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Abstract

Recent research has highlighted the importance of data quality in scaling large
language models (LLMs). However, automated data quality control faces unique
challenges in collaborative settings where sharing is not allowed directly between
data silos. To tackle this issue, this paper proposes a novel data quality control
technique based on the notion of data influence on the training dynamics of LLMs,
that high quality data are more likely to have similar training dynamics to the
anchor dataset. We then leverage the influence of the training dynamics to select
high-quality data from different private domains, with centralized model updates
on the server side in a collaborative training fashion by either model merging or
federated learning. As for the data quality indicator, we compute the per-sample
gradients with respect to the private data and the anchor dataset, and use the trace
of the accumulated inner products as a measurement of data quality. In addition,
we develop a quality control evaluation tailored for collaborative settings with
heterogeneous medical domain data. Experiments show that training on the high-
quality data selected by our method can often outperform other data selection
methods for collaborative fine-tuning of LLMs, across diverse private domain
datasets, in medical, multilingual and financial settings. Our code is released at
CLUES.

1 Introduction

Large language models (LLMs) training has predominantly relied on the accumulation of vast datasets.
Recent observations suggest that even a modest quantity of high-quality diverse data can significantly
enhance the instruction following capacity of LLMs. Previously, data quality control relied heavily
on manual selection processes [37, 36]. This approach, while being commonly used, rendered
scalability challenges due to the substantial labor costs. Recent advancements have seen automated
low-quality data filters [3], such as perplexity filters [29] and de-duplication filters [22]. However,
their effectiveness in data quality control in more complex environments remains to be explored,
where data are spread across silos and locations in different formats and difficult to find.

Collaborative training techniques, such as model merging [11] and federated learning [20], are
common paradigms for addressing data-sharing constraints and GDPR [28] compliance. However,
data quality control for private data is even more challenging if users are in charge of manually
filtering data. We summarize here the two unique challenges: (1) Quality Heterogeneity Some
clients may possess a higher proportion of low-quality data compared to others, thus we should not
select data from all clients with a fixed selection ratio. (2) Domain Heterogeneity Different data
silos may come from different vertical domains, for example, in the multilingual setting, different
languages have different quality standards that are never unified.
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In this paper, we propose CLUES (collaborative learning under selection), an automated high-quality
data selection method for collaborative fine-tuning of Large Language Models (LLMs), showcasing
notable performance improvements in mixed-quality data environments from different private domain
data. In these domains, private LLM vendors are supposed to build their specialized applications
based on open-source LLMs using their own private data, which represent specialized domains with
significant private (e.g., patient records) and public data (e.g., scientific papers). By tracing the training
dynamics of each training sample, we leverage public dataset to define an anchor dataset and compute
the influence of each training sample on the anchor dataset, and set a global threshold to provide
effective collaborative quality controls compared with traditional local data quality selection methods
in the following aspects: (1) General: Our method is a general pipeline to improve the generalization
performance for LLM fine-tuning. It has an interpretation in terms of bi-level optimization with
inner optimization in the client side and outer optimization in the server side to minimize the loss
on the anchor dataset. (2) Collaborative: Our method is a collaborative fine-tuning paradigm that
can be seamlessly integrated into existing model merging and federated learning frameworks, where
the modification occurs on the server side only to incorporate data selection. (3) Scalable: We only
employ an approximation to solve the bi-level optimization, which makes it scalable to LLMs.

We evaluate our proposed method on medical, multilingual and financial Question Answering (QA)
datasets, demonstrating significant improvements of up to 67.3% on challenging medical and financial
QA datasets, highlighting the effectiveness of our proposed method. Through extensive analyses, we
demonstrate the significant impact of leveraging training dynamics on the collaborative data quality
control of LLMs.

2 Problem formulation: Collaborative Data Quality

2.1 Related Work

Collaborative LLM Fine-Tuning Paradigms: Model Merging and Federated Learning Col-
laborative fine-tuning exhibits certain advantageous properties as a distributed machine learning
paradigm by shifting the traditional model training process towards sharing model parameters instead
of raw data. Participating clients train models using their own private datasets locally, and the updated
model parameters are aggregated on the server. This preserves the privacy of the underlying data
while collectively benefiting from the knowledge gained during the training process [20]. We focus
on merging fine-tuned models that are optimized from the same pre-trained backbone. Different
fine-tuned models initialized from the same pre-trained model effectively share a part of the optimiza-
tion trajectory and can often be merged without accounting for permutation symmetry [40, 11, 17].
Therefore, merging fine-tuned models can improve performance on a single target task [13, 6],
improve out-of-domain generalization [2, 1], create multitask models from different tasks [23], and
other settings [23, 4].

One of the most significant challenges plaguing model merging and federated learning methods in
previous research is the concern that the model parameters might interfere with each other during
weighted averaging or other merging operations. This undesirable interaction could potentially lead
to a merged model that performs worse than the individual models before merging. We argue that it
can be tackled from the perspective of data attribution.

Model merging. let fθ ∈ F denote the language model and Dk ∈ D denote the training dataset on
client k. Given the training datasets Dk, we can define a model merging operator MK(·;Dk, k ∈
K = {1, · · · , n}) : F → F . The model merging process can be expressed as

fmerging = MK(f)

Federated Averaging. Based on the notation of model merging, the federated averaging process can
be expressed as

ffed = (

T∏
t=1

MSt(K))(f)

where T is the round number. St(K) is the index set of clients participated in the training in round t.

