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Abstract

Stochastic gradient methods are among the most important algorithms in training machine
learning problems. While classical assumptions such as strong convexity allow a simple
analysis they are rarely satisfied in applications. In recent years, global and local gradient
domination properties have shown to be a more realistic replacement of strong convexity.
They were proved to hold in diverse settings such as (simple) policy gradient methods
in reinforcement learning and training of deep neural networks with analytic activation
functions. We prove almost sure convergence rates f(Xn) − f∗ ∈ o

(
n− 1

4β−1 +ϵ
)

of the last
iterate for stochastic gradient descent (with and without momentum) under global and local
β-gradient domination assumptions. The almost sure rates get arbitrarily close to recent
rates in expectation. Finally, we demonstrate how to apply our results to the training task
in both supervised and reinforcement learning.

1 Introduction

First-order methods to minimize an objective function f have played a central role in the success of machine
learning. This is accompanied by a growing interest in convergence statements particularly for stochastic
gradient methods in different settings. To ensure convergence to the global optimum some kind of convexity
assumption on the objective function is required. Especially in machine learning problems the standard
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(strong) convexity assumption is nearly never fulfilled. However, it is well known that achieving convergence
towards global optima is still possible under a weaker assumption, namely under the gradient domination
property, often referred to as Polyak-Łojasiewicz (PL)-inequality (Polyak, 1963). Also in reinforcement
learning, multiple results have shown that the objective function for policy gradient methods, under specific
parametrizations, fulfills a weak type of gradient domination and therefore provably achieves convergence
towards the global optimum (Mei et al., 2020; 2021; Fatkhullin et al., 2023; Klein et al., 2024). Improving the
understanding of rates and optimal step size choices for stochastic first order methods is of significant interest
for the machine learning and reinforcement learning community. Many classical results identify convergence
rates for the expected error E[f(Xn) − f∗]. In the present article, we focus on almost sure convergence rates
for the error f(Xn) − f∗ in stochastic gradient schemes under weak gradient domination. The contribution of
this work is as follows:

(i) Under global gradient domination with parameter β (on the entire function domain), we prove that
the last iterate of stochastic gradient descent (SGD) and stochastic heavy ball (SHB) converge almost
surely and in expectation towards the global optimum with rate arbitrarily close to o(n− 1

4β−1 ). The
almost sure and expectation rates of convergence that we obtain depend on the gradient domination
parameter β and are the same for both algorithms and convergence types. For SGD this rate is
arbitrarily close to the tight upper bound known in expectation (Fatkhullin et al., 2022), while the
almost sure convergence rate is new for the (weak) gradient domination assumption (see Theorem 4.1
and discussion afterwards). To the best of our knowledge for SHB this is the first convergence result
towards global optima under (weak) gradient domination, for both almost sure convergence and
convergence in expectation (see Theorem 4.2).

(ii) We consider the case where the gradient domination property holds only locally, either around
stationary points or around global minima. We provide the first local convergence rates under
these settings: we prove that SGD remains within the good local region with high probability and,
conditioned on this event, we obtain converges rates almost surely and in expectation (see Theorem 5.1
and Theorem 5.2).

(iii) Our local setting covers generic classes of functions. In particular, we demonstrate that it encompasses
the training task of deep neural networks with analytic activation functions in supervised learning.
Our result illustrates that the iterates of SGD are likely to become trapped in areas of local minima
when the step size is small. We verify under mild conditions, that SGD converges to local minima
with given convergence speed (see Corollary 6.1).

(iv) Finally, we derive novel convergence results for policy gradient methods in reinforcement learning. We
show that local gradient domination holds around the global optimum for the softmax parametrization
resulting in the first local convergence rate for stochastic policy gradient with arbitrary batch-size
(see Corollary 7.2).

We summarize the contributions of this paper in Table 1. These findings are also illustrated in a numerical
toy experiment in Appendix B, where we have implemented SGD and SHB for monomials with increasing
degree.

1.1 Literature Review and Classification of our Contribution

The roots of stochastic gradient methods trace back to Robbins and Monro (1951). Since then, various
variants of SGD have been established as fundamental algorithms for optimizing complex models in the realm
of machine learning. We refer to Bottou et al. (2018) and Garrigos and Gower (2024) for a detailed overview.

We start the review with the literature deriving convergence rates in expectation for SGD. Under the
assumptions of smoothness and (strong) convexity Polyak (1987); Moulines and Bach (2011); Nguyen et al.
(2018); Wang et al. (2021); Liu et al. (2023) studied convergence rates towards global optima. Moreover,
many articles additionally analyze the non-convex case and prove convergence rates for the gradient norm
towards zero (Ghadimi and Lan, 2013; Li et al., 2023; Liu et al., 2023; Nguyen et al., 2023).
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Table 1: Summary of known and new results. Table presents convergence rates for tuned step size (ϵ > 0
arbitrarily small). Dom.: gradient domination holds locally or globally; local*: additional assumption on γ1
required and results holds only locally. a.s.: almost surely; E: in expectation. Ref.: for some cited results
minor adjustments are necessary.

β Step size Rate Dom. Algo. Conv. Ref.

1
2 Θ

(
n−1+ϵ

)
o

(
n−1+ϵ

) global

SGD
a.s. Theorem 4.1 (i);

Liu and Yuan (2022, Thm. 1)

E Theorem 4.1 (ii);
Khaled and Richtárik (2023, Thm. 3)

SHB
a.s. Theorem 4.2 (i);

Liu and Yuan (2022, Thm. 2)

E Theorem 4.2 (ii);
Liang et al. (2023, Thm. 4.3)

local* SGD
a.s. Theorem 5.1 (ii);

Theorem 5.2 (ii)

E Theorem 5.1 (iii); Theorem 5.2 (iii);
Mertikopoulos et al. (2020, Thm. 4)

( 1
2 , 1]Θ

(
n− 2β

4β−1

)
o

(
n− 1

4β−1 +ϵ
)

global
SGD

a.s. Theorem 4.1 (i)

E Theorem 4.1 (ii);
Fatkhullin et al. (2022, Cor. 1)

SHB
a.s. Theorem 4.2 (i)

E Theorem 4.2 (ii)

local* SGD
a.s. Theorem 5.1 (ii);

Theorem 5.2 (ii)

E Theorem 5.1 (iii);
Theorem 5.2 (iii)

Notably, several other results regarding convergence of SGD towards global optima have been established
under the gradient domination setting (Karimi et al., 2016). Bassily et al. (2018); Liu et al. (2022) demonstrate
exponential convergence rates in expectation in the overparameterized setting under strong gradient domina-
tion. See also Madden et al. (2024), where high-probability convergence bounds are shown using the (strong)
gradient domination property. Further high-probability bounds on the approximation error are provided in
Scaman et al. (2022) under a generalized gradient domination property, the so-called Separable-Łojasiewicz
assumption, fulfilled by smooth neural networks. In Lei et al. (2020) also strong gradient domination is
assumed, where the smoothness assumption is weakened through α-Hölder continuity, achieving a rate of
O( 1

nα ) in expectation. The Equation (ABC) condition is introduced in Khaled and Richtárik (2023) and
where O( 1

n ) convergence is shown under strong gradient domination. Furthermore, Fatkhullin et al. (2022)
and Fontaine et al. (2021) consider generalizations of gradient domination that include our definition as a
special case. They derive convergence rates in expectation which we encompass with our result and extend
to almost sure convergence (see also the discussion behind Theorem 4.1). Finally, Masiha et al. (2024)
established both upper and lower bounds for projected gradient descent under gradient domination.

All the results mentioned so far consider convergence in expectation or high-probability bounds, although
originally, motivated by Robbins and Siegmund (1971), research commenced with the quest for almost sure
convergence rates for gradient methods. In recent years, Sebbouh et al. (2021) and, building upon it, Liu and
Yuan (2022) derive almost sure convergence rates towards global optima under convexity for SGD and SHB.
In addition, Liu and Yuan (2022) study SHB and Nesterov acceleration under PL. Returning the attention
back to SGD with respect to gradient domination also some almost sure convergence results have been
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established. As an extension to the PL-type gradient domination, in Chouzenoux et al. (2023) the so-called
KL property is assumed, which contains gradient domination as a special case. The authors demonstrate
almost sure convergence to a critical point, though without a rate. To conclude, to the best of our knowledge
the derived almost sure convergence rate under gradient domination in Theorem 4.1 is novel.

Next, we want to provide further insights to the literature regarding SHB. In the realm of momentum
methods, Polyak’s Heavy-Ball Method (HBM) (Polyak, 1964) and Nesterov’s accelerated gradient method
(Nesterov, 1983) stand out as a foundational contribution. The authors of Gadat et al. (2018) provide a
detailed description of the stochastic formulation of HBM and establish almost sure convergence but without
giving a rate. In Yang et al. (2016); Orvieto et al. (2020); Yan et al. (2018); Mai and Johansson (2020); Zhou
et al. (2020) convergence rates in expectation are shown in (strongly) convex and non-convex settings, where
the non-convex analysis covers convergence of the norm of the gradient. Convergence of momentum methods
under the strong gradient domination property and linear convergence due to an overparametrized machine
learning setting is shown in Gess and Kassing (2023). Liang et al. (2023) determine O( 1

n ) convergence rate
for SHB under strong gradient domination. Our main result for SHB presented in Theorem 4.2 describes
almost sure convergence and convergence in expectation under global gradient domination. Both result are
quantified with a given rate of convergence.

In the following, we aim to differentiate our local convergence analysis from existing results in the literature.
There has been a lot of effort to derive local convergence guarantees for stochastic first order methods. In
Dereich and Kassing (2024) almost sure convergence of SGD to a stationary point under the local gradient
domination (for x∗) is demonstrated, provided that the process (Xn) remains local, albeit without a rate. A
local analysis of SGD towards minima without any gradient domination assumption is presented in Fehrman
et al. (2020). Instead, a rank assumption is imposed on the Hessian, and mini-batches, along with resampling,
are leveraged to ensure convergence to the global optimum with high probability. The resulting rate does not
converge to zero and requires an increasing batch size. Finally, under the global Lipschitz assumption on
the objective, it can be verified that SGD almost surely converges to a stationary point as demonstrated
by Mertikopoulos et al. (2020). In the same work the authors derive a local convergence analysis under
local strong convexity. Our analysis in Section 5 builds upon Mertikopoulos et al. (2020) and generalizes
their results to the local gradient domination property. In our analysis we distinguish the cases where the
local gradient domination property holds in a neighbourhood of a local minimum or in the neighbourhood
of the global optimum respectively. Finally, we would like to acknowledge that related results have been
independently obtained in the recent preprint Qiu et al. (2024).

For the application in the training of DNNs, it is worth noting that local convergence of SGD has been
analyzed under stronger variants of gradient domination by Wojtowytsch (2023); An and Lu (2024). Due
to the stronger form of gradient domination, specific sub-classes of DNNs need to be considered to verify
these assumptions whereas our result is only constrained to analytic activation functions. Under the machine
learning noise conditions in Wojtowytsch (2023), convergence toward zero loss with high probability is shown,
provided that the initial loss is sufficiently small. In contrast, An and Lu (2024) demonstrate convergence
towards zero loss under initialization in a local (strong) Łojasiewicz region. Indeed, one can construct DNNs
satisfying the latter condition (Chatterjee, 2022).

For the application in reinforcement learning, recent results showed that choosing the tabular softmax
parametrization in policy gradient (PG) algorithms results in objective functions which fulfill a non-uniform
gradient domination property (Mei et al., 2020; Yuan et al., 2022; Klein et al., 2024). While convergence of
PG for exact gradients is well understood, convergence rates for stochastic PG are rare and mostly require
very large batch sizes (Ding et al., 2022; Klein et al., 2024; Ding et al., 2023). It is noteworthy that a similar
local analysis for stochastic policy gradient under entropy regularization is presented in Ding et al. (2023).
Their local result is also based on Mertikopoulos et al. (2020), but requires an increasing batch size sequence
to obtain O( 1

n )-convergence towards the regularized optimum with high probability. In contrast, we consider
both the unregularized and entropy regularized setting and observe that one can also achieve convergence
arbitrarily close to o( 1

n ) without the need for an increasing batch size. Moreover, the local convergence occurs
almost surely on an event with high probability.
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2 Mathematical Background - Optimization under Gradient Domination

We consider the problem of solving the minimization problem of the form

min
x∈Rd

f(x) , (1)

where f : Rd → R denotes the objective function of interest. Throughout this paper we assume that the
objective function is bounded from below by f∗ = infx∈Rd f(x) > −∞ and satisfies the classical L-smoothness
assumption (either locally or globally):
Assumption 2.1. The objective function f : Rd → R is differentiable and the gradient ∇f is

(i) globally L-Lipschitz continuous, i.e. there exists L > 0 such that ∥∇f(x) − ∇f(y)∥ ≤ L∥x − y∥ for
all x, y ∈ Rd.

(ii) locally L-Lipschitz continuous, i.e. for all R > 0 there exists L(R) > 0 such that ∥∇f(x) − ∇f(y)∥ ≤
L(R)∥x − y∥ for all x, y ∈ Rd with |x|, |y| ≤ R.

Using (global) L-smoothness, the descent lemma provides the inequality

f(y) ≤ f(x) + ⟨∇f(x), y − x⟩ + L

2 ∥y − x∥2 (2)

which is a fundamental instrument to analyze first order optimization methods. As a motivation recall the
iterative update generated by gradient descent with constant step size γ ≤ 1

L , i.e.

xn+1 = xn − γ∇f(xn), x1 ∈ Rd .

Applying Equation (2) and the iteration scheme yields the iterative descent property

[f(xn+1) − f∗] ≤ [f(xn) − f∗] − γ

2 ∥∇f(xn)∥2 .

Under further strong convexity assumption it is classical to show that the gradient descent algorithm converges
to a global minimum at a linear rate. In order to derive a convergence rate without assuming convexity of f
one can use dominating relations of the gradient ∇f(x) with respect to the optimality gap f(x) − f∗. In
particular, as demonstrated in Karimi et al. (2016) it is nowadays well-known that gradient descent converges
linearly under the PL-condition which assumes that there exists c > 0 such that for all x ∈ Rd there holds

∥∇f(x)∥ ≥ c(f(x) − f∗)β (3)

with exponent β = 1/2 (Polyak, 1963). It is worthwhile to emphasize that Equation (3) is weaker than strong
convexity, the classical textbook assumption that fails for many applications. Under the PL-condition the
iterative descent property can be written as a recursion:

[f(xn+1) − f∗] ≤
(

1 − γc

2

)
[f(xn) − f∗] .

