efficient reasoning. Our code is available
at: https://anonymous.4open.science/r/SpecExit-B802.

1 INTRODUCTION

Large reasoning models (LRMs) such as OpenAI-o1 (OpenAI, 2024), DeepSeek-R1 (DeepSeek-AI
et al., 2025) and Qwen (Qwen et al., 2025) have recently achieved state-of-the-art performance in
complex tasks. These models follow the test-time scaling law (Snell et al.; Brown et al.; Muen-
nighoff et al.), where generating longer chain-of-thought (CoT) sequences (Wei et al.) generally
enhances model performance. However, this reliance on extended reasoning often leads to an over-
thinking problem, where models produce unnecessarily verbose outputs. This redundancy leads to
both excessive token usage and high end-to-end latency, which limits LRMs’ practical deployment.

To mitigate overthinking, researchers have proposed both inference-time and training-based strate-
gies (Sui et al., 2025). Inference-time early-exit methods (Yang et al., 2025; Fu et al., 2024) rely
on model-generated signals such as intermediate answers or output logits to terminate decoding
once sufficient evidence is detected. These methods can shorten reasoning length without harming
accuracy, but the probing overhead they introduce limits the actual latency gains. Training-based
approaches, such as reinforcement learning (Aggarwal & Welleck, 2025; Yeo et al., 2025) and su-
pervised fine-tuning (Ma et al., 2025b; Munkhbat et al., 2025), incur little runtime overhead during
inference but risk altering the model’s output distribution. As a result, existing methods struggle to
deliver consistent improvements in end-to-end efficiency.

Speculative decoding (Chen et al., 2023; Leviathan et al., 2023) is a promising approach that im-
proves efficiency without altering the target model’s outputs. A lightweight draft model proposes
multiple candidate tokens in advance, and the target model then verifies these candidates in parallel.
This parallel verification allows the system to generate multiple tokens per forward pass of the target
model, alleviating the inherent sequential bottleneck of autoregressive decoding and better utilizing
modern GPU hardware. However, this strategy alone does not resolve the overthinking problem, as
models still generate the full CoT. Recent advanced speculative decoding methods (Li et al., 2024a;
Zhang et al., b) exploit hidden states to predict several future tokens. Other studies (Lin et al.; Dong
et al.) also show that hidden states encode richer predictive signals beyond next-token probabilities.

1

https://anonymous.4open.science/r/SpecExit-B802

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Token Count (Tok)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

N
or

m
al

iz
ed

 L
at

en
cy

 (
La

t
)

Bette
r

Baseline

DEER

Ours

Performance Comparison of Early Exit Methods

Baseline
DEER
Ours
GSM8K
ARC

(a) Efficiency Comparison

This is a complex or challenging question , and it is difficult to provide a direct

and correct answer . I need to think about it .

Well , so I need to find how many positive whole -number div isors 1 9 6 has . Hmm ,

div isors ... I remember there 's a method using prime factor ization . Let me

recall how that works . First , I should probably factor ize 1 9 6 into its prime

components . Let 's start by seeing if it 's even . 1 9 6 divided by 2 is 9 8 ,

right ? Then 9 8 divided by 2 is 4 9 . Okay , so now I have two 2 s so far . What 's

4 9 ? That 's 7 times 7 , I think . Yeah , 7 squared is 4 9 . Let me check that : 7 *

7 = 4 9 , y ep , that 's right . So putting it all together , 1 9 6 should be 2

squared times 7 squared . Let me write that down to make sure I didn 't make a

mistake . 2 * 2 * 7 * 7 = 4 * 4 9 = 1 9 6 . Perfect , that 's correct .

</think>

0.0 0.2 0.4 0.6 0.8 1.0

Predicted Reasoning Progress
Need more reasoning Sufficient

(b) Predicted Reasoning Progress.

Figure 1: Effectiveness of the proposed method. (a) Statistical comparison showing that our ap-
proach produces shorter reasoning chains and faster inference than baselines. (b) visualizes the
predicted reasoning progress on a MATH500 example, where darker colors denote insufficient rea-
soning and lighter colors denote sufficiency, demonstrating valuable signals can be extracted from
hidden states regarding the model’s reasoning process.

In this work, we introduce SpecExit, a reasoning-aware early-exit framework that leverages draft
model hidden states not only to anticipate future tokens but also to predict early-exit signals. Unlike
prior probing-based approaches, SpecExit requires no modifications to the target model and incurs
no additional detection overhead. Instead, it extends the lightweight draft model with auxiliary
prediction heads, enabling it to jointly output token distributions and reasoning-related signals in
a single forward pass. By exploiting the latent information embedded in hidden states, SpecExit
provides reliable criteria for dynamically terminating chain-of-thought generation when sufficient
reasoning has been achieved.

We validate SpecExit on state-of-the-art reasoning models across mathematical, scientific, and
logical benchmarks. For Qwen3-4B-Thinking-2507, DeepSeek-R1-Distill-Llama-8B, and Phi-4-
reasoning models, SpecExit achieves up to 66% generation length reduction and 2.5× end-to-end
latency speedup compared with the speculative decoding baseline. Our contributions can be sum-
marized as follows:

• Signals Extracted for Early Exit. We derive early-exit signals from hidden features and integrate
them into speculative decoding, enabling reliable early exit for efficient reasoning.

• General and Practical Framework. We implement SpecExit, a reasoning-aware early-exit
framework, in both PyTorch and vLLM, making it easy to deploy across diverse inference en-
vironments.

• Substantial End-to-End Performance Gains. SpecExit reduces reasoning length by as much
as 66% and delivers as high as 2.5x speedup in end-to-end inference compared with speculative
decoding while maintaining accuracy.

2 MOTIVATION

Current early-exit methods face two challenges: runtime overhead from probing and limited general-
ity from task-specific prompts. Since hidden states already reflect reasoning sufficiency, we propose
leveraging them to replace costly probing for faster and more reliable inference across diverse tasks.
Probing Overhead and Limited Generalizability. Probing-based early-exit methods suffer from
both latency overhead and poor generalizability across tasks. Shortened reasoning traces do not
effectively translate into latency improvements. As shown in Figure 1a, DEER (Yang et al., 2025)
reduces the generation length of GSM8K (Cobbe et al., 2021) and ARC-Challenge(Clark et al.,
2018) by 32% and 44% respectively on Qwen3-4B-Thinking-2507, but even increases end-to-end
latency than vanilla baseline. The gap arises because probing introduces extra computation, and
its effectiveness is highly sensitive to both the task and the model. A probing phrase like “Final
Answer is” elicits effective intermediate answers in math problems, but fails in coding tasks where

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Okay, let's try to figure out ... (omitted)
... making new ones until he can't anymore.\n\n
Let me think of it as a cycle... (4272 tokens) </think>
To determine ... (omitted)
Final Answer \\boxed{31}

Ram can refill 1 pen from the ink of 5 empty pens. If he
buys 25 pens, how many pens can he use in total?

MTP

SpecExit Training

LRMs Token 1

Token k

Signals

…

Hidden States

Logits

Classfication

Regression

MTL

SpecExit Inference

LRMs

MTP

Propose

Verify

Okay .\n\n So

Signal

</think>New Step

check the result .\n

Okay .\n\n Well ,

check the result .

Can stop!

Use Case
Question:

Response:

=> 436 tokens

Linear

vocab
accivate

Token

Signals
Progress

Remain

Reasoning
Signals

Confidence

0 0.5 1.0

0 0.5 1.0

0 500 INF

Figure 2: Overall architecture of the proposed SpecExit framework. The Multi-Token Prediction
(MTP) layer is augmented to output both token logits and auxiliary signals. Training is performed
with Multi-Task Learning (MTL), while at inference these signals guide speculative early stopping
without modifying the backbone model. The example illustrates how redundant reasoning steps can
be pruned while preserving final answer quality.

extra tokens are still generated. This drawback not only undermines generalizability across domains
but also limits true latency savings.

Signals from Hidden States. Our preliminary experiments show that models’ hidden states encode
informative signals about its reasoning process. As illustrated in Figure 1b, we use a MLP trained
on hidden states to predict reasoning progress. For complex tasks, the predicted signals appear
darker at the beginning, reflecting the need for continued reasoning, but gradually shift to lighter
colors as the model approaches a sufficient chain of thought. This progression suggests that hidden
states provide fine-grained indicators of task complexity and reasoning sufficiency. Leveraging these
internal signals offers an efficient alternative to costly probing, motivating our approach of utilizing
signals from hidden states.