Data Attribution and Selection for LLMs The quality of the training data of a machine learning
model can have a significant impact on its performance. One measure of data quality is the notion
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of valuation, i.e., the degree to which a given training example affects the model and its predictive
performance. Although data attribution is a well-known concept for researchers, the complexity
behind large language models, coupled with their growing size, features, and datasets, has made
quantification difficult. Recent methods include Perplexity Score, IFD [24], and DataInf [21], etc.
More details are provided in Appendix E. However, those data attribution above have not been used
in collaborative settings where each client has statistical heterogeneous and quality heterogeneous
private-domain data. And previous data selection methods have not provide a way to determine the
golden threshold to decide whether a training data sample should be kept or filter out.
Training Dynamics Previous works [38, 25, 35] that analyze training dynamics focus primarily on
supervised learning and are largely model- and data-agnostic. Swayamdipta et al. [34] empirically
demonstrated the influence of data by visually mapping individual training samples according to their
impact on the correctness, confidence, and variability of a model.
2.2 Assumption and Objective: Collaborative High-quality Data Selection for LLMs
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Figure 1: Validation loss and training loss.

Definition 1.1 (Data Quality on Specific Domain k).
Given a model architecture θ, a training configuration
(optimizer, etc.), and a validation set Dval in a specific
domain k, the quality of training data z is defined as
follows: for z1, z2 ∈ Dtrain, if Lval(θ(z1), Dval) <
Lval(θ(z2), Dval), then the quality of z1 is considered
higher than that of z2. Here, Lval denotes the validation
loss. In other words, the lower the validation loss, the
higher the data quality.

Definition 1.2 (Data Quality in Collaborative Private
Domains). Given a model architecture θ, a training
configuration (optimizer, etc.), and a validation set
Dval = D(1)

val,D
(2)
val, . . . ,D

(K)
val for all K tasks, the qual-

ity of training data z is defined based on the validation
loss of the global model θmerged on Dval. Specifically,
for z1, z2 ∈ D(k)

train, if Lval(θmerged(z1), Dval) <
Lval(θmerged(z2), Dval), then the quality of z1 is con-
sidered higher than that of z2. As in the single-domain
case, lower validation loss indicates higher data quality.

Remarks 1 (Impact of Low Quality Data in Collabo-
rative Private Domains). We manually construct low-
quality data samples on each client. We change the pro-
portion of low-quality data from 0% to 100%. Higher
scores indicate better performance. From Fig. 1, a larger
portion of low-quality data results in higher validation
loss, and more unstable and less effective training loss
curve. Fig. 2 shows the performance drop when we
change the proportion of low-quality data from 0% to
60%.
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Figure 2: Performance drop on the performance of collaborative fine-tuning of LLMs when we change
the proportion of low-quality data from 0% to 60%. Higher scores indicate better performance.
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Figure 3: Overall workflow diagram consists of two phases: 1) Step One: client-side computes each
sample’s quality score with scoring functions using the public validation set and global model, then
server-side calculates the score of a global threshold by anchor data 2) Step Two: clients filter data
according to the global threshold and starts collaborative learning on selected high-quality data with
adaptive weights on the model side.

Remarks 2 (Enhancing Data Quality on Collaborative Private Domains). In the collaborative learning
framework, the ratio and distribution of low-quality data are unknown a priori. Only the server has
access to the global distribution of both high-quality and low-quality data, while individual clients
cannot infer the global distribution from their local distributions due to statistical heterogeneity. The
server can infer the distribution of high-quality data from public anchor data. Our objective is to
select data points that most significantly reduce the validation loss of the global model, rather than
optimizing for each local model independently. It is important to note that the scope of this study
does not consider new models joining during training or continual learning paradigms.

3 Methodology: CLUES

3.1 Overview

In our workflow, each client performs local training using his own high-quality private data. We
have a public validation set located on both the clients and the server, which consists of commonly
recognized, high-quality public data. As illustrated in Figure 3, the overall workflow consists of two
phases designed to achieve data quality control in the collaborative development of LLMs.

Step One. Local Training for Data Quality Scoring Local clients compute each sample’s quality
score via our training dynamics-based methods using the public validation set and their own fine-tuned
model. The server determines a global threshold score, serving as a unified standard of data quality
with only a very small amount of anchor data, and sends it to the clients.

Step Two. Collaborative Learning with High-Quality Data Each client then discards data samples
that fall below the global threshold received, ensuring that only high-quality data verified by the
unified standard are retained. The clients then utilize the high-quality filtered data sets D′

k (where
|D′

k| ≤ |Dk|) and the initial global model θ0 for collaborative learning. After local fine-tuning with
the selected high-quality curation data, clients send their local LoRA adapter to the server. The server
then aggregates the LoRA parameters of the individual models.

3.2 Step One: Training Dynamics-based Data Scoring

The idea behind our method is straightforward — trace the training process to capture changes in
prediction as individual training examples are visited.