In fact, there are many works analyzing (stochastic) first order methods under the weaker Łojasiewicz
condition formulated in (local) areas around stationary points x∗ and exponents β ∈ [1/2, 1] Lee et al. (2016);
Fatkhullin et al. (2022); Scaman et al. (2022); Wilson et al. (2019). For general β ∈ [1/2, 1] the recursive
descent property reads as

[f(xn+1) − f∗] ≤ [f(xn) − f∗] − γc

2 [f(xn) − f∗]2β

leading to sub-linear convergence for β > 1/2.

For the purpose of our analysis of stochastic gradient methods, we collect the following types of global and
local gradient domination properties.
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Definition 2.2. Let f : Rd → R be continuously differentiable with f∗ = infx∈Rd f(x) > −∞.

1. We say that f satisfies the global gradient domination property with parameter β ∈ [ 1
2 , 1] if there

exists c > 0 such that for all x ∈ Rd it holds true that

∥∇f(x)∥ ≥ c(f(x) − f∗)β .

2. Let x∗ ∈ Rd be a stationary point, i.e. ∇f(x∗) = 0. We say that f satisfies a local gradient domination
property in x∗ with parameter βx∗ ∈ [ 1

2 , 1] if there exist a radius rx∗ > 0 and a constant cx∗ > 0 such
that

∥∇f(x)∥ ≥ cx∗ |f(x) − f(x∗)|βx∗ (4)
for all x ∈ Brx∗ (x∗) = {y ∈ Rd : ∥x∗ − y∥ ≤ rx∗}. We say that f satisfies a local gradient domination
property in f∗ with parameter β ∈ [ 1

2 , 1] if there exist a radius r > 0 and a constant c > 0 such that

∥∇f(x)∥ ≥ c(f(x) − f∗)β

for all x ∈ B∗
r = {y ∈ Rd : f(y) − f∗ ≤ r}.

Remark 2.3. If β = 1
2 , we will call the gradient domination strong since it is implied by strong convexity.

In contrast, we call the gradient domination weak for β ∈ ( 1
2 , 1]. Moreover, note that for the local gradient

domination property in x∗ the parameters r and c may depend on x∗. Furthermore, we emphasize that for
the definition of the local gradient domination in f∗ we do not require the existence of x∗ ∈ arg minx∈Rd f(x).

The PL-condition mentioned above is a special case of the general global gradient domination property for
β = 1

2 . In Lojasiewicz (1965) it has been demonstrated that all analytic functions satisfy the local gradient
domination property, emphasizing the particular significance of the local case. Further, it has been proved
that all overparametrized neural networks fulfill the local gradient domination property (Liu et al., 2022).
See also Madden et al. (2024); Dereich and Kassing (2024); Frei and Gu (2021) and references therein for the
application of (strong) gradient domination to (deep) neural networks. In Fatkhullin et al. (2022); Attouch
et al. (2010); Bolte et al. (2014); Zhou et al. (2018) examples of functions are discussed that fulfill the (weak)
gradient domination property. For instance, one-dimensional monomials f(x) = |x|p, p ≥ 2, satisfy the weak
global gradient domination property with β = p−1

p . We refer to Fatkhullin et al. (2022, Appendix A) for a
longer list of globally gradient dominated functions including convex and non-convex functions. Notably, in
reinforcement learning it is known that the tabular softmax parametrization leads to a parametrized value
function that satisfies the so-called "non-uniform" PL-inequality (Mei et al., 2020; 2021; Klein et al., 2024).
In Section 7 we will show how this non-uniform gradient domination implies local gradient domination in f∗.
This renders our local analysis of stochastic gradient methods specifically applicable in RL. As mentioned
earlier, since every analytic function already satisfies local gradient domination, we expect that the local
analysis can encompass further parametrizations, such as neural networks.

2.1 Assumptions on the Stochastic First Order Oracle

Let (Ω, F ,P) be an underlying probability space. In general, we assume that we can access the exact gradient
∇f(x) through a stochastic first order oracle V : Rd × M → Rd defined by

V (x, m) = ∇f(x) + Z(x, m), x ∈ Rd, m ∈ M , (5)

where (M, M) is a measurable space, Z : Rd × M → Rd is a state dependent B(Rd) ⊗ M/B(Rd)-measurable
mapping describing the error to the exact gradient ∇f . The stochastic gradient evaluation is then modelled
through V (x, ζ), where the random variable ζ : Ω → M is independent of the state x ∈ Rd. We make the
following unbiasedness and second moment assumption:
Assumption 2.4. We assume that for each x ∈ Rd it holds that

E[Z(x, ζ)] :=
∫

Ω
Z(x, ζ(ω))dP(ω) = 0

and there exist non-negative constants A, B and C such that for all x ∈ Rd it holds that

E[∥V (x, ζ)∥2] ≤ A(f(x) − f∗) + B∥∇f(x)∥2 + C . (ABC)

6



Published in Transactions on Machine Learning Research (4/2025)

It is worth noting that the Equation (ABC) assumption is a generalization of the bounded variance assumption
that appears for A = B = 0. It was introduced by Khaled and Richtárik (2023) as expected smoothness
condition and shown to be the weakest assumption among many others.

2.2 Stochastic Gradient Methods

The following two classical optimization algorithms will be analyzed in this article. Both algorithms are
described as discrete time stochastic process (Xn)n∈N driven by noisy gradient evaluations in Equation (5).
In each iteration, we assume that the stochastic first order oracle is accessed through the evaluation of ζn+1
which is a copy of ζ independent from the current state Xn.

The stochastic gradient descent (SGD) scheme is given by the stochastic update

Xn+1 = Xn − γn V (Xn, ζn+1) ,

where X1 is a Rd-valued random vector which denotes the initial state. To keep the notation simple, we
will introduce Vn+1(Xn) := V (Xn, ζn+1) suppressing the explicit noise representation through (ζn)n∈N in the
following. The iterative update formula then reads as

Xn+1 = Xn − γn Vn+1(Xn). (SGD)

The iterative scheme of stochastic heavy ball (SHB) is defined by

Xn+1 = Xn − γnVn+1(Xn) + ν(Xn − Xn−1) , (SHB)

with initial Rd-valued random vector X1. The additional summand is called the momentum term with
momentum parameter ν ∈ [0, 1). In both cases, (γn)n∈N denotes a sequence of positive step sizes and we
denote by (Fn)n∈N the natural filtration induced by the process (Xn)n∈N. Note that we adopt the convention
where the set of natural numbers N refers to the positive integers excluding zero. When necessary, we
explicitly define N0 := N ∪ {0}.
Example 2.5 (Expected risk minimization). In order to give more insights into the considered setting of our
stochastic first order oracle we formulate a specific one based on expected risk minimization. In expected risk
minimization we are interested in minimizing an objective function of the form

f(x) = E[F (x, ζ)] =
∫

Ω
F (x, ζ(ω)) dP(ω)

where F : Rd × M → R is B(Rd) ⊗ M/B(R)-measurable. In our notation the stochastic first order oracle
then takes the form

V (x, ζ) = ∇f(x) + (∇xF (x, ζ) − ∇f(x)) = ∇xF (x, ζ)
and the iterative update of SGD reads as

Xn+1 = Xn − γn∇xF (Xn, ζn+1)

with a sequence of independent and identically distributed (ζn). The iterative scheme of SHB can be written
in similar way. Note that this scenario also includes empirical risk minimization where the objective function
takes a finite sum form, with ζ ∼ U({1, . . . , N}),

f(x) = 1
N

N∑
i=1

F (x, i) = E[F (x, ζ)] .

Exemplifying the SGD method, we now illustrate the typical steps of the convergence analysis for first-order
optimization methods. First, the smoothness of the function f is exploited by applying the descent inequality
Equation (2) to the iteration scheme and then applying conditional expectations,

E[f(Xn+1) | Fn] ≤ f(Xn) − γn∥∇f(Xn)∥2 + Lγ2
n

2 E[∥Vn+1(Xn)∥2 | Fn].
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Next, f∗ is subtracted on both sides and the variance term of the stochastic gradient is controlled through
the Equation (ABC) condition:

E[f(Xn+1) − f∗ | Fn] ≤
(

1 + LAγ2
n

2

)
(f(Xn) − f∗) −

(
γn − BLγ2

n

2

)
∥∇f(Xn)∥2 + LCγ2

n

2 . (6)

Without further assumptions this inequality can now be used to show that the gradient ∇f(Xn) converges
almost surely to zero. In order to obtain convergence towards a global optimum additional assumptions
are needed. For instance, it is sufficient to incorporate the global gradient domination property defined in
Definition 2.2 which yields an iterative inequality of the form

E[f(Xn+1) − f∗ | Fn] ≤
(

1 + LAγ2
n

2

)
(f(Xn) − f∗) −

(
γn − BLγ2

n

2

)
c2(f(Xn) − f∗)2β + LCγ2

n

2 . (7)

Typically, the expectation is taken on both sides of the inequality to derive a convergence rate in expectation
by working with recursive inequalities. In this article we push the argument further. We combine smoothness
and gradient domination with a variant of the Robbins-Siegmund Theorem (see Lemma A.2) to derive almost
sure convergence rates.

3 Preliminary Discussion on Super-Martingale Convergence Rates

In the previous section, we have sketched how to combine the global gradient domination property with
smoothness to derive a recursive inequality of the form

E[Yn+1 | Fn] ≤ (1 + c1γn)Yn − c2γnY 2β
n + c3γ2

n ,

where Yn := f(Xn) − f∗. For analysing these inequalities, we must deal separately with the strong gradient
domination case (β = 1

2 ) and the weak gradient domination case (β > 1
2 ) to avoid divisions by zero. For the

former case the recursive inequality simplifies, whereas a more complex analysis is required for the latter. To
establish almost sure convergence rates we employ convergence lemmas for super-martingales based on the
Robbins-Sigmund Theorem. This methodology has been introduced in Sebbouh et al. (2021) and further
utilized in Liu and Yuan (2022) to analyze SGD and SHB under (strong) convexity. It is noteworthy to
mention that their analysis is under the similar noise assumption formulated in Assumption 2.4.

In the following, we illustrate how to extend the arguments to convergence under the global gradient
domination property. Here is our super-martingale result that also encompasses Liu and Yuan (2022, Lemma
1) when β = 1

2 for completeness:
Lemma 3.1. Let (Yn)n∈N be a sequence of non-negative random variables on an underlying probability space
(Ω, F ,P) with natural filtration (Fn)n∈N and suppose there exists β ∈ [ 1

2 , 1], c1, c3 ≥ 0 and c2 > 0 such that

E[Yn+1 | Fn] ≤ (1 + c1γ2
n)Yn − c2γnY 2β

n + c3γ2
n ,

for all n ≥ 1, where γn = Θ( 1
nθ ) for some fixed θ ∈

( 1
2 , 1

)
. Then, for any

η ∈

{(
max{2 − 2θ, θ+2β−2

2β−1 }, 1
)

: β ∈ ( 1
2 , 1]

(2 − 2θ, 1) : β = 1
2

,

(Yn)n∈N vanishes almost surely with Yn ∈ o
( 1

n1−η

)
.

The proof of this lemma is based on the well-known Robbins-Siegmund theorem (Robbins and Siegmund,
1971, Theorem 1) and is provided in full detail in Appendix C.

4 Convergence for Global Gradient Domination Property

In this part of the paper, we provide our global convergence result in a non-convex and globally smooth
setting. Combining the recursive inequality Equation (7) with the super-martingale convergence result from
Lemma 3.1 leads to the following theorem.
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Theorem 4.1. Suppose Assumption 2.1 (i) and Assumption 2.4 are fulfilled and let f satisfy the global
gradient domination property from Definition 2.2 with β ∈ [ 1

2 , 1]. Denote by (Xn)n∈N the sequence generated
by Equation (SGD) using a step size γn = Θ( 1

nθ ) with θ ∈
( 1

2 , 1
)
. For any

η ∈

{(
max{2 − 2θ, θ+2β−2

2β−1 }, 1
)

: β ∈ ( 1
2 , 1]

(2 − 2θ, 1) : β = 1
2

it holds that

(i) f(Xn) − f∗ ∈ o

(
1

n1−η

)
, a.s., and (ii) E[f(Xn) − f∗] ∈ o

(
1

n1−η

)
.

Proof. Recall, in Section 2 we derived Equation (7),

E[f(Xn+1) − f∗ | Fn]

≤
(

1 + LAγ2
n

2

)
(f(Xn) − f∗) −

(
γn − BLγ2

n

2

)
c2(f(x) − f∗)2β + LCγ2

n

2 ,

which will be the basis of the proof of Theorem 4.1.

We treat again both cases for β = 1
2 and β ∈ ( 1

2 , 1] separately:

β = 1
2 : In this case, Equation (7) results in the super-martingale inequality

E[Yn+1 | Fn] ≤
(

1 + LAγ2
n

2 − γnc2 + BLc2γ2
n

2

)
Yn + LCγ2

n

2 ,

with Yn = f(Xn) − f∗. By the choice of γn there exists N > 0 and a constant c̃ > 0 such that γnc2 − LAγ2
n

2 −
BLc2γ2

n

2 ≥ c̃γn for all n ≥ N . Thus,

E[Yn+1 | Fn] ≤
(

1 − c̃γn

)
Yn + LCγ2

n

2 ,

for all n ≥ N . Then, claim (i) follows by applying Lemma 3.1 with c1 = 0, c2 = c̃, c3 = LC
2 and β = 1

2 .
To prove claim (ii) we multiply (n + 1)1−η on both sides and take the expectation. It follows that

E[(n + 1)(1−η)Yn+1] ≤ (1 − c̃γn)(n + 1)1−ηE[Yn] + LC

2 (n + 1)1−ηγ2
n

≤ (1 − c̃γn)(n1−η + (1 − η)n−η)E[Yn] + LC

2 (n + 1)1−ηγ2
n

=
(

1 − c̃γn + 1 − η

n
− c̃(1 − η)γn

n

)
n1−ηE[Yn] + LC

2 (n + 1)1−ηγ2
n.

As θn ∈ Θ( 1
nθ ) we obtain that c̃γn is the dominating term. Hence, there exists a constant c̃1 > 0 and Ñ > N

such that c̃γn − 1−η
n + c̃(1−η)γn

n ≥ c̃1γn for all n ≥ Ñ . Thus, for all n ≥ Ñ

E[(n + 1)(1−η)Yn+1] ≤ (1 − c̃1γn) n1−ηE[Yn] + LC

2 (n + 1)1−ηγ2
n.

We apply Lemma A.3 with wn = n1−ηE[Yn], an = c̃1γn and bn = (n+1)1−ηγ2
n and obtain that n1−ηE[Yn] → 0

for n → ∞ which yields claim (ii). Note that
∑

n bn < ∞ as 1 − η < 2θ − 1 for η ∈ (2 − 2θ, 1).

