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ABSTRACT

In this paper, we provide a deep analysis of temporal modeling for action recog-
nition, an important but underexplored problem in the literature. We first propose
a new approach to quantify the temporal relationships between frames captured
by CNN-based action models based on layer-wise relevance propagation. We
then conduct comprehensive experiments and in-depth analysis to provide a better
understanding of how temporal modeling is affected by various factors such as
dataset, network architecture, and input frames. With this, we further study some
important questions for action recognition that lead to interesting findings. Our
analysis shows that there is no strong correlation between temporal relevance and
model performance; and action models tend to capture local temporal information,
but less long-range dependencies.

1 INTRODUCTION

State-of-the-art action recognition systems are mostly based on deep learning. Popular CNN-based
approaches either model spatial and temporal information jointly by 3D convolutions (Carreira &
Zisserman, 2017; Feichtenhofer, 2020; Tran et al., 2015) or separate spatial and temporal modeling
by 2D convolutions (Fan et al., 2019; Lin et al., 2019) in a more efficient way.

One of the fundamental keys for action recognition is temporal modeling, which involves learning
temporal relationships between frames. Despite the significant progress made on action recognition,
our understanding of temporal modeling is still significantly lacking and some important questions
remain unanswered. For example, how does an action model learn relationships between frames?
Can we quantify the amount of temporal relationships learned by an model? Stronger backbones in
general lead to better recognition accuracy (Chen et al., 2021; Zhu et al., 2020), but do they learn
temporal information better? Do models capture long-range temporal information across frames?

In this paper, we provide a deep analysis of temporal modeling for action recognition. Previous
works focus on performance benchmark (Chen et al., 2021; Zhu et al., 2020), spatio-temporal feature
visualization (Feichtenhofer et al., 2020; Selvaraju et al., 2017) or salieny analysis (Bargal et al.,
2018; Hiley et al., 2019b; Roy et al., 2019; Wang et al., 2018) to gain better understanding of
action models. For example, comprehensive studies of CNN-based models have been conducted
recently in (Chen et al., 2021; Zhu et al., 2020) to compare performance of different action models.
Others (Monfort et al., 2019b; Selvaraju et al., 2017; Zhou et al., 2016) focus on visualizing the
evidence used to make specific predictions, sometimes posed as understanding the relevance of each
pixel on the recognition. In contrast, we aim to understand how temporal information is captured by
action models, i.e., temporal dependencies between frames or how a frame relates to other frames
in a video clip.

In this work, we propose a new approach to evaluate the effectiveness of temporal modeling based
on layer-wise relevance propagation (Gu et al., 2018; Montavon et al., 2019), a popular technique
widely used for explaining deep learning models. Our approach studies temporal relationships
between frames in an action model and quantify the amount of temporal dependencies captured by
the model, which is referred to as action temporal relevance (ATR) here (Sec. 3.2). Fig. 1 illustrates
our approach. We conduct comprehensive experiments on popular video benchmark datasets
such as Kinetics400 (Kay et al., 2017) and Something-Something (Goyal et al., 2017) based on
several representative CNN models including I3D (Carreira & Zisserman, 2017), TAM (Fan et al.,
2019) and SlowFast (Feichtenhofer et al., 2018). Our experiments provide deep analysis of how
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temporal relevance is affected by various factors including dataset, network architecture, network
depth, and kernel size as well as the input frames (Sec. 4.2). Finally, based on the performed
analysis, we effort to deliver a deep understanding of the important questions brought up above
(Sec. 4.3). We exclusively focus on CNN-based approaches for action recognition. Nevertheless,
we are fully aware that the recently emerging transformer-based approaches such as (Arnab et al.,
2021; Bertasius et al., 2021; Fan et al., 2021b; Liu et al., 2021) demonstrate comparable or better
performance than CNN-based models, but studying transformers is beyond the scope of this work.
We summarize our contributions below:

• Tool for Understanding Action Models. We present a new approach for better understanding of
action modeling and develop means of evaluating the effectiveness of temporal modeling.

• Temporal Relevance Analysis. We conduct comprehensive experiments to understand how tem-
poral information in a video is modeled under different settings.

• Deep Understanding of Temporal Modeling. We study some fundamental questions in action
recognition that leads to interesting findings: a) There is no strong correlation between temporal
relevance and model performance. Instead, temporal relevance is more related to architectures. b)
Action models behave similarly on both temporal and static actions defined by human (Sevilla-
Lara et al., 2019), and there is no strong indication that temporal actions require stronger temporal
dependencies learned by these models. c) As the number of input frames increases, action models
capture more short-range temporal information (local contextual information), but less long-range
dependencies. The better performance due to using more frames seems to be largely attributed to
richer local contextual information, rather than global contextual information.

2 RELATED WORK

Action Recognition Models. Action recognition has achieved significant progress after the release
of large-scale publicly available video datasets including Kinetics (Kay et al., 2017), Something-
Something V2 (Goyal et al., 2017), Sports1M (Karpathy et al., 2014), Moments-In-Time (Monfort
et al., 2019b), etc. Many models proposed different temporal modeling approaches to handle the
temporal dynamics of a video (Carreira & Zisserman, 2017; Fan et al., 2019; Feichtenhofer, 2020;
Feichtenhofer et al., 2018; Hussein et al., 2019; Lin et al., 2019; Luo & Yuille, 2019; Tran et al.,
2015; 2019; Wang et al., 2020; 2016; 2018; Xie et al., 2018; Zhou et al., 2018). Chen et al. and Zhu
et al. provided a comprehensive survey on how those CNN-based models achieve temporal modeling
and compare their model accuracy. Transformer-based models have also become popular after their
introduction to the computer vision community (Dosovitskiy et al., 2021). In addition, multiple
recent attention-based temporal modeling works have been proposed to enhance the transformer-
based models, e.g., MViT (Fan et al., 2021a), TimeSformer (Bertasius et al., 2021), Video Swin (Liu
et al., 2021), etc (Li et al., 2021; Neimark et al., 2021). The aforementioned works justify their
capability of temporal modeling or the range of temporal modeling y validating the performance on
benchmark datasets. In this work, we focus on quantifying the temporal relevance between each
frame pair learned by a model to help understand the effects of different CNN-based approaches of
temporal modeling for the task of action recognition.