For each client, we have designed a data scoring step to calculate the score for each training data
sample to measure its contribution to model prediction. Specifically, considering the training set of
examples Dk = {z1, . . . , zK} and a model θ, we represent the validation set as D′

k = {z′1, . . . , z′K}.
We measure the performance of a model using a loss function ℓ : Rp × Z → R. The loss of the
model noted by θ on an example z is given by ℓ(θ, z). We fine-tune the model by finding parameters
θ that minimize the training loss

∑K
i=1 ℓ (θ, zi), through an iterative optimization procedure, such as
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Stochastic Gradient Descent (SGD) or its variant, which utilizes one training example zt in iteration
t, updating the parameter from θt to θt+1:

θt+1 − θt = −ηt∇ℓ
(
z;θt

)
(1)

We trace the training process to capture changes in prediction as individual training examples are
visited. The contribution of a particular training example z on a given test example z′ is defined as
the total reduction in loss on the test example z′ that is induced by the training process whenever the
training example z is utilized. We define the data quality of a particular training example z as the
sum of the contribution of the whole validation dataset.

The simplified expression for data quality is as follows:

S(z) =
∑
z′

T∑
t=1

η̄i∇ℓ (z′,θt) · ∇ℓ (z,θt) (2)

The per-sample gradients are calculated for each training sample from the checkpoint t saved during
the model training. LLMs are generally tuned using AdamW, which has a more complicated update
formula involving the moving averages of the gradient moments.

For Adam,

θt+1 − θt = −ηtL
(
z,θt

)
,L

(
z,θt

)
≜

mt+1

√
vt+1 + ϵ

(3)

For AdamW,

θt+1 − θt = −ηtL
(
z,θt

)
,L

(
z,θt

)
≜

mt+1

√
vt+1 + ϵ

+λθt (4)

Therefore, the training data quality score for LLMs is calculated using the following formula:

S(z) =
∑
z′

T∑
t=1

η̄iL (z′,θt) · L (z,θt) (5)

The dot product of the loss gradients of the training example (z) and the test example (z′) is weighted
by the learning rate (ηi) at different checkpoints and summed up, where we implemented applying
point-wise loss gradients to disentangle the relative contributions of each training example. We use
the output of the checkpoints from the learning algorithm to capture the training process. The higher
the score S(z), the higher the quality of the training sample z. We demonstrates an optimized training
approach for collaborative learning of multiple models. By selecting high-quality training data for
each local model, we select gradients that positively impact loss trajectories. These trimmed gradients
accumulate, leading to an improved position in the weight space. Considering interference during
our data selection (gradient selection) of ∆θ′1 and ∆θ′2, we reduce the interference of weight updates
from different models. After parameter aggregation, the merged model ∆θmerged can be improved to
an enhanced position in the weight space represented by ∆θtargeted.

It is particularly well-suited for parameter-efficient fine-tuning techniques such as Low-Rank Adap-
tation (LoRA) [10], which involves freezing the pre-trained model weights and injecting trainable
rank decomposition matrices into linear projects of the Transformer architecture. A neural network
contains many dense layers that perform matrix multiplication. In the self-attention module, we
denote the query projection matrices as Wq , the key projection matrices as Wk, the value projection
matrices as Wv , the output project matrices as Wo. In principle, we can apply LoRA to any subset of
weight matrices in a neural network to reduce the number of trainable parameters. In the Transformer
architecture, there are four weight matrices in the self-attention module (Wq,Wk,Wv,Wo). In our
implementation, we apply LoRA only to Wq and Wv in most experiments for simplicity.

One straightforward solution is to calculate the quality scores on all weight parameters of LoRA,
but may be computationally infeasible when larger models with several millions of parameters are
used. To address the memory bottleneck of calculating and saving gradients, we take gradients with
respect to a given layer. We propose operating on the first layer of the model, which contains the
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least cancelation effect, since the early layers encode unique logit. Therefore, we develop the idea
of LoRA-based training-data influence in the context of gradient descent. Our proposed influence
score is scalable due to the sparse nature of low-rank gradients and contains both low-level and
high-level information since the gradient to the low-rank layer can capture both high-level and
low-level information about the input sentence.

Note that the above gradient computation process is based on one single checkpoint and there is no
parameter update throughout the process. Hence, for each training data point, we can perform this
process in parallel, which can facilitate the computation.

3.3 Step Two: Global Standard with Anchor Data Scoring

On the server, we use a small set of public data (10 samples in our paper) as our anchor data and
calculate the average score of these 10 data points as the global threshold. This establishes a unified
standard for division between low- and high-quality data for heterogeneous clients, allowing for the
further filtering of local data.

Then we merge the parameters of individual models with adaptive weights on different models. For
model merging techniques, we implemented Task Arithmetic [12] on task weights, the LoRA matrices
are involved in weighted sum. In task arithmetic, one first computes the task weights which is the
difference between fine-tuned and base model weights, then calculates a weighted sum of these task
weights. Here, the delta weights considered are the individual matrices A and B instead of their
product BA. Consider two LoRA adapters (A1, B1) and (A2, B2) along with weights w1 and w2 for
the weighted merging of these two adapters, then the merging happens as follows:

Amerged =
√

w1A1 +
√

w2A2 (6)

Bmerged =
√

w1B1 +
√

w2B2 (7)

We also implement a more efficient method for merging LoRA adapters by eliminating redundant
parameters: TrIm, Elect, and Merge (TIES) [42]. First, redundant parameters are trimmed, then
conflicting signs are resolved into an aggregated vector, and finally, the parameters whose signs
are the same as the aggregate sign are averaged. This method takes into account that some values
(redundant and sign disagreement) can degrade performance in the merged model.