3 METHOD

3.1 OVERALL ARCHITECTURE

SpecExit Framework. The overall design of this work aims to incorporate additional learnable
signals into large model reasoning, thereby providing explicit decision-making criteria for early
stopping. In the decoding process of large language models, hidden states not only encode semantic
and contextual information for next-token prediction but also implicitly contain higher-level cues
related to reasoning progress, generation quality, and content completeness. The Multi-Token Pre-
diction (MTP) mechanism leverages these hidden states to project into the vocabulary space and
predict multiple future tokens simultaneously, thereby improving inference efficiency. Inspired by
this, we extend the MTP layer while keeping the backbone language model unchanged, introduc-
ing auxiliary prediction heads that allow the model to explicitly generate reasoning-related signals,
including confidence, reasoning progress, and remaining reasoning length, alongside token distri-
butions. This design preserves the original language modeling ability while providing learnable
auxiliary variables for inference control, enabling efficient and dynamic reasoning regulation. The
overall architecture of the SpecExit framework is shown in Figure 2.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

0 20000 40000 60000 80000 100000

Step

0

2

4

6

8

10

12

L
os

s
V

al
ue

Token Loss
Signal Loss

Figure 3: Convergence of token classification loss
and signal regression loss during training.

Sequence States
type

think answer
• step_cnt
• score_smoother

Decoding Step
Okay .\n\n So

Accepted
Tokens

Signals
Confidence

Update

0.92

70%

54

Smoothed
score

Progress
Remain

Stop reasoning!

</think>

Figure 4: Inference process with signal-guided
speculative exit.

Model Structure. We propose a speculative sampling-based early stopping mechanism for reason-
ing. In the MTP layer of the model, we extend the linear projection to include additional dimensions.
In standard decoding, the hidden state h ∈ RD is projected into the vocabulary space to predict the
next token distribution, where D is the hidden size of the model. In our method, the linear layer
output is extended as:

Wh =
[
Wtokh, Wconfh, Wprogh, Wremh

]
, (1)

where Wtokh produces standard token predictions, while Wconfh,Wprogh,Wremh predict confidence,
reasoning progress, and remaining reasoning length, respectively. These additional signals serve as
observable indicators for deciding whether to stop reasoning early, thus reducing redundant compu-
tation without compromising output quality.

3.2 SIGNAL-EXTRACTED TRAINING

Data Construction. We first obtain the complete response generated by the base language model
and extract the reasoning content enclosed within the <think> and </think> tokens. To iden-
tify the effective reasoning trace, we iteratively attempt to insert the closing marker </think> after
each paragraph and verify whether the resulting final answer matches the original output. If the an-
swer remains consistent, the subsequent reasoning content is regarded as redundant. Consequently,
only the minimal reasoning segment required to produce the correct answer is retained as training
data.

Signal Annotation. CONFIDENCE is defined as the geometric mean of the logit probabilities across
prediction steps, reflecting the reliability of the generation; REMAINING reasoning length is defined
as the number of tokens from the initial <think> marker to the earliest valid insertion point of
</think> that still yields the correct answer; PROGRESS is represented as a normalized value
increasing from 0 to 1, capturing the relative progression of the reasoning CoT.

Signal Regression. We propose a cost-efficient extension by introducing a small number of ad-
ditional dimensions into the linear projection layer of the MTP module for regressing reasoning
signals. These dimensions are orthogonal to the vocabulary classification weights, ensuring that
signal regression does not interfere with the convergence of speculative decoding training.

The Multi-Task Learning (MTL) overall training objective jointly optimizes token classification and
signal regression, defined as:

L = Lcls + λcLconf + λpLprog + λrLrem, (2)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

where Lcls is the standard cross-entropy loss for vocabulary prediction, and Lconf,Lprog,Lrem cor-
respond to the regression losses for confidence, progress, and remaining reasoning length, with
λc, λp, λr denoting dynamic weighting coefficients. Specifically:

Confidence and progress are optimized using mean squared error (MSE), remaining reasoning length
is optimized with mean squared logarithmic error (MSLE):

Lconf =
1

N

N∑
i=1

(sigmoid(ĉi)− ci)
2, (3)

Lprog =
1

N

N∑
i=1

(sigmoid(p̂i)− pi)
2, (4)

Lrem =
1

N

N∑
i=1

(r̂i − log(1 + ri))
2
, (5)

where ĉi, p̂i, and r̂i represent the model-predicted confidence, progress, and remaining reasoning
length, respectively; ci, pi, and ri denote their corresponding ground-truth values; and N is the total
number of samples.

Dynamic Weighting. Since the regression losses of signals converge faster than the token classifi-
cation loss, we adopt a gradient-based dynamic weighting strategy to balance the contributions of
different tasks. This mechanism assigns higher weights to tasks with smaller gradient magnitudes,
preventing tasks with larger gradients from dominating the learning process and ensuring all tasks
are effectively optimized. Formally, the mechanism is defined as:

λj =
∥∇θLj∥∑
k ∥∇θLk∥

, Ltotal = Lcls +
∑
j

λjLj , (6)

where Lj ∈ {Lconf,Lprog,Lrem}, ∇θLj denotes the gradient of task j with respect to the model pa-
rameters, Lcls is the cross-entropy loss for token classification, and λj is the dynamically computed
weight. This formulation ensures that the gradient contributions of all tasks are balanced, which
facilitates stable convergence in multi-task optimization, as shown in Figure 3.

3.3 SIGNAL-GUIDED INFERENCE

Overall Procedure. We build upon the speculative decoding framework, where a smaller draft
model first proposes a sequence of candidate tokens, which are then verified in parallel by a larger
target model. To evaluate feasibility and efficiency, the inference procedure is implemented on both
PyTorch and vLLM frameworks. The central modification lies in the forward pass of the target
model. Beyond computing the logits for the next token, we additionally extract the final hidden state
corresponding to the last accepted token. This representation is processed through a lightweight
linear layer to generate three signals: a confidence score, a progress indicator, and an estimate of the
remaining reasoning length, as shown in Figure 4.

Speculative Decoding Inference Procedure. In the speculative decoding inference pipeline, each
sequence of draft tokens proposed by the draft model is forwarded to the target model for verifica-
tion. Only those draft tokens that pass this verification are directly committed to the KV-cache of
the target model, and the last accepted draft token is followed by a recover token generated by the
target model. The hidden states produced by the target model during verification are then fed back
into the draft model to guide the generation of new draft tokens. Subsequently, both the recover
token and the newly generated draft tokens are again passed to the target model for verification and
potential acceptance. A schematic overview of the speculative decoding pipeline integrated with the
proposed reasoning early-exit mechanism is provided in Figure 11(Appendix).

Stopping Conditions. To ensure that early-exit decisions occur at semantically coherent boundaries,
we introduce a class of special markers called step split tokens, which indicate natural segmentation

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Algorithm 1: Inference procedure with signal-guided speculative exit
Input: Draft model Md, target model Mt, tokenizer, thresholds
Output: Generated sequence y
Define is thinking ← true;
Define step split tokens← {ids of “\n\n”, “.\n\n”, ...};
Define stop think token← id of </think>;
while not terminated do

Extract hidden state of tacpt, generate candidate tokens with Md;
Compute signals (confidence, progress, remaining);
Set signals← update smoothed scores;
Concat last accepted token with draft candidates, forward through Mt with tree attention;
Accept tokens tacpt, accept length lacpt, target model recover token trec ;
if is thinking and any(tacpt ∈ step split tokens) and signals exceed thresholds then

Set lacpt← corresponding step split token position;
Set trec ← stop think token;
Update KV-cache and hidden states accordingly;
Set is thinking ← false;

end
end

points in the generated text. Specifically, step split tokens can be divided into two categories: PARA-
GRAPH DELIMITERS (e.g., .\n\n), which mark the end of a paragraph or reasoning unit, and DIS-
COURSE MARKERS (e.g., ”Wait”, ”But”, or ”Therefore”), which often signal semantic transitions
or logical shifts during reasoning. Since the segmentation strategy based on PARAGRAPH DELIM-
ITERS is more general, this strategy is adopted by default in subsequent experiments. Examples
of commonly observed discourse markers in reasoning traces are shown in Figure 12 (Appendix).
When a sampled token belongs to the above set, the early-exit logic is triggered. If the smoothed
signal exceeds the predefined threshold, the system determines that the reasoning process has been
sufficiently explored. The complete inference process is summarized in Algorithm 1. In this case,
the accepted output length is truncated at the position of the step split token, and the target model’s
recover token is replaced with a special reasoning-end marker (e.g., </think>), thereby ensuring
that the termination point lies at a natural boundary while maintaining coherence of the generated
text.