Model Analysis. There are a few works that have assessed the temporal importance in a video,
e.g., Huang et al. proposed the method approaches to identify the crucial motion information in
a video based on the C3D model and then used it to reduce sparse frames of the video without
too much motion information; on the other hand, Sigurdsson et al. analyzed the action category
by measuring the complexity at different levels, such as verb, object and motion complexity, and
then composed those attributes to form the action class. Feichtenhofer et al. visualized the features
learned from various models trained by optical flow to explain why the network fails in certain cases.

On the other hand, the receptive field is typically used to determine the range of a network can
theoretically see in both spatial and temporal dimensions. Luo et al. thoroughly studied the spatial
receptive field for image classification, and showed that the effective receptive field is much smaller
than the theoretical one. In contrast, our work proposes an approach to quantify the learned temporal
relevance between each frame pair, and uses this to understand how model architecture affects the
temporal relevance.

Explainability. Another popular research direction is to explain the decision made by a
model through visualization of the class activation map, e.g., CAM (Zhou et al., 2016), Grad-
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Figure 1: (a) A CNN takes a video with N frames and outputs the average (or ensemble) predictions from all
frames as the final prediction. (b) CLRP computes for an input frame the relevance scores of the target class
and other classes by LRP, respectively. The positive differences of the two relevance scores represent how a
frame is related to other frames. Temporal relevance is obtained to indicate the range of temporal dependencies
of the frame on others.

CAM/GradCAM++ (Selvaraju et al., 2017; Chattopadhay et al., 2018), and layer-wise relevance
propagation (LRP) (Binder et al., 2016) approaches. Binder et al. proposed the layer-wise relevance
propagation (LRP) to show the relevance between each pixel and the predicted class; moreover, con-
trastive LRP further considers the effects of non-predicted classes to enhance the relevance to the
targeted class (Gu et al., 2018). Several works extend LRP for spatio temporal explainable meth-
ods (Anders et al., 2019; Hiley et al., 2019a;b; Srinivasan et al., 2017). Hiley et al. surveyed a few
frameworks that are used to explain action recognition models based on LRP or CAM approaches.
Roy et al. (Nourani et al., 2020; Roy et al., 2019) add a probabilistic model on top of the action
model to explain the meaning of each sub-action during the inference following Aakur et al.. Huang
et al. study the effect of motion in action recognition by checking the accuracy drop from frames
without using motion. Price & Damen explore frame-level contribution to the model output with El-
ement Shapley Value. It should be noted that most of prior works try to find salient spatio-temporal
regions for action recognition while our work quantifies how a model learns temporal relevances
and investigate inter-frame relationship based on its architecture, as opposed to why a model makes
a specific prediction.

3 METHODOLOGY

In this section we explain our approach to quantify temporal information captured by action models.
We use the terms temporal relevance or the range of temporal dependencies for this. Our approach
is based on layer-wise relevance propagation (LRP) (Binder et al., 2016) and contrastive layer-wise
relevance propagation (CLRP) (Gu et al., 2018), which we briefly describe below. We develop a
novel extension that enables CLRP to measure the temporal relevance between frames and apply it
to analyze CNN-based action models.

3.1 CONTRASTIVE LAYER-WISE RELEVANCE PROPAGATION

LRP highlights which spatial or temporal input features are relevant to the predictions. LRP back-
propagates signals from the prediction layer with pre-defined propagation rules. Relevance scores
at layer j (Rj) are propagated to the previous layer i (Ri) in a neural network (employing a ReLU
activation) following (Montavon et al., 2019):

Ri =
∑
j

aiwij∑
0,i aiwij

Rj , (1)

where ai is the post-ReLU activation and wij is the weights connecting layer i to layer j. LRP
back-propagates the logit lk of the target class k to the input X to get a relevance score R =
hLRP (X,W , lk). We use positive weights (i.e., z+ rule (Gu et al., 2018)) for convolutional and
linear layers to remove noise in the gradients. Similarly, we apply the zβ rule (Gu et al., 2018) to
the input layer. We sum up all the pixel relevances in a frame to compute the frame-level relevance.
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As discussed in (Gu et al., 2018), pixels with a high relevance value does not necessarily contribute
to the target class only but to all the action classes. To mitigate the signals relevant to non-target
classes, we extend contrastive layer-wise relevance propagation (CLRP) (Gu et al., 2018) for tem-
poral analysis. Assume that we have weights W =

{
W 1,W 2, · · · ,WL−1,WL

k

}
, where WL

k

connects the (L − 1)-th layer and the neuron for the class k. To offset signals for non-k classes,
we construct W =

{
W 1,W 2, · · · ,WL−1,−1 ∗WL

k

}
by negating the sign of WL

k , and compute
R = hLRP (X,W , lk). Finally, CLRP is then defined as follows:

hCLRP = max
(
0,

(
R−R

))
, (2)

3.2 ACTION TEMPORAL RELEVANCE (ATR)

It is generally believed that long-range temporal information is beneficial for action modeling. Ac-
cordingly, the temporal receptive field of a model is expected to cover all the relevant frames. For 3D
convolutions, the activation of each neuron for a specific frame depends on the activations of neu-
rons from other frames. We define the range of this temporal dependency on other frames as action
temporal relevance (ATR). ATR is closely related to the effective receptive field (ERF) discussed
in (Luo et al., 2016), but in the temporal domain. The spatial receptive field is largely dependent
on the network depth and the temporal kernel size, but as pointed out in (Luo et al., 2016), the
actual/effective receptive fields of a unit in 2D-CNNs, covers only a fraction of the theoretical re-
ceptive fields. In this work, we analyze the effective temporal receptive field for a video in temporal
modules. Our approach also discovers the strength of temporal dependencies between frames. In ad-
dition, it should be noted that previous explainable methods on action modeling (e.g., (Bargal et al.,
2018; Ramanishka et al., 2017)) focus on finding spatially or temporally salient features while we
aim to find the effective temporal range of a specific frame that is important for action classification.

