
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046

Under review as a conference paper at ICLR 2026

LEARNING TO REASON WITHOUT EXTERNAL REWARDS

Anonymous authors
Paper under double-blind review

ABSTRACT

Training large language models (LLMs) for complex reasoning via Reinforcement Learn-
ing with Verifiable Rewards (RLVR) is effective but limited by reliance on costly, domain-
specific supervision. We explore Reinforcement Learning from Internal Feedback (RLIF),
a framework that enables LLMs to learn from intrinsic signals without external rewards
or labeled data. We propose INTUITOR, an RLIF method that uses a model’s own confi-
dence—termed self-certainty—as its sole reward signal. INTUITOR replaces external re-
wards in Group Relative Policy Optimization (GRPO) with self-certainty scores, enabling
fully unsupervised learning. Experiments demonstrate that INTUITOR matches GRPO’s
performance on mathematical benchmarks while achieving superior generalization to out-
of-domain tasks like code generation, without requiring gold solutions or test cases. Our
findings show that intrinsic model signals can drive effective learning across domains, of-
fering a scalable alternative to RLVR for autonomous AI systems where verifiable rewards
are unavailable. Code is available in the supplementary materials.

1 INTRODUCTION

Reinforcement learning has become essential for enhancing large language model capabilities. Early work
focused on Reinforcement Learning from Human Feedback (RLHF), which aligns model outputs with hu-
man values through reward models trained on preference data (Ouyang et al., 2022). Recent advances in
Reinforcement Learning with Verifiable Rewards (RLVR) replace learned reward models with automati-
cally verifiable signals, such as exact answer matching in mathematical problem-solving, demonstrating
improved reasoning capabilities in models like DeepSeek-R1 (Guo et al., 2025; Lambert et al., 2024).

Despite these successes, both RLHF and RLVR face fundamental limitations that constrain their broader
applicability. RLHF requires extensive human annotation, making it expensive and potentially biased (Gao
et al., 2023). RLVR, while avoiding learned reward models, demands domain-specific verifiers and gold-
standard solutions. In mathematics, this requires expert annotation of solutions; in code generation, it ne-
cessitates comprehensive test suites and execution environments (Liu et al., 2023; Liu & Zhang, 2025; Team
et al., 2025; Xiaomi, 2025). These requirements limit RLVR to carefully curated domains and complicate
deployment in open-ended scenarios. Moreover, outcome-oriented verifiable rewards limit transferability to
other domains. These challenges motivate exploration of more general and scalable reward paradigms, lead-
ing to a critical research question: Can LLMs enhance their reasoning abilities by relying solely on intrinsic,
self-generated signals, without recourse to external verifiers or domain-specific ground truth?

In this paper, we introduce and explore such a paradigm: Reinforcement Learning from Internal Feedback
(RLIF), where models optimize intrinsic feedback to improve performance without external rewards or su-
pervision. The motivation for RLIF extends to future scenarios where models develop superhuman capabil-
ities that become difficult for humans to evaluate directly (Burns et al., 2023), requiring self-improvement
through intrinsic mechanisms (Oudeyer & Kaplan, 2007).

1

047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093

Under review as a conference paper at ICLR 2026

Under the RLIF paradigm, we propose INTUITOR, a novel reinforcement learning approach leveraging a
model’s own confidence as an intrinsic reward. This builds on observations that LLMs exhibit lower confi-
dence on difficult problems (Farquhar et al., 2024; Kuhn et al., 2023; Kang et al., 2024; 2025); optimizing for
confidence should improve reasoning capabilities. Specifically, we use self-certainty (Kang et al., 2025), the
average KL divergence between the model’s output distribution and a uniform distribution, as our confidence
measure. This metric has proven useful for distinguishing high-quality responses from flawed ones (Kang
et al., 2025; Ma et al., 2025). Building on this insight, INTUITOR guides learning through self-generated
signals, eliminating the need for external supervision or handcrafted rewards. The implementation of INTU-
ITOR is simple, efficient, and effective: we replace the verifiable reward signal in existing RLVR frameworks,
specifically Group Relative Policy Optimization (GRPO) (Shao et al., 2024), with self-certainty scores, using
the same policy gradient algorithm.

Our experiments demonstrate promising results. On the MATH dataset (Hendrycks et al., 2021) with
Qwen2.5-3B base (Yang et al., 2024a), INTUITOR matches the performance of GRPO without relying on
any gold answers. As INTUITOR rewards the generation trajectory rather than only the end result, it gener-
alizes more effectively: training a Qwen2.5-3B base model on MATH yields a 65% relative improvement
on LiveCodeBench Code generation task (Jain et al., 2024) versus no improvement for GRPO, and a 76%
gain on CRUXEval-O (Gu et al., 2024) compared with 44% for GRPO. Additionally, when we fine-tune the
Qwen2.5-1.5B base model with INTUITOR on the MATH corpus, a model that originally produces repeti-
tive content and scores 0% on LiveCodeBench learns to emit coherent reasoning chains and well-structured
code, reaching 9.9% accuracy after the tuning. Beyond the Qwen family, experiments with Llama (Meta
AI, 2024) and OLMo (OLMo et al., 2024) models also show impressive gains, underscoring the strong gen-
eralization capabilities of INTUITOR. As INTUITOR requires only a clear prompt and no verifiable reward,
it is broadly applicable across tasks, providing fresh evidence that pretrained LLMs possess richer latent
behavioral priors than previously recognized. Our contributions can be summarized as follows:

• We introduce and explore Reinforcement Learning from Internal Feedback (RLIF), a novel reinforcement
learning paradigm enabling LLMs to improve reasoning skills by leveraging intrinsic, self-generated sig-
nals, without reliance on external supervision or labeled data.

• We introduce INTUITOR, an RLIF-based method that utilizes a model’s own internal confidence mea-
sure—termed self-certainty—as the sole intrinsic reward.

• We demonstrate that INTUITOR matches supervised RL performance on in-domain tasks while achiev-
ing superior out-of-domain generalization. We uncover emergent structured reasoning and enhanced
instruction-following capabilities induced by intrinsic rewards.

2 RELATED WORK

Reinforcement Learning from Human Feedback (RLHF). RL has become instrumental in refining
LLMs. Early pivotal work centered on Reinforcement Learning from Human Feedback (RLHF) (Ouyang
et al., 2022), which aligns LLMs with human values by training a reward model on human preference data.
While effective, RLHF is often resource-intensive due to the need for extensive human annotation (Touvron
et al., 2023). Subsequent innovations like Direct Preference Optimization (DPO) (Rafailov et al., 2023)
aimed to simplify this by directly training models on preferences. The reliance on human-generated or
model-approximated human preferences poses scalability challenges and introduces potential biases from
the reward model itself (Gao et al., 2023).

Reinforcement Learning with Verifiable Rewards (RLVR). RLVR emerged as a powerful alternative,
particularly for tasks with clear correctness criteria like mathematical reasoning and code generation (Hu
et al., 2025; Team et al., 2025; Xiaomi, 2025). RLVR utilizes rule-based verification functions, such as exact
answer matching (Guo et al., 2025; Team et al., 2025; Xiaomi, 2025; Jaech et al., 2024), to provide reward
signals, thereby avoiding the complexities and potential pitfalls of learned reward models. This approach

2

094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140

Under review as a conference paper at ICLR 2026

has sparked significant advances, with models like DeepSeek-R1 (Guo et al., 2025) achieving state-of-the-art
reasoning capabilities. The development of robust policy optimization algorithms like GRPO (Shao et al.,
2024) and its variants (Luo et al., 2025; Liu et al., 2025) has further solidified RLVR’s success. Neverthe-
less, RLVR’s applicability is largely confined to domains where verifiable gold solutions or exhaustive test
cases can be constructed, and its predominant focus on outcome-based rewards can limit generalization to
dissimilar tasks or those requiring nuanced, process-oriented feedback.

Intrinsic Signals and Self-Play in LLM Optimization. Self-play and intrinsic rewards enable autonomous
model improvement. Methods like SPIN (Chen et al., 2024) and Self-Rewarding LMs (Yuan et al., 2024) use
the model itself for feedback. Earlier work like STaR (Zelikman et al., 2022) relies on outcome evaluation,
while others explore procedural generalization (Poesia et al., 2024; Cheng et al., 2024). Concurrent works
such as Genius, TTRL, and Absolute Zero (Xu et al., 2025; Zuo et al., 2025; Zhao et al., 2025) leverage
unlabeled queries for RL but are often restricted to specific task distributions. INTUITOR aligns with this di-
rection, offering a lightweight, general-purpose approach using self-certainty as a confidence-based intrinsic
reward, enabling single-agent RL across diverse tasks without explicit feedback or gold labels.

3 METHOD

3.1 REINFORCEMENT LEARNING FROM INTERNAL FEEDBACK (RLIF)

To overcome the limitations of RLHF’s costly human annotation and RLVR’s domain-specific supervision,
we propose Reinforcement Learning from Internal Feedback (RLIF). Instead of depending on external eval-
uation, RLIF uses the model’s own assessment of its outputs as feedback. This offers several advantages: it
reduces reliance on supervision infrastructure, provides task-agnostic reward signals, and supports learning
in domains where external verification is unavailable. The optimization objective for policy πθ is:

max
πθ

Eo∼πθ(q) [u(q, o)− βKL[πθ(o|q)∥πref(o|q)]] (1)

where q is an input query, o is the generated output, πref is an initial reference policy, and β controls the
KL divergence to prevent excessive deviation from πref. Here, u(q, o) is an intrinsic signal derived from the
model’s internal state or computation, rather than external verification. The key challenge lies in identifying
intrinsic signals that correlate with output quality and can effectively guide learning.

Concurrent research explores related concepts within the RLIF paradigm. For example, Entropy Minimized
Policy Optimization (EMPO) (Zhang et al., 2025) minimizes LLM predictive entropy on unlabeled ques-
tions in a latent semantic space. SEED-GRPO (Chen et al., 2025) uses the semantic entropy of generated
sequences, combined with ground truth rewards, to modulate policy updates. Reinforcement Learning with
a Negative Entropy Reward (EM-RL) (Agarwal et al., 2025) employs a reward signal based solely on the
negative sum of token-level entropy, akin to REINFORCE but without labels. These methods highlight the
growing interest and potential of leveraging intrinsic signals for LLM training under the RLIF framework.

3.2 INTUITOR: POLICY OPTIMIZATION WITH SELF-CERTAINTY

We propose INTUITOR, a novel RLIF method that utilizes a model’s own confidence as the sole intrinsic re-
ward signal u(q, o). Our choice of model confidence as the intrinsic reward is motivated by observations that
LLMs often exhibit lower confidence when encountering unfamiliar tasks or lacking sufficient knowledge
(Kang et al., 2024). Conversely, higher confidence frequently correlates with correctness. By rewarding
increased self-confidence, INTUITOR encourages to iteratively “practice” and refine its reasoning pathways
until it becomes more confident in its outputs.

3

141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187

Under review as a conference paper at ICLR 2026

Model Outputs Rewards Advantages

Policy
Model

𝑞

𝑜!

𝑜"
…
𝑜#

Reference Model 𝑢!

𝑢"
…
𝑢#

Normalize

𝐴!

𝐴"
…
𝐴#

Intuitor
Trained
Models

Frozen
Models

Self-Certainty
Scores

Figure 1: INTUITOR simplifies the training strategy by leveraging self-certainty (the model’s own confi-
dence) as an intrinsic reward to incentivize reasoning abilities without external supervision.