β ∈ ( 1
2 , 1]: In this case, Equation (7) results in the super-martingale inequality

E[Yn+1 | Fn] ≤
(

1 + LAγ2
n

2

)
Yn −

(
γn − BLγ2

n

2

)
c2Y 2β

n + LCγ2
n

2 ,

9
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with Yn = f(Xn) − f∗. By the choice of γn there exists c2 > 0 and N1 > 0 such that c2γn − BLc2γ2
n

2 ≥ c2γn

for all n ≥ N1,

E[Yn+1 | Fn] ≤
(

1 + LAγ2
n

2

)
Yn − c2γnY 2β

n + LCγ2
n

2 .

We deduce claim (i) from Lemma 3.1 with c1 = LA
2 , c2 = c2, c3 = LC

2 and β ∈ ( 1
2 , 1].

For claim (ii) we firstly proceed as in the proof of Lemma 3.1. Therefore, one can choose the auxiliary
parameter 1 < q ≤ 1

θ and find constants c4, c3, Ñ1 > 0 such that for all n ≥ Ñ1 by EquationEquation (22) we
have

E[(n + 1)1−ηYn+1 | Fn] ≤ n1−ηYn − c4
1

nqθ
n1−ηYn + c3(n + 1)1−η(γ

2βq−1
2β−1

n + γ2
n) .

Next, we take the expectation to obtain

E[(n + 1)1−ηYn+1] ≤ (1 − c4
1

nqθ
)E[n1−ηYn] + c3(n + 1)1−η(γ

2βq−1
2β−1

n + γ2
n)

for all n ≥ Ñ1, implying that wn = E[n1−ηYn] → 0 as n → ∞ by Lemma A.3. Note that we have chosen θ, η

and q as in Lemma 3.1, such that
∑

n
1

nqθ = ∞,
∑

n(n + 1)1−ηγ
2βq−1
2β−1

n < ∞, and
∑

n(n + 1)1−ηγ2
n < ∞ (see

Equation (23), Equation (24) and Equation (25)). Therefore, the assumptions of Lemma A.3 are met.

To the best of our knowledge our theorem presents the first convergence rate for SGD under weak gradient
domination with respect to almost sure convergence.

It is natural to ask which θ leads to the best convergence rate. Optimizing for η yields an optimal choice
θ = 2β

4β−1 to achieve the best possible rate of convergence. This specific choice yields a lower bound of the
interval given by 2 − 2θ = θ+2β−2

2β−1 = 1 − 1
4β−1 and therefore an almost sure convergence of the form o( 1

np )
where p is arbitrarily close to 1

4β−1 (see also Table 1). We emphasize that the rate we obtain is arbitrarily
close to the one obtained in Fontaine et al. (2021); Fatkhullin et al. (2022) in expectation. According to
Fatkhullin et al. (2022, Prop. 2) the rate is attained, if the recursive inequality is indeed an equality.

Roughly speaking, our result guarantees a faster convergence rate for "stronger" gradient domination properties
(i.e. for smaller β). Indeed, as 2 − 2θ > θ+2β−2

2β−1 for β sufficiently close to 1
2 our result is consistent to the one

presented in Liu and Yuan (2022, Thm. 1) by replacing the µ-strongly convex assumption with the strong
gradient domination property with β = 1

2 .

Similar arguments can be used to derive almost sure convergence rates for SHB under global gradient
domination:
Theorem 4.2. Suppose Assumption 2.1 (i) and Assumption 2.4 are fulfilled and let f satisfy the global
gradient domination property from Definition 2.2 with β ∈ [ 1

2 , 1]. Denote by (Xn)n∈N the sequence generated
by Equation (SHB) using a step size γn = Θ( 1

nθ ) for θ ∈ ( 1
2 , 1). For any

η ∈

{(
max{2 − 2θ, θ+2β−2

2β−1 }, 1
)

: β ∈ ( 1
2 , 1]

(2 − 2θ, 1) : β = 1
2

it holds that

(i) f(Xn) − f∗ ∈ o

(
1

n1−η

)
, a.s., and (ii) E[f(Xn) − f∗] ∈ o

(
1

n1−η

)
.

For the proof of Theorem 4.2, recall the definition of the iteration scheme Equation (SHB). Using the following
definitions

Zn = Xn + ν

1 − ν
Wn, Wn = Xn − Xn−1, (8)

10
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one can derive the iterative evolution

Wn+1 = νWn − γnV (Xn) (9)

Zn+1 = Zn − γn

1 − ν
V (Xn). (10)

The first equation follows directly from the definition of Wn. For the second equation we compute

Zn+1 = Xn+1 + ν

1 + ν
Wn+1 = (1 + ν

1 − ν
)Xn+1 − ν

1 − ν
Xn

= 1 − ν

1 − ν
Xn − γn

1 − ν
V (Xn) + ν

1 − ν
(Xn − Xn−1)

= Zn − γn

1 − ν
V (Xn) .

We will utilize these auxiliary variables in the proof.

Proof of Theorem 4.2. The proof begins as in the proof of Theorem 2 in Liu and Yuan (2022). Using only
L-smoothness and assumption Equation (ABC), they show that for any c3 ∈ (0, 1

1−ν ), λ ∈ (ν, 1) there exist
constants c1, c2, c4 > 0 such that choosing the step size γn ∼ 1

nθ , for some θ ∈ ( 1
2 , 1) results in (Liu and Yuan,

2022, Equation (21))

E[f(Zn+1) − f∗ + ∥Wn+1∥2 | Fn]
≤ (1 + c1γ2

n)(f(Zn) − f∗) + (λ + c2γ2
n)∥Wn∥2 − c3γn∥∇f(Zn)∥2 + c4γ2

n

(11)

for all n ≥ N and some N > 0 sufficiently large. Next, we apply the global gradient domination property for
any β ∈ [ 1

2 , 1] to derive

E[f(Zn+1) − f∗ + ∥Wn+1∥2 | Fn]
≤ (1 + c1γ2

n)(f(Zn) − f∗) − cc3γn(f(Zn) − f∗)2β + (λ + c2γ2
n)∥Wn∥2 + c4γ2

n.
(12)

For the remaining proof, we denote Qn := f(Zn) − f∗. Similar as before, we treat both cases for β = 1
2 and

β ∈ ( 1
2 , 1] separately:

β = 1
2 : Instead of µ-strong convexity we use the gradient domination inequality ∥∇f(x)∥2 ≥ c(f∗ − f(x)), as

the same inequality is implied by strong convexity using c = µ. Then, Claim (i) follows using the same proof
as Liu and Yuan (2022, Thm. 2b)). Note that the inequality

1
2L

∥∇f(x)∥2 ≤ f(x) − f∗, (13)

used in the last step only requires the L-smoothness assumption (Nesterov, 2004, Sec. 1.2.3).

For Claim (ii) we consider Equation (12) which simplifies for β = 1
2 to

E[Qn+1 + ∥Wn+1∥2 | Fn] ≤ (1 + c1γ2
n − cc3γn)Qn + (λ + c2γ2

n)∥Wn∥2 + c4γ2
n.

By the choice of γn there exists N > 0 and c̃1, c̃2 > 0, such that cc3γn − c1γ2
n ≥ c̃1γn and λ + c2γ2

n ≤ c̃2γn

for all n ≥ N . Hence, for n ≥ N

E[Qn+1 + ∥Wn+1∥2 | Fn] ≤ (1 − c̃1γn)Qn + (1 − c̃2γn)∥Wn∥2 + c4γ2
n

≤ (1 − min{c̃1, c̃2})
(
Qn + ∥Wn∥2)

+ c4γ2
n.

Let c5 = min{c̃1, c̃2}, multiply by (n + 1)1−η on both sides and use Equation (17) to obtain for n ≥ N

E[(n + 1)1−η
(
Qn+1 + ∥Wn+1∥2)

| Fn]
≤ (n + 1)1−η(1 − c5γn)

(
Qn + ∥Wn∥2)

+ c4γ2
n(n + 1)1−η

≤ (n1−η + (1 − η)n−η)(1 − c5)
(
Qn + ∥Wn∥2)

+ c4γ2
n(n + 1)1−η

=
(

1 − c5γn + 1 − η

n
− c5(1 − η)γn

n

)
n1−η

(
Qn + ∥Wn∥2)

+ c4γ2
n(n + 1)1−η.

11
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Taking expectation and using that there exists c̃5 > 0 and Ñ > N such that c5γn − 1−η
n + c5(1−η)γn

n ≥ c̃5γn,
we have for all n ≥ Ñ

E[(n + 1)1−η
(
Qn+1 + ∥Wn+1∥2)

] ≤ (1 − c̃5γn)E
[
n1−η

(
Qn + ∥Wn∥2)]

+ c4γ2
n(n + 1)1−η.

Note that
∑

n γ2
n(n + 1)1−η < ∞ because η ∈ (2 − 2θ, 1) implies 1 − η < 2θ − 1. We can apply Lemma A.3

which yields that E
[
n1−η

(
Qn + ∥Wn∥2)]

→ 0. Hence, E[
(
Qn + ∥Wn∥2)

] ∈ o( 1
n1−η ).

To finish the proof, one can derive

f(Xn) − f∗ ≤ Qn + 1
2∥∇f(Zn)∥2 + ν2 + Lν2

2(1 − ν)2 ∥Wn∥2 . (14)

To derive this equation, recall that Zn − Xn = − ν
1−ν Wn, such that by L-smoothness we obtain

f(Xn) ≤ f(Zn) + ⟨∇f(Zn), Xn − Zn⟩ + L

2 ∥Xn − Zn∥2 = f(Zn) − ν

1 − ν
⟨∇f(Zn), Wn⟩ + Lν2

2(1 − ν)2 ∥Wn∥2.

Next, apply Cauchy-Schwarz and Young’s inequality to obtain

f(Xn) − f∗ ≤ f(Zn) − f∗ + 1
2∥∇f(Zn)∥2 + ν2

2(1 − ν)2 ∥Wn∥2 + Lν2

2(1 − ν)2 ∥Wn∥2.

Using inequality Equation (13), we get almost surely

f(Xn) − f∗ ≤ (1 + L)Qn + ν2 + Lν2

2(1 − ν)2 ∥Wn∥2 ≤ (1 + L) max
(

1,
ν2

2(1 − ν)2

)
(Qn + ∥Wn∥2). (15)

implying that E[(f(Xn) − f∗)] ∈ o( 1
n1−η ) which proves Claim (ii).

β ∈ ( 1
2 , 1]: For Claim (i), note that in Equation (12) λ < 1, such that

E[Qn+1 + ∥Wn+1∥2 | Fn] ≤ (1 + c1γ2
n)Qn + (1 + c2γ2

n)∥Wn∥2 + cc3γnQ2β
n + c4γ2

n

≤ (1 + max{c1, c2}γ2
n)(Qn + ∥Wn∥2) + cc3γn(Qn + ∥Wn∥2)2β + c4γ2

n.

By Lemma 3.1 we obtain that Qn + ∥Wn∥2 = f(Zn) − f∗ + ∥Wn∥2 ∈ o
( 1

n1−η

)
for all η ∈(

max{2 − 2θ, θ+2β−2
2β−1 }, 1

)
. We apply the inequality in Equation (15) to conclude that also f(Xn) − f∗ ∈

o
( 1

n1−η

)
for all η ∈

(
max{2 − 2θ, θ+2β−2

2β−1 }, 1
)

. This proves Claim (i).

For Claim (ii), we again use the q-trick from Lemma 3.1 in Equation (12). For 1 < q < 1
θ < 2 we have that

E[Qn+1 + ∥Wn+1∥2 | Fn] ≤ (1 + c1γ2
n − cc3γq

n)Qn + cc3γn

(
γq−1

n Qn − Q2β
n

)
+ (λ + c2γ2

n)∥Wn∥2 + c4γ2
n.

Now with Equation (20) in Lemma 3.1 there exists c̃3 ≥ 0 such that

E[Qn+1 + ∥Wn+1∥2 | Fn] ≤ (1 + c1γ2
n − cc3γq

n)Qn + c̃3γ
2βq−1
2β−1

n + (λ + c2γ2
n)∥Wn∥2 + c4γ2

n.

By the choice of γn there exists c̃1 > 0 and N > 0 such that c1γ2
n − cc3γq

n ≥ c̃1γq
n and λ + c2γ2

n ≤ c̃1γq
n for all

n ≥ N . Thus, for all n ≥ N ,

E[Qn+1 + ∥Wn+1∥2 | Fn] ≤ (1 − c̃1γq
n)(Qn + ∥Wn∥2) + max{c̃3, c4}

(
γ

2βq−1
2β−1

n + γ2
n

)
.

12
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For max{c̃3, c4} =: c̃2, we multiply on both sides with (n + 1)1−η and take the expectation to obtain for
n ≥ N

E[(n + 1)1−η
(
Qn+1 + ∥Wn+1∥2)

]

≤ (n + 1)1−η(1 − c̃1γq
n)E[(Qn + ∥Wn∥2)] + c̃2(n + 1)1−η

(
γ

2βq−1
2β−1

n + γ2
n

)
≤ (n1−η + (1 − η)n−η)(1 − c̃1γq

n)E[(Qn + ∥Wn∥2)] + c̃2(n + 1)1−η

(
γ

2βq−1
2β−1

n + γ2
n

)
=

(
1 − c̃1γq

n + 1 − η

n
− c̃1(1 − η)γq

n

n

)
E[n1−η(Qn + ∥Wn∥2)]

+ c̃2(n + 1)1−η

(
γ

2βq−1
2β−1

n + γ2
n

)
.

Next, there exists Ñ > N and c̃5 > 0 such that for all n ≥ Ñ

E[(n + 1)1−η
(
Qn+1 + ∥Wn+1∥2)

] ≤ (1 − c̃5γq
n)E[n1−η(Qn + ∥Wn∥2)] + c̃2(n + 1)1−η

(
γ

2βq−1
2β−1

n + γ2
n

)
.

From the proof of Lemma 3.1, we choose the auxiliary parameter q such that
∑

n(n+1)1−η

(
γ

2βq−1
2β−1

n + γ2
n

)
< ∞

(see Equation (24) and Equation (25)). By applying again Lemma A.3 we obtain E[n1−η(Qn + ∥Wn∥2)] → 0,
i.e. E[Qn + ∥Wn∥2] ∈ o( 1

n1−η ). Finally, Claim (ii) follows again by Equation (15).

To the best of our knowledge, our result gives the first convergence proof of SHB to global optima under
weak gradient domination, with rates for almost sure convergence and convergence of expectations. The
resulting convergence rate using the optimized step size are summarized in Table 1. In the strong gradient
domination setting our rate in expectation gets arbitrarily close to the O( 1

n ) convergence obtained in Liang
et al. (2023). It is noteworthy that the utilization of SHB in our analysis does not yield a superior convergence
rate compared to SGD. This arises from the proof technique and aligns with the findings in Liu and Yuan
(2022); Sebbouh et al. (2021) where the authors similarly achieve no acceleration. In general, for deterministic
settings acceleration of gradient methods can achieve improvements of convergence rates (Wilson et al., 2019).
Though in the special case of gradient domination with β = 1

2 , HB as well as Nesterov cannot accelerate in
the deterministic setting as shown in Yue et al. (2023).

