Under review as a conference paper at ICLR 2026

LEARNING TO REASON WITHOUT EXTERNAL REWARDS

Anonymous authors
Paper under double-blind review

ABSTRACT

Training large language models (LLMs) for complex reasoning via Reinforcement Learn-
ing with Verifiable Rewards (RLVR) is effective but limited by reliance on costly, domain-
specific supervision. We explore Reinforcement Learning from Internal Feedback (RLIF),
a framework that enables LLMs to learn from intrinsic signals without external rewards
or labeled data. We propose INTUITOR, an RLIF method that uses a model’s own confi-
dence—termed self-certainty—as its sole reward signal. INTUITOR replaces external re-
wards in Group Relative Policy Optimization (GRPO) with self-certainty scores, enabling
fully unsupervised learning. Experiments demonstrate that INTUITOR matches GRPO’s
performance on mathematical benchmarks while achieving superior generalization to out-
of-domain tasks like code generation, without requiring gold solutions or test cases. Our
findings show that intrinsic model signals can drive effective learning across domains, of-
fering a scalable alternative to RLVR for autonomous Al systems where verifiable rewards
are unavailable. Code is available in the supplementary materials.

1 INTRODUCTION

Reinforcement learning has become essential for enhancing large language model capabilities. Early work
focused on Reinforcement Learning from Human Feedback (RLHF), which aligns model outputs with hu-
man values through reward models trained on preference data (Ouyang et al., 2022). Recent advances in
Reinforcement Learning with Verifiable Rewards (RLVR) replace learned reward models with automati-
cally verifiable signals, such as exact answer matching in mathematical problem-solving, demonstrating
improved reasoning capabilities in models like DeepSeek-R1 (Guo et al., 2025; Lambert et al., 2024).

Despite these successes, both RLHF and RLVR face fundamental limitations that constrain their broader
applicability. RLHF requires extensive human annotation, making it expensive and potentially biased (Gao
et al., 2023). RLVR, while avoiding learned reward models, demands domain-specific verifiers and gold-
standard solutions. In mathematics, this requires expert annotation of solutions; in code generation, it ne-
cessitates comprehensive test suites and execution environments (Liu et al., 2023; Liu & Zhang, 2025; Team
et al., 2025; Xiaomi, 2025). These requirements limit RLVR to carefully curated domains and complicate
deployment in open-ended scenarios. Moreover, outcome-oriented verifiable rewards limit transferability to
other domains. These challenges motivate exploration of more general and scalable reward paradigms, lead-
ing to a critical research question: Can LLMs enhance their reasoning abilities by relying solely on intrinsic,
self-generated signals, without recourse to external verifiers or domain-specific ground truth?

In this paper, we introduce and explore such a paradigm: Reinforcement Learning from Internal Feedback
(RLIF), where models optimize intrinsic feedback to improve performance without external rewards or su-
pervision. The motivation for RLIF extends to future scenarios where models develop superhuman capabil-
ities that become difficult for humans to evaluate directly (Burns et al., 2023), requiring self-improvement
through intrinsic mechanisms (Oudeyer & Kaplan, 2007).

Under review as a conference paper at ICLR 2026

Under the RLIF paradigm, we propose INTUITOR, a novel reinforcement learning approach leveraging a
model’s own confidence as an intrinsic reward. This builds on observations that LLMs exhibit lower confi-
dence on difficult problems (Farquhar et al., 2024; Kuhn et al., 2023; Kang et al., 2024; 2025); optimizing for
confidence should improve reasoning capabilities. Specifically, we use self-certainty (Kang et al., 2025), the
average KL divergence between the model’s output distribution and a uniform distribution, as our confidence
measure. This metric has proven useful for distinguishing high-quality responses from flawed ones (Kang
et al., 2025; Ma et al., 2025). Building on this insight, INTUITOR guides learning through self-generated
signals, eliminating the need for external supervision or handcrafted rewards. The implementation of INTU-
ITOR is simple, efficient, and effective: we replace the verifiable reward signal in existing RLVR frameworks,
specifically Group Relative Policy Optimization (GRPO) (Shao et al., 2024), with self-certainty scores, using
the same policy gradient algorithm.

Our experiments demonstrate promising results. On the MATH dataset (Hendrycks et al., 2021) with
Qwen2.5-3B base (Yang et al., 2024a), INTUITOR matches the performance of GRPO without relying on
any gold answers. As INTUITOR rewards the generation trajectory rather than only the end result, it gener-
alizes more effectively: training a Qwen2.5-3B base model on MATH yields a 65% relative improvement
on LiveCodeBench Code generation task (Jain et al., 2024) versus no improvement for GRPO, and a 76%
gain on CRUXEval-O (Gu et al., 2024) compared with 44% for GRPO. Additionally, when we fine-tune the
Qwen2.5-1.5B base model with INTUITOR on the MATH corpus, a model that originally produces repeti-
tive content and scores 0% on LiveCodeBench learns to emit coherent reasoning chains and well-structured
code, reaching 9.9% accuracy after the tuning. Beyond the Qwen family, experiments with Llama (Meta
Al, 2024) and OLMo (OLMo et al., 2024) models also show impressive gains, underscoring the strong gen-
eralization capabilities of INTUITOR. As INTUITOR requires only a clear prompt and no verifiable reward,
it is broadly applicable across tasks, providing fresh evidence that pretrained LLMs possess richer latent
behavioral priors than previously recognized. Our contributions can be summarized as follows:

* We introduce and explore Reinforcement Learning from Internal Feedback (RLIF), a novel reinforcement
learning paradigm enabling LLMs to improve reasoning skills by leveraging intrinsic, self-generated sig-
nals, without reliance on external supervision or labeled data.

¢ We introduce INTUITOR, an RLIF-based method that utilizes a model’s own internal confidence mea-
sure—termed self-certainty—as the sole intrinsic reward.

* We demonstrate that INTUITOR matches supervised RL performance on in-domain tasks while achiev-
ing superior out-of-domain generalization. We uncover emergent structured reasoning and enhanced
instruction-following capabilities induced by intrinsic rewards.

2 RELATED WORK

Reinforcement Learning from Human Feedback (RLHF). RL has become instrumental in refining
LLMs. Early pivotal work centered on Reinforcement Learning from Human Feedback (RLHF) (Ouyang
et al., 2022), which aligns LLMs with human values by training a reward model on human preference data.
While effective, RLHF is often resource-intensive due to the need for extensive human annotation (Touvron
et al., 2023). Subsequent innovations like Direct Preference Optimization (DPO) (Rafailov et al., 2023)
aimed to simplify this by directly training models on preferences. The reliance on human-generated or
model-approximated human preferences poses scalability challenges and introduces potential biases from
the reward model itself (Gao et al., 2023).

Reinforcement Learning with Verifiable Rewards (RLVR). RLVR emerged as a powerful alternative,
particularly for tasks with clear correctness criteria like mathematical reasoning and code generation (Hu
etal., 2025; Team et al., 2025; Xiaomi, 2025). RLVR utilizes rule-based verification functions, such as exact
answer matching (Guo et al., 2025; Team et al., 2025; Xiaomi, 2025; Jaech et al., 2024), to provide reward
signals, thereby avoiding the complexities and potential pitfalls of learned reward models. This approach

Under review as a conference paper at ICLR 2026

has sparked significant advances, with models like DeepSeek-R1 (Guo et al., 2025) achieving state-of-the-art
reasoning capabilities. The development of robust policy optimization algorithms like GRPO (Shao et al.,
2024) and its variants (Luo et al., 2025; Liu et al., 2025) has further solidified RLVR’s success. Neverthe-
less, RLVR’s applicability is largely confined to domains where verifiable gold solutions or exhaustive test
cases can be constructed, and its predominant focus on outcome-based rewards can limit generalization to
dissimilar tasks or those requiring nuanced, process-oriented feedback.

Intrinsic Signals and Self-Play in LLM Optimization. Self-play and intrinsic rewards enable autonomous
model improvement. Methods like SPIN (Chen et al., 2024) and Self-Rewarding LMs (Yuan et al., 2024) use
the model itself for feedback. Earlier work like STaR (Zelikman et al., 2022) relies on outcome evaluation,
while others explore procedural generalization (Poesia et al., 2024; Cheng et al., 2024). Concurrent works
such as Genius, TTRL, and Absolute Zero (Xu et al., 2025; Zuo et al., 2025; Zhao et al., 2025) leverage
unlabeled queries for RL but are often restricted to specific task distributions. INTUITOR aligns with this di-
rection, offering a lightweight, general-purpose approach using self-certainty as a confidence-based intrinsic
reward, enabling single-agent RL across diverse tasks without explicit feedback or gold labels.

3 METHOD

3.1 REINFORCEMENT LEARNING FROM INTERNAL FEEDBACK (RLIF)

To overcome the limitations of RLHF’s costly human annotation and RLVR’s domain-specific supervision,
we propose Reinforcement Learning from Internal Feedback (RLIF). Instead of depending on external eval-
uation, RLIF uses the model’s own assessment of its outputs as feedback. This offers several advantages: it
reduces reliance on supervision infrastructure, provides task-agnostic reward signals, and supports learning
in domains where external verification is unavailable. The optimization objective for policy 7y is:

max Eovr, (g) [u(g, 0) — BKL{mo(0]q) | met (0l a)]] M

where ¢ is an input query, o is the generated output, 7. is an initial reference policy, and S controls the
KL divergence to prevent excessive deviation from 7. Here, u(q, 0) is an intrinsic signal derived from the
model’s internal state or computation, rather than external verification. The key challenge lies in identifying
intrinsic signals that correlate with output quality and can effectively guide learning.

Concurrent research explores related concepts within the RLIF paradigm. For example, Entropy Minimized
Policy Optimization (EMPO) (Zhang et al., 2025) minimizes LLM predictive entropy on unlabeled ques-
tions in a latent semantic space. SEED-GRPO (Chen et al., 2025) uses the semantic entropy of generated
sequences, combined with ground truth rewards, to modulate policy updates. Reinforcement Learning with
a Negative Entropy Reward (EM-RL) (Agarwal et al., 2025) employs a reward signal based solely on the
negative sum of token-level entropy, akin to REINFORCE but without labels. These methods highlight the
growing interest and potential of leveraging intrinsic signals for LLM training under the RLIF framework.

3.2 INTUITOR: POLICY OPTIMIZATION WITH SELF-CERTAINTY

We propose INTUITOR, a novel RLIF method that utilizes a model’s own confidence as the sole intrinsic re-
ward signal u(q, 0). Our choice of model confidence as the intrinsic reward is motivated by observations that
LLMs often exhibit lower confidence when encountering unfamiliar tasks or lacking sufficient knowledge
(Kang et al., 2024). Conversely, higher confidence frequently correlates with correctness. By rewarding
increased self-confidence, INTUITOR encourages to iteratively “practice” and refine its reasoning pathways
until it becomes more confident in its outputs.