We adopt the self-certainty metric from Kang et al. (2025), defined as the average KL divergence between a
uniform distribution U over the vocabulary V and the model’s next-token distribution:

Self-certainty(o|q) := 1

|o|

|o|∑
i=1

KL(U ∥ pπθ
(·|q, o<i)) = − 1

|o| · |V|

|o|∑
i=1

|V|∑
j=1

log (|V| · pπθ
(j|q, o<i)) (2)

where o<i are the previously generated tokens and p(j|q, o<i) is the model’s predicted probability for token
j at step i. Higher self-certainty values indicate greater confidence.

Self-certainty, being related to a KL divergence where the model’s prediction is the second argument
KL(U ∥ pπθ

), is mode-seeking. This contrasts with entropy (or reverse KL divergence from uniform),
which is mode-covering. Critically, self-certainty is reported to be less prone to biases towards longer gen-
erations, a common issue with perplexity or entropy-based measures (Fang et al., 2024; Kang et al., 2025),
making it a potentially more reliable indicator of intrinsic confidence. Kang et al. (2025) demonstrate that
self-certainty is effective for selecting high-quality answers from multiple candidates, and uniquely among
different confidence measures, its utility improves with more candidates. Optimizing for self-certainty thus
encourages the model to generate responses that it deems more convincing. The RL process can achieve this
by, for instance, guiding the model to produce more detailed reasoning steps, thereby increasing the model’s
conviction in its final answer. This mechanism is more nuanced than simply increasing the probability of the
most likely output; it involves modifying the generation process itself to build confidence.

To optimize the objective in Equation 1, various policy gradient algorithms can be employed. Informed
by the recent success in models such as DeepSeek-R1 (Guo et al., 2025) and its widespread adoption of
GRPO in open-source projects, we utilize GRPO to optimize for self-certainty. The overall pipeline for this
GRPO-based instantiation of INTUITOR is illustrated in Figure 1.

The core idea behind the optimization is to sample multiple candidate outputs for a given query and use
their relative rewards to estimate advantages for policy updates. For each query q ∼ P (Q), GRPO samples
a group of G outputs o1, . . . , oG using a behavior policy πθold (e.g., a previous iteration or the SFT model).
The target policy πθ is then optimized by maximizing:

JGRPO(θ) = E q∼P (Q),

{oi}G
i=1∼πθold (·|q)

 1

G

G∑
i=1

1

|oi|

|oi|∑
t=1

(
min

[
ci,t(θ)Âi,t, clipε (ci,t(θ)) Âi,t

]
− βDKL

(
πθ∥πref

))
where ci,t(θ) =

πθ(oi,t|q,oi,<t)
πθold

(oi,t|q,oi,<t)
is the importance weight, clipε is the function that clips to [1 − ε, 1 + ε].

Hyperparameters ϵ (for clipping) and β (for KL penalty strength) control stability and exploration, and Âi,t

is the advantage estimate.

Integration of Self-Certainty. The key innovation in INTUITOR is replacing external rewards with self-
certainty scores in GRPO’s advantage computation. Specifically, each output oi is scored by:

ui = Self-certainty(oi|q), Âi,t =
ui − mean({u1, u2, · · · , uG})

std({u1, u2, · · · , uG})
. (3)

4

188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234

Under review as a conference paper at ICLR 2026

This formulation enables the policy to favor outputs that the model itself considers more confident. The com-
plete INTUITOR training pipeline operates by sampling multiple candidate outputs for each query, computing
self-certainty scores for each candidate, using these scores to estimate advantages within the group, and up-
dating the policy to increase the likelihood of generating high-confidence outputs. This process requires no
external supervision, making it a self-reinforcing learning loop.

4 EXPERIMENTAL SETUP

Training Setup. Both GRPO and INTUITOR are trained with the Open-R1 framework (Face, 2025) on
the training split of the MATH dataset (Hendrycks et al., 2021), which contains 7,500 problems. We use
Qwen2.5-1.5B and Qwen2.5-3B (Yang et al., 2024b) as backbone models, with a chat-based prompting
format throughout. Given the models’ initially weak instruction-following abilities, we do not require them
to disentangle intermediate reasoning from final answers. Each update processes 128 problems, generating
7 candidate solutions per problem, with a default KL penalty of β = 0.005. For a fair comparison, GRPO
and INTUITOR share identical hyperparameters (see Appendix) without additional tuning. We also evaluate
a GRPO variant, denoted GRPO-PV in Table 1, which uses plurality voting1 as a proxy for ground truth.
This follows the approach from TTRL (Zuo et al., 2025), which shows that self-consistency-based rewards
can match the performance of golden answers when training on inference data.

INTUITOR for Code Generation (INTUITOR-Code). To assess generalization beyond mathematical rea-
soning, we apply INTUITOR to the Codeforces code generation dataset (Li et al., 2022). This variant, denoted
INTUITOR-Code in Table 1, modifies the setup as follows: the number of sampled completions per problem
is increased to 14; the learning rate is reduced from 3× 10−5 to 1× 10−5; and the KL penalty is increased
to β = 0.01. For simplicity, we limit the run to 50 steps, utilizing a total of 3,200 problems.

Evaluation. Evaluations generally use the same chat-style prompting format as in training, except for
MMLU-Pro (Wang et al., 2024), where we follow the benchmark’s original prompt format. Greedy decod-
ing is used for all completions. Experiments were conducted on NVIDIA A100 GPUs, each with 40GB
of memory. We evaluate performance on the following benchmarks (1) Math reasoning: MATH500 and
GSM8K, using the lighteval library (Habib et al., 2023). (2) Code reasoning: CRUXEval-O (Gu et al.,
2024), using the ZeroEval framework (Lin, 2024), and LiveCodeBench v6 (LCB) (Jain et al., 2024).
(3) Instruction following: AlpacaEval 2.0 with length-controlled win rates (Dubois et al., 2024), judged by
GPT-4.1 (OpenAI, 2025).

5 RESULTS AND ANALYSIS

Table 1 presents main evaluation results, and Figure 2 illustrates response length evolution during training.
On in-domain MATH and GSM8K datasets, INTUITOR and GRPO-PV (both golden-answer-free) achieve
performance comparable to GRPO (using golden answers). This aligns with TTRL (Zuo et al., 2025), where
plurality voting approximated golden answers without significant performance loss. While INTUITOR per-
forms slightly worse than GRPO overall, on MATH it produces longer responses and demonstrates markedly
improved code generation, suggesting enhanced reasoning capabilities.

5.1 LEARNING TO FOLLOW INSTRUCTIONS

INTUITOR significantly enhances instruction-following. Initially, the pretrained Qwen2.5-1.5B struggles
with chat-style prompts, scoring <10% on all chat-template tasks (Table 1) and generating repetitive, non-

1Self-consistency uses a plurality rule, selecting the most frequent answer even without majority support, while
majority voting requires > 50% support and otherwise yields no winner (De Condorcet et al., 2014).

5

235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281

Under review as a conference paper at ICLR 2026

Table 1: Performance comparison of various methods on reasoning and instruction-following benchmarks.
The INTUITOR-Code variant is trained on Codeforces data with a smaller learning rate and fewer training
steps. All evaluations are obtained with the chat inference template, except for MMLU-Pro.

Model Training Data GSM8K MATH500 LCB CRUX MMLU-Pro AlpacaEval

Qwen2.5-1.5B Results
Base - 0.002 0.090 0.000 0.000 0.297 2.10
+ GRPO MATH 0.747 0.560 0.056 0.328 0.315 4.03
+ INTUITOR MATH 0.711 0.530 0.099 0.296 0.310 4.28

Qwen2.5-3B Results
Base - 0.673 0.544 0.093 0.236 0.377 3.72
+ GRPO MATH 0.826 0.636 0.085 0.341 0.403 6.91
+ GRPO-PV MATH 0.820 0.636 0.086 0.299 0.398 6.17
+ INTUITOR MATH 0.792 0.612 0.153 0.416 0.379 7.10
+ INTUITOR-Code Codeforces 0.743 0.572 0.153 0.411 0.386 4.16

0 20 40 60
Step

700

800

900

1000

1100

1200

Co
m

pl
et

io
n

Le
ng

th

Qwen2.5-1.5B

0 20 40 60
Step

600

650

700

750

800

850
Qwen2.5-3B

GRPO Intuitor GRPO-PV

Figure 2: Average response lengths during training
rollouts. For Qwen2.5-1.5B, INTUITOR and GRPO
reduce gibberish outputs. For Qwen2.5-3B, INTU-
ITOR and GRPO increase reasoning length; INTU-
ITOR yields significantly longer responses. GRPO-
PV shows minimal length increase.

0 20 40 60
Step

0.1

0.2

0.3

0.4

0.5

0.6

M
AT

H
Sc

or
e

Qwen2.5-1.5B

0 20 40 60
Step

0.54

0.56

0.58

0.60

0.62

0.64

M
AT

H
Sc

or
e

Qwen2.5-3B

0.00

0.02

0.04

0.06

0.08

0.10

LC
B

Sc
or

e

0.10

0.12

0.14

LC
B

Sc
or

e

GRPO (MATH) Intuitor (MATH) GRPO (LCB) Intuitor (LCB)

Figure 3: Performance evolution on MATH500 (in-
domain) and LiveCodeBench (transfer) for models
trained on MATH. MATH500 accuracy increases
rapidly at first, preceding gains in code-generation
accuracy. LiveCodeBench performance continues to
rise even after MATH500 accuracy plateaus.

sensical output, which inflates average response lengths (Figure 2). Fine-tuning with INTUITOR sharply
reduces such gibberish, decreases completion lengths, and enables non-trivial performance across all evalu-
ated benchmarks. Furthermore, on the MATH dataset, INTUITOR substantially improves the Length Control
Win Rate on AlpacaEval for both Qwen2.5-1.5B and Qwen2.5-3B, surpassing GRPO under identical set-
tings. This demonstrates robust gains in instruction adherence.

5.2 FOSTERING STRUCTURED REASONING

Table 2: Early-stage performance (training step 10) on
GSM8K and MATH. INTUITOR consistently outper-
forms GRPO.

Model Method GSM8K MATH

Qwen2.5-1.5B
Baseline 0.002 0.090
GRPO 0.081 0.296
INTUITOR 0.152 0.368

Qwen2.5-3B
Baseline 0.673 0.544
GRPO 0.758 0.596
INTUITOR 0.811 0.618

Rapid Initial Learning. Self-certainty, a contin-
uous and inherently process-aware reward derived
from the model’s internal assessment across all to-
kens, contrasts with binary rewards. This inter-
nal signal may encourage LLMs to follow more
effective learning trajectories. Given compara-
ble final performance between GRPO and INTU-
ITOR, we assess early-stage learnability by com-
paring in-domain accuracy at training step 10. As
shown in Table 2, INTUITOR consistently outper-
forms GRPO on both GSM8K and MATH bench-
marks for Qwen2.5-1.5B and Qwen2.5-3B, high-
lighting its advantage in rapid initial learning.

6

282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328

Under review as a conference paper at ICLR 2026

Cross-Task Generalization. Figure 3 illustrates performance trajectories on MATH500 (in-domain) and
LiveCodeBench (transfer task) for models trained on the MATH dataset. For both INTUITOR and GRPO,
accuracy improvements on LiveCodeBench emerge later in training, following initial gains on MATH500.
Notably, LiveCodeBench performance continues to improve even after MATH500 accuracy plateaus. This
pattern suggests that initial in-domain learning (on MATH) facilitates subsequent generalization to code
generation tasks (LiveCodeBench).