5 Convergence for Local Gradient Domination Property

In this section, we want to generalize the analysis in Mertikopoulos et al. (2020) under local strong convexity
to the weaker local gradient domination property for different cases of β. We consider the two cases of
local gradient domination separately. The contributions and differences of our results under less restricted
assumptions are the following:
First, we show in both cases that SGD remains in the gradient dominated region with high probability
by only assuming local gradient domination instead of local strong convexity. Especially in the case of a
local minimum x∗ this is a challenging task, as we have to ensure that the SGD scheme (Xn)n∈N remains
close to x∗ without exploiting convexity. We can guarantee this whenever x∗ is in an isolated connected
compact set of local minima X ∗. We prove convergence towards the level set of X ∗ and obtain Theorem 5.1.
Second, additionally to convergence in expectation we prove almost sure convergence conditioned on the
"good event". Third, due to the weaker gradient domination assumption and no convexity, one cannot expect
the convergence of Xn to (local or global) minimum x∗, instead we focus on convergence of f(Xn) to f(x∗).
In Liu and Zhou (2023) they delve into the rationale behind considering this as a more robust metric.

The main result under local gradient domination in a local minimum x∗ is as follows:
Theorem 5.1. Fix some tolerance level δ > 0 and let X ∗ ⊂ Rd be an isolated compact connected set of
local minima with level l = f(x∗) for all x∗ ∈ X ∗. Suppose that f satisfy the local gradient domination
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property in each x∗ ∈ X ∗, f is locally G-Lipschitz continuous and satisfies Assumption 2.1 (ii). Moreover,
suppose Assumption 2.4 hold true. Denote by (Xn)n∈N the sequence generated by Equation (SGD) using
a step size γn = Θ( 1

nθ ) for θ ∈ ( 1
2 , 1) and suppose that γn ≤ γ1 for γ1 sufficiently small enough such that∑∞

n=1 γ2
n < δϵ

2(G2C2+G2+C) for some ϵ > 0 independent of δ. Then, the following holds:

(i) There exist subsets U and U1 of Rd such that, if X1 ∈ U1 the event ΩU = {Xn ∈ U for all n = 1, 2, . . . }
has probability at least 1 − δ.

Moreover, there exists β ∈ [ 1
2 , 1] such that for any

η ∈

{(
max{2 − 2θ, θ+2β−2

2β−1 }, 1
)

: β ∈ ( 1
2 , 1]

(2 − 2θ, 1) : β = 1
2

it holds that

(ii) |f(Xn) − l|1ΩU ∈ o

(
1

n1−η

)
, a.s., and (iii) E[|f(Xn) − l|1ΩU ] ∈ o

(
1

n1−η

)
.

We would like to emphasize that our result does not provide convergence rates in high probability. Instead,
we restrict the probability space to "good" events (encoded in U) that occur with high probability 1 − δ.
Conditioned on these events, we establish convergence with a rate that is independent of δ. The dependence
on δ instead manifests in the step size γn, which ensure that the iterations (Xn)n∈N remain within U with
probability at least δ. Notably, this is the only aspect of our convergence result that depends on δ.

In the following, we only sketch the proof in the main part and provide the full proof in Appendix D.

Sketch of proof. The proof is split into several intermediate steps outlined as follows:

• First, we unify the gradient domination property around the set of local minima X ∗ and obtain a
radius r such that the unified gradient domination property is fulfilled in all open balls with radius r
around x∗ ∈ X ∗ (Lemma D.1).

• Based on this we construct the two sets U , U1 ⊆ Rd defined as neighborhoods of X ∗ constructed such
that the gradient domination property holds within this region,

U1 = {x ∈ Rd : inf
x∗∈X ∗

||x − x∗|| <
r
2 , f(x) − l ≤ ϵ

2}

U = {x ∈ Rd : inf
x∗∈X ∗

||x − x∗|| <
r
2}

and the events
Ωn = {Xk ∈ U for all k ≤ n} ∈ Ω

such that ΩU =
⋂

n Ωn occurs with high probability. This means, when starting in U1 the gradient
trajectory does remain in U for all gradient steps with high probability.

• We present a row of Lemmata to show that P(Ωn) ≥ 1 − δ for all n ∈ N, claim (i) of the Theorem.
To show P(Ωn) ≥ 1 − δ we construct the sets Cn and En defined in Equation (29) and Equation (34)
such that En ∩ Cn ⊂ Ωn+1 (Lemma D.6) while Lemma D.5 is used to prove this claim. The sets
En are such that f(Xn) remains close to f∗. We exploit the unified gradient domination property
to construct the sets En (Lemma D.4) and derive a recursive inequality in Lemma D.6 c) to prove
that this event occurs with high probability (Lemma D.7). The sets Cn are such that Xn+1 remains
close to Xn and we exploit the finite variance assumption to show that these events occur with high
probability (Lemma D.8).

• Finally, claim (ii) and (iii) are shown directly in the proof of Theorem 5.1 at the end of Appendix D,
where we employ the uniform gradient domination in ΩU .
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The main result concerning local gradient domination in f∗ is presented below and does not necessitate the
existence of a local minimum or any stationary point. It is worth noting that the definition of local gradient
domination in f∗ guarantees the gradient domination property for any x with f(x) close to f∗. Consequently,
this definition ensures that functions satisfying this property cannot possess local minima or saddle points
within this region.
Theorem 5.2. Fix some tolerance level δ > 0. Suppose f satisfies the local gradient domination property
in f∗ from Definition 2.2 with β ∈ [ 1

2 , 1] and B∗
r ⊆ Rd. Moreover, suppose within B∗

r f is G-Lipschitz
continuous, Assumption 2.1 (i) and Assumption 2.4 hold true. Denote by (Xn)n∈N the sequence generated
by Equation (SGD) using a step size γn = Θ( 1

nθ ) for θ ∈ ( 1
2 , 1) and suppose that γn ≤ γ1 for γ1 sufficiently

small such that
∑∞

n=1 γ2
n < δϵ

2(G2C2+G2+C) for some ϵ > 0 independent of δ. Then, the following holds:

(i) There exist subsets U and U1 of Rd such that, if X1 ∈ U1 the event ΩU = {Xn ∈ U for all n = 1, 2, . . . }
has probability at least 1 − δ.

Moreover, for any

η ∈

{(
max{2 − 2θ, θ+2β−2

2β−1 }, 1
)

: β ∈ ( 1
2 , 1]

(2 − 2θ, 1) : β = 1
2

it holds that

(ii) (f(Xn) − f∗)1ΩU ∈ o

(
1

n1−η

)
, a.s., and (iii) E[(f(Xn) − f∗)1ΩU ] ∈ o

(
1

n1−η

)
.

The outline of the proof is similar to the proof of Theorem 5.1. We provide the full proof and more details on
the sets U and U1 as well as on β in Appendix D.

6 Application in the training of neural networks

In supervised learning one aims to approximate an unknown model φ : Rdz → Rdy by a parametrized function
gw : Rdz → Rdy with parameter w ∈ Rdw . Given a family of training data ((Z(m), Y (m)))m∈N generated as
i.i.d. samples from an unknown distribution µ(Z,Y ) one usually chooses the parameter w ∈ Rdw by solving

min
w∈Rdw

Eµ(Z,Y ) [Φ(gw(Z), Y )] ,

where Φ : Rdy × Rdy → R+ is a user specific data discrepancy. One popular choice of parametrizations are
DNNs. We define a neural network of depth L ∈ N by the recursion

z0 := z, zℓ = σ⊗dℓ(Aℓzℓ−1 + bℓ), ℓ = 1, . . . , L − 1, gw(z) := ALzL−1 + bL .

The weights ((Aℓ, bℓ))L
ℓ=1 of the DNN are collected in w ∈ W := ×L

ℓ=1(Rdℓ×dℓ−1 × Rdℓ) ≃ Rdw , and
σ⊗d : Rd → Rd describes the component-wise application of the activation function σ : R → R.

Provided that σ and Φ are analytic, and (Z, Y ) are compactly supported Rdz × Rdy -valued random variables,
then fDNN : Rdw → R+ defined by w 7→ Eµ(Z,Y ) [Φ(gw(Z), Y )] is analytic (Dereich and Kassing, 2024,
Thm. 5.2). By Lojasiewicz (1963, Thm. II), or Lojasiewicz (1965, §2, Thm. 2), it therefore satisfies local
gradient domination in any stationary point. More precisely, for any stationary point w∗ there exist βw∗ ∈ [ 1

2 , 1]
and cw∗ > 0 such that equation 4 in Definition 2.2 is satisfied. The local smoothness is inherently guaranteed
by the fact that the loss function is analytic. To elaborate, every analytic function is infinitely differentiable,
such that all derivatives remain locally bounded. Concerning Assumption 2.4, we assume that the underlying
data in the supervised learning problem is compactly supported, ensuring that Assumption 2.4 is always
satisfied locally.
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In our notation, the stochastic first order oracle takes the form

V (w, (Z, Y )) = ∇wfDNN(w) + (∇wΦ(gw(Z), Y ) − ∇wfDNN(w)) ,

where we denote ζ = (Z, Y ) and the iterative SGD then reads as

Wn+1 = Wn − γn∇wΦ(gWn(Zn+1), Yn+1)

with ζn = (Zn, Yn) independent and identical distributed. The iterative scheme of SHB can be written
similarly. Note that this scenario also includes the empirical risk minimization of 1

M

∑M
m=1 Φ(gw(z(m)), y(m))

when ζ = (Z, Y ) ∼ 1
M

∑M
m=1 δ(z(m),y(m)), see Example 2.5 for more details. In this case, Assumption 2.4 is

satisfied even with A = B = 0. Thus, the following local convergence is a direct consequence of Theorem 5.1.
Corollary 6.1. Let δ > 0. Denote by (Wn)n∈N the sequence generated by SGD with w 7→ ∇wfDNN(w) as
objective function, step size γn ∈ Θ(n−θ) for θ ∈ ( 1

2 , 1), and assume that fDNN is analytic. Let W∗ be an
isolated compact set of local minima with level l = fDNN(w∗) for all w∗ ∈ W∗ and suppose Assumption 2.4 is
satisfied within W∗. Suppose that γn ≤ γ1 for sufficiently small γ1 (depending on δ), then there exist two
subsets U , U1 of Rdw such that W1 ∈ U1 implies that the event ΩU = {Wn ∈ U , for all n ≥ 1} has probability
at least 1 − δ. Moreover, there exists β ∈ [ 1

2 , 1] such that for any

η ∈

{(
max{2 − 2θ, θ+2β−2

2β−1 }, 1
)

: β ∈ ( 1
2 , 1]

(2 − 2θ, 1) : β = 1
2

it holds that |fDNN(Wn) − l|1Ω ∈ o
(
nη−1)

almost surely and in expectation.

In words: If the iterates of SGD reach a certain area around a local minimum, they are likely to become
trapped in that region with high probability, provided that the step size is sufficiently small. This results
shows that, under very general conditions, SGD converges to local minima and furthermore quantifies the
convergence speed.
Remark 6.2. One may similarly apply Theorem 5.2 in the training of DNNs to derive convergence towards a
global minimum with high probability provided that the initial loss fDNN(X1) and initial step size γ1 are
sufficiently small.

7 Application in Reinforcement Learning

Recent results showed that choosing the tabular softmax parametrization in policy gradient (PG) algorithms
results in objective functions which fulfill a non-uniform gradient domination property (Mei et al., 2020; Yuan
et al., 2022; Klein et al., 2024). While convergence of PG for exact gradients is well understood, convergence
rates for stochastic PG are rare and mostly require very large batch sizes (Ding et al., 2022; Klein et al.,
2024; Ding et al., 2023).

Let (S, A, ρ, r, p) be a discounted MDP with finite state space S, finite action space A and discount factor
ρ ∈ [0, 1). Further, r : S × A → R+ is the positive expected reward function and p(s′|s, a) describes the
transition probability from state s to s′ under action a. As in Mei et al. (2020) we assume that the rewards
are bounded in [0, 1]. Consider the stationary tabular softmax policy for parameter w ∈ R|S||A|, i.e.

πw(a|s) = exp(w(s, a))∑
a′∈As

exp(w(s, a′)) , ∀s ∈ S, a ∈ A.

In the following we consider entropy regularized PG jointly with vanilla PG by setting λ = 0 when no
regularization is considered. Then, for an initial state distribution µ, the value function under the softmax
parametrization is given by

V πw

λ (µ) = Eπw
µ

[ ∞∑
t=0

ρtr(St, At)
]

− λEπw
µ

[ ∞∑
t=0

ρt log(πw(At|St)
]
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and denote by V ∗
λ (µ) the global optimum and by π∗ the optimal policy. If λ > 0 there exists a unique optimal

policy which can be represented by the tabular softmax parametrization Nachum et al. (2017). Therefore,
there must exist a continuum of optimal parameters w∗, such that V πw∗

λ (µ) = V ∗
λ (µ); see also the discussion

in Ding et al. (2022). If λ = 0 no such parameters exists.

In order to maximize the objective we use stochastic gradient ascent. For λ = 0 this is called stochastic
policy gradient method or REINFORCE. Note that e.g., Zhang et al. (2020) provide a stochastic first order
oracle which meets the conditions required in Assumption 2.4. For λ > 0, a stochastic gradient estimator
that satisfies Assumption 2.4 with A = B = 0 is presented in Ding et al. (2023, Eq. (4)). In both cases a
non-uniform PL-inequality holds (Mei et al., 2020, Lem. 8, Lem. 15): For every w ∈ R|S|×|A| it holds that

∥∇wV πw

λ (µ)∥2 ≥ cλ(w)x [V ∗
λ (µ) − V πw

λ (µ)]x ,

with x = 1 if λ = 0 and x = 1
2 if λ > 0 and

cλ(w) =


mins∈S πw(a∗(s)|s)√

|S|(1−ρ)

∥∥∥ dπ∗
µ

µ

∥∥∥−1

∞
, λ = 0,

2λ
|S|(1−ρ) mins µ(s) mins,a πw(a|s)2

∥∥∥ dπ∗
µ

µ

∥∥∥−1

∞
, λ > 0.

(16)

Here a∗(s) denotes the best possible action in state s. W.l.o.g. we assume that a∗(s) is unique, otherwise
one can simply consider the maximum over all possible best actions, i.e. replace mins∈S πw(a∗(s)|s) with
mins∈S mina is optimal action in s πw(a|s). We prove that this implies a local gradient domination property with
β = 1 (weak PL) for λ = 0 and β = 1

2 (strong PL) for λ > 0.
Proposition 7.1. There exists r, c > 0 such that for all w ∈ B∗

r,λ = {w : V ∗
λ (µ) − V πw

λ (µ) ≤ r} it holds that
cλ(w) ≥ c.