Signal Smoothing. Since raw signals may exhibit significant volatility, relying directly on them
risks premature or unstable termination. To enhance robustness, we apply an Exponentially
Weighted Moving Average (EWMA) to smooth the signals across steps. At each iteration, the
smoothed value is updated as a weighted average of the current raw signal and the previous smoothed
value, with the smoothing factor controlling the balance between recent and past observations. A
smaller factor emphasizes historical stability, yielding smoother traces that are less sensitive to tran-
sient noise. This ensures that termination decisions reflect consistent trends rather than isolated
fluctuations.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

To evaluate the effectiveness of our SpecExit framework, we conducted a comprehensive set of
experiments across multiple domains. Specifically, we used the GSM8K (Cobbe et al., 2021),
MATH500 (Hendrycks et al., 2021) and AIME (MAA Committees) datasets for mathematical rea-
soning, the HumanEvalPlus (Liu et al., 2023) dataset for coding, the GPQA Diamond (Rein et al.,
2023) dataset for science, and the ARC-Challenge (Clark et al., 2018) dataset for logic. Experi-
ments are conducted on three mainstream LRMs: Qwen3-4B-Thinking-2507 (Qwen et al., 2025),
DeepSeek-R1-Distilled-Llama-8B (DeepSeek-AI et al., 2025) and Phi-4-reasoning (Abdin et al.,
2025).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Performance comparison of various reasoning methods on mathematical, scientific, general,
and coding benchmarks. “Acc” denotes accuracy, “Tok” denotes token count, and “Lat” denotes total
end-to-end latency. ↑ indicates that higher values are better, while ↓ indicates that lower values are
better. For the early-exit methods (NoThink, DEER, and SpecExit*), the highest and second-highest
Acc values are marked in bold and underline, respectively. Across all methods, the smallest and
second-smallest Tok and Lat values are marked bold and underline, respectively. SpecExit* uses
default parameter settings consistent with the best variants in ablation studies.

Math Coding Science Logic

Method GSM8K MATH500 AIME HUMANEVAL+ GPQA-D ARC-Challenge
Acc↑ Tok↓ Lat↓ Acc↑ Tok↓ Lat↓ Acc↑ Tok↓ Lat↓ Acc↑ Tok↓ Lat↓ Acc↑ Tok↓ Lat↓ Acc↑ Tok↓ Lat↓

Qwen3-4B-Thinking-2507
Vanilla 95.3 1414 155.6 96.6 6719 530.1 86.7 19577 243.3 90.9 5079 175.3 68.7 9041 325.8 95.6 1812 156.5

NoThink 95.2 1631 204.2 96.6 6395 488.5 86.7 19816 243.2 88.4 4480 131.5 67.2 8833 276.8 95.1 1889 159.8

DEER 94.3 960 230.3 94.4 4893 519.6 70 17838 218.6 86.6 4079 242.4 67.2 9053 505.2 94.6 1011 200.3

EAGLE3 94.8 1408 140.3 96.6 6670 395.7 80 19792 206.1 87.2 5178 81.7 67.7 8975 212.2 95.7 1822 164.2

SpecExit* 93.8 649 75.8 96.8 4777 367.9 90 17769 187.3 89.6 4319 58.4 68.7 7011 137 94.5 588 71.4

DeepSeek-R1-Distill-Llama-8B
Vanilla 76.4 1008 629.4 81.8 6878 857.1 36.7 22170 307 74.4 6287 445.5 43.6 8857 574 49.9 1917 628.5

NoThink 54.6 233 22.2 55.2 1643 262.8 10 8744 184.1 46.3 472 7.3 26.8 1200 166.6 12.6 135 13.6
DEER 74.7 710 484.8 80.8 3533 973.3 40 15619 272.3 79.3 4206 269.2 40.9 8492 521.5 47.5 1029 531.3

EAGLE3 79.3 976 276.9 80.8 6172 593.6 30 25686 228.1 78.7 5312 346.5 43.9 8749 420.1 59.2 1378 496.4

SpecExit* 75.3 333 112.6 80.6 1968 348.3 36.7 8160 176 81.7 3105 118.1 46 6849 307.5 50.3 500 253.7

Phi-4-reasoning
Vanilla 95.8 709 207.2 94.9 2122 543.7 74.2 10980 536.3 72.6 2059 300.2 68.7 7544 726.7 96.6 607 193.2

NoThink 95.7 668 197.3 94.1 2051 554.8 70.7 11104 509.4 72.8 1919 297.3 64.7 7334 710.0 96.7 588 178.0

DEER 95.5 582 223.5 92.4 1502 516.0 60.0 7003 507.4 66.3 1420 211.1 65.2 4479 1296.1 96.0 540 183.4

EAGLE3 95.2 707 153.1 94.5 2136 324.2 74.0 10657 308.5 72.0 2035 155.8 68.2 7512 478.2 96.7 615 128.9

SpecExit* 95.8 400 61.0 93.6 1750 271.9 74.7 9988 272.6 72.0 1605 131.8 67.7 6922 422.9 95.8 286 80.0

We compare our SpecExit method against several baselines: Vanilla, which represents full gener-
ation without any early-exit mechanism; NoThink (Ma et al., 2025a), which skips the reasoning
phase; DEER (Yang et al., 2025), a dynamic early-exit method; and EAGLE3 (Li et al., 2025),
a speculative decoding baseline. For a fair and consistent comparison, the speculative decoding
component in our system adopts the same draft-model architecture as EAGLE3, namely a one-layer
causal model whose hidden size matches the corresponding target model. The draft model is trained
together with SpecExit signals using the same training procedure to ensure comparable conditions.

Our performance analysis is based on three key metrics, as detailed in Table 1: Accuracy (↑), Token
(↓) count and end-to-end Latency (↓). All experimental results are obtained by implementing our
early-exit strategy in vLLM (Kwon et al., 2023), and running inference on an 8×H20 GPU cluster.

4.2 MAIN RESULTS

We first evaluate the proposed SpecExit against baseline reasoning approaches on mathematical,
scientific, coding, and logical benchmarks. As shown in Table 1, SpecExit consistently achieves
substantial reductions in both output length and inference latency while maintaining comparable or
even higher accuracy.

Across benchmarks, SpecExit significantly shortens reasoning traces, with up to 54% and 53% re-
duction on GSM8K and ARC-Challenge for Qwen3-4B-Thinking-2507, and up to 66% and 64%
reduction for DeepSeek-R1-Distill-Llama-8B. The reduced reasoning length corresponds to mea-
surable efficiency improvements: SpecExit achieves a up to 1.9x latency reduction with Qwen3-4B-
Thinking-2507 and up to 2.5x speedup with DeepSeek-R1-Distill-Llama-8B on GSM8K, compared
with the speculative decoding baseline EAGLE3. Importantly, these gains come only with marginal

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

accuracy differences, confirming that early termination of redundant reasoning does not harm task
performance. By contrast, prior inference-time methods primarily focus on reducing output length,
but the latency gains they achieve are relatively modest. In some datasets, the additional computa-
tional overhead even leads to slower inference than the standard think mode. Notably, for Qwen3-
4B-Thinking-2507 and Phi-4-reasoning models, inserting the </think> token at the beginning of
reasoning in the NoThink baseline still fails to suppress reasoning, yielding output lengths similar
to the vanilla Think mode and occasionally slightly longer.

Overall, these results demonstrate that SpecExit achieves a favorable balance between efficiency
and accuracy, highlighting the practicality of integrating reasoning-aware early-exit strategies into
LRMs inference.

MATH500 AIME

HUMANEVAL+
GPQA-D

Dataset

50

60

70

80

90

100

Ac
cu

ra
cy

 (
%

)

96.6

86.7
88.4

68.7

92.2

60.0

81.1

61.6

95.4

70.0

89.0

64.1

95.4

76.7

86.0

63.1

96.8

90.0 89.6

68.7

Vanilla
SpecExit-Confidence
SpecExit-Progress

SpecExit-Remain
SpecExit*

(a) Accuracy comparison.

MATH500 AIME

HUMANEVAL+
GPQA-D

Dataset

0

20

40

60

80

100

120

N
or

m
al

iz
ed

 O
ut

pu
t

Le
ng

th
 (

%
)

100% 100% 100% 100%

44%

79%

44% 46%

89%

105%

74%

81%

64%

92%

75%

56%

71%

91%
84%

78%

Vanilla
SpecExit-Confidence
SpecExit-Progress

SpecExit-Remain
SpecExit*

(b) Output length comparison.

Figure 5: Ablation study of SpecExit signal types on Qwen3-4B-Thinking-2507.

4.3 ABLATION STUDY

Signal Type. To investigate the impact of individual reasoning signals in SpecExit, we conduct
ablation studies on confidence, progress, and remaining token length, along with a combined con-
figuration (SpecExit*) that integrates all three. As shown in Figure 5, the confidence-only variant
yields the largest token reduction but overestimates the model’s certainty, resulting in noticeable
accuracy drops on complex benchmarks. The predicted reasoning progress increases sharply in the
early steps yet continues to fluctuate during iterative reflection. Remaining token length is generally
high at the beginning of inference but often triggers premature exits on complicated problems. By
integrating all signals, SpecExit* leverages their complementary strengths, preserving competitive
accuracy while substantially reducing tokens, demonstrating that multi-signal integration mitigates
individual biases and enables more reliable early stopping.

Signal Smoothing. In order to investigate the influence of different smoothing strategies on the
stability and performance of early-exit decisions, we conducted a series of ablation experiments
comparing multiple approaches. As shown in Table 2, removing smoothing increases the volatil-
ity of cognitive signals, leading to inconsistent early exits and increased token consumption. The
momentum-based prediction strategy significantly reduces token usage, though it may slightly de-
grade accuracy due to overly aggressive early termination. Smoothing using sliding-window and
paragraph-level averaging offers a better trade-off, maintaining accuracy while improving efficiency.
Among all methods, Exponential Weighted Moving Average (EWMA) strikes the most consistent
balance, providing both stability and reliability. These results demonstrate that appropriate smooth-
ing is essential for reliable early-exit behavior, as it mitigates the influence of transient fluctuations
in the raw cognitive signals.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 2: Ablation study of different signal smoothing methods on Qwen3-4B-Thinking-2507. The
highest Acc values are marked in bold for the early-exit methods.

