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Abstract

This work studies disconnected manifold learning in generative adversarial net-
works in the light of point set topology and persistent homology. Under this
formalism, the topological similarity of latent space in generative models with
the underlying manifold of data distribution facilitates better generalization. To
achieve this, we introduce a topology-constrained noise sampler, responsible for
mapping the samples from Gaussian spheres to a latent embedding space, which
in turn is constrained to be topologically similar to the manifold underlying the
data distribution. We study the effectiveness of this method in GANs for learning
disconnected manifolds. This is an ongoing research, with the current report con-
taining preliminary empirical experiments. The codebase for our experiments is
publicly available at https://github.com/captain-pool/TopoSampler

1 Introduction

Learning distributions with disconnected support is a challenging problem in generative models,
especially GANs. Initially formalized by [16], the problem of learning distributions on a disconnected
support with unimodal Gaussian distribution is still an open area of research. Over the years various
methods have been proposed to tackle this problem. This includes [25]’s rejection sampling of
non-manifold samples, [2]’s rejection sampling in latent space, and [16]’s multi-generator approach.

In this work, we focus on the unimodal distribution part of the problem and exploit the topological
properties of the underlying manifold of the data distribution to learn a complex initial distribution,
ideally having the same number of connected components (or 0D holes). Finally we learn a homeo-
morphic transformation between the disconnected distribution obtained from the sampler, and the
disconnected distribution of the data, by constraining the GAN in a novel manner. To sum up, our
paper makes the following contributions:

• We make novel assertions about the guarantee of the existence of a homeomorphism in a
1-lipschitz constrained generator for disconnected support learning.

• The above guarantee enables us to study the effects of Topological Regularization of the
Latent space in WGANs.

• We study a Persistent Homology based method to regularize the topological properties of
the sample space of probability distributions.

∗equal contributions. order chosen by a coin-toss
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Figure 1: Vietoris-Rips Complex Rε(X) of a point cloud X at different scales, ε0 < ε1 < ε2. 1(d) shows the
Persistence Diagram obtained from Vietoris-Rips Complex. The diagram is represented as a set of points of
form (εbirth, εdeath) ∈ R× R ∪ {∞}. where εbirth represents the radius of ε-ball at which a feature is born,
and εdeath represents the radius when a feature is closed by a higher-dimensional simplex. Figures 1(a), 1(b),
1(c) taken from https://aqjaffe.github.io/VRPolygons/

2 Background

Persistent Homology (PH) [4, 7] is an algorithm for extracting topological features from data sets.
In our paper we use TDA methods to create a regularized WGAN objective to learn a disconnected
support. We therefore need to briefly introduce some of the prime topics in this section. The Vietoris–
Rips Filtration refers to a specific form of simplicial complexes, calculated from point cloud data. A
simplicial complex is a generalized graph, or, intuitively speaking, a triangulated space. A simplicial
complex K is a collection of simplices such that

1. Every face of the simplex K resides in K.

2. The intersection of any two simplices of K is a face of each of them.

A filtration of a simplicial complex is a sequence of nested subcomplexes. Vietoris–Rips (VR)
complexes are defined on a finite set of d-dimensional points, i.e. a point cloud, with an additional
distance metric, for example the Euclidean metric. Roughly speaking, the metric is required to gauge
the “scale” at which the simplicial complex is being generated. Given a threshold ε, the Vietoris–Rips
Complex of a set of points X with euclidean metric d is defined as

Vε(X) = {σ ⊆ X|d(u, v) ≤ ε,∀u 6= v ∈ σ} (1)

Given a VR complex, persistent homology refers to a method that associates a set of multi-scale
topological features to it. Such features are stored in persistence diagrams, which constitute a multiset
representation of the birth and death values (measured using the distance function used for the creation
of the VR complex) of the topological features of the VR complex. Recent works such as [22] use
the fact that a infinitesimal change in the underlying point cloud can be easily accommodated owing
to the stable nature of Persistence diagrams to leverage a topological signature distance in their paper.
We use this particular result as a basis for establishing a discrepancy score between data and latent
manifolds.

3 Related Work

Previous works have evaluated Generative models to facilitate disconnected manifold learning
[16, 17], paving the ground for latent surgical techniques as in [2, 25]. However, we feel inserting
disconnectedness into the generator’s proposal distribution is not the right perspective. Instead, in our
work, we study the simplicial homology of the samples from latent manifold and leverage topological
descriptors to learn a Neural Sampler to generate a latent distribution whose sample space manifold
is homologically similar to the original data manifold. This is an unprecedented direction towards
learning distributions with disconnected supports and arguably the first in this domain.However this
should not be confused with Horak et al. [14], which is an evaluation technique motivated by TDA.
[13] showed empirically the generalising effects of topological regularisation between the samples
from desired probability distribution and the high dimensional features of the linear classifier. This
is also one of the preliminary works which uses a differentiable PH calculation method. Also from
the Optimal Tranport perspective, previous works that use an optimal transport map between two
measure spaces in generative models [1, 24] have not focussed on the bilipschitz nature of WGANs
making them perfect candidates for learning homeomorphisms. This serves as our motivation to
study the effects of topological regularisation on the latent space of Generative Models like WGANs.
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4 Proposed Method

Let X = {x0, x1, . . . } with xi ∈ Rd denote the original data samples, which we consider to be
samples from an underlying manifoldMX , and probability distribution P (X ). Let the generator of
the proposed GAN be represented as Gθ and the discriminator as Dφ. The major intuition that went
inside this work is to disentangle the “disconnected support density estimation” problem into two
parts, namely, (a) latent space topology optimization and (b) homeomorphic density estimation.