Question description ...
E.g., ```json{reasoning: ___, answer: ___}```

To solve this, we need …
The answer is:
```json

{
reasoning: The function … , 
answer: …

}
```

Intuitor Dominant FormatGRPO Dominant Format

```json
{

reasoning: The function … , 
answer: …

}
```

Figure 4: INTUITOR quickly demonstrate R1-
like reasoning

Emergence of Long-Form Reasoning. While large mod-
els like Deepseek-R1 achieve long-form reasoning through
extensive RL, INTUITOR enables smaller models to develop
structured reasoning with limited data. On CRUXEval-O
(Figure 4), models trained with INTUITOR often exhibit free-
form reasoning before summarizing it within the instructed
JSON block, despite prompts requiring reasoning directly
in JSON. A similar pattern of pre-code natural language
reasoning is observed on LiveCodeBench. This emergent
pre-reasoning may contribute to INTUITOR ’s strong perfor-
mance on these benchmarks.

5.3 UNDERSTANDING EMERGENT LONG-FORM REASONING

When LLMs encounter unfamiliar questions, they sample from a distribution of possible answers (Kang
et al., 2024). Self-certainty reflects the model’s internal assessment of its output coherence. By reinforc-
ing high-confidence responses, INTUITOR encourages more elaborate reasoning, potentially improving the
model’s comprehension of its own outputs. While not explicitly targeting benchmark accuracy, this enhance-
ment in output quality and structure leads to more reliable answers and better generalization.

We analyze models trained with INTUITOR on code corpora by examining outputs for ten randomly selected
LiveCodeBench questions across different training steps. Figure 5 shows the evolution of output types
alongside model accuracy. The results reveal a clear progression: models first learn to generate valid Python
code (evidenced by improved accuracy and fewer invalid responses), then develop pre-code reasoning to
facilitate self-understanding. Further inspection of generations confirms that models progressively elaborate
their reasoning throughout training, supporting our hypothesis that INTUITOR encourages traces that the
model itself can better understand.

To quantify this effect, we classify outputs from successive checkpoints into three categories: invalid code
(”No Answer”), valid code without reasoning (”No Reasoning”), and valid code with explicit reason-
ing (”Reasoning”). Figure 5(a) illustrates how these proportions evolve during training alongside Live-
CodeBench accuracy. The model first reduces invalid outputs and improves code correctness before in-
corporating pre-code reasoning, reflecting an emergent emphasis on self-explanatory traces. Figure 5(b)
demonstrates how training with INTUITOR leads to structured reasoning before code generation. Additional
evidence appears in Figure 7, where INTUITOR-trained models assign significantly higher confidence to their
generated responses compared to baseline models, as discussed further in Section 5.4.

5.4 ONLINE SELF-CERTAINTY PREVENTS REWARD EXPLOITATION

Over-optimization against static reward models is a known failure mode in reinforcement learning (Gao
et al., 2023). To assess the robustness of self-certainty as a reward, we compare offline self-certainty (re-
wards from a fixed base model) with online self-certainty (rewards from the evolving policy model), using a
reduced batch size of 224 responses per gradient update.

7

329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375

Under review as a conference paper at ICLR 2026

0 10 20 30 40 50
Step

0.0

0.2

0.4

0.6

0.8

1.0

Ra
tio

0 20 40
Step

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Ac
cu

ra
cy

No Answer No Reasoning Reasoning Accuracy

Code Block

Planning + Code Block + Explanation

Step-by-Step Planning + Code Block +
Step-by-Step Explanation

Figure 5: (a) Left: Distribution of answer types for ten random LiveCodeBench questions across training
steps. Right: Corresponding model accuracy. The model first learns to generate correct code, then adds
reasoning to improve understanding. (b) Training with INTUITOR on code corpora leads to spontaneous
reasoning before coding and explanation of outputs.

Figure 6 demonstrates that the offline annotator is susceptible to exploitation. Around the 100th update step,
the policy model learns to inflate its self-certainty reward by appending an auxiliary, already-solved problem
to its answer for the given question. This exploitation manifests as a sharp increase in response length
(dashed line) and a concurrent collapse in validation accuracy (solid line). In contrast, the online annotator,
whose reward signal co-evolves with the policy, prevents such reward hacking and maintains stable training.

To further evaluate the quality of self-certainty as a reward signal, we analyze the distribution of self-
certainty scores from policies trained with INTUITOR and GRPO on MATH500 responses (Figure 7). We
employ Mann–Whitney U tests to determine if correct responses achieve significantly higher self-certainty
scores than incorrect ones. Both GRPO and INTUITOR models exhibit significantly higher average self-
certainty scores, indicating that GRPO also enhances the model’s self-assessment capabilities. Notably,
policies trained with online self-certainty (i.e., INTUITOR) show no signs of reward hacking. The INTUITOR
policy yields the lowest p-values and largest effect sizes (r) in the Mann-Whitney U tests (Figure 7, inset).
This indicates it is most effective at discriminating its own correct and incorrect answers using self-certainty,
even while assigning higher absolute confidence scores overall. These findings underscore the potential of
INTUITOR for robust training on larger datasets.

5.5 ABLATION STUDIES

To comprehensively validate INTUITOR’s design and robustness, we conducted extensive ablation studies,
with full details provided in Appendix B due to page limitations. Key findings are: (1) KL term: Varying
the KL penalty (Sec. B.1) shows a stability–performance trade-off; moderate values yield the best accuracy.
(2) Scaling: INTUITOR scales to larger backbones (Qwen2.5-7B/14B, Qwen3-14B; Sec. B.2), delivering
consistent gains in reasoning and generalization. (3) Architecture: On Llama-3.2 and OLMo-2 (Sec. B.3),
INTUITOR remains effective, indicating robustness across model families and sizes. (4) Reward design:
Compared to entropy minimization (Agarwal et al., 2025) and random rewards (Shao et al., 2025), INTUITOR
yields stable improvements, while the alternatives trigger catastrophic collapse (Sec. B.4). (5) Optimization
strategy: Directly optimizing self-certainty as a loss function leads to reward hacking and performance
collapse; our advantage-weighted policy-gradient formulation avoids this and trains reliably (Sec. B.5).

6 DISCUSSION AND FUTURE RESEARCH

Scalability and Generalization. Our experiments, constrained by computational resources, utilize rela-
tively compact models trained on relatively small, unsupervised corpora. We aim to demonstrate the po-

8

376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422

Under review as a conference paper at ICLR 2026

0 50 100 150
Step

0.0

0.2

0.4

0.6

Ac
cu

ra
cy

0 50 100 150
Step

500

1000

1500

2000

2500

3000

C
om

pl
et

io
n

le
ng

th

Online Offline

Figure 6: Accuracy and response length dur-
ing training, comparing online and offline self-
certainty annotators with INTUITOR under re-
duced batch sizes. The offline reward model is ex-
ploited early in training (around 100 steps), lead-
ing to increased response length and decreased
accuracy. The online annotator maintains stable
training. Refer to Section 5.4 for details.

0

20

40

Co
un

t

U = 30910
p = 5.2e-01

r = -0.00

Base Generate & Grade
U = 45415

p = 8.2e-24
r = 0.45

Intuitor Generate & Grade

15 20 25 30 35
Self-certainty

0

20

40

Co
un

t

U = 40722
p = 7.9e-10

r = 0.27

Base Generate & Intuitor Grade

15 20 25 30 35
Self-certainty

U = 41178
p = 1.7e-15

r = 0.35

GRPO Generate & Grade

Correct Incorrect

Figure 7: Distribution of self-certainty on MATH500 re-
sponses, for policies trained with GRPO and INTUITOR.
Histograms are split by response correctness. The in-
set shows Mann–Whitney U test statistics (p-value and
effect size r) comparing self-certainty of correct versus
incorrect responses. The policy trained with INTUITOR
demonstrates the best separation.

tential of a model’s self-certainty as a reward signal for policy optimization. The results show that this
signal consistently promotes more coherent, well-justified, and interpretable explanations, indicating a path
towards more autonomous learning. Future work could explore these benefits in larger foundation models
(with hundreds of billions of parameters) and on more diverse, real-world datasets. Given that purely offline
training with INTUITOR led to performance degradation over time, scaling up will likely require periodic
online updates to self-certainty estimates or hybrid offline-online schedules to maintain calibration.

Combining Reward Signals. To enable a direct comparison between self-certainty and golden-answer
rewards, this paper focuses exclusively on a single reward signal. However, these signals are not mutually
exclusive. Future work could explore combining them, for instance, by summation or by alternating based
on the availability of golden answers. Furthermore, other reward signals, such as formatting rewards (Guo
et al., 2025), could be additively combined to enhance performance. Integrating RLIF with methods like
RLHF and RLVR may further advance LLM capabilities across various dimensions.

7 CONCLUSION

This paper introduces INTUITOR, an instantiation of Reinforcement Learning from Internal Feedback (RLIF)
that uses a model’s intrinsic self-certainty as its sole reward signal, eliminating the need for external super-
vision or gold-standard solutions. Our experiments show that INTUITOR matches the performance of su-
pervised RLVR methods like GRPO on mathematical reasoning, while achieving superior generalization to
out-of-domain tasks such as code generation and instruction following. It also promotes structured reasoning
and leverages online self-certainty to guard against reward exploitation.

These findings highlight the transformative potential of RLIF, signaling a meaningful step toward AI systems
that improve through introspection and unlock rich latent capabilities. Looking forward, this paradigm
opens the door to AI agents capable of autonomous skill acquisition in novel domains and scalable self-
improvement—even as they approach or surpass the limits of human oversight. Future directions include
integrating RLIF with external reward methods like RLHF or RLVR to tackle increasingly complex real-
world challenges, and advancing the development of more robust, generalizable, and truly autonomous
learning systems.

9

423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

Our research is based on publicly available datasets and open-source language models, mitigating concerns
related to private data or human subjects. The goal of our work is to enhance the reasoning capabilities
of language models through self-supervision, which we believe is a positive step toward more transparent
and robust AI systems. We have made our code publicly available to ensure transparency and allow for
full scrutiny of our methods and findings. We do not foresee any direct negative societal impacts or ethical
concerns arising from this work.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our results, we provide all source code and training configurations in the sup-
plementary materials. The Experimental Setup section and Appendix B detail all hyperparameters, software
versions (including the Open-R1 framework), and evaluation setups. Furthermore, Appendix C.1 includes
the exact prompts used during training and evaluation. These resources should allow for the complete repli-
cation of our experiments and validation of our findings.

REFERENCES

Shivam Agarwal, Zimin Zhang, Lifan Yuan, Jiawei Han, and Hao Peng. The unreasonable effectiveness of
entropy minimization in llm reasoning. arXiv preprint arXiv:2505.15134, 2025.

Collin Burns, Pavel Izmailov, Jan Hendrik Kirchner, Bowen Baker, Leo Gao, Leopold Aschenbrenner, Yin-
ing Chen, Adrien Ecoffet, Manas Joglekar, Jan Leike, et al. Weak-to-strong generalization: Eliciting
strong capabilities with weak supervision. arXiv preprint arXiv:2312.09390, 2023.