Under review as a conference paper at ICLR 2026

Model Outputs Rewards Advantages

Intuitor 1 Reference Model Uq
Model Scores
Models

g

Figure 1: INTUITOR simplifies the training strategy by leveraging self-certainty (the model’s own confi-
dence) as an intrinsic reward to incentivize reasoning abilities without external supervision.

G

We adopt the self-certainty metric from Kang et al. (2025), defined as the average KL divergence between a
uniform distribution U over the vocabulary V and the model’s next-token distribution:

o] lo] |V]|
1
Self-certainty(o|q) := ZKL (U || pry(-lg, 0<i)) = |V| ZZlog V|- prp(ilg, 0<i)) (2)

i=1 j=1

where o.; are the previously generated tokens and p(j|q, 0<Z-) is the model’s predicted probability for token
7 at step ¢. Higher self-certainty values indicate greater confidence.

Self-certainty, being related to a KL divergence where the model’s prediction is the second argument
KL(U || p=,), is mode-seeking. This contrasts with entropy (or reverse KL divergence from uniform),
which is mode-covering. Critically, self-certainty is reported to be less prone to biases towards longer gen-
erations, a common issue with perplexity or entropy-based measures (Fang et al., 2024; Kang et al., 2025),
making it a potentially more reliable indicator of intrinsic confidence. Kang et al. (2025) demonstrate that
self-certainty is effective for selecting high-quality answers from multiple candidates, and uniquely among
different confidence measures, its utility improves with more candidates. Optimizing for self-certainty thus
encourages the model to generate responses that it deems more convincing. The RL process can achieve this
by, for instance, guiding the model to produce more detailed reasoning steps, thereby increasing the model’s
conviction in its final answer. This mechanism is more nuanced than simply increasing the probability of the
most likely output; it involves modifying the generation process itself to build confidence.

To optimize the objective in Equation 1, various policy gradient algorithms can be employed. Informed
by the recent success in models such as DeepSeek-R1 (Guo et al., 2025) and its widespread adoption of
GRPO in open-source projects, we utilize GRPO to optimize for self-certainty. The overall pipeline for this
GRPO-based instantiation of INTUITOR is illustrated in Figure 1.

The core idea behind the optimization is to sample multiple candidate outputs for a given query and use
their relative rewards to estimate advantages for policy updates. For each query ¢ ~ P(Q), GRPO samples
a group of GG outputs o1, ..., 0¢ using a behavior policy 7y, (e.g., a previous iteration or the SFT model).
The target policy 7y is then optimized by maximizing:

old

o]

Z (mm [clt A; 4, clip, (¢;4(0)) Alt} — 6Dkt (7T9||7Tref))

Jereo(0) = E 1~P(Q), E
G |01‘
{0i}5y ~mo,, (lg)

TFG(Oi,t|Qg0i,<t)
0414 (01,619,045, <t) A
Hyperparameters € (for clipping) and g (for KL penalty strength) control stability and exploration, and A; ;
is the advantage estimate.

where ¢; +(0) is the importance weight, clip, is the function that clips to [1 — ¢, 1 + €].

Integration of Self-Certainty. The key innovation in INTUITOR is replacing external rewards with self-
certainty scores in GRPO’s advantage computation. Specifically, each output o; is scored by:

u; — mean({uy, ug, - ,ug})
std({u1,ug, - ,ug})

u; = Self-certainty(o;|q), A;; = 3)

Under review as a conference paper at ICLR 2026

This formulation enables the policy to favor outputs that the model itself considers more confident. The com-
plete INTUITOR training pipeline operates by sampling multiple candidate outputs for each query, computing
self-certainty scores for each candidate, using these scores to estimate advantages within the group, and up-
dating the policy to increase the likelihood of generating high-confidence outputs. This process requires no
external supervision, making it a self-reinforcing learning loop.

4 EXPERIMENTAL SETUP

Training Setup. Both GRPO and INTUITOR are trained with the Open-R1 framework (Face, 2025) on
the training split of the MATH dataset (Hendrycks et al., 2021), which contains 7,500 problems. We use
Qwen2.5-1.5B and Qwen2.5-3B (Yang et al., 2024b) as backbone models, with a chat-based prompting
format throughout. Given the models’ initially weak instruction-following abilities, we do not require them
to disentangle intermediate reasoning from final answers. Each update processes 128 problems, generating
7 candidate solutions per problem, with a default KL penalty of 5 = 0.005. For a fair comparison, GRPO
and INTUITOR share identical hyperparameters (see Appendix) without additional tuning. We also evaluate
a GRPO variant, denoted GRPO-PV in Table 1, which uses plurality voting' as a proxy for ground truth.
This follows the approach from TTRL (Zuo et al., 2025), which shows that self-consistency-based rewards
can match the performance of golden answers when training on inference data.

INTUITOR for Code Generation (INTUITOR-Code). To assess generalization beyond mathematical rea-
soning, we apply INTUITOR to the Codeforces code generation dataset (Li et al., 2022). This variant, denoted
INTUITOR-Code in Table 1, modifies the setup as follows: the number of sampled completions per problem
is increased to 14; the learning rate is reduced from 3 x 1075 to 1 x 1075; and the KL penalty is increased
to 8 = 0.01. For simplicity, we limit the run to 50 steps, utilizing a total of 3,200 problems.

Evaluation. Evaluations generally use the same chat-style prompting format as in training, except for
MMLU-Pro (Wang et al., 2024), where we follow the benchmark’s original prompt format. Greedy decod-
ing is used for all completions. Experiments were conducted on NVIDIA A100 GPUs, each with 40GB
of memory. We evaluate performance on the following benchmarks (1) Math reasoning: MATHS00 and
GSMSK, using the 1ighteval library (Habib et al., 2023). (2) Code reasoning: CRUXEval-O (Gu et al.,
2024), using the ZeroEval framework (Lin, 2024), and LiveCodeBench v6 (LCB) (Jain et al., 2024).
(3) Instruction following: AlpacaEval 2.0 with length-controlled win rates (Dubois et al., 2024), judged by
GPT-4.1 (OpenAl, 2025).

5 RESULTS AND ANALYSIS

Table 1 presents main evaluation results, and Figure 2 illustrates response length evolution during training.
On in-domain MATH and GSMS8K datasets, INTUITOR and GRPO-PV (both golden-answer-free) achieve
performance comparable to GRPO (using golden answers). This aligns with TTRL (Zuo et al., 2025), where
plurality voting approximated golden answers without significant performance loss. While INTUITOR per-
forms slightly worse than GRPO overall, on MATH it produces longer responses and demonstrates markedly
improved code generation, suggesting enhanced reasoning capabilities.

5.1 LEARNING TO FOLLOW INSTRUCTIONS

INTUITOR significantly enhances instruction-following. Initially, the pretrained Qwen2.5-1.5B struggles
with chat-style prompts, scoring <10% on all chat-template tasks (Table 1) and generating repetitive, non-

!Self-consistency uses a plurality rule, selecting the most frequent answer even without majority support, while
majority voting requires > 50% support and otherwise yields no winner (De Condorcet et al., 2014).

Under review as a conference paper at ICLR 2026

Table 1: Performance comparison of various methods on reasoning and instruction-following benchmarks.
The INTUITOR-Code variant is trained on Codeforces data with a smaller learning rate and fewer training
steps. All evaluations are obtained with the chat inference template, except for MMLU-Pro.

Model Training Data GSM8K MATHS500 LCB CRUX MMLU-Pro AlpacaEval
Owen2.5-1.5B Results

Base - 0.002 0.090 0.000 0.000 0.297 2.10
+ GRPO MATH 0.747 0.560 0.056 0.328 0.315 4.03
+ INTUITOR MATH 0.711 0.530 0.099 0.296 0.310 4.28
Owen2.5-3B Results

Base - 0.673 0.544 0.093 0.236 0.377 3.72
+ GRPO MATH 0.826 0.636 0.085 0.341 0.403 6.91
+ GRPO-PV MATH 0.820 0.636 0.086 0.299 0.398 6.17
+ INTUITOR MATH 0.792 0.612 0.153 0.416 0.379 7.10
+ INTUITOR-Code Codeforces 0.743 0.572 0.153 0411 0.386 4.16
o] — Qwen2.5-1.5B 850 4 Qwen2.5-3B 06 QVfiZiiSiAw 010 0.6 Qwenziﬂ\ /)

800 0.5 t0.08 0.62
1100 - @

<
k=)
g 750 { g £ ©
2 S 041 4., [0065 &0.60 s
S 1000 b A S & 0128
3 7004 £ 031 A 0048 E 0.584 3
& 900 £ / g go S
E 650 1 0.2 / A to.10
8 800 _ : / [0-02 0.56 1 N -
W 6001 01{d--4-A F 0.00 Ak

~
o
=3

0 20 40 60 0 20 40 60 0 20 40 60 0 20 40 60
Step Step Step Step

Figure 2: Average response lengths during training Figure 3: Performance evolution on MATHS500 (in-
rollouts. For Qwen2.5-1.5B, INTUITOR and GRPO domain) and LiveCodeBench (transfer) for models
reduce gibberish outputs. For Qwen2.5-3B, INTU- trained on MATH. MATHS500 accuracy increases
ITOR and GRPO increase reasoning length; INTU- rapidly at first, preceding gains in code-generation
ITOR yields significantly longer responses. GRPO- accuracy. LiveCodeBench performance continues to
PV shows minimal length increase. rise even after MATHS00 accuracy plateaus.

sensical output, which inflates average response lengths (Figure 2). Fine-tuning with INTUITOR sharply
reduces such gibberish, decreases completion lengths, and enables non-trivial performance across all evalu-
ated benchmarks. Furthermore, on the MATH dataset, INTUITOR substantially improves the Length Control
Win Rate on AlpacaEval for both Qwen2.5-1.5B and Qwen2.5-3B, surpassing GRPO under identical set-
tings. This demonstrates robust gains in instruction adherence.

5.2 FOSTERING STRUCTURED REASONING

Rapid Initial Learning. Self-certainty, a contin- apje 2: Early-stage performance (training step 10) on

uous and inherently process-aware reward derived GSM8K and MATH. INTUITOR consistently outper-
from the model’s internal assessment across all to- 5.5 GRPO.

kens, contrasts with binary rewards. This inter-

nal signal may encourage LLMs to follow more Model Method GSM8K MATH
effective learning trajectories. Given compara- -

ble final performance between GRPO and INTU- Qwen2.5-1.5B gal;s;léne 88%)% 8(2)32
ITOR, we assess early-stage lealjngblllty by com- INTUITOR 0.152 0.368
paring in-domain accuracy at training step 10. As

shown in Table 2, INTUITOR consistently outper- Baseline 0.673 0.544
forms GRPO on both GSM8K and MATH bench- ~ Qwen2.5-3B GRPO 0.758 0.596
marks for Qwen2.5-1.5B and Qwen2.5-3B, high- INTUITOR 0.811 0.618

lighting its advantage in rapid initial learning.