Method MATH500 AIME HUMANEVAL+ GPQA-D Average

Acc↑ Tok↓ Acc↑ Tok↓ Acc↑ Tok↓ Acc↑ Tok↓ Acc↑ Tok↓

Vanilla 96.60 6719 86.67 19577 88.40 5133 68.69 9041 85.09 10118

NoSmooth 94.20 3608 73.33 17832 92.10 2789 62.12 4066 80.44 7074
Momentum 91.80 2230 60.00 12427 83.50 2219 64.65 3406 74.99 5071

Sliding Window 95.20 4444 80.00 19184 86.60 4342 62.12 4738 80.98 8177
Paragraph Mean 95.40 4285 76.67 18231 84.80 4569 65.66 4726 80.63 7953

SpecExit* (EWMA) 96.80 4777 90.00 17769 89.60 4319 68.69 7011 86.27 8469

Step Split Tokens. To evaluate the influence of different step split strategies on early-exit per-
formance, we conducted ablation experiments comparing paragraph delimiters, general discourse
markers, and a contrastive subset of discourse markers. Discourse markers indicate semantic transi-
tions or reasoning shifts, but are dependent on the underlying data and model, limiting their gener-
ality. In prior work on dynamic early-exit methods, contrastive subsets of discourse markers (e.g.,
“Wait”, “But”, “Alternatively”) are frequently used to capture reasoning-relevant transitions. In con-
trast, paragraph delimiters (\n\n) provide a more general segmentation that does not rely on model-
specific or dataset-specific patterns. As shown in Figure 6, using paragraph delimiters achieves
competitive accuracy and token reduction, demonstrating that a general segmentation strategy can
be effective for early-exit decisions while maintaining coherence in reasoning traces.

MATH500 AIME

HUMANEVAL+
GPQA-D

Dataset

50

60

70

80

90

100

Ac
cu

ra
cy

 (
%

)

96.6

86.7
88.4

68.7

95.0

76.7

90.2

66.2

94.8

80.0

90.2

64.7

96.8

90.0 89.6

68.7

Vanilla
Discourse Markers - All

Discourse Markers - Contrast
SpecExit* (Paragraph Delimiters)

(a) Accuracy comparison.

MATH500 AIME

HUMANEVAL+
GPQA-D

Dataset

0

20

40

60

80

100

120

N
or

m
al

iz
ed

 O
ut

pu
t

Le
ng

th
 (

%
)

100% 100% 100% 100%

73%

92%

86%

64%

108%

103%

83%

91%

71%

91%
84%

78%

Vanilla
Discourse Markers - All

Discourse Markers - Contrast
SpecExit* (Paragraph Delimiters)

(b) Output length comparison.

Figure 6: Ablation study of step split tokens strategies on Qwen3-4B-Thinking-2507.

In summary, our ablation studies on signal types, smoothing strategies, and step split methods pro-
vide key insights for improving early-exit decision-making. The integration of multiple signals
strikes the best balance between accuracy and token efficiency, while appropriate smoothing meth-
ods stabilize cognitive signals and enhance the consistency of early exits. Additionally, using general
segmentation strategies, such as paragraph delimiters, improves the generalizability of early-exit
systems across diverse datasets. These findings emphasize the importance of a holistic approach,
where complementary strategies jointly enhance both efficiency and reliability.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

5 RELATED WORK

Efficient Reasoning. To mitigate unnecessary CoT generation in LRMs (Chen et al., 2025; Sui et al.,
2025), prior work has explored both training-based and inference-time strategies. Training-based
approaches typically modify model behavior through reinforcement learning with length-sensitive
objectives (Aggarwal & Welleck, 2025; Yeo et al., 2025; Shen et al., 2025) or supervised fine-tuning
on reasoning traces of varying lengths (Ma et al., 2025b; Munkhbat et al., 2025). While effective in
shortening outputs, these methods demand substantial retraining cost and can distort the model’s out-
put distribution, raising concerns about reliability and generalization to unseen tasks. Inference-time
methods avoid retraining and instead attempt to stop reasoning dynamically by monitoring model
signals such as logits (Yang et al., 2025) or intermediate answers (Fu et al., 2024). Although these
methods show that early stopping can reduce reasoning length without degrading accuracy, their
reliance on probing introduces additional computation and often emphasizes token count reduction
rather than true end-to-end latency improvements.

Speculative Decoding and Hidden States. Speculative decoding (Chen et al., 2023; Leviathan
et al., 2023) is a widely adopted technique for accelerating decoding speed, where a lightweight
draft model proposes candidate tokens that a larger target model verifies in a single pass. Recent
methods (Cai et al., 2024; Li et al., 2024a;b; 2025; Zhang et al., b) leverage hidden states to predict
multiple future tokens. Beyond speculative decoding, several studies (Lin et al.; Zhang et al., c;
Dong et al.; Zhang et al., a), have revealed that hidden states contain broader information about
future outputs, including correctnes, response length, and reasoning paths. Building on this insight,
our method extends speculative decoding by training hidden states not only to forecast future tokens
but also to produce an early-exit signal.

6 CONCLUSION

In this work, we propose SpecExit, a reasoning-aware early-exit framework that leverages latent
signals from models’ hidden states to dynamically terminate reasoning processes in LRMs. By con-
catenating auxiliary prediction heads to a lightweight draft model, SpecExit simultaneously predicts
future tokens and early-exit signals in a single forward pass, eliminating the probing overhead re-
quired by previous approaches. Our experiments across diverse tasks and models demonstrate that
SpecExit substantially reduces reasoning length by up to 66% and achieves significant end-to-end
latency improvements up to 2.5x without compromising accuracy. The proposed method highlights
the potential of hidden states as informative signals for efficient reasoning and establishes a practical
pathway for deploying LRMs in real-world scenarios.

7 ETHICS STATEMENT

This research does not involve human subjects, sensitive personal data, or applications with foresee-
able negative societal impact. All datasets mentioned are publicly available, and proper licenses and
usage guidelines are respected.

8 REPRODUCIBILITY STATEMENT

We have taken extensive measures to ensure the reproducibility of our results. The code used to
implement our proposed framework, SpecExit, is publicly available at: https://anonymous.
4open.science/r/SpecExit-B802 . Detailed instructions on how to use and run the code,
including environment setup and dependency installation, are provided in the repository. For the
experiments conducted in this paper, we used publicly available benchmark datasets and models.

REFERENCES

Marah Abdin, Sahaj Agarwal, Ahmed Awadallah, Vidhisha Balachandran, Harkirat Behl, Lingjiao
Chen, Gustavo de Rosa, Suriya Gunasekar, Mojan Javaheripi, Neel Joshi, et al. Phi-4-reasoning
technical report. arXiv preprint arXiv:2504.21318, 2025.

10

https://anonymous.4open.science/r/SpecExit-B802
https://anonymous.4open.science/r/SpecExit-B802

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Pranjal Aggarwal and Sean Welleck. L1: Controlling how long a reasoning model thinks with
reinforcement learning. arXiv preprint arXiv:2503.04697, 2025.

Bradley Brown, Jordan Juravsky, Ryan Ehrlich, Ronald Clark, Quoc V. Le, Christopher Ré, and
Azalia Mirhoseini. Large language monkeys: Scaling inference compute with repeated sampling.
URL http://arxiv.org/abs/2407.21787. version: 1.

Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng, Jason D Lee, Deming Chen, and Tri
Dao. Medusa: Simple llm inference acceleration framework with multiple decoding heads. arXiv
preprint arXiv:2401.10774, 2024.

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving, Jean-Baptiste Lespiau, Laurent Sifre, and John
Jumper. Accelerating large language model decoding with speculative sampling. arXiv preprint
arXiv:2302.01318, 2023.

Xingyu Chen, Jiahao Xu, Tian Liang, Zhiwei He, Jianhui Pang, Dian Yu, Linfeng Song, Qiuzhi Liu,
Mengfei Zhou, Zhuosheng Zhang, Rui Wang, Zhaopeng Tu, Haitao Mi, and Dong Yu. Do not
think that much for 2+3=? on the overthinking of o1-like llms, 2025. URL https://arxiv.
org/abs/2412.21187.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai
Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang,
Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang,
Minghui Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang,
Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang,
R. J. Chen, R. L. Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng
Ye, Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing
Wu, Shengfeng Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen
Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong
Liu, Xiaohan Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu,
Xinyu Yang, Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xi-
aosha Chen, Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia
Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng
Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong
Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong,
Yuheng Zou, Yujia He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou,
Y. X. Zhu, Yanhong Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying
Tang, Yukun Zha, Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda
Xie, Zhengyan Zhang, Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu,
Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu
Zhang, and Zhen Zhang. Deepseek-r1: Incentivizing reasoning capability in llms via reinforce-
ment learning, 2025. URL https://arxiv.org/abs/2501.12948.