Temporal Relevance Computation. For a CNN-based action model, it takes N sampled frames
from a video as input and ensembles (or averages) the predictions of the N frames as the final
output (Fig. 1 (a)). We aim to obtain a temporal relevance matrix AN×N = {aij |i, j = 1 · · ·N}
computed from CLRP where aij represents the relevance of the j-th frame to the i-th frame. Note
that the temporal relevance score indicates how strong the temporal dependence is between two
frames. Higher aii (self-dependence) indicates shorter temporal dependence, where a model does
not require other frames for its prediction,

Given an action model, for each input frame fi, we compute the relevance score aij =
hCLRP (fj ,W , lik) between the frame i and j, where W is a set of model weights and lik is the
logit of the frame fi for the class k. Note that the summation of ith row of AN×N is the logit of
the given frame fi for the action class k, i.e., lik =

∑
j aij , because LRP is conservative. We com-

pute the ATR ri of a frame fi as the length of the shortest continuous segment {fl, · · · , fi, · · · , fr}
with the sum of relevance scores that exceeds a certain amount of the total relevance score of the
video, i.e., ri = r − l + 1 and (

∑j=r
j=l aij)/(

∑j=N
j=1 aij) ≥ σ. We empirically set σ to a high value,

i.e., 97.5% to cover relevant frames as many as possible.

We further define two metrics at video level: (1) avg-ATR, the average of the ATRs of all the
frames weighted by their logits (only positive logits l+i considered), i.e., avg-ATR=

∑i=N
i=1 wi ∗ ri

where wi =
l+i∑j=N

j=1 l+i
and (2) max-ATR, the maximum ATR among all the frames, i.e., max-

ATR= max{ri}. Note the logit-based normalization is necessary as it removes the effects of
negative and small logits and makes ATR comparable across videos (see Fig. 2). To summarize,
the relevance matrix provides frame-level ATR (i.e., effective temporal receptive field) while avg-
ATR and max-ATR are video-level temporal relevance, which will be mostly used for our analysis.
Moreover, we also use the avg-ATR/max-ATR for the dataset-level and class-level temporal rel-
evance, which averages the video-level ATR accordingly. Higher ATR indicates higher temporal
modeling capability of a model.

4 EXPERIMENTAL SETUP AND ANALYSIS

4.1 DATASETS AND MODELS

Datasets. We mainly use Kinetics-400 (Kinetics) (Kay et al., 2017), Something-Something V2
(SSV2) (Goyal et al., 2017) and MiT (Monfort et al., 2019a) in this analysis. Kinetics, arguably
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the most popular benchmark dataset for action recognition, contains 400 activity classes; on the
other hand, SSV2 contains 174 classes for human-object interactions, and the videos are captured
without strong background information. MiT contains 339 action classes including activity classes
and human-object interactions. Most of our analysis in this work is based on models trained with
the full Kinetics and SSV2 datasets. Due to the high computational costs for model training, we also
use mini-version of these datasets based on (Chen et al., 2021) for some experiments of this work,
but only when necessary. In addition, we always compare models trained from full datasets or mini
datasets for fairness.
CNN-based Models. In this work, we choose TAM2D (Fan et al., 2019) and I3D (Carreira & Zis-
serman, 2017) as a representative approach for 2D-CNNs and 3D-CNNs, respectively. While I3D is
computationally inefficient, it still serves as the basis for many recent action recognition approaches
such as SlowFast (Feichtenhofer et al., 2018) and TPN (Yang et al., 2020), and surprisingly performs
on par with them, as shown in (Chen et al., 2021). Similar to (Chen et al., 2021), we remove all the
temporal pooling layers in I3D as they hurt model performance. TAM2D is one of the efficient 2D-
CNN models where temporal modeling is separated from spatial modeling. It is a generalized form
of the popular TSM (Lin et al., 2019) and demonstrates strong performance on SSV2. Interestingly,
the temporal aggregation module in TAM is indeed equivalent to 3D-depthwise convolution (Chen
et al., 2021), which has been adopted by SOTA approaches such as X3D (Feichtenhofer, 2020) and
CSN (Tran et al., 2019). We thus believe that studying these two representative video architectures
can provide deep and helpful insight into how temporal dependencies are captured by action models.
Additionally, we put an analysis of SlowFast in Appendix.
Training and Evaluation. We follow the training and evaluation protocols in (Chen et al., 2021)
for both full datasets and mini-datasets. We adopt the uniform sampling to sample the frames from a
video to model input. The uniform sampling first divides the whole video seqeunces into F segments
and then take one frame per segment to get a F -frame input. In evaluation, we use the single-clip
setting for performance evaluation. More details can be found in Appendix.

4.2 TEMPORAL RELEVANCE ANALYSIS

All the models in our study based on uniform sampling. Compared to dense sampling that sees only
a small portion of a video, uniform sampling covers significantly more of the video, so it is more
suitable for studying long-range dependencies in temporal modeling. In Appendix, we provide a
comparison of the two sampling strategies.

Our analysis contains a set of models trained with a different number of input frames (i.e., 8, 16, and
32) and backbones (i.e., ResNet18, ResNet50, ResNet101 and Inception-V1). A model is denoted by
X-Y-f[Z] where X , Y , and Z are the temporal module (i.e., I3D or TAM2D), backbone network and
input frame number, respectively. For example, I3D-R50-f8 indicates an I3D model using ResNet50
as a backbone and 8 frames as an input.

We compute the avg-ATR for video clips with correct predictions score > 0.5 and average the video-
level avg-ATRs to obtain dataset-level ATRs. We first investigate how temporal modeling is affected
by different datasets as well as various architecture-related factors including temporal module, back-
bone, temporal kernel size, and network depth, and the number of input frames. Based on this, we
then focus on addressing several important questions of temporal modeling, which largely remain
unclear in the field of video understanding.

Table 1: avg-ATR, max-ATR and model accuracy on different
datasets. The red number indicates the different from Kinetics.