Under review as a conference paper at ICLR 2026

Cross-Task Generalization. Figure 3 illustrates performance trajectories on MATHS500 (in-domain) and
LiveCodeBench (transfer task) for models trained on the MATH dataset. For both INTUITOR and GRPO,
accuracy improvements on LiveCodeBench emerge later in training, following initial gains on MATHS500.
Notably, LiveCodeBench performance continues to improve even after MATHS500 accuracy plateaus. This
pattern suggests that initial in-domain learning (on MATH) facilitates subsequent generalization to code
generation tasks (LiveCodeBench).

Emergence of Long-Form Reasoning. While large mod-

Question description ...

els like Deepseek-R1 achieve long-form reasoning through Eg, json{reasoning: __, answer: __}™"
extensive RL, INTUITOR enables smaller models to develop GRPO Dominant Format Intuitor Dominant Format
structured reasoning with limited data. On CRUXEval-O S————
(Figure 4), models trained with INTUITOR often exhibit free- “json The answer is:

. son
form reasoning before summarizing it within the instructed (E—— _ _
JSON block, despite prompts requiring reasoning directly OB R LR

. |] } answer: ...
in JSON. A similar pattern of pre-code natural language)
reasoning is observed on LiveCodeBench. This emergent

pre-reasoning may contribute to INTUITOR ’s strong perfor-

mance on these benchmarks. Figure 4: INTUITOR quickly demonstrate R1-

like reasoning

5.3 UNDERSTANDING EMERGENT LONG-FORM REASONING

When LLMs encounter unfamiliar questions, they sample from a distribution of possible answers (Kang
et al., 2024). Self-certainty reflects the model’s internal assessment of its output coherence. By reinforc-
ing high-confidence responses, INTUITOR encourages more elaborate reasoning, potentially improving the
model’s comprehension of its own outputs. While not explicitly targeting benchmark accuracy, this enhance-
ment in output quality and structure leads to more reliable answers and better generalization.

We analyze models trained with INTUITOR on code corpora by examining outputs for ten randomly selected
LiveCodeBench questions across different training steps. Figure 5 shows the evolution of output types
alongside model accuracy. The results reveal a clear progression: models first learn to generate valid Python
code (evidenced by improved accuracy and fewer invalid responses), then develop pre-code reasoning to
facilitate self-understanding. Further inspection of generations confirms that models progressively elaborate
their reasoning throughout training, supporting our hypothesis that INTUITOR encourages traces that the
model itself can better understand.

To quantify this effect, we classify outputs from successive checkpoints into three categories: invalid code
("No Answer”), valid code without reasoning ("No Reasoning”), and valid code with explicit reason-
ing ("Reasoning”). Figure 5(a) illustrates how these proportions evolve during training alongside Live-
CodeBench accuracy. The model first reduces invalid outputs and improves code correctness before in-
corporating pre-code reasoning, reflecting an emergent emphasis on self-explanatory traces. Figure 5(b)
demonstrates how training with INTUITOR leads to structured reasoning before code generation. Additional
evidence appears in Figure 7, where INTUITOR-trained models assign significantly higher confidence to their
generated responses compared to baseline models, as discussed further in Section 5.4.

5.4 ONLINE SELF-CERTAINTY PREVENTS REWARD EXPLOITATION

Over-optimization against static reward models is a known failure mode in reinforcement learning (Gao
et al., 2023). To assess the robustness of self-certainty as a reward, we compare offline self-certainty (re-
wards from a fixed base model) with online self-certainty (rewards from the evolving policy model), using a
reduced batch size of 224 responses per gradient update.

Under review as a conference paper at ICLR 2026

mmm No Answer No Reasoning mmm Reasoning —@— Accuracy
1.0 0.200
. 0.175 4 Code Block
0.150
o 0.6 o
— ©
- = . .
3 o4 g 0.125 Planning + Code Block + Explanation
’ < 0.100
027 0.075 1 .
Step-by-Step Planning + Code Block +
0.0~ 0.050 y y Step-by-Step Explanation
0 10 20 30 40 50 0 20 40
Step Step

Figure 5: (a) Left: Distribution of answer types for ten random LiveCodeBench questions across training
steps. Right: Corresponding model accuracy. The model first learns to generate correct code, then adds
reasoning to improve understanding. (b) Training with INTUITOR on code corpora leads to spontaneous
reasoning before coding and explanation of outputs.

Figure 6 demonstrates that the offline annotator is susceptible to exploitation. Around the 100th update step,
the policy model learns to inflate its self-certainty reward by appending an auxiliary, already-solved problem
to its answer for the given question. This exploitation manifests as a sharp increase in response length
(dashed line) and a concurrent collapse in validation accuracy (solid line). In contrast, the online annotator,
whose reward signal co-evolves with the policy, prevents such reward hacking and maintains stable training.

To further evaluate the quality of self-certainty as a reward signal, we analyze the distribution of self-
certainty scores from policies trained with INTUITOR and GRPO on MATHS500 responses (Figure 7). We
employ Mann—Whitney U tests to determine if correct responses achieve significantly higher self-certainty
scores than incorrect ones. Both GRPO and INTUITOR models exhibit significantly higher average self-
certainty scores, indicating that GRPO also enhances the model’s self-assessment capabilities. Notably,
policies trained with online self-certainty (i.e., INTUITOR) show no signs of reward hacking. The INTUITOR
policy yields the lowest p-values and largest effect sizes (r) in the Mann-Whitney U tests (Figure 7, inset).
This indicates it is most effective at discriminating its own correct and incorrect answers using self-certainty,
even while assigning higher absolute confidence scores overall. These findings underscore the potential of
INTUITOR for robust training on larger datasets.

5.5 ABLATION STUDIES

To comprehensively validate INTUITOR’s design and robustness, we conducted extensive ablation studies,
with full details provided in Appendix B due to page limitations. Key findings are: (1) KL term: Varying
the KL penalty (Sec. B.1) shows a stability—performance trade-off; moderate values yield the best accuracy.
(2) Scaling: INTUITOR scales to larger backbones (Qwen2.5-7B/14B, Qwen3-14B; Sec. B.2), delivering
consistent gains in reasoning and generalization. (3) Architecture: On Llama-3.2 and OLMo-2 (Sec. B.3),
INTUITOR remains effective, indicating robustness across model families and sizes. (4) Reward design:
Compared to entropy minimization (Agarwal et al., 2025) and random rewards (Shao et al., 2025), INTUITOR
yields stable improvements, while the alternatives trigger catastrophic collapse (Sec. B.4). (5) Optimization
strategy: Directly optimizing self-certainty as a loss function leads to reward hacking and performance
collapse; our advantage-weighted policy-gradient formulation avoids this and trains reliably (Sec. B.5).

6 DISCUSSION AND FUTURE RESEARCH

Scalability and Generalization. Our experiments, constrained by computational resources, utilize rela-
tively compact models trained on relatively small, unsupervised corpora. We aim to demonstrate the po-

Under review as a conference paper at ICLR 2026

Offline

r 3000

IN
o
!

Correct

Base Generate & Grade

Incorrect

Intuitor Generate & Grade

U = 45415
p=8.2e24
r=0.45

r 2500

Count

N
o
!

r 2000

o

r 1500

Accuracy
3
Completion length

Base Generate & Intuitor Grade
U = 40722
p = 7.9e-10
r=027

GRPO Generate & Grade
U =41178
p=17e15
r=035

T
—
o
S
o

//-""\f\/\/\—V\,

150 0 50

F 500 401

100 150

Step

100
Step

0 50

Count

. 1‘5 2‘0 2‘5 Bb 3‘5 1‘5 2‘0 2‘5 3‘0 3‘5
Figure 6: Accuracy and response length dur- Self-certainty Self-certainty
ing training, comparing online and offline self-

certainty annotators with INTUITOR under re- Figure 7: Distribution of self-certainty on MATHS500 re-

duced batch sizes. The offline reward model is ex- SPONSES: for policies trained with GRPO and INTUITOR.

: S Histograms are split by response correctness. The in-
loited early in t d 100 st lead- . .

ploited early in training (aroun steps), lea set shows Mann—Whitney U test statistics (p-value and

ing to increased response length and decreased ffect si) . If-certainty of ¢
accuracy. The online annotator maintains stable &€t S12€ 7) comparing seit-certainly ol correct versus

training. Refer to Section 5.4 for details. incorrect responses. The pol}cy trained with INTUITOR
demonstrates the best separation.

tential of a model’s self-certainty as a reward signal for policy optimization. The results show that this
signal consistently promotes more coherent, well-justified, and interpretable explanations, indicating a path
towards more autonomous learning. Future work could explore these benefits in larger foundation models
(with hundreds of billions of parameters) and on more diverse, real-world datasets. Given that purely offline
training with INTUITOR led to performance degradation over time, scaling up will likely require periodic
online updates to self-certainty estimates or hybrid offline-online schedules to maintain calibration.

Combining Reward Signals. To enable a direct comparison between self-certainty and golden-answer
rewards, this paper focuses exclusively on a single reward signal. However, these signals are not mutually
exclusive. Future work could explore combining them, for instance, by summation or by alternating based
on the availability of golden answers. Furthermore, other reward signals, such as formatting rewards (Guo
et al., 2025), could be additively combined to enhance performance. Integrating RLIF with methods like
RLHF and RLVR may further advance LLM capabilities across various dimensions.

7 CONCLUSION

This paper introduces INTUITOR, an instantiation of Reinforcement Learning from Internal Feedback (RLIF)
that uses a model’s intrinsic self-certainty as its sole reward signal, eliminating the need for external super-
vision or gold-standard solutions. Our experiments show that INTUITOR matches the performance of su-
pervised RLVR methods like GRPO on mathematical reasoning, while achieving superior generalization to
out-of-domain tasks such as code generation and instruction following. It also promotes structured reasoning
and leverages online self-certainty to guard against reward exploitation.

These findings highlight the transformative potential of RLIF, signaling a meaningful step toward Al systems
that improve through introspection and unlock rich latent capabilities. Looking forward, this paradigm
opens the door to Al agents capable of autonomous skill acquisition in novel domains and scalable self-
improvement—even as they approach or surpass the limits of human oversight. Future directions include
integrating RLIF with external reward methods like RLHF or RLVR to tackle increasingly complex real-
world challenges, and advancing the development of more robust, generalizable, and truly autonomous
learning systems.