Zhichen Dong, Zhanhui Zhou, Zhixuan Liu, Chao Yang, and Chaochao Lu. Emergent response
planning in LLMs. URL http://arxiv.org/abs/2502.06258.

11

http://arxiv.org/abs/2407.21787
https://arxiv.org/abs/2412.21187
https://arxiv.org/abs/2412.21187
https://arxiv.org/abs/2501.12948
http://arxiv.org/abs/2502.06258

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Yichao Fu, Junda Chen, Siqi Zhu, Zheyu Fu, Zhongdongming Dai, Aurick Qiao, and Hao Zhang.
Efficiently serving llm reasoning programs with certaindex. arXiv e-prints, pp. arXiv–2412, 2024.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset, 2021.
URL https://arxiv.org/abs/2103.03874.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language
model serving with pagedattention. In Proceedings of the 29th Symposium on Operating Sys-
tems Principles, SOSP ’23, pp. 611–626, New York, NY, USA, 2023. Association for Com-
puting Machinery. ISBN 9798400702297. doi: 10.1145/3600006.3613165. URL https:
//doi.org/10.1145/3600006.3613165.

Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative
decoding. In International Conference on Machine Learning, pp. 19274–19286. PMLR, 2023.

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. EAGLE: Speculative sampling requires
rethinking feature uncertainty. In International Conference on Machine Learning, 2024a.

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. EAGLE-2: Faster inference of lan-
guage models with dynamic draft trees. In Empirical Methods in Natural Language Processing,
2024b.

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. EAGLE-3: Scaling up inference
acceleration of large language models via training-time test, 2025. URL https://arxiv.
org/abs/2503.01840.

Zhengkai Lin, Zhihang Fu, Ze Chen, Chao Chen, Liang Xie, Wenxiao Wang, Deng Cai, Zheng
Wang, and Jieping Ye. Controlling thinking speed in reasoning models. URL http://arxiv.
org/abs/2507.03704. version: 1.

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your code generated by chat-
gpt really correct? rigorous evaluation of large language models for code generation. Advances
in Neural Information Processing Systems, 36:21558–21572, 2023.

Wenjie Ma, Jingxuan He, Charlie Snell, Tyler Griggs, Sewon Min, and Matei Zaharia. Reasoning
models can be effective without thinking. arXiv preprint arXiv:2504.09858, 2025a.

Xinyin Ma, Guangnian Wan, Runpeng Yu, Gongfan Fang, and Xinchao Wang. Cot-valve: Length-
compressible chain-of-thought tuning. arXiv preprint arXiv:2502.09601, 2025b.

MAA Committees. Aime problems and solutions. https://artofproblemsolving.com/
wiki/index.php/AIME_Problems_and_Solutions.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. S1: Simple test-time
scaling. URL http://arxiv.org/abs/2501.19393. version: 1.

Tergel Munkhbat, Namgyu Ho, Seo Hyun Kim, Yongjin Yang, Yujin Kim, and Se-Young Yun. Self-
training elicits concise reasoning in large language models. arXiv preprint arXiv:2502.20122,
2025.

OpenAI. Learning to reason with llms, September 2024. URL https://openai.com/index/
learning-to-reason-with-llms/.

Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li,
Tianyi Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang,
Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report, 2025.
URL https://arxiv.org/abs/2412.15115.

12

https://arxiv.org/abs/2103.03874
https://doi.org/10.1145/3600006.3613165
https://doi.org/10.1145/3600006.3613165
https://arxiv.org/abs/2503.01840
https://arxiv.org/abs/2503.01840
http://arxiv.org/abs/2507.03704
http://arxiv.org/abs/2507.03704
https://artofproblemsolving.com/wiki/index.php/AIME_Problems_and_Solutions
https://artofproblemsolving.com/wiki/index.php/AIME_Problems_and_Solutions
http://arxiv.org/abs/2501.19393
https://openai.com/index/learning-to-reason-with-llms/
https://openai.com/index/learning-to-reason-with-llms/
https://arxiv.org/abs/2412.15115

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien
Dirani, Julian Michael, and Samuel R. Bowman. Gpqa: A graduate-level google-proof q&a
benchmark, 2023. URL https://arxiv.org/abs/2311.12022.

Yi Shen, Jian Zhang, Jieyun Huang, Shuming Shi, Wenjing Zhang, Jiangze Yan, Ning Wang, Kai
Wang, and Shiguo Lian. Dast: Difficulty-adaptive slow-thinking for large reasoning models.
arXiv preprint arXiv:2503.04472, 2025.

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute opti-
mally can be more effective than scaling model parameters. URL http://arxiv.org/abs/
2408.03314. version: 1.

Yang Sui, Yu-Neng Chuang, Guanchu Wang, Jiamu Zhang, Tianyi Zhang, Jiayi Yuan, Hongyi Liu,
Andrew Wen, Shaochen Zhong, Na Zou, Hanjie Chen, and Xia Hu. Stop overthinking: A survey
on efficient reasoning for large language models, 2025. URL https://arxiv.org/abs/
2503.16419.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V. Le, and
Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models. URL
http://arxiv.org/abs/2201.11903. version: 1.

Chenxu Yang, Qingyi Si, Yongjie Duan, Zheliang Zhu, Chenyu Zhu, Zheng Lin, Li Cao, and Weip-
ing Wang. Dynamic early exit in reasoning models. arXiv preprint arXiv:2504.15895, 2025.

Edward Yeo, Yuxuan Tong, Morry Niu, Graham Neubig, and Xiang Yue. Demystifying long chain-
of-thought reasoning in llms. arXiv preprint arXiv:2502.03373, 2025.

Anqi Zhang, Yulin Chen, Jane Pan, Chen Zhao, Aurojit Panda, Jinyang Li, and He He. Reasoning
models know when they’re right: Probing hid- den states for self-verification. a.

Lefan Zhang, Xiaodan Wang, Yanhua Huang, and Ruiwen Xu. Learning harmonized representations
for speculative sampling, b. URL http://arxiv.org/abs/2408.15766.

Zhen Zhang, Xuehai He, Weixiang Yan, Ao Shen, Chenyang Zhao, Shuohang Wang, Yelong Shen,
and Xin Eric Wang. Soft thinking: Unlocking the reasoning potential of LLMs in continuous
concept space, c. URL http://arxiv.org/abs/2505.15778.

13

https://arxiv.org/abs/2311.12022
http://arxiv.org/abs/2408.03314
http://arxiv.org/abs/2408.03314
https://arxiv.org/abs/2503.16419
https://arxiv.org/abs/2503.16419
http://arxiv.org/abs/2201.11903
http://arxiv.org/abs/2408.15766
http://arxiv.org/abs/2505.15778

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A APPENDIX

This section may contain supplementary materials such as additional experimental details, ablation
studies, hyperparameter settings, and qualitative examples of generated CoT sequences.

A.1 USAGE OF LLMS

We used LLMs(ChatGPT, Gemini) for grammar reviews and style polishing.

A.2 SUPPLEMENTARY EXPERIMENT

Analysis of Hidden States: To investigate whether intermediate hidden representations encode dis-
criminative signals relevant to reasoning sufficiency, we analyze hidden states extracted from mul-
tiple depth stages of the reasoning traces. We apply Principal Component Analysis (PCA) and
Uniform Manifold Approximation and Projection (UMAP) to project the hidden states into lower-
dimensional spaces and analyze their spatial distribution. The analysis reveals that, across datasets
of varying difficulty, the hidden states at the “start,” “mid,” and “end” positions exhibit clear clus-
tering patterns. Moreover, the hidden states at the start of the reasoning trace show notable cross-
dataset similarity, as illustrated in Figure 7a. In addition, when examining the relationship between
the embedding representations of hidden states and the paragraph geometric mean of probabilities,
we observe that hidden states also form meaningful clusters under different probability ranges, as
illustrated in Figure 7b.These observations suggest that hidden representations indeed capture infor-
mation related to dataset difficulty, reasoning progress, paragraph-level average probability, thereby
providing preliminary evidence that functions of intermediate hidden states can serve as reliable
proxies for reasoning sufficiency.

0 1 2 3 4 5 6 7

Reduced Dimension 1

7

8

9

10

11

12

13

14

Re
du

ce
d

Di
m

en
sio

n
2

aime_start
aime_mid
aime_end
gsm8k_start
gsm8k_mid
gsm8k_end

(a) Distribution of hidden states on the GSM8K and
AIME datasets. The labels “start,” “mid,” and “end”
correspond to early, intermediate, and final positions
along the reasoning trace, respectively.

0 2 4 6 8 10
Reduced Dimension 1

0

2

4

6

8

Re
du

ce
d

Di
m

en
sio

n
2

0.75

0.80

0.85

0.90

0.95

Pa
ra

gr
ap

h
Av

er
ag

e
Pr

ob
ab

ilit
y

(b) Relationship between the embedding representa-
tions of hidden states and the paragraph geometric mean
of probabilities, showing clustering patterns under dif-
ferent confidence ranges.

