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Abstract

Scientific observations may consist of a large number of variables (features). Select-
ing a subset of meaningful features is often crucial for identifying patterns hidden
in the ambient space. In this paper, we present a method for unsupervised feature
selection, and we demonstrate its advantage in clustering, a common unsupervised
task. We propose a differentiable loss that combines a graph Laplacian-based score
that favors low-frequency features with a gating mechanism for removing nuisance
features. Our method improves upon the naive graph Laplacian score by replacing
it with a gated variant computed on a subset of low-frequency features. We identify
this subset by learning the parameters of continuously relaxed Bernoulli variables,
which gate the entire feature space. We mathematically motivate the proposed
approach and demonstrate that it is crucial to compute the graph Laplacian on the
gated inputs rather than on the full feature space in the high noise regime. Using
several real-world examples, we demonstrate the efficacy and advantage of the
proposed approach over leading baselines.

1 Introduction

Unsupervised and self-supervised learning studies have been significantly growing interest in the
neural network research community. This was prompted by the impressive empirical results that
unsupervised learning methods produce in analyzing large amounts of unlabeled data, such as in
natural language processing. Many scientific domains, such as biology and physics, have seen
the growth of computational and storage resources, alongside advancements in the simultaneous
measurement of numerous features, making the analysis of large, high-dimensional datasets a vital
research need.

∗Indicates equal contribution
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In such datasets, discarding irrelevant (e.g., noisy, high frequency, or information-poor) features may
reveal clear underlying natural structures that are otherwise hidden in the high dimensional space.
We refer to features which do not correspond to the “main” data structure as “nuisance features”2.
While nuisance features are mildly harmful in the supervised regime, discarding such features is
critical in the unsupervised regime and may determine the success of downstream analysis tasks (e.g.,
clustering or manifold learning). Some of the pitfalls caused by nuisance features could be mitigated
using an appropriate unsupervised feature selection method.

Unsupervised feature selection methods mostly focus on one of two main tasks: either clustering or
manifold learning. Among studies that tackle the former task, [33, 12, 1] use autoencoders to identify
features that are sufficient for reconstructing the data. Other clustering-dedicated unsupervised
feature selection methods assess the relevance of each feature based on different statistical or
geometric measures. For example entropy, variance, divergence, and mutual information are used
in [2, 31, 9, 3, 30, 35] to identify features that are informative for clustering the data. A popular
tool for evaluating features is the graph Laplacian [26, 4]. The Laplacian Score (LS) [13] evaluates
the importance of each feature by its ability to preserve the local structure. The features that most
preserve the manifold structure (captured by the Laplacian) are retained. Several studies, such as
[38, 27, 39], extend the LS based on different spectral properties of the Laplacian.

While these methods are widely used in the feature selection community, they rely on the success of
the Laplacian in capturing the “main” structure of the data. We argue that the Laplacian often fails to
identify the informative features when computed on the entire dataset (as is demonstrated in Section
3). This may happen in the presence of a large number of nuisance features: when the variability of the
nuisance features masks the variability associated with the structured features. Scenarios resembling
this are prevalent in bioinformatics for example, where a large number of biomarkers are measured to
characterize developmental and chronological biology processes such as cell differentiation or cell
cycle. These processes may depend merely on a few biomarkers. In such situations, it is desirable to
have an unsupervised method that can filter nuisance features before the computation of the Laplacian.
Related problems, in which data spanning low dimensional subspace is dressed by perturbations in a
higher ambient space, were studied in [17, 5, 10, 28].

In this study, we propose a differentiable objective for unsupervised feature selection. Our proposed
method utilizes stochastic input gates, trained to select features with high correlation with the leading
eigenvectors of a graph Laplacian computed based on these features. This gating mechanism allows
us to re-evaluate the Laplacian for different subsets of features and, thus, unmask the “main” data
structure buried by the nuisance features. We demonstrate that the proposed approach can significantly
improve cluster assignments compared with leading baselines using high-dimensional datasets from
multiple domains (image, text, and biological observations).

2 Preliminaries

Consider a data matrix, X ∈ Rn×d, with d dimensional observations x1, ...,xn. We refer to the
columns of X as features f1, ...,fd, where f i ∈ Rn, and, assume that features are centered and
normalized such that 1Tf i = 0 and ‖f i‖22 = 1. We assume that the data has an inherent structure,
determined by a subset of the variables S∗ and that other variables are nuisance features (i.e., noisy or
information-poor). The structured part of the data is considered as either a path-connected manifold,
a union of sub-manifolds, or a set of clusters. Our goal is to identify the subset of relevant features
S∗ , which preserve the data structure and discard the remaining ones.