4 Experiments

Unlike traditional data quality selection methods for pre-trained models or traditional fine-tuning,
in our collaborative setting, the training data from vertical domains is very sensitive and subject to
strict restrictions regarding sharing and privacy. Therefore, we propose a new experimental setting
using medical domain data for downstream tasks and evaluation for open-ended medical QA tasks,
considering both quality heterogeneity and domain heterogeneity.

4.1 Experimental Setup

Tasks and Datasets We conduct our evaluation on the open-ended question-answering (QA) tasks.

(1) Medical QA: PMC-LLama [41] and Medalpaca-flashcards [7] cover medical question-answering,
rationale for reasoning, and conversational dialogues, comprising a total of 202M tokens. We
use 16k samples in total, with 8k samples randomly sampled from PMC-LLama and Medalpaca-
flashcards each. We uniformly partition the total samples into 20 clients in this task to demonstrate the
effectiveness of CLUES in terms of the scalability of the clients, where the clients are IID subsets of
the original distribution. For low-quality data, 3.2k samples (40% total data) are polluted with cutting,
deletion, or substitution. These 40% low-quality data, together with the rest of the high-quality data,
composites the mix-quality data set.

(2) Multilingual QA: MMedBench [33] is a medical muti-choice dataset of 6 different languages. It
contains 45k samples for the trainset and 8,518 samples for the testset. Each question is accompanied
by a right answer and high-quality rationale. We use 6312 samples randomly sampled from MMed-
Bench and 1052 samples per language for each of the 6 clients. For the low-quality data, a certain
ratio is either polluted with random noise.
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(3) Financial QA: To demonstrate the generalizability of our proposed method across various
domains, we also include FiQA [5], part of the training corpus of FinGPT [43], which consists 17.1k
financial open Question-Answering instructions. We randomly sample 2000 data samples for each of
the 4 clients from FiQA dataset, and pollute each of them with a low-quality data ratio of 80%, 20%,
10%, and 50% respectively.

Note that for all tasks, the anchor data and validation dataset used in our proposed method are selected
as a held-out high-quality dataset from the same data source.

Models We use LLama2-7b [37] and Mistral-7b [14] as our pre-trained models, and fine-tune
them with Low-Rank Adaptation (LoRA) [10] on each of the client side. As for the model merging
technique, in our main experiments, we use TIES merging. We also compare it with Task Arithmetic
in our ablation studies.

Baselines The Oracle shows the results that train only on the remaining high quality data in the
mixed-quality dataset, serving as the theoretical upper bound. We implement the three baselines:
existing methods mentioned in 2.1: Perplexity score, IFD [24], and DataInf [21] independently on
each client.

Evaluation metrics The evaluations focus on two main aspects: (1) Question-Answering capa-
bilities, assessed by GPT-4 [30] scoring within the test set splited from the same sources of the
training dataset. In the medical QA and multilingual QA tasks, 200 samples are randomly selected
from the medical dataset to serve as the test set. We evaluate the models that need to be compared on
the test set to generate responses respectively. Then we use the OpenAI GPT-4 model API to assign
scores to their responses. Each response of is rated by the judge on a scale from 0 to 1, reflecting
how well the answer aligns with the ground truth. In our financial QA task, GPT-4 rate the responses
of the fine-tuned model on our data set on a scale of 1 to 10, reflecting criteria including relevance,
precision and fluency. To address potential positional bias, we send our response along with the
benchmark output to GPT-4 twice, with different orders. We then calculate the average of these
scores as the final performance score. (2) Knowledge acquisition, measured by average accuracy
of responses to multiple-choice questions in the MMLU clinical topics [8, 9], MedMCQA [31],
PubMedQA [16], and USMLE [15] datasets. Although the goal of private domain fine-tuning is not
to increase knowledge, there shouldn’t be too much knowledge forgetting during this process. (3)
Data selection correctness Precision, Recall, F-1 Score, and Accuracy are widely-used evaluation
metrics that provide complementary insights into the model’s effectiveness from the data selection
perspective. In our case, positive instances represent high-quality data, while negative instances rep-
resent low-quality data. Precision quantifies the proportion of correctly identified positive instances
among all instances predicted as positive, while Recall measures the proportion of correctly identified
positive instances among all actual positive instances in the dataset. The F1 Score offers a balanced
measure of Precision and Recall, while Accuracy reflects the overall correctness of our data selection
(based on our data scoring and threshold determining method) across all classes.

4.2 Main Results

Based on the low-quality dataset setup, we evaluate our data-quality control pipeline in collaborative
LLM fine-tuning in both federated (communication round cr = 300) and model merging (com-
munication round cr = 1) settings. Note that in federated learning, the server and clients need to
intensively communicate the model updates during model training. We implement the three baseline
methods described in the Section 2.1 to calculate scores for each training data, and set the unified
scoring standard using corresponding scoring functions with anchor data.

We demonstrate the performance of data quality control methods in collaborative settings in the
medical QA task (Tab. 1) and Multilingual QA task (Tab. 2).

Federated Learning v.s. Model Merging Firstly, for both pre-trained models and tasks, with
other settings remaining the same, model merging performs better than federated learning. This
indicates that loose communication between the local model and the server, compared to frequent
communication, might lead to better generalization. Additionally, the performance boost with selected
data in the federated setting is larger than in the model merging setting. This might be because during
federated learning, we calculate the data score based on the global model (instead of the local model
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Table 1: Data selection performance in federated setting on MedicalQA. We bold the highest
performance and underline the second highest performance for each row.