Figure 7: Analysis of hidden-state representations on the GSM8K and AIME datasets. (a) shows the
distribution of hidden states along different reasoning positions; (b) shows the relationship between
hidden states and paragraph-level confidence signals.

Signal Type: In Figure 8, we conduct a systematic comparison of different early-exit signal configu-
rations, including the full combination of three signals (confidence, reasoning progress, and remain-
ing reasoning length) and the reduced configuration using only “progress + remaining.” The results
show that relying solely on progress and remaining signals can reduce the reasoning length to some
extent, but this setting consistently underperforms the full three-signals configuration in accuracy,
especially on datasets involving longer reasoning chains or higher task complexity. In contrast, the
complete three-signals design exhibits more stable behavior across datasets, effectively shortening
the output length while maintaining a more favorable accuracy-efficiency trade-off. Overall, these
findings demonstrate that incorporating the confidence signal is essential for constructing stable and

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

generalizable early-exit strategies, enabling more consistent efficiency gains and reliable correctness
compared with the “progress + remaining” setting.

MATH500 AIME

HUMANEVAL+
GPQA-D

Dataset

50

60

70

80

90

100

Ac
cu

ra
cy

 (
%

)

96.6

86.7
88.4

68.7

92.2

60.0

81.1

61.6

95.4

70.0

89.0

64.1

95.4

76.7

86.0

63.1

95.2

83.3

88.4

62.6

96.8

90.0 89.6

68.7

Vanilla
SpecExit-Confidence
SpecExit-Progress

SpecExit-Remain
SpecExit-Progress-Remain
SpecExit*

(a) Accuracy comparison.

MATH500 AIME

HUMANEVAL+
GPQA-D

Dataset

0

20

40

60

80

100

120

N
or

m
al

iz
ed

 O
ut

pu
t

Le
ng

th
 (

%
)

100% 100% 100% 100%

44%

79%

44% 46%

89%

105%

74%

81%

64%

92%

75%

56%

67%

97%

81%

56%

71%

91%
84%

78%

Vanilla
SpecExit-Confidence
SpecExit-Progress

SpecExit-Remain
SpecExit-Progress-Remain
SpecExit*

(b) Output length comparison.

Figure 8: Ablation study of SpecExit signal types on Qwen3-4B-Thinking-2507, adding experiment
with only Progress and Remaining signals.

Threshold Calibration:

In the ablation study of SpecExit signal types, the following thresholds are applied as stopping
conditions for the respective signal types: SpecExit-Confidence requires predicted confidence value
greater than 0.9, SpecExit-Progress requires predicted progress value greater than 0.8, SpecExit-
Remain requires predicted remaining reasoning length value less than 100, and SpecExit* combines
thresholds with a predicted confidence value greater than 0.8, predicted progress greater than 0.3,
and predicted remaining reasoning length less than 200.

In addition to the thresholds reported above, we provide two complementary procedures that fur-
ther calibrate the stopping criteria using a small held-out calibration set. Specifically, we sample 90
instances of varying difficulty from the validation split of training data and conduct the following
analyses:

(1) Statistical distribution-based thresholding. During data construction, we have access to the short-
est valid reasoning path for each problem, and thus we can determine whether stopping at the end
of any intermediate paragraph would still yield a correct final answer. By examining the empirical
distribution of the predicted signals at these paragraph boundaries and correlating them with cor-
rectness, we obtain the distributions shown in Figure 10. These distributions allow us to derive a
signal-specific threshold that maximizes the retention of correct answers under early stopping.

(2) Design space exploration over the threshold search space. We additionally perform a design
space exploration (DSE) over a predefined grid of confidence, progress, and remaining-length
thresholds. Using vLLM to run this evaluation pipeline on the 90-sample calibration set, the full
search requires approximately 2.5 hours on an 8×H20 GPU cluster. Among all threshold combina-
tions, we select those lying on the Pareto frontier that best trade off accuracy preservation against
reduction in reasoning length. The results are shown in Figure 10.

A.3 IMPLEMENTATION DETAILS

Model Architectures: We evaluate SpecExit on three large reasoning models (LRMs): Qwen3-
4B-Thinking-2507 (Qwen et al., 2025), DeepSeek-R1-Distilled-Llama-8B (DeepSeek-AI et al.,
2025) and Phi-4-reasoning (Abdin et al., 2025). For speculative decoding, the draft models adopt
the EAGLE3 (Li et al., 2025) architecture. The draft models are single-layer causal models whose
hidden sizes match those of the corresponding target models. The input embedding layer of each
draft model is shared with its corresponding target model to ensure tokenizer compatibility, while the

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

0.65 0.70 0.75 0.80 0.85 0.90 0.95
Confidence

0

2

4

6

8

10

12

De
ns

ity

Distribution of Confidence
type

Correct
Wrong

0.0 0.2 0.4 0.6 0.8 1.0
Progress

0.0

0.5

1.0

1.5

2.0

2.5

3.0

De
ns

ity

Distribution of Progress

type
Correct
Wrong

200 0 200 400 600 800 1000+
Remain

0.000

0.005

0.010

0.015

0.020

De
ns

ity

Distribution of Remain
type

Correct
Wrong

0.65 0.70 0.75 0.80 0.85 0.90 0.95
Confidence 0.0

0.2
0.4

0.6
0.8

1.0

Pro
gre

ss

-200

0

200

400

600

800

1000+

Re
m

ai
n

3D Scatter Plot of Signals
Correct
Wrong

Figure 9: Distribution of signals with correct and wrong answers in calibration data.

50.0 100.0 200.0 500.0
r_th

0.
8

0.
5

0.
3

0.
1

0.
0

p_
th

91.11 91.11 88.89 90.00

88.89 87.78 88.89 90.00

90.00 90.00 90.00 90.00

88.89 90.00 87.78 88.89

88.89 90.00 92.22 85.56

c_th = 0.7

50.0 100.0 200.0 500.0
r_th

87.78 88.89 88.89 88.89

86.67 90.00 91.11 90.00

86.67 90.00 92.22 90.00

88.89 90.00 87.78 85.56

91.11 88.89 88.89 88.89

c_th = 0.8

50.0 100.0 200.0 500.0
r_th

0.
8

0.
5

0.
3

0.
1

0.
0

p_
th

90.00 92.22 90.00 90.00

90.00 90.00 91.11 92.22

90.00 87.78 87.78 87.78

90.00 91.11 87.78 87.78

90.00 91.11 91.11 87.78

c_th = 0.9

50.0 100.0 200.0 500.0
r_th

87.78 90.00 90.00 88.89

90.00 87.78 90.00 87.78

86.67 90.00 91.11 87.78

90.00 88.89 90.00 87.78

88.89 90.00 87.78 86.67

c_th = 0.95

86

87

88

89

90

91

92

(a) Accuracy comparison.

50.0 100.0 200.0 500.0
r_th

0.
8

0.
5

0.
3

0.
1

0.
0

p_
th

8859 9400 9326 9532

9330 8453 8237 8150

8733 8559 6617 5952

8839 8648 6681 4973

8929 7745 7261 4468

c_th = 0.7

50.0 100.0 200.0 500.0
r_th

9222 9356 9338 9065

9403 8680 8142 8274

8968 8302 7378 6148

9050 8081 7537 4735

9028 8164 7101 5655

c_th = 0.8

50.0 100.0 200.0 500.0
r_th

0.
8

0.
5

0.
3

0.
1

0.
0

p_
th

9174 9055 8891 9210

8992 8612 8725 8664

8777 8289 8570 7321

9319 8512 7485 7195

8981 8464 7374 6945

c_th = 0.9

50.0 100.0 200.0 500.0
r_th

9243 8945 9356 9314

9274 9269 9630 9551

9536 9026 9330 9315

9423 9577 9182 9318

9428 9224 9516 9356

c_th = 0.95

5000

6000

7000

8000

9000

(b) Output length comparison.

Figure 10: Accuracy and output length comparison in the calibration data under different threshold
settings. The parameters c th, p th, and r th denote the thresholds for confidence, progress, and
remaining reasoning length estimation, respectively.

output head uses a compact vocabulary of 32k high-frequency tokens. The detailed configurations
are summarized in Table 3.

Figure 11 provides an overview of how SpecExit integrates with the EAGLE3 speculative decoding
pipeline. During inference, the draft model produces multi-level token predictions, and simulta-
neously, our early-exit module tracks the evolution of three reasoning-related signals to determine
whether the target model can safely terminate the thinking phase. The design is architecture-agnostic
and can be combined with other multi-token-prediction frameworks such as Medusa. In practical
deployment, the fully-connected layer of the MTP head (e.g., EAGLE3 or Medusa) can be fused
with the early-exit module, effectively hiding additional operator invocation latency.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 3: Target and Draft Model Configurations.