2.1 Graph Laplacian

Given n data points, a kernel matrixK is an n× n matrix whoseKi,j entry represents the similarity
between xi and xj . A popular choice forK is the Gaussian kernel

Ki,j = exp

(
−‖xi − xj‖

2

2σ2
b

)
, (1)

2In section 3, we consider scenarios where low dimensional datasets that form manifold or cluster structures
are augmented with information-poor nuisance features that are independent of the original structure and are,
themselves, of no particular underlying structure.
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where σb is a user-defined bandwidth (chosen, for example, based on the maximum value of the 1-
nearest-neighbors of all points). The unnormalized graph Laplacian matrix is defined asLun =D−K,
whereD is a diagonal matrix, whose elementsDi,i =

∑n
j=1Ki,j correspond to the degrees of the

points i = 1, ..., n. The diffusion graph Laplacian is defined as

Ldiff =D
−1K, (2)

and expresses the transition probabilities of a random walk to move between data points and induces a
diffusion distance [8]. Graph Laplacian matrices are extremely useful in many unsupervised machine
learning tasks. In particular, it is known that the eigenvectors corresponding to the small eigenvalues
of the unnormalized Laplacian (or the large eigenvalues of the random walk Laplacian) are useful for
embedding the data in lower dimensions (see, for example, [32]).

2.2 Laplacian Score

Following the success of the graph Laplacian [4], and [26], the authors in [13] have presented an
unsupervised measure for feature selection, termed Laplacian Score (LS). The LS evaluates each
feature based on its correlation with the leading eigenvectors of the graph Laplacian.

At the core of the LS method, the score of feature f is determined by the quadratic form fTLunf ,
where Lun is the unnormalized graph Laplacian. Since

fTLunf =

n∑
i=1

λi〈ui,f〉2,

where Lun =
∑n
i=1 λiuiu

T
i is the eigen-decomposition of Lun, the score is smaller when f has a

larger projection on the subspace of the leading eigenvectors (corresponding to the smallest eigenval-
ues) of Lun. Such features can be thought of as “informative”, as they respect the graph structure.
Eigenvalues of the Laplacian can be interpreted as frequencies, and eigenvectors corresponding to
larger eigenvalues of Lun (or smaller eigenvalues of Ldiff) oscillate faster. Based on the assumption
that the interesting underlying structure of the data (e.g. clusters) depends on the slowly varying
features in the data, [13] proposed to select the features with the smallest scores.

3 Demonstration of the Importance of Unsupervised Feature Selection in
High Dimensional Data with Nuisance Features

By taking a diffusion perspective, we first demonstrate the importance of feature selection to un-
supervised learning when the data contains nuisance features. Then, a simple two cluster structure
hidden in the ambient space is used to analyze how Gaussian nuisance dimensions affect clustering
capabilities. Here, we model the effect of nuisance variables by concatenating variables drawn from a
normal Gaussian distribution with the structured part of the data. A concrete example is detailed in
the following subsection.

3.1 A Diffusion Perspective

Consider the structured 2-dimensional dataset, known as two-moons, shown in the top-left panel of
Fig. 1. We concatenate the structured data with k “nuisance” dimensions, where each such dimension
is composed of i.i.d unif(0, 1) entries. This means that our new data consists of 2 + k variables. Note
that the k Gaussian variables do not carry any information about the two “moon-shaped” clusters in
this dataset. As one may expect, when the number of nuisance dimensions is large, the amount of
unstructured information (manifested by the nuisance dimensions) dominates the amount of structured
information (manifested by the two leading dimensions). Consequently, attempts to recover the main
structure of the data (say, using manifold learning or clustering) are likely to fail.

From a diffusion perspective, data is considered to be clusterable when the time it takes a random walk
starting in one cluster to transition to a point outside the cluster is long. These exit times from different
clusters are manifested by the leading eigenvalues of the Laplacian matrix: Ldiff = D−1K, for
which the large eigenvalues (and their corresponding eigenvectors) are the ones that capture different
aspects of the data’s structure (see, for example, [24]). Each added nuisance dimension increases the
distance between points which are nearest neighbors in the two dimensional structured subspace. In
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addition, the noise creates spurious similarities between points, regardless of the cluster they belong
to. Overall, this shortens the cluster exit times. This phenomenon is characterized by the second
largest eigenvalue, λ2 of Ldiff (the largest eigenvalue λ1 = 1 carries no information as it corresponds
to the constant eigenvector ψ1), which decreases as the number of nuisance dimensions grows, see
the top right panel of Fig. 1. The fact that λ2 decreases implies that the diffusion distances [24]
decrease as well which, in turn, means that the clusters become more connected. A similar view may
be obtained by observing that the second smallest eigenvalue of the un-normalized graph Laplacian
Lun =D −K, also known as Fiedler number or algebraic connectivity, grows with the number of
nuisance features. The fact that the graph becomes less clusterable as more nuisance dimensions are
added is also manifested by the eigenvector, ψ2, corresponding to the second largest eigenvalue of
Ldiff (or the second smallest eigenvalue of Lun), which becomes less representative of the cluster
structure (bottom left panel of Fig. 1).