Mistral-7b Llama2-7b

Evaluation Metric GPT-4 Scoring Knowledge Avg GPT-4 Scoring Knowledge Avg

Mix-qual Data 0.085 0.194 0.0952 0.311
Oracle 0.160 0.233 0.099 0.440
PPL 0.079 0.346 0.045 0.362

IFD [19] 0.087 0.287 0.050 0.346
DataInf [24] 0.093 0.106 0.103 0.335

CLUES (ours) 0.161 (100.6%) 0.309 (132%) 0.210 (212.1%) 0.356 (80.9%)

Table 2: Data selection performance on MMedBench. We bold the highest performance and underline
the second highest performance for each row.

Mistral-7b Llama2-7b

Setting Federated Model Merging Federated Model Merging

Mix-qual Data 0.420 0.515 0.440 0.485
Oracle 0.451 0.530 0.449 0.490

CLUES (ours) 0.435 (96.5%) 0.525 (99.1%) 0.477(106.2%) 0.487 (99.4%)

in the model merging setting) at each timestamp, which can better trace and regularize the training
trajectory to the optimal location.

Data Selection Performance In both federated and model merging settings, our data selection can
achieve over 96% and over 91% of the theoretical upper bound performance, respectively. Our method
outperforms the other local data selection baselines under the GPT4 Scoring metrics. Compared to
the other methods which cause severe forgetting during instruction tuning, the performance of our
method on the Knowledge-based benchmark remains within an acceptable range. This shows that
our methods are able to improve domain-specific tasks without forgetting knowledge injected during
pretraining.

5 Analysis

5.1 Qualitative Analysis

We performed a qualitative analysis by manually comparing the outputs generated by models fine-
tuned on our selected high-quality data versus the original low-quality data. This comparison (Tab. 7
and Tab. 8) provides insights into the tangible improvements in model performance and output quality.

5.2 Varying Levels of Low-Quality Data

To evaluate the robustness of our data selection method under different data quality conditions, we
conducted a series of experiments with varying proportions of low-quality data. We maintained a
consistent proportion of low-quality data across all clients for each experiment, ranging from 0% to
100%, including pollution levels 20%, 50%, and 80%.

Fig. 4 presents the performance of models trained with and without our data selection method across
these different proportions. The results demonstrate that our method effectively enhances data quality
across all scenarios with GPT-4 scoring. And in terms of accuracy of the data selection, our method
consistently selected over 99% of the high-quality data across different proportions of low-quality
data. Additionally, to understand the adaptability of our global threshold, we analyzed how the global
threshold changes with different proportions of low-quality data. Fig. 4 illustrates that our global
threshold adjusts across varying levels of data quality.
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Figure 4: Experimental results for different levels of low-quality data

5.3 Quality Heterogeneity

To provide a more comprehensive analysis, in addition to the experiments in the domain heterogeneity
setting shown above, we conducted additional experiments in a quality heterogeneity setting using
the FiQA dataset, which focuses on the answer of financial questions. Specifically, we randomly
polluted 80%, 20%, 10%, and 50% of the training set for each of the four clients, respectively. The
findings demonstrate that our method significantly enhances the quality of the data even when clients
have different proportions of low-quality data.
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Figure 5: Left: Comparison of different merging
techniques. Right: First layer v.s. last layer for
low-rank tracing gradient.

Varying Merging Techniques Fig. 5 demon-
strates that different weighted merging or aggre-
gation techniques lead to varying performance.
Notably, the performance of our data selection
method with the Linear Merging technique does
not even reach the performance of low-quality
data with TIES Merging technique, highlighting
the significant impact of weighted merging tech-
niques on overall performance. Furthermore, we
experimented with different merging techniques
on the FiQA dataset, demonstrating the impor-
tance of weighted merging, shown in Fig. 5.

Layer Selection for Low-Rank Tracing Gra-
dient In terms of layer selection, we evaluated
both the last layer and the token embeddings.
We show that layer selection distorts the score (the inner product of two gradients). In our ablation
study, we observe that since the activation connected to the last layer of weights contains shared
logic, the data influenced calculated through the last layer weights are prone to a cancellation effect,
where the data influence of different examples has a large magnitude that contradicts each other.
The cancelation effect lowers the power of the influence score, and deleting influential examples
according to this measure often does not change the model’s behavior by much. From Fig. 5, we
show that the first layer has a less severe cancelation effect than the last layer.

Unified Scoring with Anchor Data We conducted an ablation study on our global threshold to
further validate our approach. Tab. 3 illustrates the advantage of using a global threshold determined
by our anchor data for data selection in this heterogeneous setting, compared to selection based on
average ratio or pre-determined scores. These results demonstrate that our approach successfully
balances the identification of positive cases with the minimization of false positives, offering a robust
and superior solution.
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Table 3: Data selection performance on FiQA. We bold the highest performance for each row.
Precision Recall F1 Score Accuracy

Select by ratio 79.17% 79.17% 79.17% 75.00%
Select by a pre-determined score 92.77% 99.13% 95.84% 95.00%
Select by global threshold (Ours) 97.44% 99.38% 98.39% 97.91%

6 Discussion and Conclusion

Collaborative model development, including model merging and federated averaging, would benefit
from different kinds of high-quality data, and for each of them, the definition of quality is slightly
different. In this paper, we establish a data quality control pipeline for collaborative fine-tuning of
LLMs, avoiding directly sharing any private data. Our experiments show that the selected high-quality
data ensures an effective and reliable learning process, leading to improved model performance.