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

Our research is based on publicly available datasets and open-source language models, mitigating concerns
related to private data or human subjects. The goal of our work is to enhance the reasoning capabilities
of language models through self-supervision, which we believe is a positive step toward more transparent
and robust Al systems. We have made our code publicly available to ensure transparency and allow for
full scrutiny of our methods and findings. We do not foresee any direct negative societal impacts or ethical
concerns arising from this work.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our results, we provide all source code and training configurations in the sup-
plementary materials. The Experimental Setup section and Appendix B detail all hyperparameters, software
versions (including the Open-R1 framework), and evaluation setups. Furthermore, Appendix C.1 includes
the exact prompts used during training and evaluation. These resources should allow for the complete repli-
cation of our experiments and validation of our findings.

REFERENCES

Shivam Agarwal, Zimin Zhang, Lifan Yuan, Jiawei Han, and Hao Peng. The unreasonable effectiveness of
entropy minimization in llm reasoning. arXiv preprint arXiv:2505.15134, 2025.

Collin Burns, Pavel Izmailov, Jan Hendrik Kirchner, Bowen Baker, Leo Gao, Leopold Aschenbrenner, Yin-
ing Chen, Adrien Ecoffet, Manas Joglekar, Jan Leike, et al. Weak-to-strong generalization: Eliciting
strong capabilities with weak supervision. arXiv preprint arXiv:2312.09390, 2023.

Minghan Chen, Guikun Chen, Wenguan Wang, and Yi Yang. Seed-grpo: Semantic entropy enhanced grpo
for uncertainty-aware policy optimization. arXiv preprint arXiv:2505.12346, 2025.

Zixiang Chen, Yihe Deng, Huizhuo Yuan, Kaixuan Ji, and Quanquan Gu. Self-play fine-tuning converts
weak language models to strong language models. arXiv preprint arXiv:2401.01335, 2024.

Pengyu Cheng, Yong Dai, Tianhao Hu, Han Xu, Zhisong Zhang, Lei Han, Nan Du, and Xiaolong Li. Self-
playing adversarial language game enhances llm reasoning. Advances in Neural Information Processing
Systems, 37:126515-126543, 2024.

Nicolas De Condorcet et al. Essai sur I’application de I’analyse a la probabilité des décisions rendues a la
pluralité des voix. Cambridge University Press, 2014.

Yann Dubois, Baldzs Galambosi, Percy Liang, and Tatsunori B Hashimoto. Length-controlled alpacaeval:
A simple way to debias automatic evaluators. arXiv preprint arXiv:2404.04475, 2024.

Hugging Face. Open rl: A fully open reproduction of deepseek-rl, January 2025. URL https:
//github.com/huggingface/open-rl.

Lizhe Fang, Yifei Wang, Zhaoyang Liu, Chenheng Zhang, Stefanie Jegelka, Jinyang Gao, Bolin Ding,
and Yisen Wang. What is wrong with perplexity for long-context language modeling? arXiv preprint
arXiv:2410.23771, 2024.

Sebastian Farquhar, Jannik Kossen, Lorenz Kuhn, and Yarin Gal. Detecting hallucinations in large language
models using semantic entropy. Nature, 630(8017):625-630, 2024.

10

https://github.com/huggingface/open-r1
https://github.com/huggingface/open-r1

Under review as a conference paper at ICLR 2026

Leo Gao, John Schulman, and Jacob Hilton. Scaling laws for reward model overoptimization. In Interna-
tional Conference on Machine Learning, pp. 10835-10866. PMLR, 2023.

Alex Gu, Baptiste Roziere, Hugh Leather, Armando Solar-Lezama, Gabriel Synnaeve, and Sida I
Wang. Cruxeval: A benchmark for code reasoning, understanding and execution. arXiv preprint
arXiv:2401.03065, 2024.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma,
Peiyi Wang, Xiao Bi, et al. Deepseek-rl: Incentivizing reasoning capability in llms via reinforcement
learning. arXiv preprint arXiv:2501.12948, 2025.

Nathan Habib, Clémentine Fourrier, Hynek Kydli¢ek, Thomas Wolf, and Lewis Tunstall. Lighteval: A
lightweight framework for llm evaluation, 2023. URL https://github.com/huggingface/
lighteval.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song, and
Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv preprint
arXiv:2103.03874, 2021.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. The curious case of neural text degenera-
tion. arXiv preprint arXiv:1904.09751, 2019.

Jingcheng Hu, Yinmin Zhang, Qi Han, Daxin Jiang, Xiangyu Zhang, and Heung-Yeung Shum. Open-
reasoner-zero: An open source approach to scaling up reinforcement learning on the base model. arXiv
preprint arXiv:2503.24290, 2025.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec Hel-
yar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai ol system card. arXiv preprint
arXiv:2412.16720, 2024.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando Solar-
Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free evaluation of
large language models for code. arXiv preprint arXiv:2403.07974, 2024.

Katie Kang, Eric Wallace, Claire Tomlin, Aviral Kumar, and Sergey Levine. Unfamiliar finetuning examples
control how language models hallucinate. arXiv preprint arXiv:2403.05612, 2024.

Zhewei Kang, Xuandong Zhao, and Dawn Song. Scalable best-of-n selection for large language models via
self-certainty. arXiv preprint arXiv:2502.18581, 2025.

Lorenz Kuhn, Yarin Gal, and Sebastian Farquhar. Semantic uncertainty: Linguistic invariances for uncer-
tainty estimation in natural language generation. arXiv preprint arXiv:2302.09664, 2023.

Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze Brahman, Lester
James V Miranda, Alisa Liu, Nouha Dziri, Shane Lyu, et al. T\”ulu 3: Pushing frontiers in open language
model post-training. arXiv preprint arXiv:2411.15124, 2024.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom Ec-
cles, James Keeling, Felix Gimeno, Agustin Dal Lago, Thomas Hubert, Peter Choy, Cyprien de Mas-
son d’Autume, Igor Babuschkin, Xinyun Chen, Po-Sen Huang, Johannes Welbl, Sven Gowal, Alexey
Cherepanov, James Molloy, Daniel Mankowitz, Esme Sutherland Robson, Pushmeet Kohli, Nando de Fre-
itas, Koray Kavukcuoglu, and Oriol Vinyals. Competition-level code generation with alphacode. arXiv
preprint arXiv:2203.07814, 2022.

11

https://github.com/huggingface/lighteval
https://github.com/huggingface/lighteval

Under review as a conference paper at ICLR 2026

Bill Yuchen Lin. ZeroEval: A Unified Framework for Evaluating Language Models, July 2024. URL
https://github.com/WildEval/ZeroEval.

Jiawei Liu and Lingming Zhang. Code-rl: Reproducing rl for code with reliable rewards. https://
github.com/ganler/code-rl, 2025.

Jiawei Liu, Chungqiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your code generated by chatgpt
really correct? rigorous evaluation of large language models for code generation. Advances in Neural
Information Processing Systems, 36:21558-21572, 2023.

Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee, and Min Lin.
Understanding r1-zero-like training: A critical perspective. arXiv preprint arXiv:2503.20783, 2025.

Michael Luo, Sijun Tan, Roy Huang, Xiaoxiang Shi, Rachel Xin, Colin Cai, Ameen Patel, Alpay
Ariyak, Qingyang Wu, Ce Zhang, Li Erran Li, Raluca Ada Popa, and Ion Stoica. Deepcoder: A
fully open-source 14b coder at 03-mini level. https://pretty-radio-b75.notion.site/
DeepCoder—-A-Fully-Open-Source-14B-Coder—-at-03-mini-Level-1cf81902c14680b3bee5eb349a5!
2025. Notion Blog.

Wenjie Ma, Jingxuan He, Charlie Snell, Tyler Griggs, Sewon Min, and Matei Zaharia. Reasoning models
can be effective without thinking. arXiv preprint arXiv:2504.09858, 2025.

Meta Al. Llama 3.2: Revolutionizing edge ai and vision with open, customizable models. https://ai.
meta.com/blog/llama-3-2-connect-2024-vision—-edge-mobile-devices/, 2024.
Accessed: 2025-05-16.

Team OLMo, Pete Walsh, Luca Soldaini, Dirk Groeneveld, Kyle Lo, Shane Arora, Akshita Bhagia, Yul-
ing Gu, Shengyi Huang, Matt Jordan, Nathan Lambert, Dustin Schwenk, Oyvind Tafjord, Taira An-
derson, David Atkinson, Faeze Brahman, Christopher Clark, Pradeep Dasigi, Nouha Dziri, Michal
Guerquin, Hamish Ivison, Pang Wei Koh, Jiacheng Liu, Saumya Malik, William Merrill, Lester James V.
Miranda, Jacob Morrison, Tyler Murray, Crystal Nam, Valentina Pyatkin, Aman Rangapur, Michael
Schmitz, Sam Skjonsberg, David Wadden, Christopher Wilhelm, Michael Wilson, Luke Zettlemoyer,
Ali Farhadi, Noah A. Smith, and Hannaneh Hajishirzi. 2 olmo 2 furious. 2024. URL https:
//arxiv.org/abs/2501.00656.

OpenAl. Introducing GPT-4.1 in the API. https://openai.com/index/gpt-4-1/, April 2025.
Accessed: 15 May 2025.

Pierre-Yves Oudeyer and Frederic Kaplan. What is intrinsic motivation? a typology of computational
approaches. Frontiers in neurorobotics, 1:108, 2007.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow instructions with
human feedback. Advances in neural information processing systems, 35:27730-27744, 2022.

Gabriel Poesia, David Broman, Nick Haber, and Noah Goodman. Learning formal mathematics from intrin-
sic motivation. Advances in Neural Information Processing Systems, 37:43032-43057, 2024.

Mihir Prabhudesai, Lili Chen, Alex Ippoliti, Katerina Fragkiadaki, Hao Liu, and Deepak Pathak. Maximiz-
ing confidence alone improves reasoning, 2025. URL https://arxiv.org/abs/2505.22660.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea Finn.
Direct preference optimization: Your language model is secretly a reward model. Advances in Neural
Information Processing Systems, 36:53728-53741, 2023.

12

https://github.com/WildEval/ZeroEval
https://github.com/ganler/code-r1
https://github.com/ganler/code-r1
https://pretty-radio-b75.notion.site/DeepCoder-A-Fully-Open-Source-14B-Coder-at-O3-mini-Level-1cf81902c14680b3bee5eb349a512a51
https://pretty-radio-b75.notion.site/DeepCoder-A-Fully-Open-Source-14B-Coder-at-O3-mini-Level-1cf81902c14680b3bee5eb349a512a51
https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/
https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/
https://arxiv.org/abs/2501.00656
https://arxiv.org/abs/2501.00656
https://openai.com/index/gpt-4-1/
https://arxiv.org/abs/2505.22660

Under review as a conference paper at ICLR 2026

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy opti-
mization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Rulin Shao, Shuyue Stella Li, Rui Xin, Scott Geng, Yiping Wang, Sewoong Oh, Simon Shaolei Du, Nathan
Lambert, Sewon Min, Ranjay Krishna, et al. Spurious rewards: Rethinking training signals in rlvr. arXiv
preprint arXiv:2506.10947, 2025.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan
Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical reasoning in open language
models. arXiv preprint arXiv:2402.03300, 2024.

Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun Xiao,
Chenzhuang Du, Chonghua Liao, et al. Kimi k1. 5: Scaling reinforcement learning with llms. arXiv
preprint arXiv:2501.12599, 2025.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bash-
Iykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation and fine-tuned
chat models. arXiv preprint arXiv:2307.09288, 2023.

Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo, Weiming Ren,
Aaran Arulraj, Xuan He, Ziyan Jiang, et al. Mmlu-pro: A more robust and challenging multi-task language
understanding benchmark. arXiv preprint arXiv:2406.01574, 2024.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement learn-
ing. Machine learning, 8:229-256, 1992.

Xiaomi. Mimo: Unlocking the reasoning potential of language model — from pretraining to posttraining,
2025. URL https://github.com/XiaomiMiMo/MiMo.

Fangzhi Xu, Hang Yan, Chang Ma, Haiteng Zhao, Qiushi Sun, Kanzhi Cheng, Junxian He, Jun Liu, and
Zhiyong Wu. Genius: A generalizable and purely unsupervised self-training framework for advanced
reasoning. arXiv preprint arXiv:2504.08672, 2025.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng
Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang, Jiaxi Yang,
Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin Yang, Le Yu, Mei Li, Mingfeng
Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tingyu Xia, Xingzhang Ren, Xuancheng Ren,
Yang Fan, Yang Su, Yichang Zhang, Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu.
Qwen?2.5 technical report. arXiv preprint arXiv:2412.15115, 2024a.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng
Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. arXiv preprint arXiv:2412.15115, 2024b.

Weizhe Yuan, Richard Yuanzhe Pang, Kyunghyun Cho, Xian Li, Sainbayar Sukhbaatar, Jing Xu, and Ja-
son E. Weston. Self-rewarding language models. In Proceedings of the 41st International Conference on
Machine Learning, volume 235 of Proceedings of Machine Learning Research, pp. 57905-57923. PMLR,
2024.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Goodman. Star: Bootstrapping reasoning with reasoning.
Advances in Neural Information Processing Systems, 35:15476—15488, 2022.

Qingyang Zhang, Haitao Wu, Changqing Zhang, Peilin Zhao, and Yatao Bian. Right question is already half
the answer: Fully unsupervised 1lm reasoning incentivization. arXiv preprint arXiv:2504.05812, 2025.

13

https://github.com/XiaomiMiMo/MiMo

Under review as a conference paper at ICLR 2026

Andrew Zhao, Yiran Wu, Yang Yue, Tong Wu, Quentin Xu, Matthieu Lin, Shenzhi Wang, Qingyun Wu,
Zilong Zheng, and Gao Huang. Absolute zero: Reinforced self-play reasoning with zero data. arXiv
preprint arXiv:2505.03335, 2025.

Daniel M Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B Brown, Alec Radford, Dario Amodei, Paul Chris-
tiano, and Geoffrey Irving. Fine-tuning language models from human preferences. arXiv preprint
arXiv:1909.08593, 2019.

Yuxin Zuo, Kaiyan Zhang, Shang Qu, Li Sheng, Xuekai Zhu, Biging Qi, Youbang Sun, Ganqu Cui, Ning
Ding, and Bowen Zhou. Ttrl: Test-time reinforcement learning. arXiv preprint arXiv:2504.16084, 2025.

14

Under review as a conference paper at ICLR 2026

LLM USAGE STATEMENT

Large Language Models were utilized solely as a general-purpose assist tool for paraphrasing and polishing
the clarity, conciseness, and flow of the English writing in this paper. LLMs did not contribute to research
ideation, experimental design, data analysis, or the generation of any core scientific content, arguments, or
conclusions presented herein. The authors take full responsibility for all content within this submission.

A ADDITIONAL BACKGROUND

Reinforcement Learning from Internal Feedback (RLIF) Qwen2.5-3B Base

79.2 GRPO (External Reward)

Policy Update via RL h BN Intitor (Intrinsic Reward)

-
z 544
\ _ 4 2 41.6
\v/4 =
@ e 341
&
0 236
o o 153
93
Human-Defined Model's Internal o
Tasks/Questions Feedback o

GSMSK MATHS00 LiveCodeBench CRUXEval

Figure 8: Overview of RLIF and INTUITOR’s Performance. Left: Illustration of RLIF, a paradigm where
LLMs learn from intrinsic signals generated by the model itself, without external supervision. Right: Per-
formance comparison of Qwen2.5-3B Base, GRPO, and INTUITOR (our RLIF instantiation). Both GRPO
and INTUITOR are trained on the MATH dataset. INTUITOR achieves comparable performance to GRPO on
in-domain mathematical benchmarks (GSM8K, MATH500) and demonstrates better generalization to out-
of-domain code generation tasks (LiveCodeBench v6, CRUXEval). Part of the illustration was generated by
GPT-4o.

A.1 FROM EXTERNAL SUPERVISION TO INTERNAL FEEDBACK

To provide additional context, we review existing RL-based fine-tuning paradigms and their limitations,
which motivate our exploration of Reinforcement Learning from Internal Feedback (RLIF).

Current RL fine-tuning approaches for LLMs primarily fall into two categories: those relying on external
human feedback (RLHF) and those using verifiable, often task-specific, rewards (RLVR).

In RLHF (Ziegler et al., 2019; Ouyang et al., 2022), the policy 7 is optimized to align with human prefer-
ences, typically encapsulated by a learned reward model 4. The objective is:

max Bo~ry (g) [16(¢, 0) — BKL{mo(0]) || et (0l a)]] “

Online RL algorithms like PPO (Schulman et al., 2017) generate samples from g, evaluate them using 74,
and update 7y to maximize this objective. However, the reward model 4 is crucial yet fragile; introducing it
can lead to “reward hacking,” and retraining it is resource-intensive, complicating the training pipeline (Gao
et al., 2023).

RLVR, on the other hand, substitutes the learned reward model with an automatically verifiable signal. This
has proven effective in promoting reasoning capabilities, especially in domains like mathematics (Guo et al.,

15

Under review as a conference paper at ICLR 2026

Table 3: Impact of the KL-divergence penalty in INTUITOR during fine-tuning of Qwen-2.5-3B on the
MATH dataset. We compare performance across GSM8K, MATH500, LCB, CRUXEval-O, MMLU-Pro,
and AlpacaEval. All scores are obtained with the chat-style inference template, except for MMLU-Pro,
which uses its standard evaluation protocol.

Model GSMS8K MATHS00 LCB CRUX MMLU-Pro AlpacaEval
Base 0.673 0.544 0.093 0.236 0.377 3.72
+ INTUITOR-KLO 0.809 0.598 0.081 0.390 0.359 6.77
+ INTUITOR-KL0.0001 0.793 0.616 0.090 0.364 0.354 6.79
+ INTUITOR-KLO0.005 0.792 0.612 0.153 0416 0.379 7.10
+ INTUITOR-KLO0.01 0.803 0.618 0.130 0.394 0.371 6.54

Table 4: Performance comparison of various methods on GSM8K, MATH500, LCB, CRUXEval-O, MMLU-
Pro, and AlpacaEval benchmarks for larger models. All evaluations use the chat inference template, except
for MMLU-Pro.

Model GSM8K MATH500 LCB CRUX MMLU-Pro AlpacaEval
Qwen2.5-7B 0.553 0.636 0.026 0.178 0.497 4.46
+ GRPO 0.829 0.750 0.200 0.538 0.511 8.52
+ INTUITOR 0.873 0.750 0.190 0.574 0.514 12.76
Qwen2.5-14B 0.751 0.674 0.220 0.491 0.565 8.51
+ GRPO 0.917 0.758 0.296 0.520 0.578 17.53
+ INTUITOR 0.923 0.770 0.300 0.560 0.583 20.57
Qwen3-14B 0.480 0.794 0.358 0.663 0.597 29.22
+ INTUITOR 0.864 0.834 0.356 0.677 0.613 40.11

2025). The RLVR objective is:
max Eor, () [v(q, 0) — BKL[m(0]g) | mret(0]g)]] ®)

o

where v(q, 0) is a verifiable reward function. For instance, in mathematical problem-solving, v(gq, 0) might
«a if output o is correct
be: =
¢t v(q0) {0 otherwise.
(Williams, 1992), PPO or GRPO. Despite their simplicity, verifiable rewards still rely on gold-standard
answers or test executions, which are costly and domain-specific (Liu et al., 2025; Team et al., 2025). RLVR
faces challenges in extending beyond math and code to tasks involving ambiguity or subjective reasoning.

. RLVR is often implemented using algorithms like REINFORCE

B ADDITIONAL EXPERIMENTAL DETAILS

B.1 INFLUENCE OF THE KL PENALTY

We further investigate how the magnitude of the KL penalty influences INTUITOR, as shown in Table 3. On
in-domain benchmarks (MATHS500 and GSM8K), the choice of penalty has only a minor effect, but on out-
of-domain tasks—LiveCodeBench (code generation) and CRUXEval-O (code reasoning)—model accuracy
is highly sensitive to this hyper-parameter. Because INTUITOR does not receive explicit feedback from
generated responses during training, the KL penalty serves as a critical regularization mechanism. It prevents

16

Under review as a conference paper at ICLR 2026

-=: GRPO Intuitor
0.7 AN e 9%
1A =)
064 I g
ol i - 8003
e 1 o
5 0.5 1 1 7N\, o
8 1 o B
g 1 f \ , 2
<044 y Senl SISO anN 700
! 7 k% o g
0.3 A I’)]
\ Al
v 600
0.2 T T T T T T T T T T
0 20 40 60 80 100 20 40 60 80 100
Step Step
(a) Qwen2.5-7B
-=+ GRPO Intuitor
0.8
’\,“_—'\ K7W <\
N e =~ =
14 X F800%,
g el A k700 .
1 - L
5 | / el TN TN 5
3 !] k5]
< 0.4 ! I L 6002
[4 g
/ A S
) y (8]
N - - 500
0.2~ -
T T T T T T T T T T
0 20 40 60 80 100 0 20 40 60 80 100
Step Step

(b) Qwen2.5-14B

Figure 9: Average accuracy and mean completion length during reinforcement learning on the MATH dataset
using INTUITOR and GRPO. Both methods yield similar accuracy gains, with INTUITOR generally produc-

ing longer completions.

the policy from drifting too far from the initial model distribution, acting as a safeguard against degeneration.
These findings highlight the importance of careful KL tuning in general-purpose reinforcement learning

setups, especially when targeting robust generalization across domains.