Model Name Role Architecture Hidden Size Layers Vocab Size

Qwen3-4B-Thinking-2507 Target Qwen3ForCausalLM 2560 36 151936
Draft Eagle3LlamaForCausalLM 2560 1 32000

DeepSeek-R1-Distilled-Llama-8B Target LlamaForCausalLM 4096 32 128256
Draft Eagle3LlamaForCausalLM 4096 1 32000

mokay m.\n\n

 LM Head

 Decoder Layers

 Decoder Layers

 Decoder Layers

 Embedding

Okay .\n\n

lokay l.\n\n

 Decoder Layers

hokay h.\n\n

hokay h.\n\n
mokay m.\n\n
lokay l.\n\n

FC Layer MLP

gokay g.\n\n cokay c.\n\n
pokay p.\n\n
rokay r.\n\n

Decoder Layer

FC Layer

LM Head

So

confidence
progress

remain

Target Model Draft Model

Early-Exit
Predictor

Figure 11: Diagram of the speculative decoding pipeline integrating EAGLE3 (Li et al., 2025) with
the proposed reasoning early-exit mechanism.

Signal Smoothing: In the ablation study of signal smoothing strategies, the following methods are
implemented to stabilize cognitive signals for early-exit decisions:

• Sliding Window: The sliding window approach smooths the signal by averaging the last N pre-
dicted signal values, with N set to 10. The mean score xt at decoding step t is computed as:

xt = Mean(st, N) =
1

N

t∑
i=t−N+1

si, (7)

where si denotes the predicted signal value at decoding step i.
• Momentum-based Prediction: This method predicts the next score based on the momentum, which

is calculated as the difference between N consecutive signal values, with N set to 10. The pre-
dicted score xt at decoding step t is given by:

xt = Predict(st, N) = st−1 +
1

N − 1

t−1∑
i=t−N+1

(si − si−1). (8)

• Paragraph Mean: In this approach, the score xt is calculated as the average of all predicted signal
values within the current paragraph:

xt =
1

T

T∑
i=1

si, (9)

where T is the total number of steps in the current paragraph.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

• Exponential Weighted Moving Average (EWMA): In this approach, the smoothing factor α is set
to 0.1. The new score xt is updated based on the previous score xt−1 and the current signal value
st as:

xt = EWMA(st, xt−1, α) = α · st + (1− α) · xt−1. (10)

Discourse Markers: We collect high-frequency words appearing at the beginning of model-
generated sentences as discourse markers. As shown in Figure 12, we present examples of discourse
markers extracted from Qwen3-4B-Thinking-2507 on the MATH dataset. Among them, transitional
words such as ”Wait” and ”But” can be regarded as a subset of these high-frequency markers.

Figure 12: Discourse marker distribution in Qwen3-4B-Thinking-2507’s responses on the
MATH500 (Hendrycks et al., 2021) dataset.

A.4 PREDICTED SIGNAL VISUALIZATION

As shown in Figure 13, for simple problems, the predicted confidence remains high, the predicted
remaining reasoning length is relatively short, and the predicted progress rises rapidly within the
first few sentences, with only minor drops on a few uncertain words. This indicates that for such
problems, the model is able to establish a stable reasoning trace at an early stage. In contrast,
as shown in Figure 14, for complicated problems, the model also exhibits high confidence and a
short remaining reasoning length in the initial summarization phase, but once it enters the detailed
analysis stage, the predicted remaining reasoning length increases significantly, confidence drops.
Meanwhile, the predicted progress starts low and rises initially, but then fluctuates markedly during
repeated self-reflection, making it difficult to stabilize at a high threshold.

These observations reveal the inherent limitations of relying on individual signals for early exiting.
When depending solely on confidence, the model often exhibits overconfidence and terminates too
early before sufficient reasoning has been completed, leading to substantial accuracy degradation.
When depending solely on the predicted remaining reasoning length, the model may become overly
optimistic in the early stages of complicated problems, resulting in premature exits before essential
reasoning steps are accomplished. When depending solely on progress, the signal tends to fluctuate
and remain unstable in complex reasoning tasks, making it difficult to trigger an appropriate early
exit and thereby restricting achievable speedup. In summary, each single signal suffers from the
inability to balance accuracy and efficiency across diverse problem types. By integrating multiple
signals in a complementary manner, the model can achieve a smoother trade-off between reasoning
accuracy and inference acceleration.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Figure 15 illustrates the effect of applying an Exponentially Weighted Moving Average (EWMA)
to stabilize predicted signal. EWMA effectively suppresses local noise while preserving the global
trend, leading to smoother traces for signal. The smoothed signals reveal clearer overall conver-
gence patterns, providing a more stable and reliable basis for threshold-based early-exit decisions
and thereby improving robustness in challenging reasoning scenarios.

This is a complex or challenging question , and it is difficult to provide a direct

and correct answer . I need to think about it .

Well , so I need to find how many positive whole -number div isors 1 9 6 has . Hmm ,

div isors ... I remember there 's a method using prime factor ization . Let me

recall how that works . First , I should probably factor ize 1 9 6 into its prime

components . Let 's start by seeing if it 's even . 1 9 6 divided by 2 is 9 8 ,

right ? Then 9 8 divided by 2 is 4 9 . Okay , so now I have two 2 s so far . What 's

4 9 ? That 's 7 times 7 , I think . Yeah , 7 squared is 4 9 . Let me check that : 7 *

7 = 4 9 , y ep , that 's right . So putting it all together , 1 9 6 should be 2

squared times 7 squared . Let me write that down to make sure I didn 't make a

mistake . 2 * 2 * 7 * 7 = 4 * 4 9 = 1 9 6 . Perfect , that 's correct .

</think>

0.70 0.75 0.80 0.85 0.90 0.95

Predicted Confidence
Need more reasoning Sufficient

This is a complex or challenging question , and it is difficult to provide a direct

and correct answer . I need to think about it .

Well , so I need to find how many positive whole -number div isors 1 9 6 has . Hmm ,

div isors ... I remember there 's a method using prime factor ization . Let me

recall how that works . First , I should probably factor ize 1 9 6 into its prime

components . Let 's start by seeing if it 's even . 1 9 6 divided by 2 is 9 8 ,

right ? Then 9 8 divided by 2 is 4 9 . Okay , so now I have two 2 s so far . What 's

4 9 ? That 's 7 times 7 , I think . Yeah , 7 squared is 4 9 . Let me check that : 7 *

7 = 4 9 , y ep , that 's right . So putting it all together , 1 9 6 should be 2

squared times 7 squared . Let me write that down to make sure I didn 't make a

mistake . 2 * 2 * 7 * 7 = 4 * 4 9 = 1 9 6 . Perfect , that 's correct .

</think>

0.0 0.2 0.4 0.6 0.8 1.0

Predicted Reasoning Progress
Need more reasoning Sufficient

This is a complex or challenging question , and it is difficult to provide a direct

and correct answer . I need to think about it .

Well , so I need to find how many positive whole -number div isors 1 9 6 has . Hmm ,

div isors ... I remember there 's a method using prime factor ization . Let me

recall how that works . First , I should probably factor ize 1 9 6 into its prime

components . Let 's start by seeing if it 's even . 1 9 6 divided by 2 is 9 8 ,

right ? Then 9 8 divided by 2 is 4 9 . Okay , so now I have two 2 s so far . What 's

4 9 ? That 's 7 times 7 , I think . Yeah , 7 squared is 4 9 . Let me check that : 7 *

7 = 4 9 , y ep , that 's right . So putting it all together , 1 9 6 should be 2

squared times 7 squared . Let me write that down to make sure I didn 't make a

mistake . 2 * 2 * 7 * 7 = 4 * 4 9 = 1 9 6 . Perfect , that 's correct .

</think>

0 100 200 300 400 500

Predicted Remain Reasoning Length
Sufficient Need more reasoning

Figure 13: Visualization of reasoning signals for a simple problem, illustrated with an example from
the MATH500 (Hendrycks et al., 2021) dataset, where darker colors denote insufficient reasoning
and lighter colors denote sufficiency.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

This is a complex or challenging question , and it is difficult to provide a direct

and correct answer . I need to think about it .

Well , so we have six points on a straight line in order : A , B , C , D , E , F .

Let 's start by assigning coordinates to these points to make things concrete .

Coordinates might help because we can use coordinate geometry to find areas and

distances . Let 's put the line they 're on as the x -axis for simplicity , so all

these points have y = 0 , and G is some point (p , q) not on the x -axis , so q 0

, and we need to find the area of triangle B GE , which will depend on coordinates

of B , G , E .

First , let 's set coordinate system : let 's let point C be at the origin to

simplify ? Wait , or maybe point A ? Wait , we have a lot of distances given ,

maybe let 's let the x -axis be the line , assign variables to the x -co ordinates

of each point . Let 's denote the x -coordinate of A as a , B as b , C as c , D as d

, E as e , F as f , all real numbers with a < b < c < d < e < f since they 're in

order . Then G is (g , h) where h 0 (I 'll use h instead of q to avoid

confusion with coordinate q , but maybe better to use different letters : let 's

say G = (x , y), y 0). Then we can write down all the distance equations

as equations in these variables .