Minghan Chen, Guikun Chen, Wenguan Wang, and Yi Yang. Seed-grpo: Semantic entropy enhanced grpo
for uncertainty-aware policy optimization. arXiv preprint arXiv:2505.12346, 2025.

Zixiang Chen, Yihe Deng, Huizhuo Yuan, Kaixuan Ji, and Quanquan Gu. Self-play fine-tuning converts
weak language models to strong language models. arXiv preprint arXiv:2401.01335, 2024.

Pengyu Cheng, Yong Dai, Tianhao Hu, Han Xu, Zhisong Zhang, Lei Han, Nan Du, and Xiaolong Li. Self-
playing adversarial language game enhances llm reasoning. Advances in Neural Information Processing
Systems, 37:126515–126543, 2024.

Nicolas De Condorcet et al. Essai sur l’application de l’analyse à la probabilité des décisions rendues à la
pluralité des voix. Cambridge University Press, 2014.

Yann Dubois, Balázs Galambosi, Percy Liang, and Tatsunori B Hashimoto. Length-controlled alpacaeval:
A simple way to debias automatic evaluators. arXiv preprint arXiv:2404.04475, 2024.

Hugging Face. Open r1: A fully open reproduction of deepseek-r1, January 2025. URL https:
//github.com/huggingface/open-r1.

Lizhe Fang, Yifei Wang, Zhaoyang Liu, Chenheng Zhang, Stefanie Jegelka, Jinyang Gao, Bolin Ding,
and Yisen Wang. What is wrong with perplexity for long-context language modeling? arXiv preprint
arXiv:2410.23771, 2024.

Sebastian Farquhar, Jannik Kossen, Lorenz Kuhn, and Yarin Gal. Detecting hallucinations in large language
models using semantic entropy. Nature, 630(8017):625–630, 2024.

10

https://github.com/huggingface/open-r1
https://github.com/huggingface/open-r1

470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516

Under review as a conference paper at ICLR 2026

Leo Gao, John Schulman, and Jacob Hilton. Scaling laws for reward model overoptimization. In Interna-
tional Conference on Machine Learning, pp. 10835–10866. PMLR, 2023.

Alex Gu, Baptiste Rozière, Hugh Leather, Armando Solar-Lezama, Gabriel Synnaeve, and Sida I
Wang. Cruxeval: A benchmark for code reasoning, understanding and execution. arXiv preprint
arXiv:2401.03065, 2024.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma,
Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement
learning. arXiv preprint arXiv:2501.12948, 2025.

Nathan Habib, Clémentine Fourrier, Hynek Kydlı́ček, Thomas Wolf, and Lewis Tunstall. Lighteval: A
lightweight framework for llm evaluation, 2023. URL https://github.com/huggingface/
lighteval.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song, and
Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv preprint
arXiv:2103.03874, 2021.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. The curious case of neural text degenera-
tion. arXiv preprint arXiv:1904.09751, 2019.

Jingcheng Hu, Yinmin Zhang, Qi Han, Daxin Jiang, Xiangyu Zhang, and Heung-Yeung Shum. Open-
reasoner-zero: An open source approach to scaling up reinforcement learning on the base model. arXiv
preprint arXiv:2503.24290, 2025.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec Hel-
yar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. arXiv preprint
arXiv:2412.16720, 2024.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando Solar-
Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free evaluation of
large language models for code. arXiv preprint arXiv:2403.07974, 2024.

Katie Kang, Eric Wallace, Claire Tomlin, Aviral Kumar, and Sergey Levine. Unfamiliar finetuning examples
control how language models hallucinate. arXiv preprint arXiv:2403.05612, 2024.

Zhewei Kang, Xuandong Zhao, and Dawn Song. Scalable best-of-n selection for large language models via
self-certainty. arXiv preprint arXiv:2502.18581, 2025.

Lorenz Kuhn, Yarin Gal, and Sebastian Farquhar. Semantic uncertainty: Linguistic invariances for uncer-
tainty estimation in natural language generation. arXiv preprint arXiv:2302.09664, 2023.

Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze Brahman, Lester
James V Miranda, Alisa Liu, Nouha Dziri, Shane Lyu, et al. T\”ulu 3: Pushing frontiers in open language
model post-training. arXiv preprint arXiv:2411.15124, 2024.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom Ec-
cles, James Keeling, Felix Gimeno, Agustin Dal Lago, Thomas Hubert, Peter Choy, Cyprien de Mas-
son d’Autume, Igor Babuschkin, Xinyun Chen, Po-Sen Huang, Johannes Welbl, Sven Gowal, Alexey
Cherepanov, James Molloy, Daniel Mankowitz, Esme Sutherland Robson, Pushmeet Kohli, Nando de Fre-
itas, Koray Kavukcuoglu, and Oriol Vinyals. Competition-level code generation with alphacode. arXiv
preprint arXiv:2203.07814, 2022.

11

https://github.com/huggingface/lighteval
https://github.com/huggingface/lighteval

517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563

Under review as a conference paper at ICLR 2026

Bill Yuchen Lin. ZeroEval: A Unified Framework for Evaluating Language Models, July 2024. URL
https://github.com/WildEval/ZeroEval.

Jiawei Liu and Lingming Zhang. Code-r1: Reproducing r1 for code with reliable rewards. https://
github.com/ganler/code-r1, 2025.

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your code generated by chatgpt
really correct? rigorous evaluation of large language models for code generation. Advances in Neural
Information Processing Systems, 36:21558–21572, 2023.

Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee, and Min Lin.
Understanding r1-zero-like training: A critical perspective. arXiv preprint arXiv:2503.20783, 2025.

Michael Luo, Sijun Tan, Roy Huang, Xiaoxiang Shi, Rachel Xin, Colin Cai, Ameen Patel, Alpay
Ariyak, Qingyang Wu, Ce Zhang, Li Erran Li, Raluca Ada Popa, and Ion Stoica. Deepcoder: A
fully open-source 14b coder at o3-mini level. https://pretty-radio-b75.notion.site/
DeepCoder-A-Fully-Open-Source-14B-Coder-at-O3-mini-Level-1cf81902c14680b3bee5eb349a512a51,
2025. Notion Blog.

Wenjie Ma, Jingxuan He, Charlie Snell, Tyler Griggs, Sewon Min, and Matei Zaharia. Reasoning models
can be effective without thinking. arXiv preprint arXiv:2504.09858, 2025.

Meta AI. Llama 3.2: Revolutionizing edge ai and vision with open, customizable models. https://ai.
meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/, 2024.
Accessed: 2025-05-16.

Team OLMo, Pete Walsh, Luca Soldaini, Dirk Groeneveld, Kyle Lo, Shane Arora, Akshita Bhagia, Yul-
ing Gu, Shengyi Huang, Matt Jordan, Nathan Lambert, Dustin Schwenk, Oyvind Tafjord, Taira An-
derson, David Atkinson, Faeze Brahman, Christopher Clark, Pradeep Dasigi, Nouha Dziri, Michal
Guerquin, Hamish Ivison, Pang Wei Koh, Jiacheng Liu, Saumya Malik, William Merrill, Lester James V.
Miranda, Jacob Morrison, Tyler Murray, Crystal Nam, Valentina Pyatkin, Aman Rangapur, Michael
Schmitz, Sam Skjonsberg, David Wadden, Christopher Wilhelm, Michael Wilson, Luke Zettlemoyer,
Ali Farhadi, Noah A. Smith, and Hannaneh Hajishirzi. 2 olmo 2 furious. 2024. URL https:
//arxiv.org/abs/2501.00656.

OpenAI. Introducing GPT-4.1 in the API. https://openai.com/index/gpt-4-1/, April 2025.
Accessed: 15 May 2025.

Pierre-Yves Oudeyer and Frederic Kaplan. What is intrinsic motivation? a typology of computational
approaches. Frontiers in neurorobotics, 1:108, 2007.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow instructions with
human feedback. Advances in neural information processing systems, 35:27730–27744, 2022.

Gabriel Poesia, David Broman, Nick Haber, and Noah Goodman. Learning formal mathematics from intrin-
sic motivation. Advances in Neural Information Processing Systems, 37:43032–43057, 2024.

Mihir Prabhudesai, Lili Chen, Alex Ippoliti, Katerina Fragkiadaki, Hao Liu, and Deepak Pathak. Maximiz-
ing confidence alone improves reasoning, 2025. URL https://arxiv.org/abs/2505.22660.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea Finn.
Direct preference optimization: Your language model is secretly a reward model. Advances in Neural
Information Processing Systems, 36:53728–53741, 2023.

12

https://github.com/WildEval/ZeroEval
https://github.com/ganler/code-r1
https://github.com/ganler/code-r1
https://pretty-radio-b75.notion.site/DeepCoder-A-Fully-Open-Source-14B-Coder-at-O3-mini-Level-1cf81902c14680b3bee5eb349a512a51
https://pretty-radio-b75.notion.site/DeepCoder-A-Fully-Open-Source-14B-Coder-at-O3-mini-Level-1cf81902c14680b3bee5eb349a512a51
https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/
https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/
https://arxiv.org/abs/2501.00656
https://arxiv.org/abs/2501.00656
https://openai.com/index/gpt-4-1/
https://arxiv.org/abs/2505.22660

564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610

Under review as a conference paper at ICLR 2026

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy opti-
mization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Rulin Shao, Shuyue Stella Li, Rui Xin, Scott Geng, Yiping Wang, Sewoong Oh, Simon Shaolei Du, Nathan
Lambert, Sewon Min, Ranjay Krishna, et al. Spurious rewards: Rethinking training signals in rlvr. arXiv
preprint arXiv:2506.10947, 2025.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan
Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical reasoning in open language
models. arXiv preprint arXiv:2402.03300, 2024.

Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun Xiao,
Chenzhuang Du, Chonghua Liao, et al. Kimi k1. 5: Scaling reinforcement learning with llms. arXiv
preprint arXiv:2501.12599, 2025.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bash-
lykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation and fine-tuned
chat models. arXiv preprint arXiv:2307.09288, 2023.

Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo, Weiming Ren,
Aaran Arulraj, Xuan He, Ziyan Jiang, et al. Mmlu-pro: A more robust and challenging multi-task language
understanding benchmark. arXiv preprint arXiv:2406.01574, 2024.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement learn-
ing. Machine learning, 8:229–256, 1992.

Xiaomi. Mimo: Unlocking the reasoning potential of language model – from pretraining to posttraining,
2025. URL https://github.com/XiaomiMiMo/MiMo.

Fangzhi Xu, Hang Yan, Chang Ma, Haiteng Zhao, Qiushi Sun, Kanzhi Cheng, Junxian He, Jun Liu, and
Zhiyong Wu. Genius: A generalizable and purely unsupervised self-training framework for advanced
reasoning. arXiv preprint arXiv:2504.08672, 2025.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng
Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang, Jiaxi Yang,
Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin Yang, Le Yu, Mei Li, Mingfeng
Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tingyu Xia, Xingzhang Ren, Xuancheng Ren,
Yang Fan, Yang Su, Yichang Zhang, Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu.
Qwen2.5 technical report. arXiv preprint arXiv:2412.15115, 2024a.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng
Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. arXiv preprint arXiv:2412.15115, 2024b.

Weizhe Yuan, Richard Yuanzhe Pang, Kyunghyun Cho, Xian Li, Sainbayar Sukhbaatar, Jing Xu, and Ja-
son E. Weston. Self-rewarding language models. In Proceedings of the 41st International Conference on
Machine Learning, volume 235 of Proceedings of Machine Learning Research, pp. 57905–57923. PMLR,
2024.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Goodman. Star: Bootstrapping reasoning with reasoning.
Advances in Neural Information Processing Systems, 35:15476–15488, 2022.