Altogether, this means that, in order for the data to be clusterable, the nuisance features ought to be
removed. One may argue that principal component analysis can be used to retain the structure of
the two-moons while attenuating the effect of the k nuisance variables. However, as shown in the
bottom right panel of Fig. 1, projecting the data onto the first two principal directions does not yield
the desired result, since the directions of maximal variance do not capture the two-moons structure,
unfortunately. In the next sections, we will describe our differentiable unsupervised feature selection
approach, demonstrating that it does succeed to recognize the cluster patterns of the data in this case.

3.2 Analysis of Clustering with Nuisance Dimensions

In order to observe the effect of nuisance dimensions, this section considers a simple example with
two clusters in 1-D space and a set of nuisnace variables which do not carry any information about
these clusters. Specifically, consider a dataset that includes 2n datapoints in R, where n of which are
at 0 ∈ R and the remaining ones are at r > 0 (i.e., each cluster is concentrated at a specific point).
Next, we concatenate d nuisance dimensions to first coordinate, so samples lie in Rd+1. The value
for each datapoint in each nuisance dimension is sampled independently from N(0, 0.52).

Figure 1: The Two-moons example. Top Left: the original 2-dimensional data. Top right: the second
largest eigenvalue of the random walk matrix, Ldiff, decreases as the number, k, of nuisance dimen-
sions grows. This suggests that the graph becomes more connected—and, hence, less clusterable—as
the number of nuisance dimensions grows. Bottom left: the eigenvector, ψ2 (y-axis) (corresponding
to the second largest eigenvalue), of Ldiff becomes less representative of the true cluster structure
as the number of nuisance variables (k) grows. The x-axis represents the sample index i. Bottom
right: the leading two principal components of the k + 2 dimensional data (x and y axes) cannot help
recover the true cluster structure when k > 0.
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Suppose we construct the graph Laplacian by connecting each point to its nearest neighbors. We
would now investigate the conditions under which the neighbors of each point belong to the correct
cluster. Consider points x, y belonging to the same cluster. Then (x− y) = (0, u1, . . . , ud) -where
ui

iid∼ N(0, 1), and, therefore, ‖x − y‖2 ∼ χ2
d. Similarly, if x, y belong to different clusters, then

‖x− y‖2 ∼ r2 + χ2
d, where r is the distance between clusters in the first coordinate. Now, to find

conditions for n and d under which the neighbors of each point are highly likely to belong to the
same cluster, we can utilize the χ2 measure-concentration bounds [18].

Lemma 3.1 ([18] P.1325). Let X ∼ χ2
d. Then

1. P(X − d ≥ 2
√
dγ + 2γ) ≤ exp(−γ).

2. P(d−X ≥ 2
√
dγ) ≤ exp(−γ).

Given sufficiently small γ > 0 we can divide the segment [d, d + r2] to two disjoint segments of
lengths 2

√
dγ + 2γ and 2

√
dγ (and solve for d in order to have the total length r2). This yields

√
d =

r2 − 2γ

4
√
γ

. (3)

If all distances between points from the same cluster are at most d+ 2
√
dγ + 2γ and all distances

between points from different clusters will be at least d+ r2 − 2
√
dγ, the nearest neighbors of each

point will be from the same cluster. According to lemma 3.1, this happens with a probability of at
least (1− exp(−γ))2n2−n. For a small ε > 0, denoting this probability as 1− ε and solving for γ,
we obtain

γ ≤ − log(1− (2n2−n)
√
1− ε). (4)

Plugging (4) into (3), we obtain

d = O

(
r4

− log(1− (2n2−n)
√
1− ε)

)
. (5)

For fixed number of samples (n) and a small value of ε > 0, equation (5) implies that the number of
nuisance dimensions must be at most on the order of r4 to make cluster mixture unlikely. In addition,
for a fixed r and ε, increasing the number of data points brings the argument inside the log term
arbitrarily close to zero, which implies that the Laplacian is sensitive to the number of nuisance
dimensions in large datasets. We support these findings via experiments, as shown in Figure 2. This
sensitivity to nuisance dimensions suggests that capturing the “main” structure of the data, requires
filtering nuisance features prior to the construction of the Laplacian. In Section 4, we present our
proposed approach, which simultaneously filters nuisance features and re-evaluates the smoothness
of the remaining features.