Model Acc. (%) avg-ATR max-ATR

Kinetics SSV2 Kinetics SSV2 Kinetics SSV2

I3D-R50-f8 69.6 58.9 5.5±0.4 6.5±0.4 (+1.0) 7.0±0.2 7.7±0.5 (+0.7)
TAM2D-R50-f8 70.5 60.2 4.2±0.4 6.0±0.4 (+1.8) 5.2±0.5 7.0±0.3 (+1.8)

I3D-R50-f16 72.5 62.2 6.6±0.5 8.2±0.5 (+1.6) 8.4±0.7 9.3±0.6 (+0.9)
TAM2D-R50-f16 73.1 63.0 4.9±0.4 7.3±0.6 (+2.4) 6.1±0.8 8.3±0.7 (+2.2)

Dataset. It is generally known that
actions in SSV2 indicate strong tem-
poral dependencies while Kinetics
actions are scene-dependent and less
temporal. Our results in Table 1 con-
firm this nicely, consistently showing
a larger average (and maximum) tem-
poral relevance on SSV2 than on Ki-
netics by I3D-R50. Fig. 2 (a) and (f) further illustrate the temporal relevance heatmaps of the two
datasets, which suggest that a frame is temporally related to only a few neighboring frames (i.e., lo-
cal dependencies). Nevertheless, the two datasets present striking differences in temporal modeling.
Firstly, on Kinetics, all input frames make positive contributions to recognition, with more from the
beginning and end frames of a video. Conversely, on SSV2, the frames in the middle play a more
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(a) Kinetics (b) Smoking hookah (c) Presenting
weather

(d) Jumping into
pool

(e) Singing

(f) SSV2 (g) Spilling sth next
to sth

(h) Approach sth w/
cam

(i) Putting sth onto
sth

(j) Sth colliding w/
sth

Figure 2: Heatmaps of dataset-level and class-level avg-ATR for I3D-R50-f16. A heatmap shows how each
frame is relevant to other frames, with lighter colors denoting higher relevance. Column 1 demonstrates that
models learn a larger avg-ATR on SSV2 (f) than on Kinetics (a). The first and second rows depict avg-ATR of
individual classes from Kinetics (b)-(e) and SSV2 (g)-(j).

substantial role for recognition. Secondly, SSV2 shows significantly more relevances on the diago-
nal, hinting that larger frame differences exist in the data than in Kinetics. Fig. 2 (b)-(e) and (g)-(j)
show the heatmaps for a few different actions, which present noticeable variations between individ-
ual classes. Similar results are observed with TAM2D. On mini-MiT, we observe that its ATR is
slightly higher than that of Kinetics but lower than that of SSV2. Due to space limitations, the results
of mini-MiT can be found in Appendix.

8 16 32 8 16 32
Number of Frames

0.0

0.5

1.0

1.5

av
g-

AT
R 

Di
ff SSV2

Kinetics

Figure 3: avg-ATR difference between I3D-R50 and
TAM2D-R50, (avg-ATR(I3D) - avg-ATR(TAM2D)) at
different number of frames. I3D presents larger tempo-
ral relevances.

Temporal Module and Backbone. The key
difference between 2D-CNNs and 3D-CNNs
resides in the fact that 3D-CNNs jointly learn
spatial and temporal information. The temporal
modules of action models are closely related to
the backbones adopted by these models, and so
we investigate the effects of both jointly. Fig. 3
shows how the temporal relevance differs be-
tween I3D and TAM2D using the same input
frames and ResNet50 backbone. This clearly
indicates that I3D yields a larger relevance than TAM2D, and the gap is more significant on Kinetics.
Since the temporal module of TAM2D is essentially a depth-wise 1D temporal convolution, it ex-
changes temporal information along the same spatial location at the same channel only. Differently,
I3D uses a 3D convolution that allows for interactions in a larger scope. It is thus understandable
that TAM2D is not as effective as I3D in capturing temporal dependencies.

12

12
16

16 16 8
16

16
16

8

12
70.9%

70.5%

75.6%
76.4%

71.3%

61.8%

61.1%

68.6% 66.2%
62.1%

Figure 4: Effects of backbones on temporal relevance (16-
frame models). The number on top of each bar indicates the
number of temporal convolutions in a model while the num-
ber on the side is the model accuracy. This shows that avg-
ATR does not correlate the strength of backbones.

On the other hand, stronger backbone net-
works in general lead to better spatio-
temporal representations and action recog-
nition performance (Chen et al., 2021).
What is still unclear is whether a better
backbone enables more temporal interac-
tions for an action model.

In Fig. 4, we compare the avg-ATR cap-
tured by models trained on mini datasets
using different backbones including
Inception-V1, ResNet18 and ResNet50.
The results are sorted by avg-ATR from
high to low. As seen from the figure,
while the backbone networks present a
similar order on two datasets, the order is somewhat random, and indicates no strong correlations
with the strength of the backbones. By closely examining the temporal modeling in I3D and
TAM2D, we find that their differences could result in a different number of temporal convolutions
even with the same backbone, as shown by the numbers above the bars in Fig. 4. For example,
I3D-R18 has 8 residual blocks, each of which has 2 3×3×3 convolutions, yielding a total of 16
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temporal convolutions. On the other hand, TAM2D-R18 has one temporal module following each
residual block, giving a total of 8 temporal convolutions only. The number of temporal convolutions
seems to better explain the differences of temporal relevance between these models. Interestingly,
I3D-Inception indicates the most effective temporal modeling capability with the largest temporal
relevance. This is largely because of the 7×7×7 kernel used at the beginning of the model, which
greatly enhances I3D-Inception’s ability to learn temporal information. As shown next, kernel size
influences temporal modeling significantly.

50 101 152
ResNet Depth

6.0

6.5

7.0

7.5

8.0

8.5

9.0

av
g-

AT
R

I3D-f16
TAM2D-f16
I3D-f32
TAM2D-f32

Figure 5: Effects of network depth
on SSV2. There is a very marginal in-
crease of avg-ATR by network depth.

To summarize, there is no strong correlation between ATR
and model performance. We also observe that the SlowFast
shows a similar trend, but with a smaller avg-ATR than I3D
and TAM2D due to architectural differences in Sec. B.

Network Depth. Fig. 5 shows that the avg-ATR is increased
by network depth, but rather insignificant (< 0.5) consider-
ing the notable growth in network depth (more precisely, the
number of temporal modules). We hypothesize that this has to
do with the model ensemble effect discussed later in Sec. 4.3,
which makes it less desired for a model to learn long-range
temporal information.

Table 2: Effects of temporal kernel
size on mini-SSV2.

Kernel size TAM2D-R50-f8
Acc. (%) avg-ATR max-ATR

3 65.4 6.3 7.4
5 64.1 7.8 8.0
7 63.6 8.0 8.0

Temporal Kernel Size. The convolutional kernel size of a
temporal module directly controls how many frames are in-
volved in temporal modeling. Intuitively, it should have a sig-
nificant direct impact on temporal relevance, which we have
already seen in I3D-Inception. To further validate this, we ex-
periment with temporal kernels of 3, 5, and 7 in TAM2D on
mini-SSV2 in Table 2. As expected, a larger kernel size produces larger temporal relevance, and
the increase in the case of 16 input frames is quite pronounced, compared to the impact of net-
work depth on temporal relevance. Nevertheless, this table shows again that there is no correlation
between temporal relevance and model accuracy.