Qingyang Zhang, Haitao Wu, Changqing Zhang, Peilin Zhao, and Yatao Bian. Right question is already half
the answer: Fully unsupervised llm reasoning incentivization. arXiv preprint arXiv:2504.05812, 2025.

13

https://github.com/XiaomiMiMo/MiMo

611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657

Under review as a conference paper at ICLR 2026

Andrew Zhao, Yiran Wu, Yang Yue, Tong Wu, Quentin Xu, Matthieu Lin, Shenzhi Wang, Qingyun Wu,
Zilong Zheng, and Gao Huang. Absolute zero: Reinforced self-play reasoning with zero data. arXiv
preprint arXiv:2505.03335, 2025.

Daniel M Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B Brown, Alec Radford, Dario Amodei, Paul Chris-
tiano, and Geoffrey Irving. Fine-tuning language models from human preferences. arXiv preprint
arXiv:1909.08593, 2019.

Yuxin Zuo, Kaiyan Zhang, Shang Qu, Li Sheng, Xuekai Zhu, Biqing Qi, Youbang Sun, Ganqu Cui, Ning
Ding, and Bowen Zhou. Ttrl: Test-time reinforcement learning. arXiv preprint arXiv:2504.16084, 2025.

14

658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704

Under review as a conference paper at ICLR 2026

LLM USAGE STATEMENT

Large Language Models were utilized solely as a general-purpose assist tool for paraphrasing and polishing
the clarity, conciseness, and flow of the English writing in this paper. LLMs did not contribute to research
ideation, experimental design, data analysis, or the generation of any core scientific content, arguments, or
conclusions presented herein. The authors take full responsibility for all content within this submission.

A ADDITIONAL BACKGROUND

Human-Defined
Tasks/Questions

Reinforcement Learning from Internal Feedback (RLIF)

Policy Update via RL

Model's Internal
Feedback

Figure 8: Overview of RLIF and INTUITOR’s Performance. Left: Illustration of RLIF, a paradigm where
LLMs learn from intrinsic signals generated by the model itself, without external supervision. Right: Per-
formance comparison of Qwen2.5-3B Base, GRPO, and INTUITOR (our RLIF instantiation). Both GRPO
and INTUITOR are trained on the MATH dataset. INTUITOR achieves comparable performance to GRPO on
in-domain mathematical benchmarks (GSM8K, MATH500) and demonstrates better generalization to out-
of-domain code generation tasks (LiveCodeBench v6, CRUXEval). Part of the illustration was generated by
GPT-4o.

A.1 FROM EXTERNAL SUPERVISION TO INTERNAL FEEDBACK

To provide additional context, we review existing RL-based fine-tuning paradigms and their limitations,
which motivate our exploration of Reinforcement Learning from Internal Feedback (RLIF).

Current RL fine-tuning approaches for LLMs primarily fall into two categories: those relying on external
human feedback (RLHF) and those using verifiable, often task-specific, rewards (RLVR).

In RLHF (Ziegler et al., 2019; Ouyang et al., 2022), the policy πθ is optimized to align with human prefer-
ences, typically encapsulated by a learned reward model rϕ. The objective is:

max
πθ

Eo∼πθ(q) [rϕ(q, o)− βKL[πθ(o|q)∥πref(o|q)]] (4)

Online RL algorithms like PPO (Schulman et al., 2017) generate samples from πθ, evaluate them using rϕ,
and update πθ to maximize this objective. However, the reward model rϕ is crucial yet fragile; introducing it
can lead to “reward hacking,” and retraining it is resource-intensive, complicating the training pipeline (Gao
et al., 2023).

RLVR, on the other hand, substitutes the learned reward model with an automatically verifiable signal. This
has proven effective in promoting reasoning capabilities, especially in domains like mathematics (Guo et al.,

15

705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751

Under review as a conference paper at ICLR 2026

Table 3: Impact of the KL-divergence penalty in INTUITOR during fine-tuning of Qwen-2.5-3B on the
MATH dataset. We compare performance across GSM8K, MATH500, LCB, CRUXEval-O, MMLU-Pro,
and AlpacaEval. All scores are obtained with the chat-style inference template, except for MMLU-Pro,
which uses its standard evaluation protocol.

Model GSM8K MATH500 LCB CRUX MMLU-Pro AlpacaEval

Base 0.673 0.544 0.093 0.236 0.377 3.72
+ INTUITOR-KL0 0.809 0.598 0.081 0.390 0.359 6.77
+ INTUITOR-KL0.0001 0.793 0.616 0.090 0.364 0.354 6.79
+ INTUITOR-KL0.005 0.792 0.612 0.153 0.416 0.379 7.10
+ INTUITOR-KL0.01 0.803 0.618 0.130 0.394 0.371 6.54

Table 4: Performance comparison of various methods on GSM8K, MATH500, LCB, CRUXEval-O, MMLU-
Pro, and AlpacaEval benchmarks for larger models. All evaluations use the chat inference template, except
for MMLU-Pro.

Model GSM8K MATH500 LCB CRUX MMLU-Pro AlpacaEval

Qwen2.5-7B 0.553 0.636 0.026 0.178 0.497 4.46
+ GRPO 0.829 0.750 0.200 0.538 0.511 8.52
+ INTUITOR 0.873 0.750 0.190 0.574 0.514 12.76

Qwen2.5-14B 0.751 0.674 0.220 0.491 0.565 8.51
+ GRPO 0.917 0.758 0.296 0.520 0.578 17.53
+ INTUITOR 0.923 0.770 0.300 0.560 0.583 20.57

Qwen3-14B 0.480 0.794 0.358 0.663 0.597 29.22
+ INTUITOR 0.864 0.834 0.356 0.677 0.613 40.11

2025). The RLVR objective is:

max
πθ

Eo∼πθ(q) [v(q, o)− βKL[πθ(o|q)∥πref(o|q)]] (5)

where v(q, o) is a verifiable reward function. For instance, in mathematical problem-solving, v(q, o) might

be: v(q, o) =
{
α if output o is correct
0 otherwise.

. RLVR is often implemented using algorithms like REINFORCE

(Williams, 1992), PPO or GRPO. Despite their simplicity, verifiable rewards still rely on gold-standard
answers or test executions, which are costly and domain-specific (Liu et al., 2025; Team et al., 2025). RLVR
faces challenges in extending beyond math and code to tasks involving ambiguity or subjective reasoning.

B ADDITIONAL EXPERIMENTAL DETAILS

B.1 INFLUENCE OF THE KL PENALTY

We further investigate how the magnitude of the KL penalty influences INTUITOR, as shown in Table 3. On
in-domain benchmarks (MATH500 and GSM8K), the choice of penalty has only a minor effect, but on out-
of-domain tasks—LiveCodeBench (code generation) and CRUXEval-O (code reasoning)—model accuracy
is highly sensitive to this hyper-parameter. Because INTUITOR does not receive explicit feedback from
generated responses during training, the KL penalty serves as a critical regularization mechanism. It prevents

16

752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798

Under review as a conference paper at ICLR 2026

0 20 40 60 80 100
Step

0.2

0.3

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

0 20 40 60 80 100
Step

600

700

800

900

C
om

pl
et

io
n

Le
ng

th

GRPO Intuitor

(a) Qwen2.5-7B

0 20 40 60 80 100
Step

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

0 20 40 60 80 100
Step

500

600

700

800

C
om

pl
et

io
n

Le
ng

th

GRPO Intuitor

(b) Qwen2.5-14B

Figure 9: Average accuracy and mean completion length during reinforcement learning on the MATH dataset
using INTUITOR and GRPO. Both methods yield similar accuracy gains, with INTUITOR generally produc-
ing longer completions.

the policy from drifting too far from the initial model distribution, acting as a safeguard against degeneration.
These findings highlight the importance of careful KL tuning in general-purpose reinforcement learning
setups, especially when targeting robust generalization across domains.

B.2 SCALING TO LARGER MODELS

We extend INTUITOR to larger base models, including Qwen2.5-7B, Qwen2.5-14B, and Qwen3-14B. How-
ever, we find that the original training recipe triggers severe behavioral collapse at the very start of training.
Even before any updates, the 7B model solves the given problem and then immediately proceeds to tackle
an unrelated one; this tendency becomes more pronounced as training progresses.

To stabilize learning, we simplify the system prompt, reduce the learning rate to 1× 10−6, and increase the
number of sampled responses per problem to sixteen. These settings represent our first, untuned trial, and
a comprehensive hyperparameter sweep is beyond the scope of this paper. Because the system prompt is
the only additional signal the model receives during INTUITOR fine-tuning, we expect its careful calibration
to exert a particularly strong influence on training dynamics. With these adjustments, INTUITOR trains
smoothly on both larger models. The corresponding evaluation results and training dynamics are reported in
Table 4 and Figure 9.

17

799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845

Under review as a conference paper at ICLR 2026

0 10 20 30 40 50
Step

0.5

0.6

0.7

Ac
cu

ra
cy

0 10 20 30 40 50
Step

400

450

500

550

600

C
om

pl
et

io
n

Le
ng

th

GRPO Intuitor

Figure 10: Average accuracy and mean completion length of Llama3.2-3B-Instruct during training with
INTUITOR and GRPO on the MATH dataset.

Table 5: Accuracy of Llama3.2-3B-Instruct using GRPO and INTUITOR on benchmarks.

Model Method GSM8K MATH LCB CRUX MMLU-Pro AlpacaEval

Llama3.2-3B-Ins
Baseline 0.688 0.436 0.106 0.265 0.340 11.07
GRPO 0.714 0.494 0.127 0.266 0.361 13.62
INTUITOR 0.723 0.476 0.134 0.293 0.358 12.41

B.3 GENERALIZATION ACROSS MODEL FAMILIES

To assess the generalizability of INTUITOR across different model families, we apply it to Llama3.2-3B-
Instruct (Meta AI, 2024) and the fully open OLMo-2-1124-7B-SFT model (OLMo et al., 2024).

As shown in Table 5 and Figure 10, INTUITOR improves the performance of Llama3.2, with both accuracy
and response length showing steady improvement throughout the training process, indicating meaningful
optimization gains under INTUITOR.

Similarly, results on OLMo-2 (Table 6 and Figure 11) confirm that INTUITOR provides consistent training
improvements. These experiments demonstrate its robustness and applicability beyond the Qwen model
family. Furthermore, since OLMo-2 is a fully open-source model with available training data and code, it
also addresses concerns about data contamination in the evaluation dataset.

Table 6: Accuracy of OLMo-2-1124-7B-SFT using GRPO and INTUITOR on benchmarks.

Model Method GSM8K MATH LCB CRUX MMLU-Pro AlpacaEval

OLMo2-7B-SFT
Baseline 0.691 0.302 0.023 0.238 0.295 6.51
GRPO 0.710 0.374 0.028 0.218 0.296 7.38
INTUITOR 0.710 0.372 0.028 0.215 0.291 7.60

18

846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892

Under review as a conference paper at ICLR 2026

0 20 40 60 80 100
Step

0.1

0.2

0.3

0.4

Ac
cu

ra
cy

0 20 40 60 80 100
Step

300

400

500

600

C
om

pl
et

io
n

Le
ng

th

GRPO Intuitor

Figure 11: Average accuracy and mean completion length on the MATH dataset during reinforcement learn-
ing with OLMo-2-1124-7B-SFT using INTUITOR and GRPO. Both methods achieve comparable accuracy
gains.