In the first part of the problem, we learn a mapping, parameterized by a Neural Network Nψ, from
N (0, 1) to a latent space with samples N := {n0, n1, n2, . . . }, with ni ∈ Rd, corresponding to an
underlying manifoldMη and distribution P (N). The objective of the optimization is to minimize the
topological dissimilarity ofMη andMX . More formally, we calculate the persistent homology (PH)
of the Vietoris–Rips (VR) complex of X , and N, denoted as Rε(X ) and Rε(N). The persistence
diagrams DX and DN, obtained from PH calculation of the VR complex, encode the topological
features of the underlying manifolds MX and MN, respectively. One straightforward way of
calculating topological similarity betweenMX andMη , is to compare the persistence diagrams DX
and DN using some well known metric such as the 1-Wasserstein Metric, the Bottleneck-Distance,
the Hausdorff Metric, etc. [8, 15, 18] However, these metrics do not provide gradients for samples in
the sample space, precluding their use as an optimisation objective.A recent paper by Moor et al. [22],
redefines the PH calculation to return multi-sets of persistence diagrams and persistence pairings,
{DX ,ΠX } and {DN,ΠN} respectively. Next it uses the Pairwise Distance matrix D between
samples, and the persistence pairings ΠX and ΠN to find out the topologically significant pairs of
points and minimize their distance. This expression permits gradient calculations and is explicitly
designed to be used as an objective function in topological regularization. The formal definition is
shown by Eqn 2.
Given two sample spaces X and Y , with pairwise distance matrices, DX and DY , the signature loss
is defined as

Lsignature(X,Y ) =
1

2
‖DX [ΠX ]−DY [ΠX ]‖2 +

1

2
‖DX [ΠY ]−DY [ΠY ]‖2 (2)

The second and more complex part of the problem is to learn a homeomorphism between the
distributions P (X ) and P (N) using a Generative Adversarial Network. Put briefly, the generator
Gθ needs to learn the original data distribution P (X ) while explicitly preserving the number of
d-dimensional holes onMη learned from the previous optimization routine.

According to [26], if a function f , defined on Rd → Rd, is bi-lipschitz (i.e., f and f−1 are k-
lipschitz continuous) or is an isometry (i.e., having lipschitz constant L = 1), it can be called
a homeomorphism. With that said, various works have been done in the direction of imposing
explicit isometry constraints on neural networks. Arjovsky et al. [3] achieved this by performing
gradient clipping in discriminators, Gulrajani et al. [11] used a gradient penalty term to prevent strong
gradients. Another work by Miyato et al. [21] imposes an explicit 1-Lipschitz constraint by spectral
normalization of the weights of a network. This method has also found application in the Invertible
Neural Network [5] literature, where it is an absolute necessity to have L ≤ 1 Lipschitz continuity to
maintain invertibility. In this work, we adapt the spectral normalization routine proposed by [21],
to constrain Gθ to be 1-Lipschitz continuous. More formally, for each training iteration, the weight
matrices θ of the generator Gθ is rescaled as θ = θ

σmax(θ)
where σmax(θ) denotes the maximum

singular value of θ. Along with the weight scaling, we use 1-lipschitz activations like, ReLU[12],
Leaky ReLU[20], Tanh, Sigmoid, etc. for maintaining L ≤ 1 throughout the layer compositions of
the network architecture. This continuity constraint along with the equal dimensionality of the input
and output space of Gθ, imposes the desired explicit homeomorphism constraint.

The final architecture (See Figure 2) consists of an encoder, Nψ before the generator Gθ. The latent
vectors sampled from Nψ is sent into Gθ in place of samples from N (0, 1). The Signature loss
(Equation 2), is then used to compare the latent space topology and the topology of the desired data
manifold. It has been observed, that min-max scaling the output of Noise Module between −1.0 and
1.0 aids optimization. We experiment on the Vanilla GAN architecture [10], and the WGAN-GP
architecture [3, 11].
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Figure 2: Entire Architecture with proposed topological sampling module

In both the cases, the discriminator loss (along with the gradient penalty term in case of WGAN-GP)
remains the same. The generator loss for the vanilla GAN is re-defined as follows:

Ez′∼P (N) [ln(1−Dφ(Gθ(z′)))] +

[
1

B

∑
Lsignature(Nψ(z), xr)

]
z∼N (0,1),xr∼P (X )

(3)

Similarly for WGAN-GP we use optimize the following objective for the generator.