Given

...(omitted 7124 tokens)

So I think the area of triangle B GE is 4 6 8 .

</think>

0.70 0.75 0.80 0.85 0.90 0.95

Predicted Confidence
Need more reasoning Sufficient

This is a complex or challenging question , and it is difficult to provide a direct

and correct answer . I need to think about it .

Well , so we have six points on a straight line in order : A , B , C , D , E , F .

Let 's start by assigning coordinates to these points to make things concrete .

Coordinates might help because we can use coordinate geometry to find areas and

distances . Let 's put the line they 're on as the x -axis for simplicity , so all

these points have y = 0 , and G is some point (p , q) not on the x -axis , so q 0

, and we need to find the area of triangle B GE , which will depend on coordinates

of B , G , E .

First , let 's set coordinate system : let 's let point C be at the origin to

simplify ? Wait , or maybe point A ? Wait , we have a lot of distances given ,

maybe let 's let the x -axis be the line , assign variables to the x -co ordinates

of each point . Let 's denote the x -coordinate of A as a , B as b , C as c , D as d

, E as e , F as f , all real numbers with a < b < c < d < e < f since they 're in

order . Then G is (g , h) where h 0 (I 'll use h instead of q to avoid

confusion with coordinate q , but maybe better to use different letters : let 's

say G = (x , y), y 0). Then we can write down all the distance equations

as equations in these variables .

Given

...(omitted 7124 tokens)

So I think the area of triangle B GE is 4 6 8 .

</think>

0.0 0.2 0.4 0.6 0.8 1.0

Predicted Reasoning Progress
Need more reasoning Sufficient

This is a complex or challenging question , and it is difficult to provide a direct

and correct answer . I need to think about it .

Well , so we have six points on a straight line in order : A , B , C , D , E , F .

Let 's start by assigning coordinates to these points to make things concrete .

Coordinates might help because we can use coordinate geometry to find areas and

distances . Let 's put the line they 're on as the x -axis for simplicity , so all

these points have y = 0 , and G is some point (p , q) not on the x -axis , so q 0

, and we need to find the area of triangle B GE , which will depend on coordinates

of B , G , E .

First , let 's set coordinate system : let 's let point C be at the origin to

simplify ? Wait , or maybe point A ? Wait , we have a lot of distances given ,

maybe let 's let the x -axis be the line , assign variables to the x -co ordinates

of each point . Let 's denote the x -coordinate of A as a , B as b , C as c , D as d

, E as e , F as f , all real numbers with a < b < c < d < e < f since they 're in

order . Then G is (g , h) where h 0 (I 'll use h instead of q to avoid

confusion with coordinate q , but maybe better to use different letters : let 's

say G = (x , y), y 0). Then we can write down all the distance equations

as equations in these variables .

Given

...(omitted 7124 tokens)

So I think the area of triangle B GE is 4 6 8 .

</think>

0 100 200 300 400 500

Predicted Remain Reasoning Length
Sufficient Need more reasoning

Figure 14: Visualization of reasoning signals for a complicated problem, illustrated with an example
from the AIME (MAA Committees) dataset, where darker colors denote insufficient reasoning and
lighter colors denote sufficiency.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

I need to determine which statement about S ARS -Co V - 2 molecular biology is

incorrect except for one . The question says " all the following statements are

incorrect except ," so I have to find the one that is correct . Let me list out the

options :\n\n

A . Structural and accessory proteins can be produced with the help of sub gen omic

RN As that have the same leader sequences on the 5 ' end .\n\n

</think>

0.0 0.2 0.4 0.6 0.8 1.0

Predicted Reasoning Progress
Need more reasoning Sufficient

I need to determine which statement about S ARS -Co V - 2 molecular biology is

incorrect except for one . The question says " all the following statements are

incorrect except ," so I have to find the one that is correct . Let me list out the

options :\n\n

A . Structural and accessory proteins can be produced with the help of sub gen omic

RN As that have the same leader sequences on the 5 ' end .\n\n

</think>

0.0 0.2 0.4 0.6 0.8 1.0

Predicted Reasoning Progress
Need more reasoning Sufficient

Figure 15: Visualization of the smoothing effect introduced by the EWMA-based signal estimator,
illustrated with an example from the GPQA Diamond (Rein et al., 2023) dataset, where the stabilized
trace reveals reduced high-frequency fluctuations and clearer monotonic trends in the underlying
reasoning signals.

A.5 CASE STUDY DETAILS

Figure 16 presents an example from the GSM8K (Cobbe et al., 2021) dataset, where SpecExit is ap-
plied after an initial analysis. In this case, SpecExit inserts a decision to exit reasoning based on the
signal magnitude after completing the first paragraph, thus preventing the continuation of redundant
reasoning tokens. The process begins with the model evaluating the initial segment of the problem,
analyzing the available context and producing intermediate reasoning steps. When SpecExit detects
that all the signals exceeds a predefined threshold, it triggers the early exit mechanism. As a result,
the model halts further reasoning and transitions directly to the answering phase, thus producing the
correct result in a more efficient manner.

By shortening the unnecessary token generation and reducing redundant reasoning, SpecExit leads
to significant performance improvements in terms of inference speed while maintaining the cor-
rectness of the answer. This early exit strategy not only accelerates the inference process but also
avoids the potential confusion that the model might experience from excessive reflection or unnec-
essary computations. This case highlights the effectiveness of integrating early exit mechanisms in
enhancing both the efficiency and reliability of large language model inference.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Ram uses a lot of pens. He discovered that he can save money by mixing the ink from five empty
pens to make one full pen. If he buys 25 pens and then uses them to make new pens when the ink
runs low, how many total pens does he get to have?

Question:

Okay, let's try to figure out how many sterling silver beads Katerina uses per necklace. Hmm, first,
let's list out what we know.\n\nShe uses 8 topaz gemstones per necklace. Each topaz is 1 inch long,
so the total length of the topaz gemstones would be 8 times 1 inch, right? So that's 8 inches.\n\n
</think>

SpecExit:

Vanilla:
Okay, let's try to figure out how many sterling silver beads Katerina uses per necklace. Hmm, first,
let's list out what we know.\n\nShe uses 8 topaz gemstones per necklace. Each topaz is 1 inch long,
so the total length of the topaz gemstones would be 8 times 1 inch, right? So that's 8 inches.

Hmm, let's start by breaking down the problem step by step. \n\n
First, the problem says she uses 8 topaz gemstones per necklace, and each topaz is one inch long. So,
the total length of the topaz gemstones would be 8 times 1 inch, right? Let me write that down: 8
topazes * 1 inch each = 8 inches.\n\n
Now, the necklace is supposed to be a total length of 25 inches. That means the space between the
gemstones, which is filled with sterling silver beads, has to make up the rest of the length. So, the
total length from the silver beads would be 25 inches minus the length of the topaz gemstones. Let
me calculate that: 25 inches - 8 inches = 17 inches. So, the silver beads together are 17 inches long.

But each sterling silver bead is one-quarter of an inch long... (omitted)
Wait, hold on. When you have beads between gemstones, do you need to consider how many gaps
there are? Because ... (omitted)
Oh! That's a crucial point I might have missed. The problem says \"fills the space between
gemstones using sterling silver beads.\" So, the silver beads are in the spaces between the topaz
stones. So, if there are 8 topaz stones, there are 7 spaces between them.\n\n
Let me re-examine the problem statement...(omitted)
Wait, but the problem says \"each necklace is made to a total length of 25 inches\". So, total length
= length of topaz + length of silver beads.\n\n
But ...(omitted) (continuous reflection over 26 paragraphs)

So, in the original problem, 8 topaz stones (8 inches), total necklace 25 inches, so 17 inches of
silver beads. 17 / 0.25 = 68.\n\n
I think that's the answer. The key is that the problem says \"fills the space between gemstones using
sterling silver beads\", so the total length of the beads is the total necklace length minus the topaz
length, and then divide by the bead length.\n\n
I think the confusion might be about the number of gaps, but since the problem doesn't specify that
each gap has a certain number of beads, we just take the total length of the beads and divide by the
length per bead.\n\n
So, the answer should be 68.
</think>

To determine how many sterling silver beads Katerina uses per necklace... (omitted)
Final Answer\n\n$$\n\\boxed{68}\n$$\n\n
Katerina uses **68** sterling silver beads per necklace.

Initial

Analyzation

Reflection

Summary

(1521 tokens)

(421 tokens)

Signals: confidence=0.94 progress=41% remain_tokens=56

correct

Figure 16: Discourse marker distribution in Qwen3-4B-Thinking-2507’s responses on the
MATH500 (Hendrycks et al., 2021) dataset.

22

	Introduction
	Motivation
	Method
	Overall Architecture
	Signal-Extracted Training
	Signal-Guided Inference

	Experiments
	Experimental Setup
	Main Results
	Ablation Study

	Related Work
	Conclusion
	Ethics Statement
	Reproducibility Statement
	Appendix
	Usage of LLMs
	Supplementary experiment
	Implementation details
	Predicted Signal Visualization
	Case Study Details