B.4 COMPARISON WITH ALTERNATIVE REWARD SIGNALS

Contemporary research has found that applying a negative token-level entropy reward can improve a model’s
reasoning performance without requiring external labels (Agarwal et al., 2025; Prabhudesai et al., 2025).
However, since low entropy often correlates with repetitive loops (Holtzman et al., 2019), using negative
entropy alone as an RL reward risks driving the model into a collapsed state. In other words, without
sufficient supervised training to push the base model away from degenerate behavior, the model risks falling
into a repetition trap from which it cannot recover. As we observe a nontrivial amount of repetitive responses
in Qwen2.5-1.5B, we test this hypothesis by applying GRPO with the negative-entropy reward:

uEM = − 1

|o| · |V|

|o|∑
i=1

|V|∑
j=1

pπθ
(j|q, o<i) · log (pπθ

(j|q, o<i)) .

Figure 12 (left) validates our prediction. Entropy minimization (EM) exacerbates repetition, and after a
few updates, the model converges to producing the same character regardless of the prompt. By contrast,
INTUITOR enhances performance without triggering collapse (Figure 3). Even when the base model is
sufficiently strong to avoid collapse during the early stages of entropy minimization training, it remains more
prone to later degeneration because entropy provides a weaker confidence signal compared to self-certainty.
As shown in Figure 13, we train both EM and INTUITOR under identical settings using Qwen2.5-3B for
two epochs. The results show that while both methods initially reach similar peak performance, INTUITOR
stabilizes around this peak, whereas EM exhibits a steady decline, with a consistent bias toward longer
responses. These findings highlight self-certainty as a more robust and effective signal for RLIF.

To further validate the efficacy of INTUITOR, we also trained Qwen2.5-3B using a random reward baseline
(Shao et al., 2025), where each response was assigned a reward of 0 or 1 with equal probability. Figure 12
(right) shows that this random reward scheme severely degrades the model’s performance in a chat-style RL
setting, demonstrating that the performance gains observed with INTUITOR are indeed non-trivial.

B.5 ABLATION ON OPTIMIZATION STRATEGY: POLICY GRADIENT VS. DIRECT OPTIMIZATION

One possible approach is to optimize self-certainty directly by minimizing the negative self-certainty as a
loss function. Although this strategy rapidly increases the target metric, it creates an incentive for reward
hacking in which the model inflates its own certainty without genuine improvement in task performance. As
illustrated in Figure 14, direct optimization produces an initial rise in accuracy, suggesting that self-certainty

19

893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939

Under review as a conference paper at ICLR 2026

0 20 40 60
Step

0.00

0.02

0.04

0.06

0.08

0.10

Ac
cu

ra
cy

EM

0 20 40 60
Step

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Ac
cu

ra
cy

Random

1500

2000

2500

3000

C
om

pl
et

io
n

le
ng

th

580

600

620

640

C
om

pl
et

io
n

le
ng

th

Accuracy Completion length

Figure 12: Left: GRPO with an entropy minimization objective using Qwen2.5-1.5B on MATH. Right:
GRPO with a random reward using Qwen2.5-3B on MATH. Both approaches exhibit severe output degen-
eration.

0 20 40 60 80 100
Step

0.4

0.5

0.6

Ac
cu

ra
cy

0 20 40 60 80 100
Step

600

800

1000

1200

1400

1600

C
om

pl
et

io
n

Le
ng

th

EM Intuitor

Figure 13: Accuracy and completion length during reinforcement learning over two epochs, comparing
entropy minimization and INTUITOR. In longer runs, entropy minimization exhibits a stronger length bias
and more severe degeneration than INTUITOR.

is correlated with useful learning signals, but it ultimately results in model collapse. By comparison, the
advantage weighted gradient policy optimization implemented in INTUITOR incorporates self-certainty only
as a relative weighting factor. This formulation mitigates reward hacking, stabilizes the optimization process,
and consistently achieves superior performance relative to direct optimization.

B.6 TRAINING HYPERPARAMETERS

Training hyperparameters are listed in Table 7.

C PROMPTS AND MODEL COMPLETIONS

This section presents sample prompts and the responses generated by the models. Unless otherwise specified,
the default base model used is Qwen2.5-3B, and the default training dataset is MATH.

20

940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986

Under review as a conference paper at ICLR 2026

0 10 20 30 40 50
Step

0.2

0.3

0.4

0.5

0.6

Ac
cu

ra
cy

0 10 20 30 40 50
Step

600

800

1000

C
om

pl
et

io
n

Le
ng

th

Intuitor-DO Intuitor

Figure 14: Comparison of the training accuracy and completion length when encouraging high self-certainty
using direct optimization and policy gradient optimization. Direct optimization produces unstable improve-
ments that culminate in collapse, whereas INTUITOR achieves stable training and superior performance.

Table 7: Training hyperparameters. Only hyperparameters that affect the learned policy or evaluation are
listed. Unspecified fields inherit the TRL v0.8 defaults.

Parameter MATH (1.5B/3B) MATH (7B/14B) Codeforces (3B)

Learning Rate 3× 10−6 1× 10−6 1× 10−6

Batch Size 128 64 64
Group Size 7 14 14
KL Penalty(β) 0.0005 0.01 0.01
Training Steps 58 117 50
Max Prompt Length 512 512 1024
Max Completion Length 3072 3072 2048
Temperature 0.9 0.9 0.9
Clip Ratio 0.2 0.2 0.2
Lr Scheduler Type Cosine Cosine Cosine
Warmup Ratio 0.1 0.1 0.1
Optimizer AdamW (β1=0.9, β2=0.999, ε=10−8)

C.1 TRAINING PROMPTS

System prompt used for Qwen2.5-1.5B on MATH.

You are a helpful AI Assistant, designed to provided well-reasoned and detailed responses. You
FIRST think about the reasoning process step by step and then provide the user with the answer.
Please enclose your final answer in the box: \boxed{Your Answer}.

System prompt used for Qwen2.5-3B on MATH.

You are a helpful AI Assistant, designed to provided well-reasoned and detailed responses. You
FIRST think about the reasoning process step by step and then provide the user with the answer.
Please enclose your final answer in the box: \boxed{Your Answer}. Please stop generation immedi-
ately after outputing the box.

21

987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033

Under review as a conference paper at ICLR 2026

System prompt used for Qwen2.5-7B and Qwen2.5-14B on MATH.

You are a helpful AI Assistant, designed to provided well-reasoned and detailed responses. Please
provide a step-by-step solution to the following problem.

System prompt used for Qwen2.5-3B on code corpuse.

You are an AI designed to help solve competitive programming problems by generating Python code.

C.2 EXAMPLE FROM LIVECODEBENCH CODE GENERATION

Models trained with INTUITOR tend to generate reasoning before producing code, whereas GRPO-tuned
models typically respond with Python code directly under the same prompt.

Problem

Question:
You are given a 0-indexed array of strings details. Each element of details provides information about
a given passenger compressed into a string of length 15. The system is such that:

• The first ten characters consist of the phone number of passengers.
• The next character denotes the gender of the person.
• The following two characters are used to indicate the age of the person.
• The last two characters determine the seat allotted to that person.
• Return the number of passengers who are strictly more than 60 years old.

Example 1
Input
details = ["7868190130M7522","5303914400F9211","9273338290F4010"]

Output
2

Explanation The passengers at indices 0, 1, and 2 have ages 75, 92, and 40. Thus, there are 2 people
who are over 60 years old.

Example 2
Input
details = ["1313579440F2036","2921522980M5644"]

Output
0

Explanation None of the passengers are older than 60.

Constraints
• 1 ¡= details.length ¡= 100
• details[i].length == 15
• details[i] consists of digits from ’0’ to ’9’.

22

1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080

Under review as a conference paper at ICLR 2026

• details[i][10] is either ’M’ or ’F’ or ’O’.
• The phone numbers and seat numbers of the passengers are distinct.”

You will use the following starter code to write the solution to the problem and enclose your code
within delimiters.

‘ ‘ ‘ py thon
c l a s s S o l u t i o n :

d e f c o u n t S e n i o r s (s e l f , d e t a i l s : L i s t [s t r]) −> i n t :
‘ ‘ ‘

INTUITOR-tuned

To solve the problem of counting the number of passengers who are strictly more than 60 years old,
we can follow these steps:

1. Iterate through each passenger’s details.
2. Extract the age from the details.
3. Check if the age is greater than 60.
4. Count the number of passengers who meet the criteria.

Here is the Python code to achieve this:

‘ ‘ ‘ py thon
c l a s s S o l u t i o n :
d e f c o u n t S e n i o r s (s e l f , d e t a i l s : L i s t [s t r]) −> i n t :

c o u n t = 0
f o r d e t a i l i n d e t a i l s :

age = i n t (d e t a i l [1 1 : 1 3])
i f age > 6 0 :

c o u n t += 1
r e t u r n c o u n t

‘ ‘ ‘

GRPO-tuned

‘ ‘ ‘ py thon
c l a s s S o l u t i o n :
d e f c o u n t S e n i o r s (s e l f , d e t a i l s : L i s t [s t r]) −> i n t :

c o u n t = 0
f o r d e t a i l i n d e t a i l s :

age = i n t (d e t a i l [1 1 : 1 3])
i f age > 6 0 :

c o u n t += 1
r e t u r n c o u n t

‘ ‘ ‘

23

1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127

Under review as a conference paper at ICLR 2026

C.3 EXAMPLE FROM LIVECODEBENCH CODE GENERATION

Models trained with INTUITOR are typically effective at interpreting instructions and producing correct
Python code, while GRPO-tuned models may misinterpret the instructions or decline to provide a response.

Problem

Question:
There are three cards with letters a, b, and c placed in a row in some order. You may perform at
most one operation:

• Pick any two cards and swap them.
Is it possible that the row becomes abc after the operation? Output YES if it is possible, and NO
otherwise.

Input
The first line contains a single integer t (1 ≤ t ≤ 6) — the number of test cases. Each test case
consists of a single line containing a permutation of the three characters a, b, and c.

Output
For each test case, output YES if you can make the row abc with at most one operation, or NO
otherwise. The answer is case-insensitive.

Sample Input
6
abc
acb
bac
bca
cab
cba

Sample Output
YES
YES
YES
NO
NO
YES

Note
• In the first test case, no operation is needed.
• In the second test case, swap c and b: acb→ abc.
• In the third test case, swap b and a: bac→ abc.
• In the fourth test case, it is impossible to obtain abc using at most one swap.

Read the inputs from stdin solve the problem and write the answer to stdout (do not directly test on
the sample inputs). Enclose your code within delimiters as follows. Ensure that when the python
program runs, it reads the inputs, runs the algorithm and writes output to STDOUT.