To the best of our knowledge, we are the first to propose a data selection method for large language
models in a collaborative setting, while previous work has mainly focused on traditional centralized
settings. We bring up the insights to view federated learning and model merging within the same
framework, incorporate different experimental setups and unify federated learning and model merging
methods, making it universally applicable. Additionally, our method performs well on generation
datasets and takes into account scenarios with bad data, while previous work has not considered
downstream domain-specific generation tasks for large language models. Our method does not require
repeated training.

Societal impact Our work builds large language models that make it possible to create a collab-
orative instead of a monolithic ecosystem from open-source models while preserving the privacy
of users’ own data. The constant progress being made in machine learning needs to extend across
borders if we are to democratize ML in developing countries. Adapting state-of-the-art (SOTA)
methods to resource-constrained environments such as developing countries can be challenging in
practice, pushing open source and inclusion.

Limitations and future work Our data quality control methods are based on the assumption that
all the local models share the same model architectures. It is easy to achieve when our fine-tuning
is based on the LoRA adapter. However, it may be worth extending it to adapt to different local
model architectures, for example, different low ranks. Future work may explore the intrinsic relation
between data selection and the model parameters and how our data selection methods can help reduce
the interference of parameter vectors from different models.
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A Data Attribution

Perplexity (PPL) serves as a fundamental metric in language modeling to measure the model’s ability
to predict text sequences accurately. Mathematically, it is defined as the exponential of the average
negative log-likelihood: PPL = exp(− 1

N

∑N
i=1 logP (wi|w1, . . . , wi−1)), where N is the number

of tokens in the sequence and P (wi|w1, . . . , wi−1) represents the probability the model assigns to
token wi given its preceding context. A lower perplexity score indicates better model performance, as
it suggests that the model assigns higher probabilities to the correct tokens in the sequence, effectively
measuring how "surprised" the model is by new text.

Instruction Following Difficulty (IFD) [24] provides a quantitative metric for evaluating the difficulty
of instruction-following tasks in language models. This score is calculated as the ratio between two
key measurements: the Conditioned Answer Score sθ(A|Q) and the Direct Answer Score sθ(A):
IFDθ(Q,A) = sθ(A|Q)

sθ(A) , where sθ(A|Q) measures the model’s ability to generate responses with
instructional context, and sθ(A) evaluates the model’s capability to generate answers in isolation.
The Direct Answer Score is computed as sθ(A) = − 1

N

∑N
i=1 logP (wA

i |wA
1 , . . . , w

A
i−1; θ). This

metric quantifies the extent to which instructions aid in response generation, where a higher IFD
score suggests that the given instruction provides limited useful context for the model’s response
generation, indicating greater difficulty in following the instruction.

Influence Functions [19]: DataInf represents an efficient algorithm for computing in-
fluence functions, distinguished by its closed-form expression that reduces computa-
tional and memory complexity compared to existing methods. The algorithm approx-
imates the inverse Hessian calculation (Gl(θ

∗) + λlIdl
)−1 through the key transforma-

tion: 1
n

∑n
i=1

(
∇θlℓi∇θlℓ

T
i + λlIdl

)−1 ≈ 1
n

∑n
i=1

(
Idl

− ∇θl
ℓi∇θl

ℓTi
λl+∇θl

ℓTi ∇θl
ℓi

)
, where the Sherman-

Morrison formula enables a closed-form solution. The influence function is computed as
IDataInf(xk, yk) =

∑L
l=1

1
λl

(
1
n

∑n
i=1

Ll,i

λl+Ll,ii
Ll,ik − Ll,k

)
.

B Priliminary Results on Low-quality Data

Table 4: Preliminary results on MedicalQA.

Mistral-7b Llama2-7b
Evaluation Metric GPT-4 Scoring KnowledgeAvg GPT-4 Scoring Knowledge Avg

Raw Data 0.165 0.343 0.265 0.424
Mix-qual Data 0.085 (↓48.5%) 0.194 (↓43.4%) 0.0925 (↓65.1%) 0.311 (↓26.7%)

Table 5: Preliminary results on MMedBench.

Mistral-7b Llama2-7b
Setting Federated Model Merging Federated Model Merging

Raw Data 0.455 0.540 0.450 0.505
Mix-qual Data 0.420 (↓7.69%) 0.515 (↓6.48%) 0.440 (↓2.22%) 0.485 (↓3.96%)

C Detailed Method Description

Stage 1 (On each client) Local fine-tuning with low-quality data; save model checkpoints.
Stage 2 (On each client) Calculate gradients, compute scores for each training sample, send scores
to the server.
Stage 3 (On the server) Calculate gradients, compute scores of anchor data, determine the global
threshold using anchor data scores and client scores.
Stage 4 (On each client) Select data with scores not lower than the global threshold.
Stage 5 (On each client) Local fine-tuning with high-quality data, then send model parameters to the
server.
Stage 6 (On the server) Merge client model parameters to obtain the final global model.
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Algorithm 1 Our data selection method for collaborative fine-tuning

Initialization Initial global model: θ0; Training datasets (private):Dtrain ={
D(1)

train,D
(2)
train, . . . ,D

(K)
train

}
, D(k)

train = {z(k)1 , . . . , z
(k)
n };

Validation datasets (public): Dval =
{
D

(1)
val,D

(2)
val, . . . ,D

(K)
val

}
, D(k)

val = {z′(k)1 , . . . , z
′(k)
m };