Ez′∼P (N) [Dφ(Gθ(z′))] +

[
1

B

∑
Lsignature(Nψ(z), xr)

]
z∼N (0,1),xr∼P (X )

(4)

Here B denotes the mini-batch size being used, P (N) denotes the learned probability distribution of
Nψ . In both the scenarios, z ∼ N (0, 1) and xr ∼ P (X ), B samples are taken from the distributions
N (0, 1) and P (X ) respectively, sampled without replacement.

5 Experiments

In this section, we briefly discuss our preliminary experiments and their results. We are currently
testing out MLP GANs on MNIST dataset, and using the Precision-Recall metrics for GANs [17] for
assessing performance. We use the last layers of a pretrained Convolutional MNIST classifier. as the
feature extractor. For the experiments, we are using a patched version of Ripser++ [27] for the PH
calculations, to calculate Persistence Pairings along with the Persistence Diagrams.

In the experimental setup, we set the values of the hyperparameters as γ = 10, λ =
0.01, lrGθ = 0.0002, lrDφ = 0.0004, B = 100, epochs = 200. Our homeomor-
phism assumption of the generator has been split in two directions. A recent work by Li
et al. [19] mentions “GAN and VAE trainings approximate a homeomorphism between
the data space and the sampling space”. However, Brehmer and Cranmer [6] discusses
how GANs and VAEs consider the data to be embedded in a lower-dimensional manifold. This
change in dimensionality violates the properties for the generators to be a homeomorphism. For this
reason, we experiment on both these interpretation of “homeomorphism”, namely low dimensional
manifold embedding, and a properly defined homeomorphism from same-dimensional prior space to
posterior space of Gθ.

To test the effectiveness of topological regularization, we propose a learning problem, with an
objective to model a Gaussian mixture with disconnected supports. More formally, the target
distribution P (X ) is defined as a mixture of Gaussians N (µ0, σ0) and N (µ1, σ1), ‖µ1 − µ0‖1 ≥
3(σ0 + σ1) (by Pukelsheim [23]) such that there exists little-to-no samples which belonged to
both these distributions. To prevent large variance in sample magnitudes, the generated samples
are min-max scaled between [−1, 1]. In our experiments, we generated 60, 000 samples from the
mixture, with µ0 = 0, σ0 = σ1 = 1 and µ1 = 6. To promote reuse of MNIST training setup with
minimal changes in code, the mixture is set to generate i.i.d samples from R784. The final topological
visualization is done by performing PCA[9] on the learned posterior of 784 dimensions.

Despite the intuitive theoretical background, the experimental results presented some surprising
findings that challenged our initial assumptions. As shown in 3(c), the global topology of the learned
prior obtained by the topology-constrained Noise Module, does not contain two distinctly separated
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Figure 3: Figure 3(a) Posterior space topology of GANs when an isotropic Gaussian prior is used for learning a
data distribution with disconnected supports. 3(b) Posterior space topology of GAN trained on the same dataset
but with a disconnected prior. Note the absence of out of manifold samples. 3(c) Global topology of learned
prior space.

Table 1: Experiments

MNIST

GAN Type Input Space Dim Precision Recall

Vanilla GAN 100 98.23% 81.2%
Vanilla GAN (with Topo Loss) 100 97.78% 80.54 %
Vanilla GAN (with Noise Layer) 100 90.2% 78.24%
Vanilla GAN (with Noise Layer) 784 78% 67.3%
WGAN (with Noise Layer and Spectral Generator) 784 Mode Collapse
GAN (with Noise Layer and Spectral Generator) 784 Mode Collapse

distributions (like the one in 3(b)). Instead we find sparsely-spread samples between two clusters. We
suspect that this might be caused by the continuous nature of neural networks, due to which instead
of introducing holes,Mη gets “stretched” between the two modes of P (X ), thus reducing out of
manifold samples in between the modes, and increasing sample density near the modes.

The proposed GAN architecture also presented some counter-intuitive results. For starters, it has been
noticed that introducing spectral normalization in Gθ causes mode collapse in the GAN. Despite the
poor quality of the samples, our initial experiments presents the importance of prior space topology
for disconnected manifold learning. Figure 3(b) shows the GAN posterior space topology when
trained with disconnected Gaussian mixture prior. The same model, when trained with an isotropic
Gaussian prior (i.e. the original vanilla GAN formulation) produces out of-manifold samples, which
are found sparsely spread between the learned clusters, as shown in figure 3(a).

Table 1 reports the comparison of precision-recall scores between our proposed architecture and
regular GAN architectures like WGAN and vanilla JSD GAN [3, 10].

6 Conclusion

This work studies the problem of learning disconnected sample space manifolds in GANs by topo-
logically aligning the prior space to the original data space. We introduce a persistent homology
perspective towards augmenting the prior distribution to stay in the same homology class as that of
our unknown data manifold. Although the empirical results do not yet support the ability of neural
networks in introducing d-dimensional holes, we found that they provided some useful insights
into the topological behaviour of neural networks. In a follow-up of this work we will rethink
our assumptions and apply these newly-obtained insights for introducing d-dimensional holes to
non-manifold priors.
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