32-frames

Video clip length

avg-ATR: 
8.9

16-framesavg-ATR:8.0

8-framesavg-ATR: 7.0

Figure 6: An illustration of the effect of input
frames on temporal relevance of I3D-R50 trained
on Kinetics. More input frames lead to larger
temporal relevances (avg-ATR), i.e., the absolute
length of the highlighted frames. However, a
model captures shorter-range temporal dependen-
cies, i.e., the relative length of the highlighted
windows to the entire video clip length.

Input Frames. CNN-based action models usually
require a large number of input frames to achieve
competitive performance (Carreira & Zisserman,
2017; Fan et al., 2019; Feichtenhofer et al., 2018;
Chen et al., 2021). It would be an intuitive and rea-
sonable thought that a strong model would be able
to capture long-range temporal dependencies better
in such a case. As demonstrated in Fig. 6, when in-
creasing the number of input frames, the avg-ATR
is indeed increased accordingly, but at quite a slow
pace. Quadrupling the input from 8 frames to 32
frames only results in an increase of temporal rel-
evance by ∼2 frames. Nevertheless, when looking
at the temporal relevance over the video clip length,
a model using more input frames learns shorter-
range temporal information (also see Fig. 2), which
is counter-intuitive. In what follows, we first vali-
date our observations here, and then conduct further
analysis of this in Sec. 4.3, wherein we relate this surprising finding to model ensembling. It should
be noted that the long-range context we investigate here is within a single action and its temporal
dependencies captured by models, not the long-term temporal information studied in (Wu et al.,
2019) that is across actions in a video. We provide additional extensive and comprehensive analyses
and results in the appendix.

Additionally, we evaluate the captured ATR from our approach with a partial uniform sampling
approach in Sec. A of the Appendix. The experiment also indicates that only a portion of entire
input frames captured by ATR suffice for an action prediction (Fig. 12 in the Appendix).
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4.3 WHAT ARE ACTION MODELS LEARNING?

We have provided an in-depth analysis in terms of how temporal information is learned by CNN
models and how architecture-related factors affect temporal modeling. Our approach is related to
the effective receptive field (ERF) proposed in (Luo et al., 2016), in that the frame-level temporal
relevance in our case can be considered as the ERF in the temporal domain. Our approach shows
similar results to ERF with regards to kernel size, but our work focuses more on video understanding.
In this section, we further examine some important questions related to temporal modeling for video
understanding based on our analysis above.
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(a) mini-Kinetics
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(b) mini-SSV2

Figure 7: avg-ATR vs. accuracy among different mod-
els based on mini datasets. The Peasron correlation co-
efficient indicates that there is no correlation between
accuracy and avg-ATR.

1) Do better-performing action models
capture temporal dependencies better?
CNN-based approaches have made significant
progress in action recognition and many of
them claim to have achieved better spatiotem-
poral representations for video understanding.
However, the question remaining unanswered
is whether these approaches have actually
enabled better temporal modeling. Based on
the analysis above, our answer is probably No.
For example, 1) TAM2D has lower avg-ATR
than I3D in general, but its performance is
on par with or better than I3D (Fig. 3); 2)
I3D-Inception produces significantly larger
temporal relevance than I3D-R50, but its performance is not as good as I3D-R50 (Fig. 5); and 3)
larger kernels lead to larger relevance, but not necessarily accuracy increase (Table 2). We further
plot model accuracy vs. avg-ATR for 15 models on mini-Kinetics and mini-SSV2 in Fig. 7. The
Pearson correlation coefficients are close to zero on both datasets, clearly indicating no correlation
between accuracy and avg-ATR.
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Figure 8: (a) The distribution of avg-ATR and (b) the
histogram of max-ATR on I3D-R50-f16 over classes for
SSV2. Both ATRs do not show significant differences
between classes.

2) Do action models learn temporal informa-
tion differently by temporal dynamics of ac-
tions? The temporal dynamic of an action sug-
gests how much temporal information is needed
to correctly recognize an action by a human.
Temporal and static datasets annotated by hu-
mans from Kinetics and SSV2 were constructed
for temporal dynamic analysis (Sevilla-Lara
et al., 2019). The temporal dataset consists
of classes where temporal information matters
while the static dataset includes classes where
temporal information is redundant.

It is then an interesting question to understand whether an action model requires (or relies on) more
temporal information to classify temporal actions. In Fig. 8, we show the per-class ATR for SSV2
classes (avg-ATR) in sorted order along with its standard deviation. For the majority of classes, their
avg-ATRs are between 7.7 and 8.2, indicating no significant difference. Similarly, the difference of
max-ATR is not greater than 1.0. This seems to suggest that an action model learns close amount
of temporal information for most classes regardless of the temporal dynamics of actions. We inves-
tigate this question further by analyzing the temporal dynamics of action classes based on temporal
relevance, i.e., machine perception rather than human perception.

Table 3: The class overlap of the temporal (T) and static (S) ac-
tions identified by human and machine.

Model
avg-ATR max-ATR

SSV2 Kinetics SSV2 Kinetics

T S T S T S T S

I3D-R50-f16 22.2% 11.1% 15.6% 3.1% 11.1% 5.6% 12.5% 3.1%
TAM2D-R50-f16 38.9% 16.7% 18.8% 6.2% 27.8% 11.1% 21.9% 6.2%

# classes 18 18 32 32 18 18 32 32

Specifically, we sort all the actions in
a dataset from high to low by tempo-
ral relevance, and then pick the top-k
and bottom-k classes as the most tem-
poral classes and static classes, re-
spectively.

Table 3 shows the overlap per-
centages of the temporal and static
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datasets based on human and machine, respectively. Surprisingly, human and machine do not agree
much with each other, especially on Kinetics and static classes.
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Figure 9: Sorted avg-ATR of human-defined temporal and static
actions (Sevilla-Lara et al., 2019) based on I3D-R50-f16. The scat-
tered human-defined temporal (or static) actions suggest that the
temporality of an action is not a good indicator of the temporal in-
formation captured by a model.