Anchor data (public): Danc =
{
D(1)

anc,D(2)
anc, . . . ,D(K)

anc

}
, D(k)

anc = {z∗(k)1 , . . . , z
∗(k)
v };

On the Client k
Train model θk on D(k)

train ▷ Training with Mixed Quality data
for each training sample zi ∈ D(k)

train do
Calculate ∇ℓ (z′,θt)
for each checkpoint t in T do

for each validation sample z′i ∈ D(k)
val do

Calculate ∇ℓ (z′
i,θt)

end for
end for
S(z) =

∑
z′
∑T

t=1 η̄i∇ℓ (z′,θt) · ∇ℓ (z,θt) ▷ Data Scoring
end for
D′(k)

train =
{
zi ∈ D

(k)
train, zi ≥ τ

}
▷ Select training data with scores above the threshold

Train model θ′k on D′(k)
train ▷ Training with High-Quality Data

Send updated θ′k to server

On the Server
for each anchor data zi ∈ D(k)

anc do
Calculate ∇ℓ (z,θt)
for each checkpoint t in T do

for each validation sample z′i ∈ D(k)
val do

Calculate ∇ℓ (z′
i,θt)

end for
end for
S(z) =

∑T
t=1 η̄i∇ℓ (z′,θt) · ∇ℓ (z,θt) ▷ Anchor data score

end for
Determine the global threshold τ with anchor data Danc

Send τ to each clients for training with High-quality data
Aggregate client updates: θ′ =

∑K
k=1

|Dk|∑K
k=1|Dk|

θ′k ▷ Model Merging or Aggregation

D Complexity of Data Scoring
The overall compute complexity, where N is number of checkpoints, and d is gradient dimension.

O (N · |D| · |Dval | · d)
The overall storage complexity:

O(|D| ·N · d+ |Dval| ·N · d)

E Implementation Details
We use Hugging Face’s transformers library [39] and PEFT library [27] for loading pre-trained
models and LoRA configurations. For our training and evaluation, we use PyTorch as the underlying
auto-differentiation framework [32]. We use the AdamW optimizer [26, 18] for all experiments.
All the experiments are conducted on the machines with the same hardware configuration using
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Bad data Good data

English Mismatched Answer

Score: -0.714698731899261

[instruction] Given your background as a doctor, please provide your insight in
addressing the medical questions based on the patient’s account.
[input] A 23-year-old patient with a past medical history of anxiety and
appropriately treated schizophrenia presents to the emergency department for a
first time seizure. . . . Which of the following is the most likely explanation of
this patient’s current presentation?. A. Elevated blood levels of a medication B.
Increased water consumption C. P450 induction D. Sub-therapeutic dose

[output] Thromboembolism. The patient’s history of recent surgery for a fractured
femur, coupled with a period of immobility during rehab, increases the risk of
deep venous thrombosis (DVT).

English Score: 0.474834382534027

[instruction] Given your background as a doctor, please provide your insight in
addressing the medical questions based on the patient’s account.

[input] A 52-year-old man presents to his primary care physician for generalized
pain. . . . Which of the following is associated with this patient’s condition?. A.
Hearing loss B. Bence Jones proteins C. Hypercalcemia D. Obstructive jaundice
[output] Hearing loss. Choosing option A, hearing loss, may seem counterintu-
itive given the patient‘s primary complaint of generalized pain. However, the
notable aspect of the case is the elevated alkaline phosphatase (ALP) level while
other liver function tests (AST, ALT) and lipase are normal, suggesting the source
of the ALP is likely not the liver or pancreas.

Chinese Incomplete Answer

Score: -0.42757144570350647
[instruction]基于您作为医生的背景，请根据患者的描述，提供您在解决
医学问题方面的见解。
[input] 男性儿童，左肘摔伤急诊就医。小夹板外固定后，前臂高度肿
胀，手部青白发凉，麻木无力，经拍X线片，诊断为左肱骨髁上骨折，若
不及时处理，其最可能的后果是. A.缺血性骨坏死 B.骨化性肌炎 C.关节
僵硬 D.缺血性肌挛缩
[output]缺血性

Chinese Score: 0.23900631070137024
[instruction]基于您作为医生的背景，请根据患者的描述，提供您在解决
医学问题方面的见解。
[input] 卧位腰椎穿刺，脑脊液压力正常值是. A. 80～180mmH2O B.
50～70mmH2O C. 230～250mmH2O D. 260～280mmH2O
[output] 80～180mmH2O.选择A的理由是：在成人卧位腰椎穿刺时，测得
的脑脊液（CSF）正常压力大多数情况下是80～180mmH2O。B选项提供
的是50～70mmH2O，偏低，可能暗示脑脊液循环障碍或低压症状；C选
项和D选项则提供了230～250mmH2O和260～280mmH2O的值范围，这些
数值偏高，可能表明颅内压增高。

Spanish Mixed Languages

Score: -0.6730865836143494
[instruction] Dado su experiencia como médico, por favor, proporcione su opinión
para abordar las preguntas médicas basándose en el relato del paciente.
[input] Los corpúsculos de Pacini:. A. Están inervados por fibras amielínicas.
B. Son mecanorreceptores de adaptación lenta. C. Presentan campos receptores
pequeños. D. Se localizan en zonas profundas de la dermis. E. Son termorrecep-
tores.
[output] A. Клетки, сохранившие жизнеспособность после
лучевого поражения, могут вносить значительный вклад
в развитие патологических процессов, так как поврежде-
ние ДНК, индуцированное излучением, приводит к мута-
циям, апоптозу, некрозу и возможному онкогенезу.