4 Proposed Method

4.1 Rationale

Recall that the core component of the Laplacian score [13] is the quadratic term fTLf , which
measures the inner product of the feature f with the eigenvectors of the Laplacian L. For L =
Ldiff = D−1K, a large Laplacian score implies that f has a large component in the subspace of
eigenvectors corresponding to the largest eigenvalues of L. Assuming that the structure of the data
varies slowly, these leading eigenvectors (corresponding to large eigenvalues) manifest the main
structures in the data; thus, a large score implies that a feature contributes to the structure of the
data. However, as we demonstrated in the previous section, these leading eigenvectors become less
representative of the true structure in the presence of nuisance features. In this regime, one could
benefit from evaluations of the Laplacian score when it is computed using different subsets, S, of
features (i.e., of the form fTLXSf , where LXS is the random walk Laplacian computed based on a
subset of features {f `}`∈S ). When the Laplacian is computed on only the informative features (i.e.,
when LXS = LXS∗ ), such a gated Laplacian score would produce a high value for the informative
features, S∗.
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Figure 2: Two cluster datasets. We evaluate the influence of Gaussian nuisance variables on the
Laplacian. We generate two clusters using 50 samples each with distance r apart in 1-D. We use d
Gaussian nuisance variables and evaluate the leading non trivial eigenvector ψ2 of the Laplacian. Left:
correlation between the second eigenvector ψ1 and the true cluster assignments y for different values
of r. As the number of nuisance variables grows, the eigenvector ψ2 becomes meaningless. As the
distance between cluster grows more nuisance variables are required to “break” the cluster structure
captured by ψ2. Right: by computing the intersection between the damped correlation curves and 0.7
(shown in the left plot) for different values of r we evaluate the relation between r and number of
nuisance variables d required for breaking the cluster structure. This empirical result supports the

analysis presented in 3.2 in which we show that d = O

(
r4

− log(1− (2n2−1)
√
1−ε)

)
. For convenience we

added a polynomial fit up to degree 4 presented as the black line.

Figure 3: Illustrating the information captured by the Laplacian Score (using Lrw) on the noisy
two-moons dataset (see Fig. 1). The first two features are informative, while the rest are nuisance
variables. Our goal is to train the differentiable stochastic gates for identifying the two informative
features. Left: Laplacian score fTLf at initialization, based on all 10 dimensions. The score for
the informative features is slightly higher. Middle: Laplacian score, based on the gated Laplacian
fTLXS∗f at the gates’ convergence. The informative features attain a substantially higher score
based on the gated Laplacian. Right: the parameter-free loss (black line) and the average number of
active gates (red line) as a function of the number of epochs.

Searching over all the different feature subsets is infeasible even for a moderate number of features.
Fortunately, we can use continuous stochastic “gating” functions to explore the space of feature
subsets. Specifically, we propose to apply differential stochastic gates to the input features, computing
the Laplacian score after multiplying the input features with the gates. Taking advantage of the fact
that informative features are expected to have higher scores than nuisance ones, we penalize open
gates to minimize the number of features and retain the most relevant (smooth) features. By applying
gradient decent to a cost function based on LXS , we obtain a desired dynamic, in which gates
corresponding to features that contain high levels of noise gradually close, and gates corresponding
to features that are consistent with the true structures in the data gradually become fully open. This is
demonstrated in Fig. 3.

4.2 Stochastic Gates

Recently, several authors have incorporated continuous approximations of discrete random variables
into neural network training [22, 16]. Such relaxations have been used for many applications, such as

6



Algorithm 1 Differentiable Unsupervised Feature Selection (DUFS) Pseudo-code

Input: data, {x1, . . . ,xn} ⊂ Rd, regularization parameter λ, required number of features s,
number of epochs T .
Initialize the gate parameters: µi = 0.5 for i = 1, . . . , d.
for t = 1 to T do

Sample a stochastic gate (STG) vector Z = (Z1, . . . , Zd) as described in (6).
Apply the STG to the data xi to obtain the gated data x̃i ( x̃i = xi �Z).
Compute a kernel matrixK ∈ Rn×n (see (1)) using the gated data {x̃i}.
Compute the graph Laplacian Ldiff ∈ Rn×n as described in (2).
Update µ1, . . . , µd by applying GD to the loss function ((8) or (9)).

end for
Return s features with largest µi.

model compression [21], discrete softmax activations [15], and feature selection [36]. Here, we use a
Gaussian-based relaxation of Bernoulli variables, termed Stochastic Gates (STG) [36], which relies
on the repamaterization trick [23, 11], to reduce the variance of the gradient estimates.