We further plot the temporal rele-
vance of the human-based tempo-
ral and static classes in descending
sorted order in Fig. 9. It can be seen
that both temporal and static classes
are scattered, indicating the tempo-
rality of an action determined by a
human is not a strong indicator of the
temporal information needed by an
action model for the action. In ad-
dition, there are many static classes
(blue) with large temporal relevance.

Overall the large discrepancies from
both datasets imply that the temporal
information perceived by a human as useful for the recognition might not be the same as what an
action model attempts to learn. There is no strong indication that temporal actions require stronger
temporal dependencies learned by a model (or static actions use less temporal information).

3) What temporal dependencies are learned by action models? Long-range temporal information
in video data has long been considered crucial for action recognition. While many approaches (Wang
et al., 2018) have attempted to capture such global dependencies across frames, but there is no easy
way to understand whether the improved performance of these approaches is actually attributed to
better temporal modeling. Our method analyzes the temporal dependencies.
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Figure 10: Effects of frame ensemble on SSV2. Mod-
els (TAM2D-R50-16f) are trained using different num-
ber of frames for ensembling during prediction. The
top-1 accuracy of corresponding models are annotated.
The avg-ATR increases as fewer input frames are used
for prediction, suggesting that a model in such a case
capture more temporal information for recognition.

Our analysis above points to a surprising find-
ing that CNN-based approaches focus more
on learning local temporal information rather
than capturing long-range dependencies, indi-
cated by a) the effect of input frames (Fig. 3);
b) deeper models not resulting in (notably)
larger temporal relevances (Fig. 5); and c) the
evaluation based on partial uniform sampling
(Fig. 12). We conjecture that this model behav-
ior has to do with the frame ensembling previ-
ously shown in Fig. 1, which might be sufficient
to provide long-range spatio-temporal features
needed by an action model. We design a sim-
ple experiment to validate this. Specifically, we
retrained a few 16-frame models by only taking
1 frame or an average of evenly spaced 2, 4, and 8 frames as the model output. We expect as the
number of frames used for ensembling is reduced, the model will resort to capturing more temporal
interactions between frames to avoid dramatic performance degradation in such a case. As seen in
Fig. 10, the temporal relevance increases as expected when fewer frames are involved in the en-
semble. This experiment indicates that the better performance of a model using more input frames
seems to be largely attributed to the ensemble of richer local contextual information learned by the
model, rather than modeling global contextual information.

5 CONCLUSION

We have proposed an approach to quantify temporal modeling for action recognition. To the best of
our knowledge, this is the first work that investigates the effective temporal receptive field, i.e., action
temporal relevance (ATR), in action models. Based on this, we conduct an in-depth analysis of
how temporal information is captured for action recognition, which provides better understanding
of action modeling. Contrary to the common belief that long-range temporal information can be
captured by state-of-the-art action models, we observe that action models rely on short-range (local)
temporal information, and capture less long-range (global) temporal information. We also find that
a larger ATR does not necessarily lead to better accuracy.
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Code of Ethics and Ethics statement. Our work is to analyze and investigate the temporal rele-
vances of widely used temporal action models. We believe that there are no ethical concerns related
to this work.

Reproducibility. We provide additional training details and LRP rules in Sec. F and G of the
Appendix. Our implementation is based on the captum library (cap). We will make our code publicly
available upon acceptance.
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Figure 11: An illustration of partial uniform sampling. For a given frame f (e.g., f7) in a window W (e.g., f4−
f11) from a set of uniformly sampled input frames, partial uniform sampling replaces the frames before W by
the start frame of W (i.e., f4) and the frames after W by the end frame of W (i.e., f11). The modified input is
fed into an action model to obtain the prediction for f .

Appendix

In Appendix, we provide more details and additional results which are not included in the main
paper due to the space limit. We first explore partial uniform sampling for model evaluation in
Sec. A. In Sec. B, we investigate a different backbone (i.e., SlowFast) and dataset (i.e., mini-MiT)
with our proposed approach (Sec. B). We also compare CLRP with LRP. In Sec. C, we provide
a comparison between dense and uniform sampling. We present more heatmap visualization in
Sec. D and additional analysis on TAM2D in Sec. E. Finally, we give more details of model training
protocols in Sec. F and show how to set up propagation rules in LRP in Sec. G.

A MODEL EVALUATION BY PARTIAL UNIFORM SAMPLING

Our analysis above suggests that action models does not capture long-range dependencies as ex-
pected when the number of input frames are sufficiently large (≥16). Fig. 2 strongly indicates that a
frame is only temporally related to a few neighboring frames. This implies that these a few frames,
rather than the entire input sequence, might suffice for the prediction from a frame in a model. In
light of this, we propose a sliding-window method to validate the temporal relevance results pre-
sented above and help us understand temporal modeling better.

Recall that an action model usually generates a prediction for each frame separately and then en-
sembles the predictions of all the frames by averaging to obtain the final prediction (Fig. 1 (a)). We
thus develop a partial uniform sampling strategy, which limits the prediction of a particular frame
to only a portion of the entire input frames. The idea is illustrated in Fig. 11.

Specifically, for a target frame fi residing in a window W of the input frames ranging between [l, r]
(l ≤ i ≤ r), we modify the input by replacing the frames before l by fl and the frames after r by
fr. This modified input is then fed into the model to obtain the prediction from fi. Doing so only
allows the prediction for fi to receive information from a partial portion of the input, i.e., frames in
the window W . We repeat this for each frame by sliding a window over the entire input and taking
the average of all the predictions to be the final model output. Note that our method only keeps the
prediction of one frame at a time and the sliding window size can vary by frame. The frame-level
ATR in Fig. 12 shows the accuracy of this process. We average frame-level ATRs of all videos to
represent the window size. This distinguishes it from the widely used multi-clip evaluation that takes
an average of the predictions from all input frames in a clip.

We first experiment with a fixed sliding window size in partial uniform sampling to evaluate I3D
and TAM2D models with 16 and 32 frames on both datasets. As shown in Fig. 12, the performance
of all the models in the evaluation gets saturated quickly with around 8 frames on Kinetics, and 10
frames on SSV2, suggesting that frame-level prediction indeed does not use all the input. We further
experiment with a dynamically changing window size based on ATR (i.e., each frame based on a
different window size defined by ATR), and the results (green and blue dots) match well with those
based on a fixed window size. This confirms that measuring temporal relevance by our proposed
approach is reasonable. We also tried empty images in partial uniform sampling, but the results are
worse than using a frame image.
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Figure 12: Model accuracy by window size using partial uniform sampling. The results show that frame-level
ATR (blue and green dots) correctly indicates that only partial temporal information is needed for the prediction
of a frame.