B.2 SCALING TO LARGER MODELS

We extend INTUITOR to larger base models, including Qwen2.5-7B, Qwen2.5-14B, and Qwen3-14B. How-
ever, we find that the original training recipe triggers severe behavioral collapse at the very start of training.
Even before any updates, the 7B model solves the given problem and then immediately proceeds to tackle
an unrelated one; this tendency becomes more pronounced as training progresses.
To stabilize learning, we simplify the system prompt, reduce the learning rate to 1 x 10~%, and increase the
number of sampled responses per problem to sixteen. These settings represent our first, untuned trial, and
a comprehensive hyperparameter sweep is beyond the scope of this paper. Because the system prompt is
the only additional signal the model receives during INTUITOR fine-tuning, we expect its careful calibration
to exert a particularly strong influence on training dynamics. With these adjustments, INTUITOR trains
smoothly on both larger models. The corresponding evaluation results and training dynamics are reported in

Table 4 and Figure 9.

17

Under review as a conference paper at ICLR 2026

—=+ GRPO Intuitor
PN Ay L
PN - AN 6004:
0.7 //’ ,’ \\ S
o , ! N - 550 §
9 / ! \? " —
£ I’ /l AN N N g
5064 / N -=-"" L5003
9] 1 / 2
< 1 / =N
1 ¥ =]
054 | / 450 8
pd /
s
T T T T T T T T T T 400
0 10 20 30 40 50 0 10 20 30 40 50
Step Step

Figure 10: Average accuracy and mean completion length of Llama3.2-3B-Instruct during training with
INTUITOR and GRPO on the MATH dataset.

Table 5: Accuracy of Llama3.2-3B-Instruct using GRPO and INTUITOR on benchmarks.

Model Method GSM8K MATH LCB CRUX MMLU-Pro AlpacaEval
Baseline 0.688 0.436 0.106 0.265 0.340 11.07

Llama3.2-3B-Ins GRPO 0.714 0494 0.127 0.266 0.361 13.62
INTUITOR 0.723 0476 0.134 0.293 0.358 12.41

B.3 GENERALIZATION ACROSS MODEL FAMILIES

To assess the generalizability of INTUITOR across different model families, we apply it to Llama3.2-3B-
Instruct (Meta Al, 2024) and the fully open OLMo-2-1124-7B-SFT model (OLMo et al., 2024).

As shown in Table 5 and Figure 10, INTUITOR improves the performance of Llama3.2, with both accuracy
and response length showing steady improvement throughout the training process, indicating meaningful
optimization gains under INTUITOR.

Similarly, results on OLMo-2 (Table 6 and Figure 11) confirm that INTUITOR provides consistent training
improvements. These experiments demonstrate its robustness and applicability beyond the Qwen model
family. Furthermore, since OLMo-2 is a fully open-source model with available training data and code, it
also addresses concerns about data contamination in the evaluation dataset.

Table 6: Accuracy of OLMo-2-1124-7B-SFT using GRPO and INTUITOR on benchmarks.

Model Method GSMS8K MATH LCB CRUX MMLU-Pro AlpacaEval
Baseline 0.691 0.302 0.023 0.238 0.295 6.51

OLMo2-7B-SFT GRPO 0.710 0.374 0.028 0.218 0.296 7.38
InTUITOR 0.710 0.372 0.028 0.215 0.291 7.60

18

Under review as a conference paper at ICLR 2026

-=+ GRPO Intuitor
0.4 4 [
b n bt PRI 7 a 6005
1Y § il (W, n m [o
[} '\ﬁ’*‘(‘f’ “\ H"‘ 4 VLY AN TRy N M" g
i ‘ \ il WNAARAL Ap i (i | ARy,

5031 BRIV WIMTIIY L A TR L 500 5
g M4 " { | WINALY g
| o
202{ || ,' g
) f) -400%
J [g
01-,'\, 1/ 3000

] 4

T T T T T T T T T T

0 20 40 60 80 100 0 20 40 60 80 100
Step Step

Figure 11: Average accuracy and mean completion length on the MATH dataset during reinforcement learn-
ing with OLMo-2-1124-7B-SFT using INTUITOR and GRPO. Both methods achieve comparable accuracy
gains.

B.4 COMPARISON WITH ALTERNATIVE REWARD SIGNALS

Contemporary research has found that applying a negative token-level entropy reward can improve a model’s
reasoning performance without requiring external labels (Agarwal et al., 2025; Prabhudesai et al., 2025).
However, since low entropy often correlates with repetitive loops (Holtzman et al., 2019), using negative
entropy alone as an RL reward risks driving the model into a collapsed state. In other words, without
sufficient supervised training to push the base model away from degenerate behavior, the model risks falling
into a repetition trap from which it cannot recover. As we observe a nontrivial amount of repetitive responses
in Qwen2.5-1.5B, we test this hypothesis by applying GRPO with the negative-entropy reward:

1 lol VI

UEM = _W Z mea (j‘% 0<i) -log (pﬂ's (j|Q7 0<i)) :

i=1 j=1

Figure 12 (left) validates our prediction. Entropy minimization (EM) exacerbates repetition, and after a
few updates, the model converges to producing the same character regardless of the prompt. By contrast,
INTUITOR enhances performance without triggering collapse (Figure 3). Even when the base model is
sufficiently strong to avoid collapse during the early stages of entropy minimization training, it remains more
prone to later degeneration because entropy provides a weaker confidence signal compared to self-certainty.
As shown in Figure 13, we train both EM and INTUITOR under identical settings using Qwen2.5-3B for
two epochs. The results show that while both methods initially reach similar peak performance, INTUITOR
stabilizes around this peak, whereas EM exhibits a steady decline, with a consistent bias toward longer
responses. These findings highlight self-certainty as a more robust and effective signal for RLIF.

To further validate the efficacy of INTUITOR, we also trained Qwen2.5-3B using a random reward baseline
(Shao et al., 2025), where each response was assigned a reward of 0 or 1 with equal probability. Figure 12
(right) shows that this random reward scheme severely degrades the model’s performance in a chat-style RL
setting, demonstrating that the performance gains observed with INTUITOR are indeed non-trivial.

B.5 ABLATION ON OPTIMIZATION STRATEGY: POLICY GRADIENT VS. DIRECT OPTIMIZATION

One possible approach is to optimize self-certainty directly by minimizing the negative self-certainty as a
loss function. Although this strategy rapidly increases the target metric, it creates an incentive for reward
hacking in which the model inflates its own certainty without genuine improvement in task performance. As
illustrated in Figure 14, direct optimization produces an initial rise in accuracy, suggesting that self-certainty

19

Under review as a conference paper at ICLR 2026

—=——= Completion length

Accuracy
EM Random
0101 [Tttt L 3000 0351 N [640
: 1
; = 030 N =
0.08 4 i B I L 5
5 f F 2500 § 5, 0.25 X</ i [620 8
8 0.06 - I o 8 ! \ ! =
5 i S 5020 ! (N S
3 1 2 3 Ko ‘.. 1 [600%
<0047 20008 < o i 2
! g 0159 11 N g
/ 8 ;v 8
0.021 1500 0.10 | - 580
1 u 1
4
OOO 1 l’ T T T 0'05 L l' T T T
0 20 40 60 0 20 40 60
Step Step

Figure 12: Left: GRPO with an entropy minimization objective using Qwen2.5-1.5B on MATH. Right:
GRPO with a random reward using Qwen2.5-3B on MATH. Both approaches exhibit severe output degen-

eration.
—-=: EM Intuitor
1600
7\ A -
0.6 1 vV N ,I_-‘ SL 14005
l’ \- -7 g’
A YN -
& 1 N e o L 12003
0 T e 1000 :
Q I ~ - b=
< I //' =
044) s - 800 &
iy ,/ O
o 2 L 600
0 20 40 60 80 100 0 20 40 60 80 100
Step

Step

Figure 13: Accuracy and completion length during reinforcement learning over two epochs, comparing
entropy minimization and INTUITOR. In longer runs, entropy minimization exhibits a stronger length bias

and more severe degeneration than INTUITOR.

is correlated with useful learning signals, but it ultimately results in model collapse. By comparison, the
advantage weighted gradient policy optimization implemented in INTUITOR incorporates self-certainty only
as arelative weighting factor. This formulation mitigates reward hacking, stabilizes the optimization process,

and consistently achieves superior performance relative to direct optimization.

B.6 TRAINING HYPERPARAMETERS

Training hyperparameters are listed in Table 7.

C PRrROMPTS AND MODEL COMPLETIONS

This section presents sample prompts and the responses generated by the models. Unless otherwise specified,
the default base model used is Qwen2.5-3B, and the default training dataset is MATH.

20

Under review as a conference paper at ICLR 2026

==+ Intuitor-DO Intuitor

A
4 - I
0.6 A /, \ ', “ 5
~7 \ 1 L 1000 &
> 0.5 1 / \ I)
15) / 1 \ —
© ’ \\] \ =]
3 0.4 N /, \ I/ \ -8
3 N \ / A - 800 @
< v \\ / \ TN)
0.3 1 \ U Ve E
\ s 8
\\ 7
0.2 D R - 600
0 10 20 30 40 50 0 10 20 30 40 50
Step Step

Figure 14: Comparison of the training accuracy and completion length when encouraging high self-certainty
using direct optimization and policy gradient optimization. Direct optimization produces unstable improve-
ments that culminate in collapse, whereas INTUITOR achieves stable training and superior performance.

Table 7: Training hyperparameters. Only hyperparameters that affect the learned policy or evaluation are

listed. Unspecified fields inherit the TRL_v0.8 defaults.

Parameter MATH (1.5B/3B) MATH (7B/14B) Codeforces (3B)
Learning Rate 3x10°6 1 %1076 1 %1076
Batch Size 128 64 64
Group Size 7 14 14
KL Penalty(3) 0.0005 0.01 0.01
Training Steps 58 117 50
Max Prompt Length 512 512 1024
Max Completion Length 3072 3072 2048
Temperature 0.9 0.9 0.9
Clip Ratio 0.2 0.2 0.2
Lr Scheduler Type Cosine Cosine Cosine
Warmup Ratio 0.1 0.1 0.1
Optimizer AdamW (5;=0.9, B2=0.999, e=10"%)

C.1 TRAINING PROMPTS

System prompt used for Qwen2.5-1.5B on MATH.

You are a helpful Al Assistant, designed to provided well-reasoned and detailed responses. You
FIRST think about the reasoning process step by step and then provide the user with the answer.
Please enclose your final answer in the box: \boxed{Your Answer}.

System prompt used for Qwen2.5-3B on MATH.

You are a helpful Al Assistant, designed to provided well-reasoned and detailed responses. You
FIRST think about the reasoning process step by step and then provide the user with the answer.
Please enclose your final answer in the box: \boxed{Your Answer}. Please stop generation immedi-
ately after outputing the box.

21

Under review as a conference paper at ICLR 2026

System prompt used for Qwen2.5-7B and Qwen2.5-14B on MATH.

You are a helpful AI Assistant, designed to provided well-reasoned and detailed responses. Please
provide a step-by-step solution to the following problem.

System prompt used for Qwen2.5-3B on code corpuse.