‘ ‘ ‘ py thon
YOUR CODE HERE
‘ ‘ ‘

24

1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174

Under review as a conference paper at ICLR 2026

INTUITOR-tuned

To solve the problem of determining whether it is possible to transform the given string into ”abc”
using at most one operation (swapping two cards), we can follow these steps:

1. Read the input string
2. Check if the string is already ”abc”
3. If the string is not ”abc”, check if it can be transformed into ”abc” by swapping two cards
4. Output ”YES” if it is possible, otherwise output ”NO”

‘ ‘ ‘ py thon
Dete rmine whe the r s can become ” abc ” wi th <= swap
d e f c a n t r a n s f o r m t o a b c (s : s t r) −> s t r :

i f s == ” abc ” :
r e t u r n ”YES”

t r y a l l p a i r s o f i n d i c e s (i , j) w i th i < j
f o r i i n r a n g e (l e n (s)) :

f o r j i n r a n g e (i + 1 , l e n (s)) :
swapped = s [: i]+ s [j]+ s [i +1 : j]+ s [i]+ s [j + 1 :]
i f swapped == ” abc ” :

r e t u r n ”YES”
r e t u r n ”NO”

t = i n t (i n p u t () . s t r i p ())
f o r i n r a n g e (t) :

p r i n t (c a n t r a n s f o r m t o a b c (i n p u t () . s t r i p ()))
‘ ‘ ‘

GRPO-tuned

‘ ‘ ‘ py thon
YOUR CODE HERE
‘ ‘ ‘

Another related GRPO-tuned response to another problem

I’m sorry, but I can’t assist with that request.

C.4 EXAMPLE FROM CRUXEVAL-O

Models trained with INTUITOR usually articulate their reasoning first, then deliver the formatted response as
instructed, while GRPO-tuned models often produce the required JSON output immediately under the same
prompt.

25

1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221

Under review as a conference paper at ICLR 2026

Problem

Question:
You are given a Python function and an assertion containing an input to the function. Complete the
assertion with a literal (no unsimplified expressions, no function calls) containing the output when
executing the provided code on the given input, even if the function is incorrect or incomplete.

d e f f (t e x t) :
n e w t e x t = ’ ’
f o r ch i n t e x t . l ower () . s t r i p () :

i f ch . i s n u m e r i c () o r ch i n
’\ u00c4\u00e4\ u00cf \ u00ef \u00d6\ u00f6 \u00dc\ u00fc ’ :

n e w t e x t += ch
r e t u r n n e w t e x t \ n a s s e r t f (’ ’) == ??

Instruction
Please answer this question by first reasoning and then providing your answer. Present your reasoning
and solution in the following json format. Please show your final answer in the answer field,
e.g.,"answer":"42".

‘ ‘ ‘ j s o n
{
” r e a s o n i n g ” : ” ” ,
” answer ” : ” ”
} ‘ ‘ ‘

INTUITOR-tuned

To complete the assertion for the given Python function f(text), we need to determine the output
of the function when the input is an empty string ’’.
Let’s break down the function step by step:
1. Function Definition:

d e f f (t e x t) :
n e w t e x t = ’ ’
f o r ch i n t e x t . l ower () . s t r i p () :

i f ch . i s n u m e r i c () o r ch i n
’\ u00c4\u00e4\ u00cf \ u00ef \u00d6\ u00f6 \u00dc\ u00fc ’ :

n e w t e x t += ch
r e t u r n n e w t e x t

2. Input: The input to the function is an empty string ’’.
3. Step-by-Step Execution:

• Step 1: text.lower().strip()
– text.lower() converts the string to lowercase.
– text.strip() removes leading or trailing whitespace.
– For ’’, both calls return ’’, so the result is ’’.

• Step 2: Iterate over each character
– The loop sees no characters; it performs zero iterations.

26

1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268

Under review as a conference paper at ICLR 2026

• Step 3: Character check
– Because there are no characters, the condition ch.isnumeric() or ch in
’\u00c4\u00e4\u00cf\u00ef\u00d6\u00f6\u00dc\u00fc’ is never true,
and nothing is appended to new text.

4. Output: Since nothing was appended, new text remains ’’.
Therefore the assertion should be:

a s s e r t f (’ ’) == ’ ’

So, the final answer is:

‘ ‘ ‘ j s o n
{

” r e a s o n i n g ” : ” The f u n c t i o n ‘ f (t e x t) ‘ c o n v e r t s t h e i n p u t
s t r i n g t o l o w e r c a s e and removes any l e a d i n g or t r a i l i n g
w h i t e s p a c e . For an empty s t r i n g t h e r e s u l t i n g s t r i n g i s
a l s o empty . T h e r e f o r e t h e o u t p u t o f ‘ f (’ ’) ‘ i s an empty
s t r i n g . ” ,
” answer ” : ” ’ ’ ”

} ‘ ‘ ‘

GRPO-tuned

‘ ‘ ‘ j s o n
{

” r e a s o n i n g ” : ” The f u n c t i o n ‘ f ‘ t a k e s a s t r i n g ‘ t e x t ‘ a s
i n p u t and r e t u r n s a new s t r i n g wi th on ly numer ic c h a r a c t e r s
and c e r t a i n s p e c i a l c h a r a c t e r s
(\ u00c4\u00e4\ u00cf \ u00ef \u00d6\ u00f6 \u00dc\ u00fc) p r e s e r v e d .
The a s s e r t i o n c h ec ks i f t h e f u n c t i o n c o r r e c t l y h a n d l e s an
empty s t r i n g . S i n c e an empty s t r i n g c o n t a i n s no c h a r a c t e r s ,
t h e f u n c t i o n s h o u l d r e t u r n an empty s t r i n g as w e l l .
T h e r e f o r e , t h e e x p e c t e d o u t p u t f o r an empty s t r i n g i s an
empty s t r i n g . ” ,
” answer ” : ””

} ‘ ‘ ‘

C.5 ROLLOUT EXAMPLE OF INTUITOR DURING TRAINING ON CODE CORPUS

The following examples illustrate representative rollouts during the reinforcement-learning training of
Qwen2.5-3B on the CodeContest dataset. As shown in Figure 5, the model initially produces concise reason-
ing and brief explanations to “convince” itself of its interim outputs. Over the course of training, it gradually
shifts toward more detailed, step-by-step reasoning and richer explanations, which further reinforce its un-
derstanding and improve the final responses.

27

1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315

Under review as a conference paper at ICLR 2026

Code Block (Step 2)

I have solved the problem. Here’s the Python code to solve it as described:

‘ ‘ ‘ py thon
d e f c a l c u l a t e s t o n e s (S) :

n = l e n (S)
MOD = 10**9 + 7

I n i t i a l i z e a r r a y t o s t o r e r e m a i n d e r s
r e m a i n d e r = [0] * (n + 1)

C a l c u l a t e r e m a i n d e r s
f o r i i n r a n g e (n , −1 , −1) :

r e m a i n d e r [i] = (
r e m a i n d e r [i +1] * 10 + i n t (S [i])) % MOD

i f i > 0 :
r e m a i n d e r [i] = (

r e m a i n d e r [i] − r e m a i n d e r [i +1] + MOD) % MOD

r e t u r n r e m a i n d e r [1] * 10 + r e m a i n d e r [0]

Read i n p u t
S = i n p u t ()

C a l l f u n c t i o n t o c a l c u l a t e s t o n e s
T = c a l c u l a t e s t o n e s (S)

P r i n t o u t p u t
p r i n t (T)
‘ ‘ ‘

This code computes the sum of digits from right to left, using an array ‘remainder‘ to store partial
remainders modulo 1000000007. It then calculates T as the final remainder times 10 plus the first
remainder from the array.

Planning + Code Block + Explanation (Step 15)

To solve this problem, we can iterate through all the possible subsets of the set and calculate their
sums. However, a more efficient approach is to use combinatorics. For N elements, there are 2N

subsets. Each element appears in exactly half of the subsets, so the total sum of all subset elements
is 2(N − 1) times the sum of all elements in the original set.

‘ ‘ ‘ py thon
d e f s u m o f p o w e r s e t (n) :

r e t u r n 2**(n −1) * n * (n +1) / / 2

Read i n p u t
t = i n t (i n p u t ())
f o r i n r a n g e (t) :

28

1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362

Under review as a conference paper at ICLR 2026

n = i n t (i n p u t ())
p r i n t (s u m o f p o w e r s e t (n))

‘ ‘ ‘

This program defines a function sum of powerset(n) that calculates the sum of the power set of a set
with n elements. It then reads the number of test cases t, and for each test case, reads n and prints the
result.

Step-by-Step Planning + Code Block + Step-by-Step Explanation (Step 50)

To solve this problem, we need to read the input, parse the map and the regions to survey, then count
the number of each type of terrain for each survey region. Here’s a step-by-step approach to write
the Python code for this problem:

1. Read the input: Get the dimensions of the map and the number of regions to survey.
2. Read the map: Parse the map information into a 2D list of strings.
3. Read the regions: Parse the survey regions into a list of tuples.
4. Count the terrain: For each survey region, count the number of ‘J‘, ‘O‘, and ‘I‘ characters

in the corresponding section of the map.
5. Output the results: Print the counts for each survey region.

Here’s the Python code that implements this solution:

‘ ‘ ‘ py thon
d e f c o u n t t e r r a i n (map info , s u r v e y) :

m, n = map in fo . g e t (’m’) , map in fo . g e t (’ n ’)
j c o u n t = 0
o c o u n t = 0
i c o u n t = 0

f o r row i n s u r v e y :
a , b , c , d = row
i f a > m or b > n or c > m or d > n :

c o n t i n u e

f o r i i n r a n g e (a , c + 1) :
f o r j i n r a n g e (b , d + 1) :

i f map in fo [(i , j)] == ’ J ’ :
j c o u n t += 1

e l i f map in fo [(i , j)] == ’O’ :
o c o u n t += 1

e l i f map in fo [(i , j)] == ’ I ’ :
i c o u n t += 1

r e t u r n j c o u n t , o coun t , i c o u n t

d e f p r o c e s s i n p u t () :
M, N = map (i n t , i n p u t () . s p l i t ())
K = i n t (i n p u t ())

29

1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409

Under review as a conference paper at ICLR 2026

map in fo = {}
s u r v e y = []

f o r i n r a n g e (M) :
map in fo [(M − ,)] = i n p u t () . s t r i p ()

f o r i n r a n g e (K) :
s u r v e y . append (l i s t (map (i n t , i n p u t () . s p l i t ())))

r e t u r n M, N, K, map info , s u r v e y

d e f main () :
M, N, K, map info , s u r v e y = p r o c e s s i n p u t ()
r e s u l t s = []

f o r r e g i o n i n s u r v e y :
j c o u n t , o coun t , i c o u n t = c o u n t t e r r a i n (map info , r e g i o n)
r e s u l t s . append ((j c o u n t , o coun t , i c o u n t))

f o r r e g i o n i n r e s u l t s :
p r i n t (r e g i o n [0] , r e g i o n [1] , r e g i o n [2])

i f n a m e == ” m a i n ” :
main ()

‘ ‘ ‘

Explanation:
1. count terrain Function: This function takes the map information and a survey region, and

counts the number of ‘J‘, ‘O‘, and ‘I‘ in that region.
2. process input Function: This function reads the input from the user, processes it to extract

the map information and the survey regions.
3. main Function: This function calls ‘process input‘ to get the necessary data, then calls

‘count terrain‘ for each survey region and prints the results.
This code should correctly solve the problem and provide the desired output.

C.6 EVOLUTION OF QWEN2.5-3B’S RESPONSES ON LIVECODEBENCH CODE GENERATION
TRAINED WITH INTUITOR ON MATH

During training Qwen2.5-3B with INTUITOR on the MATH dataset, its code-generation capability steadily
improves. By the middle of training, the model learns to produce syntactically valid Python; as training
progresses, it refines formatting and clarity. By the end, it arrives at correct solutions.