Table 4: avg-ATR, max-ATR and model accuracy on different datasets.

Model Single-clip Acc. (%) avg-ATR max-ATR

Kinetics SSV2 Kinetics SSV2 Kinetics SSV2

I3D-R50-f8 69.6 58.9 5.5±0.4 6.5±0.4 7.0±0.2 7.7±0.5
TAM2D-R50-f8 70.5 60.2 4.2±0.4 6.0±0.4 5.2±0.5 7.0±0.3

SlowFast-R50-8x8 68.9 - 3.7±0.7 5.4±0.8 -

I3D-R50-f16 72.5 62.2 6.6±0.5 8.2±0.5 8.4±0.7 9.3±0.6
TAM2D-R50-f16 73.1 63.0 4.9±0.4 7.3±0.6 6.1±0.8 8.3±0.7

SlowFast-R50-16x8 - 59.2 - 4.6±0.6 - 5.9±0.9

B ADDITIONAL RESULTS

SlowFast Results. The SlowFast video architecture (Feichtenhofer et al., 2018) is a dual-branch
network with a slow branch processing frames at a low frame rate and a fast branch operating at a
high frame rate. It is one of the best-performing models on Kinetics (Chen et al., 2021). To apply
CLPR to SlowFast, we first merge the prediction of the slow branch into the fast one. Specifically, we
expand the logits of the slow branch to the same size as the fast branch while keeping the logits at the
slow frames unchanged and setting all others to 0. We then add the expanded logits to the logits of
the fast branch, and perform CLRP on top of them for each frame, which produces a n×n relevance
matrix M where n is the number of input frames to the fast branch. Additionally, it’s observed that
the slow logits are dominant compared to the fast logits, suggesting that the fast branch only plays
a minor role in recognition. As a result, the relevance matrix M is extremely uneven and sparse.
To make our analysis meaningful, we sum up the relevance of every r × r block in M (Sec. 3.2)
to obtain an m ×m matrix, where m = n/r is the number of input frames to the slow branch. By
doing so, we mainly focus on the slow branch in our analysis, but without neglecting the small but
complementary contribution from the fast branch.

With the changes above in our method, we compute the ATRs for two SlowFast models based on uni-
form sampling, one model trained by ourselves on Kinetics using 8 slow frames and 32 fast frames
(SlowFast-R50-8x8), and the other one trained by the authors of the original paper on SSV2 using
16 slow frames and 64 fast frames (Facebook). Table 4 lists the results of these two models and
their I3D counterparts, and Fig 13 further illustrates their relevance heatmaps. Interestingly, while
SlowFast is fed with much more input frames, its ATRs on both Kinetics and SSV2 are substantially
smaller than those of I3D, suggesting that the fast branch do not strengthen model’s temporal mod-
eling ability as expected (Feichtenhofer et al., 2018). Closely examining the network architecture of
SlowFast reveals that its special design aiming at computational efficiency may weaken its temporal
modeling ability. Both branches of SlowFast eliminate the 7x7x7 covolution in I3D, and the slow
branch introduces temporal convolutions only after the third layer, As illustrated in (Feichtenhofer
et al., 2018). Due to that, the slow branch primarily focuses on spatial modeling, not temporal mod-
eling. In addition, the lightweight fast branch seems too narrow to effectively capture the temporal
dependencies in the input frames. Our analysis provides an explanation of why SlowFast underper-
forms on temporal datasets such as SSV2 (Table 4).
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(a) Kinetics: I3D-R50-f8 (b) Kinetics: SlowFast-R50-8x8 (c) SSV2: I3D-R50-f16 (d) SSV2: SlowFast-R50-16x8

Figure 13: Heatmaps of dataset-level avg-ATR for I3D-R50 and SlowFast-R50. Kinetics: (a) and (b); SSV2:
(c) and (d).
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Figure 14: avg-ATR of different backbones
trained with 16 frames on mini-MiT. We observe
the similar trend in mini-MiT. I3D-R50 obtains
lower avg-ATR compared to I3D-R18. At the same
time, TAM2D-R50 obtains higher avg-ATR com-
pared to TAM2D-R18.

Results on mini-MiT. We provide additional results on mini-MiT (Monfort et al., 2019b). In Fig. 14,
we show avg-ATRs of different models using 16 frames. We observe a similar trend in mini-MiT
to the Fig.4 in the main paper. I3D-R50 obtains lower avg-ATR than I3D-R18 while TAM2D-R50
produces higher avg-ATR than TAM2D-R18. Table 5 lists the avg-ATR and max-ATR of different
models on mini-MiT, showing higher ATRs than those of Kinetics but lower than those of SSV2.
This is probably because mini-MiT contains both human actions and human-object interactions,
indicating intermediate temporality between Kinetics and SSV2.

LRP Results. Table 6 compares CLRP with LRP in terms of avg-ATR and max-ATR. In general,
LRP obtains smaller avg-ATR and max-ATR than CLRP, indicating that by removing the signals
related to non-target classes, the effective temporal range of input frames becomes longer in order
to reproduce the original prediction.

C DENSE SAMPLING VS. UNIFORM SAMPLING

In comparison with uniform sampling where evenly-spaced frames across an video are extracted as
the model input, dense sampling takes a consecutive set of frames of a given length from a video
as the input. It is another sampling strategy widely used for action recognition, especially on the
Kinetics benchmark. The densely sampled input frames are highly redundant and only cover a small
portion of the video, thus in practice, dense sampling relies on the ensemble of the prediction results
from multiple clips (10∼30) to achieve good results (multi-clip evaluation). In general, studying
dense sampling for temporal analysis is less interesting. Here we provide a comparison of these two
sampling strategies based on the Kinetics dataset.