You are an Al designed to help solve competitive programming problems by generating Python code.

C.2 EXAMPLE FROM LIVECODEBENCH CODE GENERATION

Models trained with INTUITOR tend to generate reasoning before producing code, whereas GRPO-tuned
models typically respond with Python code directly under the same prompt.

Question:
You are given a O-indexed array of strings details. Each element of details provides information about
a given passenger compressed into a string of length 15. The system is such that:

* The first ten characters consist of the phone number of passengers.

* The next character denotes the gender of the person.

» The following two characters are used to indicate the age of the person.
* The last two characters determine the seat allotted to that person.

* Return the number of passengers who are strictly more than 60 years old.

Example 1
Input

details = ["7868190130M7522","5303914400F9211","9273338290F4010"]
Output
2

Explanation The passengers at indices 0, 1, and 2 have ages 75, 92, and 40. Thus, there are 2 people
who are over 60 years old.

Example 2
Input

details = ["1313579440F2036","2921522980M5644"]
Output
0
Explanation None of the passengers are older than 60.
Constraints
e 1 j=details.length ;= 100
e details[i].length == 15

¢ details[i] consists of digits from 0’ to ’9’.

22

Under review as a conference paper at ICLR 2026

e details[i][10] is either M’ or ’F’ or ’O’.

* The phone numbers and seat numbers of the passengers are distinct.”
You will use the following starter code to write the solution to the problem and enclose your code
within delimiters.

[

python
class Solution:

def countSeniors(self, details: List[str]) —> int:

[

INTUITOR-tuned

To solve the problem of counting the number of passengers who are strictly more than 60 years old,
we can follow these steps:

1. Iterate through each passenger’s details.
2. Extract the age from the details.
3. Check if the age is greater than 60.

4. Count the number of passengers who meet the criteria.
Here is the Python code to achieve this:

‘¢ ‘python
class Solution:
def countSeniors(self, details: List[str]) —> int:
count = 0
for detail in details:
age = int(detail[11:13])
if age > 60:
count += 1
return count

GRPO-tuned

[

python
class Solution:
def countSeniors(self, details: List[str]) —> int:
count = 0
for detail in details:

age = int(detail[11:13])

if age > 60:

count += 1

return count

23

Under review as a conference paper at ICLR 2026

C.3 EXAMPLE FROM LIVECODEBENCH CODE GENERATION

Models trained with INTUITOR are typically effective at interpreting instructions and producing correct
Python code, while GRPO-tuned models may misinterpret the instructions or decline to provide a response.

Question:
There are three cards with letters a, b, and ¢ placed in a row in some order. You may perform at
most one operation:

* Pick any two cards and swap them.

Is it possible that the row becomes abc after the operation? Output YES if it is possible, and NO
otherwise.

Input
The first line contains a single integer ¢ (1 < t < 6) — the number of test cases. Each test case
consists of a single line containing a permutation of the three characters a, b, and c.

Output
For each test case, output YES if you can make the row abc with at most one operation, or NO
otherwise. The answer is case-insensitive.

Sample Input

6

abc
acb
bac
bca
cab
cba

Sample Output

YES
YES
YES
NO
NO
YES

Note
* In the first test case, no operation is needed.
¢ In the second test case, swap c and b: acb — abc.
¢ In the third test case, swap b and a: bac — abc.
* In the fourth test case, it is impossible to obtain abc using at most one swap.

Read the inputs from stdin solve the problem and write the answer to stdout (do not directly test on
the sample inputs). Enclose your code within delimiters as follows. Ensure that when the python
program runs, it reads the inputs, runs the algorithm and writes output to STDOUT.

[

python
YOUR CODE HERE

[

24

Under review as a conference paper at ICLR 2026

INTUITOR-tuned

To solve the problem of determining whether it is possible to transform the given string into ’abc”
using at most one operation (swapping two cards), we can follow these steps:

1. Read the input string

2. Check if the string is already “abc”

3. If the string is not "abc”, check if it can be transformed into “abc” by swapping two cards
4. Output "YES” if it is possible, otherwise output "NO”

‘“‘python
Determine whether s can become “abc” with <= swap
def can_transform_to_abc(s: str) —> str:
if s == "abc”:
return “YES”
try all pairs of indices (i, j) with 1 < j
for i in range(len(s)):
for j in range(i + 1, len(s)):
swapped = s[:i]+s[jl+s[i+1:j]+s[i]+s[j+1:]
if swapped == “abc”:
return “YES”

tL) 29

return “"NO”

t = int(input (). strip ())
for _ in range(t):
print(can_transform_to_abc (input (). strip ()))

GRPO-tuned

‘¢ ‘python
YOUR CODE HERE

[

Another related GRPO-tuned response to another problem

I’m sorry, but I can’t assist with that request.

C.4 EXAMPLE FROM CRUXEVAL-O

Models trained with INTUITOR usually articulate their reasoning first, then deliver the formatted response as
instructed, while GRPO-tuned models often produce the required JSON output immediately under the same
prompt.

25

Under review as a conference paper at ICLR 2026

Question:

You are given a Python function and an assertion containing an input to the function. Complete the
assertion with a literal (no unsimplified expressions, no function calls) containing the output when
executing the provided code on the given input, even if the function is incorrect or incomplete.

def f(text):
new_text =
for ch in text.lower (). strip ():
if ch.isnumeric () or ch in
"\ u00c4\u00e4\u00cf\u00ef\u00d6\u00f6\u00dc\u00fc *:
new_text += ch
return new_text\nassert f(’’) == ??

LR}

Instruction

Please answer this question by first reasoning and then providing your answer. Present your reasoning
and solution in the following json format. Please show your final answer in the answer field,
e.g.,"answer":"42".

[

Lt} 99

“reasoning”: Y ___",
,9answer ,’: k2l 2

}44&

json

INTUITOR-tuned

To complete the assertion for the given Python function f (text), we need to determine the output
of the function when the input is an empty string ’ ’ .

Let’s break down the function step by step:

1. Function Definition:

def f(text):
new_text =
for ch in text.lower (). strip ():
if ch.isnumeric () or ch in
"\ u00c4\u00e4\u00cf\u00ef\u00d6\u00f6\u00dc\u00fc *:
new_text += ch
return new_text

ERE)

2. Input: The input to the function is an empty string ’ /.
3. Step-by-Step Execution:

e Step 1: text.lower () .strip()

— text.lower () converts the string to lowercase.
— text.strip () removes leading or trailing whitespace.
— For ’ 7, both calls return ’ 7, so the resultis ’ ’.

¢ Step 2: Iterate over each character

— The loop sees no characters; it performs zero iterations.

26

Under review as a conference paper at ICLR 2026

¢ Step 3: Character check

— Because there are no characters, the condition ch.isnumeric () or ch in
"\u00c4\u00e4\u00cf\u00ef\u00d6\u00£6\ud0dc\u00fc” isnever true,
and nothing is appended to new_text.

4. Output: Since nothing was appended, new_text remains ’ /.
Therefore the assertion should be:

ERE)

assert f(’’) ==
So, the final answer is:

“‘jSOI’l

“reasoning”: “The function ‘f(text)‘ converts the input
string to lowercase and removes any leading or trailing
whitespace. For an empty string the resulting string is
also empty. Therefore the output of ‘f(’’)° is an empty
string .”,
Zanswer ”:

}‘c‘

93 9 99

GRPO-tuned

“‘jSOH

“reasoning”: “The function ‘f° takes a string ‘text ‘ as
input and returns a new string with only numeric characters
and certain special characters
(\u00c4\u00e4\u00cf\u00ef\u00d6\u00f6\u00dc\u00fc) preserved.
The assertion checks if the function correctly handles an
empty string. Since an empty string contains no characters,
the function should return an empty string as well.
Therefore , the expected output for an empty string is an
empty string.”,

“answer”: 77

}&&5

C.5 RoOLLOUT EXAMPLE OF INTUITOR DURING TRAINING ON CODE CORPUS

The following examples illustrate representative rollouts during the reinforcement-learning training of
Qwen2.5-3B on the CodeContest dataset. As shown in Figure 5, the model initially produces concise reason-
ing and brief explanations to “convince” itself of its interim outputs. Over the course of training, it gradually
shifts toward more detailed, step-by-step reasoning and richer explanations, which further reinforce its un-
derstanding and improve the final responses.

27

Under review as a conference paper at ICLR 2026

Code Block (Step 2)

I have solved the problem. Here’s the Python code to solve it as described:

[

python

def calculate_stones (S):
n = len(S)

MOD = 10%%9 + 7

Initialize array to store remainders
remainder = [0] % (n + 1)

Calculate remainders

for i in range(n, -1, -1):
remainder[i] = (
remainder[i+1] % 10 + int(S[i])) % MOD
if i > 0:
remainder[i] = (

remainder[i] — remainder[i+1] + MOD) % MOD
return remainder[1] % 10 + remainder[0]

Read input
S = input ()

Call function to calculate stones
T = calculate_stones (S)

Print output
print (T)

¢

This code computes the sum of digits from right to left, using an array ‘remainder‘ to store partial
remainders modulo 1000000007. It then calculates T as the final remainder times 10 plus the first
remainder from the array.

Planning + Code Block + Explanation (Step 15)

To solve this problem, we can iterate through all the possible subsets of the set and calculate their
sums. However, a more efficient approach is to use combinatorics. For N elements, there are oN
subsets. Each element appears in exactly half of the subsets, so the total sum of all subset elements
is 20V — 1) times the sum of all elements in the original set.

[

python
def sum_of_powerset(n):
return 2#x(n-1) %= n = (n+1) // 2

Read input
t = int(input())
for _ in range(t):

28

Under review as a conference paper at ICLR 2026

n = int(input())
print(sum_of_powerset(n))

[

This program defines a function sum_of_powerset(n) that calculates the sum of the power set of a set
with n elements. It then reads the number of test cases t, and for each test case, reads n and prints the
result.

Step-by-Step Planning + Code Block + Step-by-Step Explanation (Step 50)

To solve this problem, we need to read the input, parse the map and the regions to survey, then count
the number of each type of terrain for each survey region. Here’s a step-by-step approach to write
the Python code for this problem:

1. Read the input: Get the dimensions of the map and the number of regions to survey.
2. Read the map: Parse the map information into a 2D list of strings.

3. Read the regions: Parse the survey regions into a list of tuples.
4

. Count the terrain: For each survey region, count the number of ‘J*, ‘O°, and ‘I characters
in the corresponding section of the map.