The proof of this proposition is given in Appendix E.

As the objective function w 7→ V πw

λ (µ) is smooth and Lipschitz on R|S||A| (see Yuan et al. (2022, Lem. E.1)
for λ = 0 and Ding et al. (2023) for λ > 0), all assumptions in Theorem 5.2 are satisfied and we obtain the
following result.
Corollary 7.2. Let δ > 0. Denote by (Wn)n∈N the sequence generated by SGD with w 7→ −V πw

λ (µ) as
objective function, step size γn ∈ Θ(n−θ) for θ ∈ ( 1

2 , 1) and suppose γn ≤ γ1 for sufficiently small γ1
(depending on δ). Then, there exist two subsets U , U1 of R|S||A| such that W1 ∈ U1 implies that the event
ΩU = {Wn ∈ U , for all n ≥ 1} has probability at least 1 − δ. Moreover, for any

η ∈

{
(max{2 − 2θ, θ}, 1), if λ = 0,

(2 − 2θ, 1), if λ > 0

it holds that (V ∗
λ (µ) − V

πWn

λ (µ))1Ω ∈ o
(
nη−1)

almost surely and in expectation.

In words: If the (regularized) stochastic policy gradient algorithm is started close enough to the optimum
a nearly o(n− 1

3 ) (o(n−1) respectively) almost sure rate of convergence can be obtained by choosing θ = 2
3

(θ close to 1 respectively) This is in contrast to o(n−1) (linear convergence) known in (regularized) policy
gradient with access to exact gradients.
Remark 7.3. Note that r and c in Lemma 7.1 can be explicitly chosen (see Remark E.1). Hence, one can
choose the neighbourhoods U and U1 w.r.t. r as in Equation (39) and Lemma D.10 in Appendix D to find an
explicit neighbourhood U1 as condition for initialization.

Our convergence result in Corollary 7.2 extends the local convergence analysis of stochastic policy gradient
under entropy regularization from Ding et al. (2023). Like their work, our analysis builds on Mertikopoulos
et al. (2020). However, while Ding et al. (2023) require an increasing batch size sequence to ensure convergence
to the regularized optimum, we achieve local convergence for both the unregularized and entropy-regularized
settings without this requirement. For λ > 0, our method attains convergence arbitrarily close to o( 1

n ) that
matches the rate obtained by Ding et al. (2023) while avoiding the need to increase batch sizes. Finally, we
highlight that our local convergence holds almost surely on an event with high probability.
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A Auxiliary Convergence Theorems

In the following section, we provide two specific convergence theorems used to prove almost sure convergence
(Lemma A.2) as well as convergence in expectation (Lemma A.3). The former one is a direct consequence of
the well-known Robbins-Siegmund theorem, provided here for completeness.
Theorem A.1 (Theorem 1 in Robbins and Siegmund (1971)). Let (Ω, F , (Fn)n∈N,P) be a filtered probability
space, (Zn)n∈N, (An)n∈N, (Bn)n∈N and (Cn)n∈N be non-negative and adapted stochastic processes with

∞∑
n=1

An < ∞ and
∞∑

n=1
Bn < ∞

almost surely. Suppose that for each n ∈ N the recursion

E[Zn+1 | Fn] ≤ (1 + An)Zn + Bn − Cn

is satisfied, then (i) there exists an almost surely finite random variable Z∞ such that Zn → Z∞ almost surely
as n → ∞ and (ii)

∑∞
n=1 Cn < ∞ almost surely.

Lemma A.2. Let (Ω, F , (Fn)n∈N,P) be a filtered probability space, (Yn)n∈N, (an)n∈N, (bn)n∈N and (rn)n∈N
be non-negative and adapted stochastic processes with

∞∑
n=1

an = ∞,

∞∑
n=1

bn < ∞ and rn > 0

almost surely. Suppose that for each n ∈ N the recursion

E[rn+1Yn+1 | Fn] ≤ (1 − an)rnYn + bn

is satisfied, then we have rnYn → 0 almost surely as n → ∞.

Proof. We define Zn := rnYn, Bn := bn and Cn := anrnYn such that

E[Zn+1 | Fn] ≤ Zn − Cn + Bn

for n ∈ N. Using Lemma A.1 we observe that there exists Z∞ almost surely finite such that Zn = rnYn → Z∞
almost surely as n → ∞. Moreover, we obtain that

∞∑
n=1

Cn =
∞∑

n=1
anrnYn < ∞

almost surely, which yields that
lim inf
n→∞

rnYn = 0

almost surely, since
∑∞

n=1 an = ∞ almost surely. Since limit inferior and limit coincide for converging
sequences, the assertion follows:

Z∞ = lim
n→∞

rnYn = lim inf
n→∞

rnYn = 0

almost surely.

The following Lemma will be applied to prove convergence in expectation.
Lemma A.3. Let (wn)n∈N be a non-negative sequence, such that wn+1 ≤ (1 − an)wn + bn, where (an)n∈N
and (bn)n∈N are non-negative sequences satisfying

∞∑
n=1

an = ∞ and
∞∑

n=1
bn < ∞.

Then, limn→∞ wn = 0.
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Proof. W.l.o.g we assume that wn+1 = (1 − an)wn + bn, otherwise we could just increase an or decrease bn

which would have no effect on the summation tests. We obtain

−w1 ≤ wn − w1 =
n−1∑
k=1

(wk+1 − wk) =
n−1∑
k=1

bk −
n−1∑
k=1

wkak.

Since wn − w1 is bounded below and
∑∞

k=1 bk < ∞, we deduce that
∑n

k=1 wkak is bounded. Since all
summands are positive, the infinite sum converges. Thus, as a difference of two converging series also (wn)n∈N
converges. Finally, the convergence of

∑∞
k=1 wkak implies lim infn→∞ wn = 0 which, by the convergence of

(wn)n∈N, implies limn wn = lim infn wn = 0.

B Numerical experiment - Toy example

In the following numerical experiment, we aim to verify our theoretical finding. We have implemented the
same toy example similar to Fatkhullin et al. (2022) to test our theoretical findings. In our implementation,
we consider both SGD and SHB applied to the objective function fp(x) = |x|p, where x ∈ R, for various
choices of p ≥ 2. It is straightforward to verify that fp satisfies the global gradient domination with parameter
β(p) = p−1

p . It is noteworthy that for p = 2, the fp obviously satisfies the PL condition with β = 1
2 , whereas

for increasing p → ∞, we move towards β(p) → 1. We have used the step size schedule Θ(n− 2β(p)
4β(p)−1 ) discussed

in Table 1 and observed the almost sure convergence rates n− 1
4β(p)−1 as suggested by Theorem 4.1 and

Theorem 4.2. Note that our derived rates are arbitrarily close to the sharp upper bound known in expectation
Fatkhullin et al. (2022).

Figure 1: Pathwise error (fp(Xn))n=1,...,N of SGD and SHB for various choices of β ∈ {0.5, 0.67, 0.83, 0.92}.
For each setting we have simulated 100 runs of length , N = 105. The bold lines correspond to the average
error of SGD (red) and SHB (blue), and the black dash-dotted line corresponds to the theoretical rate n− 1

4β−1 .

Details of the implementation: Both algorithms have been implemented by hand using MATLAB. We
have initialized both SGD and SHB with the initial state X1 ∼ 1

2 U([1.5, 2.5]) + 1
2 U([−2.5, 1.5]) to force initials
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which are not close to the actual minimum x∗ = 0. The initial step sizes γ1(β) for both algorithms are chosen
as

γ1(0.5) = 0.2, γ1(0.67) = 0.13, γ1(0.83) = 0.004, γ1(0.92) = 10−6

through which we counteract the decreasing smoothness for β → 1. The momentum parameter for SHB is
fixed for all β as ν = 0.5. The exact gradients ∇fp are perturbed by independent additive noise following a
standard normal distribution N (0, 1).

C Proof of Lemma 3.1

In the following section, we present the proof of our super-martingale result.

Proof of Lemma 3.1. In the following, we treat both cases β = 1
2 and β ∈ ( 1

2 , 1] separately.
β = 1

2 : In this case, the inequality reduces to

E[Yn+1 | Fn] ≤ (1 + c1γ2
n − c2γn)Yn + c3γ2

n.

By the choice of γn, there exists some N > 0 and c̃1 > 0 such that c2γn − c1γ2
n ≥ c̃1γn for all n ≥ N . Hence,

for all n ≥ N
E[Yn+1 | Fn] ≤ (1 − c̃1γn)Yn + c3γ2

n

such that the claim follows by Liu and Yuan (2022, Lem. 1).

β ∈ ( 1
2 , 1]: The proof uses the elementary inequality

(n + 1)1−η ≤ n1−η + (1 − η)n−η, (17)

which was also applied and proved in Liu and Yuan (2022, Lem. 1). The aim is to apply the Robbins-Siegmund
implication, Lemma A.2, in order to derive the almost sure convergence rate. Let 1 ≤ q < 2 be arbitrary for
now. The key step of the proof is the following computation

E[Yn+1 | Fn] ≤ (1 + c1γ2
n)Yn − c2γnY 2β

n + c3γ2
n

= (1 + c1γ2
n)Yn − c2γq

nYn + c2γq
nYn − c2γnY 2β

n + c3γ2
n

= (1 + c1γ2
n − c2γq

n)Yn + c2γn

(
γq−1

n Yn − Y 2β
n

)
+ c3γ2

n.

(18)

Similar to the case β = 1
2 there exists some N > 0 and c̃1 > 0 such that c2γq

n − c1γ2
n ≥ c̃1γq

n for all n ≥ N .
Hence, for all n ≥ N we obtain the iterative inequality of the form

E[Yn+1 | Fn] ≤ (1 − c̃1γq
n)Yn + c2γn

(
γq−1

n Yn − Y 2β
n

)
+ c3γ2

n. (19)

The function x 7→ ax − bx2β takes it maximum at x̄ =
(

a
2bβ

) 1
2β−1 such that

γn(γq−1
n Yn − Y 2β

n ) ≤ γ
q+ q−1

2β−1
n

(2β)
1

2β−1
− γ

1+ (q−1)2β
2β−1

n

(2β)
2β

2β−1

= 1
(2β)

1
2β−1

γ
2qβ−1
2β−1

n − 1
(2β)

2β
2β−1

γ
2qβ−1
2β−1

n

= (2β)− 1
2β−1 (1 − 1

2β
)γ

2qβ−1
2β−1

n

(20)

holds almost surely. We define c̃2 = c2(2β)− 1
2β−1 (1 − 1

2β ) ∈ (0, ∞) for β ∈ ( 1
2 , 1) and proceed with

E[Yn+1 | Fn] ≤ (1 − c̃1γq
n)Yn + c̃2γ

2βq−1
2β−1

n + c3γ2
n. (21)
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Next, we apply the elementary inequality Equation (17) and choose q such that 1
2 < θ ≤ 1

q ≤ 1. Moreover by
the choice of γn, there exists some c4 > 0 such that c̃1γq

n ≥ c4
tqθ for all n ≥ N . It follows that for all n ≥ N

E[(n + 1)1−ηYn+1 | Fn]

≤ (n + 1)1−η(1 − c̃1γq
n)Yn + (n + 1)1−η c̃2γ

2βq−1
2β−1

n + (n + 1)1−ηc3γ2
n

≤ (n1−η + (1 − η)n−η)(1 − c4

nqθ
)Yn + (n + 1)1−η c̃2γ

2βq−1
2β−1

n + (n + 1)1−ηc3γ2
n

=
(

1 + 1 − η

n
− c4

nqθ
− c4(1 − η)

nqθ+1

)
n1−ηYn + (n + 1)1−η c̃2γ

2βq−1
2β−1

n + (n + 1)1−ηc3γ2
n.

We set c̃3 = max{c̃2, c3} such that for all n ≥ N

E[(n + 1)1−ηYn+1 | Fn]

≤
(

1 + 1 − η

n
− c4

nqθ
− c4(1 − η)

nqθ+1

)
n1−ηYn + c̃3(n + 1)1−η(γ

2βq−1
2β−1

n + γ2
n).

Observe that qθ ≤ 1 by condition θ ≤ 1
q . Hence, there exists c̃4 > 0 and Ñ > N for sufficiently large Ñ ≥ N

such that for all n ≥ Ñ we have

E[(n + 1)1−ηYn+1 | Fn] ≤ (1 − c̃4
1

nqθ
)n1−ηYn + c3(n + 1)1−η(γ

2βq−1
2β−1

n + γ2
n) (22)

In order to apply Robbins-Siegmund, more precisely Lemma A.2, we are going to verify the following three
sufficient conditions:

∞∑
n=Ñ

1
nqθ

= ∞, (23)

∞∑
n=Ñ

n1−η−2θ < ∞, (24)

∞∑
n=Ñ

n1−η− θ(2βq−1)
2β−1 < ∞. (25)

Then, Yn ∈ o
( 1

n1−η

)
almost surely.

The first condition Equation (23) is obviously satisfied, since we assume θ ≤ 1
q . For the second condition

Equation (24) we may choose θ > 1 − η
2 such that 1 − η − 2θ < −1. The third condition Equation (25)

gives 1 − η − θ(2βq−1)
2β−1 < −1 which leads to the condition θ > (2−η)(2β−1)

2βq−1 . Hence, all together we obtain the
sufficient condition

θ ∈
(

max
{

(2 − η)(2β − 1)
2βq − 1 , 1 − η

2

}
,

1
q

]
.

In the following, we consider the two cases separately that correspond to the maximum being either 1 − η
2 or

(2−η)(2β−1)
2βq−1 . The first case occurs precisely for 1

q ≤ 2β
4β−1 , the latter one for 1

q ≥ 2β
4β−1 .

Firstly, let 1
q ≤ 2β

4β−1 . In this situation the sufficient condition on θ simplifies to

θ ∈
(

1 − η

2 ,
1
q

]
.

The interval is non-empty for 1
q > 2−η

2 , which requires η ∈ ( 4β−2
4β−1 , 1).

Secondly, let 1
q ≥ 2β

4β−1 . In this situation the sufficient condition on θ simplifies to

θ ∈
(

(2 − η)(2β − 1)
2βq − 1 ,

1
q

]
,
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the interval is non-empty for 1
q < 2βη − 2β + 2 − η. Hence, 1

q ∈ ( 2β
4β−1 , 2βη − 2β + 2 − η) which requires the

condition η ∈ ( 4β−2
4β−1 , 1).

Either case yields sufficient conditions on θ and η (depending on the auxiliary variable q) under which
Yn ∈ o

( 1
n1−η

)
holds almost surely. We will now utilize the free variable q to prove the claim.