Table 7 lists the avg-ATR and max-ATR of several I3D and TAM2D models based on uniform and
dense sampling, respectively. We use the center clip of a video in dense sampling to compute ATRs.
Note that the model accuracies shown here are generated by the single-clip evaluation not the multi-
clip evaluation generally used for dense sampling. As seen from the table, dense sampling tends
to produce smaller averaged temporal relevance (avg-ATR) than uniform sampling, but larger max
temporal relevance (max-ATR). We further show the temporal relevance heatmaps of the models
using 16 frames in Fig. 15. With uniform sampling, both I3D and TAM3D models demonstrate sig-
nificant more contributions from the frames at the beginning and end of a video. This is reasonable
as in a sequence of consecutive frames, the start and end frames are more likely to present a larger
difference. In contrast, the models trained with uniform sampling indicate more contributions from
the middle frames (Fig. 15-(a) and (b)).
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Table 5: avg-ATR and max-ATR on mini-MiT.

Model avg-ATR max-ATR
MiT MiT

I3D-R50-f8 5.7±0.5 7.1±0.6
TAM2D-R50-f8 5.5±0.5 7.0±0.4

I3D-R50-f16 6.4±0.7 8.3±0.8
TAM2D-R50-f16 6.2±0.6 7.0±0.8

Table 6: Comparison of action temporal relevance (ATR) between CLRP and LRP.

Model CLRP avg-ATR LRP avg-ATR CLRP max-ATR LRP max-ATR

Kinetics SSV2 Kinetics SSV2 Kinetics SSV2 Kinetics SSV2

I3D-R50-f16 6.6 8.2 6.3 (-0.3) 7.8 (-0.4) 8.4 9.3 7.3 (-1.3) 8.9 (-1.0)
TAM2D-R50-f16 4.9 7.3 4.6 (-0.3) 6.6 (-0.7) 6.1 8.3 5.1 (-1.0) 7.0 (-1.3)

D ADDITIONAL VISUALIZATION OF HEATMAP

Fig. 16 demonstrates the heatmaps of more videos from SSV2 and Kinetics. We also visualize the
frames and their prediction logit scores shown by red color under each frame (the brighter the color,
the higher the logit). Intuitively, predicting an action class in SSV2 (Fig. 16-(a))) requires more
frames as the action cannot be identified by a very few frames. Conversely, in Kinetics, most actions
can be easily identified even with a few frames, as indicated by Fig. 16-(b). Especially, the examples
of “doling lunadry” and “dancing ballet” do not present significant changes or movements in objects.

E ADDITIONAL RESULTS FOR TAM2D

Model evaluation by partial uniform sampling on TAM2D. Fig. 17 shows the model evaluation
with partial uniform sampling. The finding here is similar to that in the main paper (Sec. A), i.e the
performance of the TAM models gets saturated quickly around 8 frames on Kinetics and 10 frames
on SSV2.

ATR distributions over classes on TAM2D. Similar to Fig. 8 in the main paper, Fig. 18 shows
the per-class ATR for TAM2D-R50-f16. We observe a similar behavior to that in Fig. 8 of the main
paper that the majority of classes do not have significant differences in avg-ATR in (a). In (b), most
of the max-ATRs for classes are ranged from 9.0 to 10.0.

F TRAINING AND EVALUATION

Here we elaborate more how we train and evaluate models for our analysis. We follow the training
and evaluation protocols in (Chen et al., 2021) for both full and mini-dataset. We adopt the uniform
sampling to sample the frames from a video as the model input. The uniform sampling first divides
the whole video sequences into F segments and then take one frame per segment to get a F -frame
input (random frame is used for training whole the center frame for inference). For the full datasets,
the shorter side of a video is randomly resized to the range of [256, 320] but keeps the aspect ratio,
then a random 224×224 spatial region are cropped along the time dimension. We trained the models
with a batch size of 1024 by 128 GPUs for Kinetics and a batch of 128 by 16 GPUs for SSV2. More
details can be found in (Chen et al., 2021). On the other hand, for the mini-dataset, we used the codes
provided by (Chen et al., 2021) to train the models. During the evaluation, we use the single-clip
setting for performance evaluation.

G DETAILS ON PROPAGATION RULES

Our implementation is based on the captum code (cap). We use the z+ rule (Gu et al., 2018) for
convolutional layers and fully connected layers in a CNN model, and the ϵ− rule (Montavon et al.,
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Table 7: avg-ATR, max-ATR and model accuracy on Kinetics. The red number indicates the different from
uniform sampling.

Model Acc. (%) avg-ATR max-ATR

uniform dense uniform dense uniform dense

I3D-R50-f8 69.6 56.3 5.5±0.4 4.9±0.4 (-0.6) 7.0±0.2 7.3±0.5 (+0.3)
TAM2D-R50-f8 70.5 56.3 4.2±0.4 4.3±0.3 (+0.1) 5.2±0.5 6.2±0.8 (+1.0)

I3D-R50-f16 72.5 60.0 6.6±0.5 6.2±0.5 (-0.4) 8.4±0.7 8.7±0.8 (+0.3)
TAM2D-R50-f16 73.1 59.2 4.9±0.4 4.8±0.5 (-0.1) 6.1±0.8 6.5±0.9 (+0.4)

(a) uniform (I3D-R50-f16) (b) uniform (TAM2D-R50-f16) (c) dense (I3D-R50-f16) (d) dense (TAM2D-R50-f16)

Figure 15: Heatmaps of mean avg-ATR for Kinetics models based on uniform and dense sampling. A heatmap
show how each frame is relevant to other frames, with lighter colors denoting higher relevance.

2019) (ϵ = 1e− 9) for max and average pooling layers. For batch normalization (BN), we apply the
identity rule.
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Approaching sth with your camera Unfolding sth Throwing sth Move sth away from sth

(a) SSV2

Dribbling basketball Checking tires Doing laundry Dancing ballet

(b) Kinetics

Figure 16: Temporal relevance Heatmaps of actions in Kinetics and SSV2. The color bar under frame images
represents the logit score of each frame for the predicted class. The brighter the color, the higher the score.

f16 frame-level ATR f32 frame-level ATR

Window (W) Size

(a) Kinetics

Window (W) Size

(b) SSV2
Figure 17: Model accuracy by window size using partial uniform sampling on TAM2D. The results based on
frame-level ATR (blue and green dots) show that only partial temporal information is needed for the prediction
of a frame.
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Figure 18: (a) The distribution of avg-ATR and (b) the histogram of max-ATR over action classes on SSV2
produced by the model TAM2D-R50-f16. Both ATRs do not show significant differences between classes.
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