Spanish Score: 0.6730865836143494
[instruction] Dado su experiencia como médico, por favor, proporcione su opinión
para abordar las preguntas médicas basándose en el relato del paciente.
[input] ¿Cuál de los siguientes nutrientes requiere una atención y recomendación
más especial en la edad avanzada?. A. Selenio. B. Calcio. C. Aminoácidos
esenciales. D. Lípidos. E. Fibra.
[output] B. La elección del calcio (B) se debe a que es fundamental para la salud
ósea, que se deteriora con la edad avanzada. La osteoporosis y el riesgo de
fracturas aumentan debido a una disminución de la densidad ósea, que suele
ser particularmente notable en mujeres posmenopáusicas debido a la dismin-
ución de estrógenos. Además, la absorción de calcio decrece con la edad, y
los requerimientos no son fácilmente satisfechos solo con la dieta. Por ello, es
crítico asegurarse de que los adultos mayores consuman suficiente calcio, ya
sea a través de la alimentación o mediante suplementos, para mantener huesos
fuertes y prevenir fracturas.

Table 6: Low-quality and high-quality data samples with scores.

NVIDIA A40 and A6000. In the experiments of Medical QA, we consider 300 communication
rounds, n = 20 clients, 10 local steps of model training. In the experiments of Multilingual Medical
QA, we distrubute 6 languages on 6 clients, with each clients 1052 dataset. In all experiments, we use
8 bit quantization, set batch_size = 16, and LoRA rank to 16 (all the participating LoRA adapters
have same rank), and we do 3 epochs for local training.

F Additional Experimental Results

17



Questions Ground Truth Response Model Re-
sponse (w/o data
selection)

Model Response (w/
our data selection)

初产妇，23岁，
规 律 宫 缩10小
时 ， 持 续 观
察2小 时 ， 宫
口 由6cm开
大 至7cm，
胎 头 ＋1， 胎
心140次/分。恰
当的处置应为.
A.严密观察产程
进展 B. 静脉滴
注缩宫素 C. 立
即行人工破膜 D.
立即行剖宫手术

严 密 观 察 产 程 进 展. 选
择A（严密观察产程进展）的
原因是因为初产妇宫口开大
至7cm，这表明产程正在缓
慢进展，但并无明显异常。
胎头已下降至+1位置，这是
正常的胎位下降过程。胎心
率140次/分属于正常范围，说
明胎儿目前处于安全状态。

选择D. 立即行剖宫
手术. 初产妇的宫
缩是一种常见的产
前症状，宫缩的规
律性和持续时间可
以反映出妊娠的进
展，但它并不代表
产妇的产前状况。
选项A. 严密观察
产程进展，是一种
产前监测的方法，
但不能代表产妇的
产前状况。选项B.
静脉滴注缩宫素，
是一种产前治疗方
法，但不能代表产
妇的产前状况。

恰当的处置应为A.
严密观察产程进展.
初产妇的宫缩是一
种常见的产前症状，
它可能表示妊娠进
展正常，也可能是产
前妊娠综合征的一种
表现。严密观察产程
进展是对初产妇的产
前监测的重要组成部
分，它可以帮助医生
确定产前妊娠综合征
的发生情况，并采取
适当的治疗措施。因
此，选项A. 严密观
察产程进展是最合适
的处置选项。

What type of
injury to the
arm/elbow most
often leads to
supracondylar
fractures?

Supracondylar fractures most of-
ten occur after hyperextension in-
juries of the arm/elbow.

1000 Hg is the pres-
sure required to rup-
ture an average aortic
aortic

Supracondylar frac-
tures are a type of
fracture that occurs
above the elbow joint,
and they are most com-
monly caused by a fall
onto an outstretched
arm.

Table 7: Samples of the output of merged models on multilingual MMedBench dataset.

Questions Model Response (w/o data se-
lection)

Model Response (w/ our data selection)

How does a 2 year
treasury note work?

It is a 2 year treasury note. Treasury notes are a short-term government
security that matures in two years. They are
issued by the U.S. Treasury Department to
help ìnance the nation’s deìcit.

What causes a stock
to drop in price?

Investors are afraid to buy stocks
because they are afraid the stock
will drop in price.

If the stock price is falling, it’s because
there’s a lot of supply, but not enough de-
mand. If there’s a lot of demand, but not
enough supply, the price will rise.

Table 8: Samples of the output of merged models on FiQA dataset.

NeurIPS Paper Checklist
The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.
Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
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(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.
The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.
IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: See Section 3 and Section 4.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: See Appendix 6.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.
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• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: The paper does not have any theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: See Section 4 and Appendix 6.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
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(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: See the submitted artifacts.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: See Section 4 and Appendix 6.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: See the bar plots in Section 4.
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Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: See Section 4 and Appendix 6.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We followed the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
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Justification: We have provided the statement of societal impact of the work performed.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper proposes an approach for data selection, and does not pose high
risks for misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: This paper is licensed under CC-BY-NC-SA 4.0. All other codes, datasets, and
references are properly cited.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
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• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: We did not have any released new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: We did not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: We did not involve crowdsourcing nor research with human subjects.

Guidelines:
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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