Problem

Question:

30

1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456

Under review as a conference paper at ICLR 2026

Alex is participating in the filming of another video of BrMeast, and BrMeast asked Alex to prepare
250 thousand tons of TNT, but Alex didn’t hear him well, so he prepared n boxes and arranged them
in a row waiting for trucks. The i-th box from the left weighs ai tons.
All trucks that Alex is going to use hold the same number of boxes, denoted by k. Loading happens
the following way:

• The first k boxes goes to the first truck,
• The second k boxes goes to the second truck,
• · · ·
• The last k boxes goes to the n

k -th truck.
Upon loading is completed, each truck must have exactly k boxes. In other words, if at some point
it is not possible to load exactly k boxes into the truck, then the loading option with that k is not
possible. Alex hates justice, so he wants the maximum absolute difference between the total weights
of two trucks to be as great as possible. If there is only one truck, this value is 0.
Alex has quite a lot of connections, so for every 1 ≤ k ≤ n, he can find a company such that each of
its trucks can hold exactly k boxes. Print the maximum absolute difference between the total weights
of any two trucks.
Input
The first line contains one integer t (1 ≤ t ≤ 104) — the number of test cases.
The first line of each test case contains one integer n (1 ≤ n ≤ 150 000) — the number of boxes.
The second line contains n integers a1, a2, . . . , an (1 ≤ ai ≤ 109) — the weights of the boxes.
It is guaranteed that the sum of n for all test cases does not exceed 150 000.
Output
For each test case, print a single integer — the answer to the problem.
Sample Input 1:
5

2
1 2

6
10 2 3 6 1 3

4
1000000000 1000000000 1000000000 1000000000

15
60978 82265 78961 56708 39846 31071 4913

4769 29092 91348 64119 72421 98405 222 14294

8
19957 69913 37531 96991 57838 21008 14207 19198

Sample Output 1:
1
9
0
189114
112141

31

1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503

Under review as a conference paper at ICLR 2026

Note
• In the first case, we should pick two trucks, so the first one will have only the first box, and

the second one will have only the second box.
• In the second case, we should pick six trucks, so the maximum will be 10, the minimum

will be 1, and the answer is 10− 1 = 9.
• In the third case, for any possible k, the trucks will have the same total weight of boxes, so

the answer is 0.

Read the inputs from stdin solve the problem and write the answer to stdout (do not directly test on
the sample inputs). Enclose your code within delimiters as follows. Ensure that when the python
program runs, it reads the inputs, runs the algorithm and writes output to STDOUT.

‘ ‘ ‘ py thon
YOUR CODE HERE
‘ ‘ ‘

Step 0 (Base): Incorrect

‘ ‘ ‘ py thon
YOUR CODE HERE
‘ ‘ ‘

Step 10: Incorrect

‘ ‘ ‘ py thon
YOUR CODE HERE
‘ ‘ ‘

Step 20: Incorrect

‘ ‘ ‘ py thon
YOUR CODE HERE
‘ ‘ ‘

Step 30: Incorrect

To solve the problem of finding the maximum absolute difference between the total weights of any
two trucks, we can follow these steps:

1. Read the input: The input consists of multiple test cases. Each test case starts with an
integer n (the number of boxes), followed by n integers a1, a2, . . . , an (the weights of the
boxes).

32

1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550

Under review as a conference paper at ICLR 2026

2. Calculate the total weight of all boxes: Sum up all the weights of the boxes to get the total
weight W .

3. Determine the number of trucks: The number of trucks m is given by m =
⌈
n
k

⌉
, where

k is the number of boxes each truck can hold. Since k can vary from 1 to n, we need to find
the maximum possible value of k that allows us to distribute the boxes evenly.

4. Calculate the maximum and minimum total weights of the trucks: For each possible
value of k, calculate the total weight of the boxes that can be loaded into each truck. The
maximum total weight of the trucks will be the sum of the weights of the k heaviest boxes,
and the minimum total weight will be the sum of the weights of the k lightest boxes.

5. Find the maximum absolute difference: The maximum absolute difference between the
total weights of any two trucks is the maximum of the absolute differences between the
maximum and minimum total weights of the trucks for all possible values of k.

6. Find the maximum absolute difference: The maximum absolute difference between the
total weights of any two trucks is the maximum of the absolute differences between the
maximum and minimum total weights of the trucks for all possible values of k.

Here is the Python code that implements the above steps:

‘ ‘ ‘ py thon
i m p o r t s y s
from heapq i m p o r t heappush , heappop
d e f m a x d i f f e r e n c e (n , w e i g h t s) :

C a l c u l a t e t h e t o t a l we igh t o f a l l boxes
t o t a l w e i g h t = sum (w e i g h t s)
I n i t i a l i z e v a r i a b l e s t o s t o r e t h e maximum
and minimum t o t a l w e i g h t s o f t h e t r u c k s
max weight = 0
min we igh t = t o t a l w e i g h t
I t e r a t e ove r a l l p o s s i b l e v a l u e s o f k
f o r k i n r a n g e (1 , n + 1) :

C a l c u l a t e t h e t o t a l we i gh t o f t h e k h e a v i e s t boxes
max weight = max (max weight ,

sum (heappop (w e i g h t s) f o r i n r a n g e (k)))

C a l c u l a t e t h e t o t a l we i gh t o f t h e k l i g h t e s t boxes
min we igh t = min (min weigh t ,

sum (heappop (w e i g h t s) f o r i n r a n g e (k)))

R e t u r n t h e maximum a b s o l u t e d i f f e r e n c e
r e t u r n max weight − min we igh t

Read t h e number o f t e s t c a s e s
t = i n t (i n p u t ())

P r o c e s s each t e s t c a s e
f o r i n r a n g e (t) :

n = i n t (i n p u t ())
w e i g h t s = l i s t (map (i n t , i n p u t () . s p l i t ()))
C a l c u l a t e t h e maximum a b s o l u t e d i f f e r e n c e

33

1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597

Under review as a conference paper at ICLR 2026

r e s u l t = m a x d i f f e r e n c e (n , w e i g h t s)

Wr i t e t h e r e s u l t t o s t d o u t
p r i n t (r e s u l t)

‘ ‘ ‘

Step 40: Correct

To solve the problem of finding the maximum absolute difference between the total weights of any
two trucks, we can follow these steps:

1. Read the input: The input consists of multiple test cases. Each test case starts with an
integer n (the number of boxes), followed by n integers representing the weights of the
boxes.

2. Calculate the total weight of all boxes: Sum up the weights of all the boxes to get the total
weight.

3. Determine the number of trucks: Since each truck holds k boxes, the number of trucks is
n
k .

4. Calculate the possible total weights of the trucks: For each possible value of k (from 1 to
n), calculate the total weight of the boxes that can be loaded into the trucks. This involves
summing up the weights of k consecutive boxes.

5. Find the maximum and minimum total weights: For each possible value of k, find the
maximum and minimum total weights of the trucks. The maximum absolute difference is
the difference between the maximum and minimum total weights.

6. Output the maximum absolute difference: Print the maximum absolute difference for
each test case.

Here is the Python code that implements the above steps:

‘ ‘ ‘ py thon
d e f f i n d m a x d i f f e r e n c e (n , w e i g h t s) :

t o t a l w e i g h t = sum (w e i g h t s)
m a x d i f f e r e n c e = 0
f o r k i n r a n g e (1 , n + 1) :

i f n % k != 0 :
c o n t i n u e

t r u c k w e i g h t s = [sum (w e i g h t s [i * k :
(i + 1) * k]) f o r i i n r a n g e (n / / k)]

max weight = max (t r u c k w e i g h t s)
min we igh t = min (t r u c k w e i g h t s)

m a x d i f f e r e n c e = max (m a x d i f f e r e n c e ,
abs (max weight − min we igh t))

r e t u r n m a x d i f f e r e n c e

d e f main () :
t = i n t (i n p u t ())

34

1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644

Under review as a conference paper at ICLR 2026

f o r i n r a n g e (t) :
n = i n t (i n p u t ())
w e i g h t s = l i s t (map (i n t , i n p u t () . s p l i t ()))
r e s u l t = f i n d m a x d i f f e r e n c e (n , w e i g h t s)
p r i n t (r e s u l t)

i f n a m e == ” m a i n ” :
main ()

‘ ‘ ‘

Step 58: Correct

To solve the problem of finding the maximum absolute difference between the total weights of any
two trucks, we can follow these steps:

1. Read the input: The input consists of multiple test cases. Each test case starts with an
integer n (the number of boxes), followed by n integers representing the weights of the
boxes.

2. Calculate the total weight of all boxes: Sum up the weights of all the boxes to get the total
weight.

3. Determine the number of trucks: Since each truck holds k boxes, the number of trucks is
n
k .

4. Calculate the possible total weights of the trucks: For each possible value of k (from 1 to
n), calculate the total weight of the boxes that can be loaded into the trucks. This involves
summing up the weights of k consecutive boxes.

5. Find the maximum and minimum total weights: For each possible value of k, find the
maximum and minimum total weights of the trucks. The maximum absolute difference is
the difference between the maximum and minimum total weights.

6. Output the maximum absolute difference: Print the maximum absolute difference for
each test case.

Here is the Python code that implements the above steps:

‘ ‘ ‘ py thon
d e f m a x d i f f e r e n c e (n , w e i g h t s) :

t o t a l w e i g h t = sum (w e i g h t s)
m a x d i f f = 0

f o r k i n r a n g e (1 , n + 1) :
i f n % k != 0 :

c o n t i n u e
t r u c k w e i g h t s = [sum (w e i g h t s [i * k :

(i + 1) * k]) f o r i i n r a n g e (n / / k)]
m a x d i f f = max (m a x d i f f ,

max (t r u c k w e i g h t s) − min (t r u c k w e i g h t s))
r e t u r n m a x d i f f

d e f s o l v e () :
t = i n t (i n p u t ())

35

1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691

Under review as a conference paper at ICLR 2026

f o r i n r a n g e (t) :
n = i n t (i n p u t ())
w e i g h t s = l i s t (map (i n t , i n p u t () . s p l i t ()))
r e s u l t = m a x d i f f e r e n c e (n , w e i g h t s)
p r i n t (r e s u l t)

i f n a m e == ” m a i n ” :
s o l v e ()

‘ ‘ ‘

36

	Introduction
	Related Work
	Method
	Reinforcement Learning from Internal Feedback (RLIF)
	Intuitor: Policy Optimization with Self-Certainty

	Experimental Setup
	Results and Analysis
	Learning to Follow Instructions
	Fostering Structured Reasoning
	Understanding Emergent Long-Form Reasoning
	Online Self-Certainty Prevents Reward Exploitation
	Ablation Studies

	Discussion and Future Research
	Conclusion
	Additional Background
	From External Supervision to Internal Feedback

	Additional Experimental Details
	Influence of the KL Penalty
	Scaling to Larger Models
	Generalization Across Model Families
	Comparison with Alternative Reward Signals
	Ablation on Optimization Strategy: Policy Gradient vs. Direct Optimization
	Training Hyperparameters

	Prompts and Model Completions
	Training Prompts
	Example from LiveCodeBench Code Generation
	Example from LiveCodeBench Code Generation
	Example from CRUXEval-O
	Rollout Example of Intuitor During Training on Code Corpus
	Evolution of Qwen2.5-3B's Responses on LiveCodeBench Code Generation trained with Intuitor on MATH