• Let θ ∈ ( 1
2 , 2β

4β−1 ): We set q = 4β−1
2β and use the first case. The assumption η > 2 − 2θ =

max{2 − 2θ, θ+2β−2
2β−1 } implies θ ∈

(
1 − η

2 , 1
q

]
. (Note that η > 4β−2

4β−1 is automatically fulfilled by
2 − 2θ > 4β−2

4β−1 for this choice of θ.)

• Let θ ∈ [ 2β
4β−1 , 1): By assumption we have η > θ+2β−2

2β−1 = max{2 − 2θ, θ+2β−2
2β−1 }. We choose some

1
q ∈ (θ, 2βη − 2β + 2 − η) and use the second case. (Note that η > 4β−2

4β−1 again is automatically
fulfilled by θ+2β−2

2β−1 > 4β−2
4β−1 for this choice of θ.)

All in all we have proved that θ ∈ ( 1
2 , 2) implies Yn ∈ o

( 1
n1−η

)
almost surely for all η ∈ (max{2 −

2θ, θ+2β−2
2β−1 }, 1).

D Proofs of Section 5

In the following section, we present the proofs of Section 5.

D.1 Proof of Theorem 5.1

Suppose that the assumptions of Theorem 5.1 hold throughout this section. In contrast to the global gradient
domination analysis we may assume w.l.o.g. the uniform second moment bounds, i.e. A = B = 0, instead
of the more general Equation (ABC) condition. Choosing A, B > 0 would imply the bounded variance
assumption of the gradient estimator. Note therefore, that the first term A(f(x) − f(x∗)) and the second
term B∥∇f(x)∥2 are both locally bounded by the local Lipschitz assumptions on f and ∇f .

Note that every isolated local minimum {x∗} is a special case of an isolated compact connected set of local
minima. In this case it holds that β = βx∗ . If X ∗ contains more then one point, we can unify the gradient
domination property in a neighbourhood of X ∗ due to compactness. The set X ∗ has to be connected to
assure that all local minima are on the same level l.

Recall, the outline of the proof is structured as follows:

• First, we unify the gradient domination property around the set of local minima X ∗ and obtain a
radius r such that the unified gradient domination property is fulfilled in all open balls with radius r
around x∗ ∈ X ∗ (Lemma D.1).

• Based on this we construct sets U , U1 ⊆ Rd and the events Ωn ∈ Ω (see Equation (26), Equation (27)
and Equation (28)), such that ΩU =

⋂
n Ωn occurs with high probability. To be precise, U1 and U

are neighborhoods of X ∗ constructed such that the gradient domination property holds within this
region, and when starting in U1 the gradient trajectory does remain in U for all gradient steps with
high probability. Then, Ωn describes the event that Xk ∈ U for all k ≤ n.

• All following Lemmata before the proof of Theorem 5.1 are devoted to show that P(Ωn) ≥ 1 − δ for
all n ∈ N. This then proves Claim (i) of the Theorem. Claim (ii) and (iii) will be shown directly in
the proof of Theorem 5.1 at the end of this subsection.

• In order to show P(Ωn) ≥ 1−δ we construct set Cn and En defined in Equation (29) and Equation (34)
such that En ∩ Cn ⊂ Ωn+1 (Lemma D.6) while Lemma D.5 is used to prove this claim.
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• The sets En are such that f(Xn) remains close to f∗. We exploit the unified gradient domination
property to construct the sets En (Lemma D.4) and derive a recursive inequality in Lemma D.6 c) to
prove that this event occurs with high probability (Lemma D.7).

• The sets Cn are such that Xn+1 remains close to Xn and we exploit the finite variance assumption
to show that these events occur with high probability (Lemma D.8).

We denote by
B̃r(x) = {y ∈ Rd : ||x − y|| < r}

the open ball with radius r > 0 around x ∈ Rd and by

Br(x) = {y ∈ Rd : ||x − y|| ≤ r}

the closed ball with radius r > 0 around x ∈ Rd.

In the following Lemma we unify the gradient domination property around the set of local minima X ∗ ⊂ Rd.
Lemma D.1. . There exists r > 0, β ∈ [ 1

2 , 1] and c > 0, such that for all x ∈
⋃

x∗∈X ∗ B̃r(x∗) it holds that

f(x) > l for x /∈ X ∗ and ||∇f(x)|| ≥ c(f(x) − l)β .

Proof. By the local gradient domination property, for every x∗ ∈ X ∗ there exist rx∗ > 0, βx∗ ∈ [ 1
2 , 1] and

cx∗ > 0 such that
||∇f(x)|| ≥ cx∗ |f(x) − l|βx∗ , ∀x ∈ Brx∗ (x∗).

Moreover, w.l.o.g we can assume that f(x) > l for all x ∈ Brx∗ (x∗) \ X ∗, as X ∗ is an isolated compact
connected set of local minima (otherwise choose rx∗ small enough).

By the compactness of X ∗ we can find a finite subset Y∗ ⊂ X ∗, such that

Ũ :=
⋃

y∗∈Y∗

B̃ry∗ (y∗) ⊃ X ∗.

Then, we define β = maxy∗∈Y∗ βy∗ and c = miny∗∈Y∗ cy∗ . For any x ∈ Ũ there exits y∗ ∈ Y∗ such that

||∇f(x)|| ≥ cy∗(f(x) − l)βy∗ ≥ c(f(x) − l)β .

Thus, there exists an open neighbourhood Ũ of X ∗ and β ∈ [ 1
2 , 1], c > 0, such that for all x ∈ Ũ it holds that

f(x) > l for x /∈ X ∗ and ||∇f(x)|| ≥ c(f(x) − l)β .

As Ũ is open by definition and X ∗ ⊂ Ũ , we can find a radius r > 0, such that
⋃

x∗∈X ∗ B̃r(x∗) ⊆ Ũ . This
proves the claim.

Remark D.2. It is noteworthy that the unified gradient domination property obtained in the previous Lemma
does not require an absolute value, as f(x) ≥ l for all x ∈

⋃
x∗∈X ∗ B̃r(x∗). This is crucial to obtain the

recursive inequalities in Lemma D.4 and we will exploit this also in the proof of Theorem 5.1 to obtain the
convergence rates.

In the following let r > 0, c > 0 and β ∈ [ 1
2 , 1] chosen as in the previous Lemma, such that the unified

gradient domination property holds for all x ∈
⋃

x∗∈X ∗ B̃r(x∗). Further define

s = inf
{

f(x) − l : x ∈
⋃

x∗∈X ∗

B 3r
4

(x∗) \
⋃

x∗∈X ∗

B̃ r
2
(x∗)

}
.

Lemma D.3. It holds that s > 0.
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Proof. If s = 0, then there exists a sequence (xn) ∈
⋃

x∗∈X ∗ B 3r
4

(x∗) \
⋃

x∗∈X ∗ B̃ r
2
(x∗) with f(xn) → l for

n → ∞. By definition of the set and compactness (boundedness) of X ∗, the sequence xn is bounded:

||xn|| ≤ 3r
4 + sup

x∗∈X ∗
||x∗|| < ∞.

Hence, there is a convergent sub-sequence (xnk
) with xnk

→ x for k → ∞ and by continuity of f it holds that
f(x) = l. Further, it holds for all x∗ ∈ X ∗ that ||xn − x∗|| ≥ r

2 for all n ∈ N such that infx∗∈X ∗ ||x − x∗|| ≥ r
2 .

On the other hand, by construction we have that x ∈
⋃

x∗∈X ∗ B 3r
4

(x∗) \
⋃

x∗∈X ∗ B̃ r
2 (x∗) ⊂

⋃
x∗∈X ∗ B 3r

4
(x∗) ⊂⋃

x∗∈X ∗ B̃r(x∗). And as f(y) > l for all y ∈ B̃r(x∗) \ X ∗ we deduce from f(x) = l that x ∈ X ∗. This is a
contradiction to infx∗∈X ∗ ||x − x∗|| ≥ r

2 .

We choose ϵ > 0, such that 2ϵ +
√

ϵ < s. We define the sets

U1 = {x ∈ Rd : inf
x∗∈X ∗

||x − x∗|| <
r
2 , f(x) − l ≤ ϵ

2} (26)

U = {x ∈ Rd : inf
x∗∈X ∗

||x − x∗|| <
r
2} (27)

which are subsets of Rd and the decreasing sequence of events

Ωn = {Xk ∈ U for all k ≤ n} (28)

Cn = {||Xk+1 − Xk|| ≤ r
4 for all k ≤ n}, (29)

and C0 = Ω, which are measurable sets in (Ω, F ,P).

In order to prove Theorem 5.1 we will show that Ωn has probability at least 1 − δ for all n ∈ N. To do this,
we construct another sequence of events (Ên) with Ên ⊂ Ωn which occur with probability at least 1 − δ for
any n ∈ N.

Therefore, we fix the notation Dn := f(Xn) − l, ξn+1 := −⟨∇f(Xn), Z(Xn, ζn+1)⟩ and 1A denotes the
indicator function for a measurable set A in (Ω, F ,P), i.e. 1A(ω) = 1 if ω ∈ A and 1A(ω) = 0 if ω /∈ A. We
prove the following (recursive) inequalities.
Lemma D.4. If β = 1

2 , then it holds that

Dn+11Ωn
≤ (1 − γnc2)Dn1Ωn

+ γnξn+11Ωn
+ Lγ2

n

2 1Ωn
∥Vn+1(Xn)∥2,

≤ D1

n∏
k=1

(1 − γkc2)1Ωn +
n∑

k=1

 n∏
j=k

(1 − γjc2)

 γkξk+11Ωn

+ L

2

n∑
k=1

γ2
k∥Vk+1(Xk)∥21Ωn

.

(30)

If β ∈ ( 1
2 , 1], for any 1 ≤ q < 2, it holds that

Dn+11Ωn ≤ (1 − γq
nc2)Dn1Ωn + (2β)− 1

2β−1 (1 − 1
2β

)c2γ
2βq−1
2β−1

n + γnξn+11Ωn
+ Lγ2

n

2 ∥Vn+1(Xn)∥21Ωn

≤ D1

n∏
k=1

(1 − γq
kc2) + c̃

n∑
k=1

γ
2βq−1
2β−1

k +
n∑

k=1

 n∏
j=k

(1 − γq
j c2)

 γkξk+11Ωn

+ L

2

n∑
k=1

γ2
k∥Vk+1(Xk)∥21Ωn ,

(31)

for c̃ = (2β)− 1
2β−1 (1 − 1

2β )c2.
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Proof. From L-smoothness we can deduce that

Dn+1 ≤ Dn − γn⟨∇f(Xn), Vn+1(Xn)⟩ + Lγ2
n

2 ∥Vn+1(Xn)∥2

= Dn − γn∥∇f(Xn)∥2 − γn⟨∇f(Xn), Z(Xn, ζn+1)⟩ + Lγ2
n

2 ∥Vn+1(Xn)∥2

= Dn − γn∥∇f(Xn)∥2 + γnξn+1 + Lγ2
n

2 ∥Vn+1(Xn)∥2

for Z(Xn, ζn+1) from Assumption 2.4 and ξn+1 = −⟨∇f(Xn), Z(Xn, ζn+1)⟩.

We separate the two cases of β:

β = 1
2 : Iterating this inequality and using 1Ωn+1 ≤ 1Ωn it follows that

Dn+11Ωn ≤ Dn1Ωn − γn1Ωn∥∇f(Xn)∥2 + γn1Ωnξn+1 + Lγ2
n

2 1Ωn∥Vn+1(Xn)∥2

≤ Dn1Ωn
− γnc2(f(Xn) − l)1Ωn

+ γn1Ωn
ξn+1 + Lγ2

n

2 1Ωn
∥Vn+1(Xn)∥2

= (1 − γnc2)Dn1Ωn
+ γnξn+11Ωn

+ Lγ2
n

2 1Ωn
∥Vn+1(Xn)∥2,

≤ D1

n∏
k=1

(1 − γkc2) +
n∑

k=1

 n∏
j=k

(1 − γjc2)

 γkξk+11Ωn

+ L

2

n∑
k=1

 n∏
j=k

(1 − γjc2)

 γ2
k∥Vk+1(Xk)∥21Ωn

≤ D1

n∏
k=1

(1 − γkc2) +
n∑

k=1

 n∏
j=k

(1 − γjc2)

 γkξk+11Ωn

+ L

2

n∑
k=1

γ2
k∥Vk+1(Xk)∥21Ωn

,

(32)

where we used that the unified gradient domination property holds for all Xk, k ≤ n on the event Ωn.
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β ∈ ( 1
2 , 1]: Similarly, the unified gradient domination property yields the claimed inequality for any 1 ≤ q < 2:

Dn+11Ωn
≤ Dn1Ωn

− γn1Ωn
∥∇f(Xn)∥2 + γn1Ωn

ξn+1 + Lγ2
n

2 1Ωn
∥Vn+1(Xn)∥2

≤ Dn1Ωn − γnc2(f(Xn) − l)2β1Ωn + γn1Ωnξn+1 + Lγ2
n

2 1Ωn∥Vn+1(Xn)∥2

= Dn1Ωn
− γnc2D2β

n 1Ωn
+ γnξn+11Ωn

+ Lγ2
n

2 1Ωn
∥Vn+1(Xn)∥2,

= (1 − γq
nc2)Dn1Ωn

+ γnc2(γ1−q
n Dn − D2β

n )1Ωn
+ γnξn+11Ωn

+ Lγ2
n

2 ∥Vn+1(Xn)∥21Ωn

≤ (1 − γq
nc2)Dn1Ωn + (2β)− 1

2β−1 (1 − 1
2β

)c2γ
2βq−1
2β−1

n + γnξn+11Ωn + Lγ2
n

2 ∥Vn+1(Xn)∥21Ωn

≤ D1

n∏
k=1

(1 − γq
kc2)1Ωn

+ c̃

n∑
k=1

 n∏
j=k

(1 − γq
j c2)

 γ
2βq−1
2β−1

k

+
n∑

k=1

 n∏
j=k

(1 − γq
j c2)

 γkξk+11Ωn
+ L

2

n∑
k=1

 n∏
j=k

(1 − γq
j c2)

 γ2
k∥Vk+1(Xk)∥21Ωn

≤ D1

n∏
k=1

(1 − γq
kc2)1Ωn

+ c̃

n∑
k=1

γ
2βq−1
2β−1

k +
n∑

k=1

 n∏
j=k

(1 − γq
j c2)

 γkξk+11Ωn

+ L

2

n∑
k=1

γ2
k∥Vk+1(Xk)∥21Ωn ,

(33)

for c̃ = (2β)− 1
2β−1 (1 − 1

2β )c2 from the function trick Equation (20) which we applied in the forth inequality.
We also used that the unified gradient domination property holds for all Xk, k ≤ n on the event Ωn .