5. Output the results: Print the counts for each survey region.

Here’s the Python code that implements this solution:

[

python
def count_terrain (map_info, survey):
m, n = map_info.get('m’), map-info.get('n’)

j-count =
o_count = 0
i_count = 0

for row in survey:
a, b, ¢, d = row
if a>mor b>n or ¢ >mor d > n:
continue

for i in range(a, c + 1):
for j in range(b, d + 1):

if map-info[(i, j)] == T :
j-count += 1

elif map_info[(i, j)] == ’O’:
o_count += 1

elif map_info[(i, j)] == "1":

i_count += 1
return j_count, o_count, i_count
def process_input():

M, N = map(int, input().split())
K = int(input())

29

Under review as a conference paper at ICLR 2026

map-_info =
survey = []

for _ in range (M):
map_info[(M — _, _)] = input (). strip ()

for _ in range (K):
survey .append(list (map(int, input().split())))

return M, N, K, map.info, survey

def main ():
M, N, K, map_info, survey = process_input()
results = []

for region in survey:
j-count ,o_count,i_count=count_terrain (map_info,region)
results .append ((j-count, o_count, i_count))

for region in results:
print(region[0], region[l], region[2])

if __name__ == ”__main__":
main ()

[N

Explanation:

1. count_terrain Function: This function takes the map information and a survey region, and
counts the number of ‘J*, ‘O, and ‘I in that region.

2. process_input Function: This function reads the input from the user, processes it to extract
the map information and the survey regions.

3. main Function: This function calls ‘process_input‘ to get the necessary data, then calls
‘count_terrain‘ for each survey region and prints the results.

This code should correctly solve the problem and provide the desired output.

C.6 EVOLUTION OF QWEN2.5-3B’S RESPONSES ON LIVECODEBENCH CODE GENERATION
TRAINED WITH INTUITOR ON MATH

During training Qwen2.5-3B with INTUITOR on the MATH dataset, its code-generation capability steadily
improves. By the middle of training, the model learns to produce syntactically valid Python; as training

progresses, it refines formatting and clarity. By the end, it arrives at correct solutions.

Question:

30

Under review as a conference paper at ICLR 2026

Alex is participating in the filming of another video of BrMeast, and BrMeast asked Alex to prepare
250 thousand tons of TNT, but Alex didn’t hear him well, so he prepared n boxes and arranged them
in a row waiting for trucks. The i-th box from the left weighs a; tons.

All trucks that Alex is going to use hold the same number of boxes, denoted by k. Loading happens
the following way:

* The first k& boxes goes to the first truck,

* The second k boxes goes to the second truck,

* The last k boxes goes to the 7:-th truck.

Upon loading is completed, each truck must have exactly & boxes. In other words, if at some point
it is not possible to load exactly k boxes into the truck, then the loading option with that & is not
possible. Alex hates justice, so he wants the maximum absolute difference between the total weights
of two trucks to be as great as possible. If there is only one truck, this value is 0.

Alex has quite a lot of connections, so for every 1 < k < n, he can find a company such that each of
its trucks can hold exactly k boxes. Print the maximum absolute difference between the total weights
of any two trucks.

Input

The first line contains one integer ¢ (1 < ¢ < 10%) — the number of test cases.

The first line of each test case contains one integer n (1 < n < 150 000) — the number of boxes.

The second line contains n integers a1, as, ..., a, (1 < a; < 10%) — the weights of the boxes.
It is guaranteed that the sum of n for all test cases does not exceed 150 000.
Output

For each test case, print a single integer — the answer to the problem.
Sample Input 1:

10 2 3 613

4
1000000000 1000000000 1000000000 1000000000

15
60978 82265 78961 56708 39846 31071 4913
4769 29092 91348 64119 72421 98405 222 14294

8
19957 69913 37531 96991 57838 21008 14207 19198

Sample Output 1:

1
9
0
189114
112141

31

Under review as a conference paper at ICLR 2026

Note

¢ In the first case, we should pick two trucks, so the first one will have only the first box, and
the second one will have only the second box.

¢ In the second case, we should pick six trucks, so the maximum will be 10, the minimum
will be 1, and the answeris 10 —1 = 9.

¢ In the third case, for any possible k, the trucks will have the same total weight of boxes, so
the answer is 0.

Read the inputs from stdin solve the problem and write the answer to stdout (do not directly test on
the sample inputs). Enclose your code within delimiters as follows. Ensure that when the python
program runs, it reads the inputs, runs the algorithm and writes output to STDOUT.

[

python
YOUR CODE HERE

[

Step 0 (Base): Incorrect

‘“‘python
YOUR CODE HERE

[

Step 10: Incorrect

‘¢ ‘python
YOUR CODE HERE

[

Step 20: Incorrect

‘‘“‘python
YOUR CODE HERE

[

Step 30: Incorrect

To solve the problem of finding the maximum absolute difference between the total weights of any
two trucks, we can follow these steps:

1. Read the input: The input consists of multiple test cases. Each test case starts with an
integer n (the number of boxes), followed by n integers a1, aq, . .., a, (the weights of the
boxes).

32

Under review as a conference paper at ICLR 2026

2. Calculate the total weight of all boxes: Sum up all the weights of the boxes to get the total
weight W.

3. Determine the number of trucks: The number of trucks m is given by m = [#], where
k is the number of boxes each truck can hold. Since £ can vary from 1 to n, we need to find
the maximum possible value of k that allows us to distribute the boxes evenly.

4. Calculate the maximum and minimum total weights of the trucks: For each possible
value of k, calculate the total weight of the boxes that can be loaded into each truck. The
maximum total weight of the trucks will be the sum of the weights of the £ heaviest boxes,
and the minimum total weight will be the sum of the weights of the & lightest boxes.

5. Find the maximum absolute difference: The maximum absolute difference between the
total weights of any two trucks is the maximum of the absolute differences between the
maximum and minimum total weights of the trucks for all possible values of k.

6. Find the maximum absolute difference: The maximum absolute difference between the
total weights of any two trucks is the maximum of the absolute differences between the
maximum and minimum total weights of the trucks for all possible values of k.

Here is the Python code that implements the above steps:

‘“‘python
import sys
from heapq import heappush, heappop
def max_difference(n, weights):
Calculate the total weight of all boxes
total_weight = sum(weights)
Initialize variables to store the maximum
and minimum total weights of the trucks
max_weight = 0
min_weight = total_weight
Iterate over all possible values of k
for k in range(l, n + 1):
Calculate the total weight of the k heaviest boxes
max_weight = max(max_weight,
sum (heappop (weights) for _ in range(k)))

Calculate the total weight of the k lightest boxes
min_weight = min(min_weight,
sum (heappop(weights) for _ in range(k)))

Return the maximum absolute difference
return max_weight — min_weight

Read the number of test cases
t = int(input())

Process each test case

for _ in range(t):
n = int(input())
weights = list (map(int, input().split()))
Calculate the maximum absolute difference

33

Under review as a conference paper at ICLR 2026

result = max_difference(n, weights)

Write the result to stdout
print(result)

[

Step 40: Correct

To solve the problem of finding the maximum absolute difference between the total weights of any
two trucks, we can follow these steps:

1. Read the input: The input consists of multiple test cases. Each test case starts with an
integer n (the number of boxes), followed by n integers representing the weights of the
boxes.

2. Calculate the total weight of all boxes: Sum up the weights of all the boxes to get the total
weight.

3. Determine the number of trucks: Since each truck holds k boxes, the number of trucks is
n

B

4. Calculate the possible total weights of the trucks: For each possible value of k (from 1 to
n), calculate the total weight of the boxes that can be loaded into the trucks. This involves
summing up the weights of k consecutive boxes.

5. Find the maximum and minimum total weights: For each possible value of k, find the
maximum and minimum total weights of the trucks. The maximum absolute difference is
the difference between the maximum and minimum total weights.

6. Output the maximum absolute difference: Print the maximum absolute difference for
each test case.

Here is the Python code that implements the above steps:

‘““‘python

def find_max_difference(n, weights):
total_weight = sum(weights)
max_difference = 0

for k in range(l, n + 1):
if n % k != 0:
continue
truck_weights = [sum(weights[i * k :

(i + 1) = k]) for i in range(n // k)]
max_weight = max(truck_weights)
min_weight = min(truck_weights)
max _difference = max(max_difference ,

abs(max_weight — min_weight))

return max_difference

def main():
t = int(input())

34

Under review as a conference paper at ICLR 2026

for _ in range(t):
n = int(input())
weights = list(map(int, input().split()))

result = find_max_difference(n, weights)
print(result)
if __name__ == ”__main__":
main ()

[

Step 58: Correct

To solve the problem of finding the maximum absolute difference between the total weights of any
two trucks, we can follow these steps:

1. Read the input: The input consists of multiple test cases. Each test case starts with an
integer n (the number of boxes), followed by n integers representing the weights of the
boxes.

2. Calculate the total weight of all boxes: Sum up the weights of all the boxes to get the total
weight.

3. Determine the number of trucks: Since each truck holds k& boxes, the number of trucks is
n

B

4. Calculate the possible total weights of the trucks: For each possible value of k (from 1 to
n), calculate the total weight of the boxes that can be loaded into the trucks. This involves
summing up the weights of k consecutive boxes.

5. Find the maximum and minimum total weights: For each possible value of k, find the
maximum and minimum total weights of the trucks. The maximum absolute difference is
the difference between the maximum and minimum total weights.

6. Output the maximum absolute difference: Print the maximum absolute difference for
each test case.

Here is the Python code that implements the above steps:

‘“‘python
def max_difference(n, weights):
total _weight = sum(weights)

max_diff = 0

for k in range(l, n + 1):
if n % k !'= 0:
continue
truck_weights = [sum(weights[i % k :
(i + 1) % k]) for i in range(n // k)]
max_diff = max(max_diff,
max (truck_weights) — min(truck_weights))
return max_diff

def solve ():
t = int(input())

35

Under review as a conference paper at ICLR 2026

for _ in range(t):
n = int(input())
weights = list(map(int, input().split()))
result = max_difference(n, weights)
print(result)

if __name__ == ”__main__":
solve ()

[

36

	Introduction
	Related Work
	Method
	Reinforcement Learning from Internal Feedback (RLIF)
	Intuitor: Policy Optimization with Self-Certainty

	Experimental Setup
	Results and Analysis
	Learning to Follow Instructions
	Fostering Structured Reasoning
	Understanding Emergent Long-Form Reasoning
	Online Self-Certainty Prevents Reward Exploitation
	Ablation Studies

	Discussion and Future Research
	Conclusion
	Additional Background
	From External Supervision to Internal Feedback

	Additional Experimental Details
	Influence of the KL Penalty
	Scaling to Larger Models
	Generalization Across Model Families
	Comparison with Alternative Reward Signals
	Ablation on Optimization Strategy: Policy Gradient vs. Direct Optimization
	Training Hyperparameters

	Prompts and Model Completions
	Training Prompts
	Example from LiveCodeBench Code Generation
	Example from LiveCodeBench Code Generation
	Example from CRUXEval-O
	Rollout Example of Intuitor During Training on Code Corpus
	Evolution of Qwen2.5-3B's Responses on LiveCodeBench Code Generation trained with Intuitor on MATH