For β ∈ ( 1
2 , 1] we know from the proof of Lemma 3.1 that we can choose the auxiliary parameter q from

the previous lemma in such a way, that
∑∞

n=1 n1−ηγ
2βq−1
2β−1

n is convergent for all η ∈ (max{2 − 2θ, θ+2β−2
2β−1 }, 1)

(Condition (iii) to apply Lemma A.2). As η < 1, it follows that
∑∞

n=1 γ
2βq−1
2β−1

n < ∞ holds true for all these
choices of q. Now define

Mn =
n∑

k=1

 n∏
j=k

(1 − γjc2)

 γkξk+11Ωk
, M (q)

n =
n∑

k=1

 n∏
j=k

(1 − γq
j c2)

 γkξk+11Ωk

and Sn = L

2

n∑
k=1

γ2
k∥Vk+1(Xk)∥21Ωk

.

Then, (Mn) and (M (q)
n ) are (Fn+1)-martingales with zero mean and (Sn) is a (Fn+1)-sub-martingale by

Assumption 2.4. Note that by the choice of γn we have that
∑

n γ2
n < ∞ and hence E[Sn] < ∞ for all n ∈ N.

Next, define Rn = M2
n + Sn and Rn = (M (q)

n )2 + Sn respectively (with some abuse of notation), for every
n ∈ N. Moreover, let

En = {Rk < ϵ for all k ≤ n}. (34)
which is an Fn+1-measurable event on (Ω, F ,P). We define R0 = 0 such that E0 = Ω.

Now let Ên = En ∩ Cn, then we will first show, that Ên fulfills the property Ên ⊂ Ωn+1 for all n ∈ N in
Lemma D.6 and then that Ên occurs with probability at least 1 − δ in Lemma D.8.

To prove that Ên ⊂ Ωn+1 we need one more auxiliary result.
Lemma D.5. Suppose x, y ∈ Rd such that
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1. infx∗∈X ∗ ||x − x∗|| < r
2 ,

2. f(y) − l < s,

3. ||x − y|| ≤ r
4 .

Then it holds that infx∗∈X ∗ ||y − x∗|| < r
2 .

Proof. By triangle inequality we have that infx∗∈X ∗ ||y−x∗|| ≤ 3r
4 , i.e there exists x∗ ∈ X ∗ such that ||y−x∗|| ≤

3r
4 . Suppose now, that infx∗∈X ∗ ||y − x∗|| ≥ r

2 , this means that y ∈
⋃

x∗∈X ∗ B 3r
4

(x∗) \
⋃

x∗∈X ∗ B̃ r
2
(x∗). By

the definition of

s = inf
{

f(z) − l : z ∈
⋃

x∗∈X ∗

B 3r
4

(x∗) \
⋃

x∗∈X ∗

B̃ r
2
(x∗)

}

this contradicts the second assumption f(y) − l < s.

We deduce the following relations on the constructed sets:

Lemma D.6. For β ∈ ( 1
2 , 1] let γn ≤ γ1 be sufficiently small such that

∑∞
n=1 γ

2βq−1
2β−1

n < ϵ
2c̃ , and for β = 1

2 let
γ1 > 0 be arbitrary. Furthermore, assume that the initial X1 ∈ U1 almost surely. Then,

a) En+1 ⊂ En, Ên+1 ⊂ Ên and Ωn+1 ⊂ Ωn

b) Ên ⊂ Ωn+1

c) Define the events Ẽn = En−1 \ En = En−1 ∪ {Rn ≥ ϵ}. Then, for R̃n = Rn1En−1 , there exists a
C̃ > 0 such that

E[R̃n] ≤ E[R̃n−1] + γ2
n[G2C2 + G2 + C] − ϵP(Ẽn−1).

Proof. a) Follows by definition of the events.

b) Note that Ê0 = Ω = Ω1 because

X1 ∈ U1 = {x : inf
x∗∈X ∗

||x − x∗|| <
r
2 , f(x) − l ≤ ϵ

2} ⊂ {x : inf
x∗∈X ∗

||x − x∗|| <
r
2} = Ω1

almost surely. We prove the assertion by induction. Let ω ∈ Ên. Since Ên ⊂ Ên−1 ⊂ Ωn by induction
assumption, we have ω ∈ Ωn and thus ω ∈ Ωk for all k ≤ n. We will apply Lemma D.5 with x = Xn(ω)
and y = Xn+1(ω). By definition it holds that ω ∈ Ên implies condition 3. and ω ∈ Ωn implies condition
1. of Lemma D.5. It remains to show condition 2., then it follows that infx∗∈X ∗ ||Xn+1(ω) − x∗|| < r

2 , i.e.
Xn+1(ω) ∈ U and by ω ∈ Ωn we deduce ω ∈ Ωn+1.

To Prove condition 2. we separate both cases for β:
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β = 1
2 : The inequality Equation (30) and the induction hypothesis yield

Dn+1(ω) = Dn+1(ω)1Ωn(ω)

≤ D1(ω)
n∏

k=1
(1 − γkc2) +

n∑
k=1

 n∏
j=k

(1 − γjc2)

 γkξk+1(ω)1Ωn
(ω)

+ L

2

n∑
k=1

γ2
k∥Vk+1(Xk(ω))∥21Ωn(ω)

= D1(ω)
n∏

k=1
(1 − γkc2) +

n∑
k=1

 n∏
j=k

(1 − γjc2)

 γkξk+1(ω)1Ωk
(ω)

+ L

2

n∑
k=1

γ2
k∥Vk+1(Xk(ω))∥21Ωk

(ω)

≤ ϵ

2 +
√

Rn(ω) + Rn(ω)

≤ 2ϵ +
√

ϵ < s,

where the equation in the third line is due to ω ∈ Ωk for all k ≤ n by induction.

β ∈ ( 1
2 , 1]: Similarly, we obtain from Equation (42)

Dn+1(ω) = Dn+1(ω)1Ωn(ω)

≤ D1(ω)1Ωn(ω)
n∏

k=1
(1 − γq

kc2) + c̃

n∑
k=1

γ
2βq−1
2β−1

k +
n∑

k=1

 n∏
j=k

(1 − γq
j c2)

 γkξk+1(ω)1Ωn(ω)

+ L

2

n∑
k=1

γ2
k∥Vk+1(Xk(ω))∥21Ωn

(ω)

= D1(ω)
n∏

k=1
(1 − γq

kc) +
n∑

k=1

 n∏
j=k

(1 − γjc2)

 γkξk+1(ω)1Ωk
(ω)

+ L

2

n∑
k=1

γ2
k∥Vk+1(Xk(ω))∥21Ωk

(ω)

≤ ϵ

2 + ϵ

2 +
√

Rn(ω) + Rn(ω)

≤ 2ϵ +
√

ϵ < s.

We used in both cases that that
∏n

k=1(1 − γq
kc) ≤ 1 and the choice of ϵ such that 2ϵ +

√
ϵ < s. This proves

that condition 2. in Lemma D.5 is also satisfied which concludes the induction.

c) Without loss of generality we consider the case β = 1/2. The computations for β ∈ (1/2, 1] follow in line by
replacing Mn with M

(q)
n . By definition it holds that En = En−1 \ (En−1 \ En) = En−1 \ Ẽn. Then we have

R̃n = Rn1En−1

= Rn−11En−1 + (Rn − Rn−1)1En−1

= Rn−11En−2 − Rn−11Ẽn−1
+ (Rn − Rn−1)1En−1

= R̃n−1 − Rn−11Ẽn−1
+ (Rn − Rn−1)1En−1

and for the last term

Rn − Rn−1 = M2
n − M2

n−1 + Sn − Sn−1

= γ2
n(1 − γnc2)2ξ2

n+11Ωn
+ 2γn(1 − γnc)ξn+11Ωn

Mn−1 + γ2
n

L

2 ∥Vn+1(Xn)∥21Ωn
.
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We treat each of the summands on the RHS seperately. It follows from the G-Lipschitz continuity and
bounded variance assumption in Theorem 5.1, that

E[ξ2
n+11Ωn

] = E[⟨∇f(Xn), Vn+1(Xn) − ∇f(Xn)⟩21Ωn
]

≤ E[∥∇f(Xn)∥2(∥Vn+1(Xn)∥2 + 1)1Ωn ] ≤ G2(C2 + 1),
E[ξn+1(1 − γnc)Mn−11Ωn ] = E[E[ξn+1|Fn]Mn−11Ωn ] = 0,

E[∥Vn+1(Xn)∥21Ωn
] ≤ C. (35)

For the term Rn−11Ẽn−1
we have

E[Rn−11Ẽn−1
] ≥ ϵP(Ẽn−1).

Using (1 − γnc) < 1 and putting all together we obtain the claim

E[R̃n] ≤ E[R̃n−1] + γ2
n[G2C2 + G2 + C] − ϵP(Ẽn−1).

Lemma D.7. Let δ > 0 be a tolerance level and γn ≤ γ1 be sufficiently small such that
∑∞

n=1 γ2
n <

δϵ
2(G2C2+G2+C) and the condition in Lemma D.6 is fulfilled. Then, we have

P(En) ≥ 1 − δ

2 .

Proof. The proof is along the lines of the proof of Proposition D2 in Mertikopoulos et al. (2020). For
completeness we repeat the arguments. First, observe that

P(Ẽn−1) = P(En−1 \ En) = P(En−1 ∩ {Rn ≥ ϵ}) = E[1En−11{Rn>ϵ}] ≤ E[1En−1

Rn

ϵ
] = E[R̃n]

ϵ
.

On the other hand it follows from Lemma D.10 that

ϵP(Ẽn) ≤ E[R̃n] ≤ E[R̃0] + [G2C2 + G2 + C]
n∑

k=1
γ2

k − ϵ

n∑
k=0

P(Ẽk−1). (36)

Rearranging everything yields
n∑

k=0
P(Ẽk) ≤ [G2C2 + G2 + C]Γ

ϵ

with Γ =
∑∞

n=1 γ2
n. By the assumption on the step size [G2C2+G2+C]Γ

ϵ < δ
2 and moreover since the events Ẽn

are disjoint we obtain

P(
n⋃

k=0
Ẽk) =

n∑
k=0

P(Ẽk) ≤ δ

2 (37)

implying that

P(En) = P(
n⋂

k=0
Ẽc

k) ≥ 1 − δ

2 . (38)

Lemma D.8. Let δ > 0 be a tolerance level and γn ≤ γ1 be sufficiently small such that the condition in
Lemma D.6 and Lemma D.7 are fulfilled. Moreover, we suppose γ1 small enough such that 4C

r2

∑n
k=1 γ2

k ≤ δ
2 .

Then, we have

P(Ên) ≥ 1 − δ.
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Proof. By Lemma D.8, we have P(En) ≥ 1 − δ
2 . Moreover, by the additional step size assumption and

Markov’s inequality we deduce that

P(Cn) = P(∀k ≤ n : ||Xk+1 − Xk|| ≤ r
2)

≥ 1 −
n∑

k=1
P(||Xk+1 − Xk|| >

r
2)

= 1 −
n∑

k=1
P(||Vk+1(Xk)|| >

r
2γk

)

≥ 1 −
n∑

k=1
E[||Vk+1(Xk)||2] 4γ2

k

r2

≥ 1 − 4C

r2

n∑
k=1

γ2
k

≥ 1 − δ

2 .

Together we obtain that P(Ên) = 1 − P(Êc
n) ≥ 1 − (P(Ec

n) + P(Cc
n)) ≥ 1 − δ.

Finally, we are ready to prove the main result in the local setting for the set of local minima X ∗.

Proof of Theorem 5.1. (i): Recall the definitions of U1 and U above. Then it holds that

ΩU =
∞⋂

n=1
Ωn.

Hence, using Lemma D.8 we obtain

P(ΩU ) = inf
n

P(Ωn) ≥ inf
n

P(Ên) ≥ 1 − δ.

(ii): We define D̃n := Dn1Ωn
and prove that D̃n ∈ o(1/n1−η), then the claim follows since 1ΩU ≤ 1Ωn

almost
surely.

From the proof of Lemma D.4 and Lemma D.6 we have

D̃n+1 ≤ D̃n − γncD̃2β
n + γnξn+11Ωn

+ Lγ2
n

2 ∥Vn∥21Ωn
.

Hence, taking the conditional expectation gives

E[D̃n+1|Fn] ≤ D̃n − γncD̃2β
n + γnE[ξn+1|Fn]1Ωn

+ Lγ2
n

2 E[∥Vn+1(Xn)∥2|Fn]1Ωn

≤ D̃n − γncD̃2β
n + LC

2 γ2
n,

where we have used that Dn and 1Ωn are Fn-measurable and E[∥Vn+1(Xn)∥2|Fn] ≤ C from Equation (ABC)
with A = B = 0. By our step size choice we can apply Lemma 3.1 to obtain Claim (ii).

(iii): In the following, we again separate between the two cases of β.

β = 1
2 : We have from Lemma D.4 Equation (30) and Lemma D.6 that

D̃n+1 ≤ (1 − γnc2)D̃n + γnξn+11Ωn
+ Lγ2

n

2 ∥Vn+1(Xn)∥21Ωn
.
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Taking expectations and multiplying by (n + 1)1−η leads to

E[D̃n+1(n + 1)1−η]

≤ (n + 1)1−η(1 − γnc2)E[D̃n] + (n + 1)1−η LCγ2
n

2

≤
(
n1−η + (1 − η)n−η

)
(1 − γnc2)E[D̃n] + (n + 1)1−η LCγ2

n

2
=

(
n1−η + (1 − η)n−η − n1−ηγnc2 − (1 − η)n−ηγnc2

x∗

)
E[D̃n] + (n + 1)1−ηγ2

n

LC

2

=
(

1 + 1 − η

n
− γnc2 − (1 − η)γnc2

n

)
n1−ηE[D̃n] + (n + 1)1−ηγ2

n

LC

2 ,

where we used Equation (35) in the first inequality. By our choice of γn there exists c̃ > 0 and N > 0 such
that γnc2 − 1−η

n + (1−η)γnc2

n ≥ c̃γn for all n ≥ N . Thus, for all n ≥ N

wn+1 ≤ (1 − c̃γn) wn + (n + 1)1−ηγ2
n

LC

2 ,

where wn = E[n1−ηD̃n]. Define an = c̃γn and bn = (n + 1)1−ηγ2
n

LC
2 . Since γn = Θ( 1

nθ ), we have∑
n an = c̃

∑
n γn = ∞ and ∑

n

bn = LC

2
∑

n

(n + 1)1−ηγ2
n < ∞,

by Equation (24) in Lemma 3.1 Hence, we apply Lemma A.3 to prove that limn→∞ wn = 0. By the definition
of wn we have verified that E[(f(Xn) − l)1ΩU ] ≤ E[D̃n] ∈ o( 1

n1−η )

β ∈ ( 1
2 , 1]: From Lemma D.4 Equation (31) and Lemma D.6 we have

D̃n+1 ≤ (1 − γq
nc2)D̃n + c̃γ

2βq−1
2β−1

n + γnξn+11Ωn
+ Lγ2

n

2 ∥Vn+1(Xn)∥21Ωn
,

for c̃ = (2β)− 1
2β−1 (1 − 1

2β )c2. Next we multiply with (n + 1)1−η and use Equation (17) to obtain

E[D̃n+1(n + 1)1−η]

≤ (n + 1)1−η(1 − γq
nc2)E[D̃n] + (n + 1)1−η c̃γ

2βq−1
2β−1

n + (n + 1)1−η LC

2 γ2
n

≤
(
n1−η + (1 − η)n−η

) (
1 − γq

nc2)
E[D̃n] + c1(n + 1)1−η(γ

2βq−1
2β−1

n + γ2
n)

=
(
n1−η + (1 − η)n−η − γq

nc2n1−η − (1 − η)γq
nc2n−η

)
E[D̃n]

+ c1(n + 1)1−η(γ
2βq−1
2β−1

n + γ2
n)

= E[D̃nn1−η]
(

1 + 1 − η

n
− γq

nc2 − (1 − η)γq
nc2

n

)
+ c1(n + 1)1−η(γ

2βq−1
2β−1

n + γ2
n),

for some c1 > 0. By our choice of γn and as q ≥ 1, there exists a c2 > 0 and N > 0 such that γq
nc2 − 1−η

n +
(1−η)γq

nc2

n ≥ c2γq
n for all n ≥ N . Thus, for n ≥ N

E[D̃n+1(n + 1)1−η] ≤ E[D̃nn1−η] (1 − c2γq
n) + c1(n + 1)1−η(γ

2βq−1
2β−1

n + γ2
n).

Define wn = E[D̃nn1−η], an = c2γq
n and bn = c1(n + 1)1−η(γ

2βq−1
2β−1

n + γ2
n). We will again apply Lemma A.3.

By the step size choice γn = Θ( 1
nθ ) we have

∑
n an = c2

∑
n γq

n = ∞, because q ≤ 1
θ . Further,∑

n

bn = c1
∑

n

(n + 1)1−η(γ
2βq−1
2β−1

n + γ2
n) < ∞,
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because we choose the auxiliary parameter q as in the proof of Lemma 3.1 where we showed in Equation (24)
and Equation (25) that

∞∑
n=N

n1−η−2θ < ∞ and
∞∑

n=N

n1−η− θ(2βq−1)
2β−1 < ∞

All together we deduce that wn vanishes at infinity. Again, by the definition of wn we have that E[(f(Xn) −
l)1ΩU ] ≤ E[D̃n] ∈ o( 1

n1−η )

D.2 Proof of Theorem 5.2

Suppose throughout this section that the assumptions in Theorem 5.2 are satisfied.

The proof will be similar to the previous section. Instead of assuring that (Xn) remains close to the set
where we could guarantee the unified gradient domination property, it is now sufficient that f(Xn) remains
close to f∗ by the different definition of gradient domination definition in f∗. This will simplify the proof.
Moreover, we may again assume w.l.o.g. the uniform second moment bounds, i.e. A = B = 0, instead of the
more general Equation (ABC) condition by the same argument as above but on the level sets.

Recall the notation
B∗

r = {x ∈ Rd : f(x) − f∗ ≤ r}.

and let r > 0 be the radius of the gradient domination property in f∗, then there exists ϵ > 0, such that
2ϵ +

√
ϵ < r, i.e

U := B∗
2ϵ+

√
ϵ ⊂ B∗

r . (39)
Moreover, we define the set

U1 := B∗
ϵ
2

(40)

and the measurable subsets
Ωn = {Xk ∈ U , for all k ≤ n}

in (Ω, F ,P).

The proof of Theorem 5.2 is again based on a series of auxiliary lemmas. The goal of these is to prove that
with high probability we do not leave the gradient dominated region, i.e. Claim (i) in Theorem 5.2.

In the following, we fix the notation Dn := f(Xn) − f∗ and D̃n := Dn1Ωn , ξn+1 := −⟨∇f(Xn), Z(Xn, ζn+1)⟩
and obtain the parallel result to Lemma D.4.
Lemma D.9. If β = 1

2 , it holds that

Dn+11Ωn
≤ (1 − γnc2)Dn1Ωn

+ γnξn+11Ωn
+ Lγ2

n

2 1Ωn
∥Vn+1(Xn)∥2,

≤ D1

n∏
k=1

(1 − γkc2)1Ωn +
n∑

k=1

 n∏
j=k

(1 − γjc2)

 γkξk+11Ωn

+ L

2

n∑
k=1

γ2
k∥Vk+1(Xk)∥21Ωn

.

(41)

If β ∈ ( 1
2 , 1], for any 1 ≤ q ≤ 2, it holds that

Dn+11Ωn ≤ (1 − γq
nc2)Dn1Ωn + (2β)− 1

2β−1 (1 − 1
2β

)c2γ
2βq−1
2β−1

n + γnξn1Ωn + Lγ2
n

2 ∥Vn+1(Xn)∥2

≤ D1

n∏
k=1

(1 − γq
kc2)1Ωn

+ c̃

n∑
k=1

γ
2βq−1
2β−1

k +
n∑

k=1

 n∏
j=k

(1 − γq
j c2)

 γkξk+11Ωn

+ L

2

n∑
k=1

γ2
k∥Vk+1(Xk)∥21Ωn

,

(42)
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for c̃ = (2β)− 1
2β−1 (1 − 1

2β )c2.

Proof. The proof follows line for line as in Lemma D.4 by replacing l with f∗ and taking the different
definition of D̃n and Ωn into account.

We continue as in the previous section:
For β > 1

2 we know from the proof of Lemma 3.1 that we can choose the auxiliary parameter q from the

previous lemma in such a way, that
∑∞

n=1 n1−ηγ
2βq−1
2β−1

n is convergent for all η ∈ (max{2 − 2θ, θ+2β−2
2β−1 }, 1)

(Condition (iii) to apply Lemma A.2). As η < 1, it follows that
∑∞

n=1 γ
2βq−1
2β−1

n < ∞ holds true for all these
choices of q. Now define

Mn =
n∑

k=1

 n∏
j=k

(1 − γjc2)

 γkξk+11Ωk
, M (q)

n =
n∑

k=1

 n∏
j=k

(1 − γq
j c2)

 γkξk+11Ωk

and Sn = L

2

n∑
k=1

γ2
k∥Vk+1(Xk)∥21Ωk

.

Then, (Mn)n∈N and (M (q)
n ) are (Fn+1)-martingales with zero mean and (Sn)n∈N is a (Fn+1)-sub-martingale

by Assumption 2.4. Note that by the choice of γn we have
∑

n γ2
n < ∞ and hence E[Sn] < ∞ for all n ∈ N.

Next, define Rn = M2
n + Sn and Rn = (M (q)

n )2 + Sn respectively (with some abuse of notation) for every
n ∈ N. Moreover, let

En = {Rk < ϵ for all k ≤ n}.

which is a Fn+1-measurable event on (Ω, F ,P). We define R0 = 0 such that E0 = Ω.

With these definitions, we can directly prove a parallel result to Lemma D.6 without the auxiliary result in
Lemma D.5.

Lemma D.10. For β ∈ ( 1
2 , 1] let γn ≤ γ1 be sufficiently small such that

∑∞
n=1 γ

2βq−1
2β−1

n < ϵ
2c̃ , and for β = 1

2
let γ1 > 0 be arbitrary. Furthermore, assume that the initial X1 ∈ U1 = {x : f(x) − f(x∗) ≤ ϵ

2 } almost surely.
Then,

a) En+1 ⊂ En and Ωn+1 ⊂ Ωn

b) En ⊂ Ωn+1

c) Define the events Ẽn = En−1 \ En = En−1 ∪ {Rn ≥ ϵ}. Then, for R̃n = Rn1En−1 , there exists a
C̃ > 0 such that

E[R̃n] ≤ E[R̃n−1] + γ2
n[G2C2 + G2 + C] − ϵP(Ẽn−1).

Proof. a) Follows by definition.

b) Note that E0 = Ω = Ω1 because X1 ∈ U1 = Ω1 almost surely. We prove the claim by induction. Let
ω ∈ En. Since En ⊂ En−1 ⊂ Ωn by induction assumption, we have ω ∈ Ωn and thus ω ∈ Ωk for all k ≤ n. It
remains to show that Xn+1(ω) ∈ U to prove that ω ∈ Ωn+1. We separate both cases for β:
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β = 1
2 : The inequality Equation (41) and the induction hypothesis yield

Dn+1(ω) ≤ D1(ω)
n∏

k=1
(1 − γkc) +

n∑
k=1

 n∏
j=k

(1 − γjc2)

 γkξk+1(ω) + L

2

n∑
k=1

γ2
k∥Vk+1(Xk(ω))∥2

= D1(ω)
n∏

k=1
(1 − γkc) +

n∑
k=1

 n∏
j=k

(1 − γjc2)

 γkξk+1(ω)1Ωk
(ω)

+ L

2

n∑
k=1

γ2
k∥Vk+1(Xk(ω))∥21Ωk

(ω)

≤ ϵ

2 +
√

Rn(ω) + Rn(ω)

≤ 2ϵ +
√

ϵ.

Hence, Xn+1(ω) ∈ U by definition of U .

β ∈ ( 1
2 , 1]: Similarly, we obtain from Equation (42)

Dn+1(ω) ≤ D1(ω)
n∏

k=1
(1 − γq

kc) + c̃

n∑
k=1

γ
2βq−1
2β−1

k +
n∑

k=1

 n∏
j=k

(1 − γq
j c2)

 γkξk+1(ω)

+ L

2

n∑
k=0

γ2
k∥Vk+1(Xk(ω))∥2

= D1(ω)
n∏

k=1
(1 − γq

kc) + c̃

n∑
k=1

γ
2βq−1
2β−1

k +
n∑

k=1

 n∏
j=k

(1 − γq
j c2)

 γkξk+1(ω)1Ωk
(ω)

+ L

2

n∑
k=0

γ2
k∥Vk+1(Xk(ω))∥21Ωk

(ω)

≤ ϵ

2 + ϵ

2 +
√

Rn(ω) + Rn(ω)

≤ 2ϵ +
√

ϵ,

where we used that
∏n

k=1(1 − γq
kc∗) < 1. Hence, it holds again that Xn+1(ω) ∈ U .

This prove that ω ∈ Ωn+1 and closes the induction.

c) Follows line by line as in Lemma D.6 part c).

Lemma D.11. Let δ > 0 be a tolerance level and γn ≤ γ1 be sufficiently small such that
∑∞

n=1 γ2
n <

δϵ
2(G2C2+G2+C) and the condition in Lemma D.10 is fulfilled. Then, we have

P(En) ≥ 1 − δ.

Proof. Line by line as in Lemma D.7.

Finally, we are ready to prove the main result in the local setting for f∗.

Proof of Theorem 5.2. (i): Recall the definition of U1 and U above. Then it holds that

ΩU =
∞⋂

n=1
Ωn.
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Hence, using Lemma D.11 we obtain

P(ΩU ) = inf
n

P(Ωn) ≥ inf
n

P(En) ≥ 1 − δ.

The proof of Claim (ii) and (iii) follows line by line as in the proof of Theorem 5.1 by replacing l with f∗ and
taking the different definitions of Dn, D̃n and Ωn into account.

E Proofs of Section 7

In the following section, we provide the proof of Section 7.

Proof of Proposition 7.1. We consider the cases λ = 0 and λ > 0 separately.
Case λ = 0: Define the optimal reward gap in every state s ∈ S by

∆∗(s) = Q∗(s, a∗(s)) − max
a ̸=a∗(s)

Q∗(s, a) > 0,

where a∗(s) denotes the best possible action in state s and Q∗ : S × A → R denotes the optimal Q-function
defined by Q∗(s, a) = Eπ∗

µ [
∑∞

t=0 ρ−tr(St, At)|A0 = a]. W.l.o.g. we assume that a∗(s) is unique. Similarly let
Qπw (s, a) = Eπw

µ [
∑∞

t=0 ρ−tr(St, At)|A0 = a] be the Q-function for policy πw.

For any 0 < α < 1 choose r = mins∈S µ(s) mins∈S ∆∗(s)(1−α) and assume that w ∈ B∗
r , i.e. V ∗(µ)−V πw (µ) ≤

r. Then, we have for every s ∈ S that

V ∗(δs) − V πw (δs) ≤ r

mins∈S µ(s) .

It follows for every s ∈ S that

r

mins∈S µ(s) ≥ V ∗(δs) − V πw (δs)

= Q∗(s, a∗(s)) −
∑

a∈As

πw(a|s)Qπw (s, a)

≥
∑

a∈As

πw(a|s)(Q∗(s, a∗(s)) − Q∗(s, a))

=
∑

a̸=a∗(s)

πw(a|s)(Q∗(s, a∗(s)) − Q∗(s, a))

≥ (1 − πw(a∗(s)|s) min
s

∆∗(s).

Rearranging results in

πw(a∗(s)|s) ≥ 1 − r

mins∈S µ(s) mins∈S ∆∗(s) = α.

Hence, for all w ∈ B∗
r we can bound c(w) by

c(w) ≥ α√
|S|(1 − ρ)

∥∥∥dπ∗

µ

µ

∥∥∥−1

∞
> 0.

Thus, setting c = α√
|S|(1−ρ)

∥∥∥ dπ∗
µ

µ

∥∥∥−1

∞
proves the claim.
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Case λ > 0: For any α ∈ (0, 1) choose r = α2 exp
(

−1
(1−ρ)λ

)2
λ mins µ(s)

2ln2 and assume that w ∈ B∗
r,λ. By Ding

et al. (2023, Lem. 12) we have

|πw(a|s) − π∗(a|s)| ≤

√
2(V ∗

λ (µ) − V πw

λ (µ))ln2
λ mins µ(s)

≤

√
2rln2

λ mins µ(s)

= α exp
(

−1
(1 − ρ)λ

)
≤ α min

s,a
π∗(a|s).

where the last inequality is due to Nachum et al. (2017, Thm. 1). It follows directly that

min
s,a

πw(s, a) ≥ (1 − α) min
s,a

π∗(s, a) > 0.

Hence, we can bound c(w) uniformly for all w ∈ B∗
r,λ by

c(w) ≥ 2λ

|S|(1 − ρ) min
s

µ(s)(1 − α)2 min
s,a

π∗(a|s)2
∥∥∥dπ∗

µ

µ

∥∥∥−1

∞
. (43)

Thus, setting c = 2λ
|S|(1−ρ) mins µ(s)(1 − α)2 mins,a π∗(a|s)2

∥∥∥ dπ∗
µ

µ

∥∥∥−1

∞
proves the claim.

Remark E.1. It is noteworthy, that we have multiple choices of r and c depending on α ∈ (0, 1).
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