We denote the STG random vector as Z ∈ [0, 1]d, parametrized by µ ∈ Rd. Each vector entry is
defined as

Zi = max(0,min(1, µi + εi)), (6)
where µi is a learnable parameter, εi is drawn fromN (0, σ2), and σ is fixed throughout training. This
approximation can be viewed as a clipped, mean-shifted, Gaussian random variable. In Fig. 4, we
illustrate the gating mechanism and show examples of the densities of Zi for different values of µi.
Note that, even though Zi is not differentiable at 0 or 1, we can use the sub/sup-gradient, which is
defined using the one-sided gradient of the function at 0 or 1.

Multiplication of each feature by its corresponding gate enables us to derive a fully differentiable
feature selection method. At initialization µi = 0.5 for i = 1, ..., d, so that all gates approximate
a ”fair” Bernoulli variable. The parameters µi can be learned via gradient decent by incorporating
the gates into a diffrentiable loss term. To encourage feature selection in the supervised setting, [36]
proposed the following differentiable regularization term:

r(Z) =

d∑
i=1

P(Zi > 0) =

d∑
i=1

(
1

2
− 1

2
erf

(
− µi√

2σ

))
, (7)

where erf() is the Gauss error function. The term (7) penalizes open gates, encouraging those
corresponding to features that are not useful for prediction to transition into a closed state (which is
the case for small µi).

4.3 Differentiable Unsupervised Feature Selection (DUFS)

LetX ∈ Rm×d be a data mini-batch. LetZ ∈ [0, 1]d be a random variable representing the stochastic
gates, parametrized by µ ∈ Rd, as defined in Section 2. For each mini-batch, we draw a vector, z,

Figure 4: Left: The stochastic gate Z is defined via the repamaterization trick [23, 11]. Standard
Gaussian noise is injected and shifted by a trainable parameter µi; the sum is thresholded to [0, 1]
based on (6). Two examples of the density of the stochastic gate Zi. Middle: at initialization, µi = 0.5,
and the gate approximates a ’fair’ Bernoulli variable. Right: the distribution at µi = −1 approximates
a ’closed’ gate.
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of realizations from Z and define a matrix, Z̃ ∈ [0, 1]m×d, consisting of m copies of z. We denote

X̃
4
= X � Z̃ as the gated input, where � is an element-wise multiplication, also known as the

Hadamard product. Let LX̃ be the random walk graph Laplacian computed on X̃ .

We propose two loss function variants. Both variants contain a feature scoring term,
− 1
mTr[X̃

T
LX̃X̃], and a feature selection regularization term,

∑d
i=1 P(Zi ≥ 0), as in (7). In

the first variant (8), the two terms are balanced using a hyperparameter λ ≥ 0.

L(µ; λ) := −
Tr
[
X̃
T
LX̃X̃

]
m

+ λ

d∑
i=1

P(Zi ≥ 0). (8)

Tuning λ allows for flexibility in the number of selected features. In Section S2 of the Appendix,
we present an unsupervised scheme for tuning λ. To obviate the need to tune λ, we introduce an
alternative parameter-free loss function:

Lparam-free(µ) := −
Tr
[
X̃
T
LX̃X̃

]
m
∑d
i=1 P(Zi ≥ 0) + δ

, (9)

where δ is a small constant added to circumvent division by 0. The parameter-free variant (9) seeks to
minimize the average score per selected feature, where the average is calculated as the total score (in
the numerator) divided by a proxy for the number of selected features (the denominator). Minimizing
both objectives (8) and (9) will encourage the gates to remain open for features that yield high
Laplacian scores and closed for the remaining features.

Our algorithm involves applying a standard optimization scheme (such as stochastic gradient decent)
to objective (8) or (9). This optimization algorithm will use the following calculation.

d

dµi
Tr[X̃

T
LX̃X̃] =

{
2Zi(X̃ :,i)

TLX̃X̃ :,i +
∑
s,t(X̃X̃

T
)s,t

d
dµi

(
Kt,s∑
lKt,l

)
Zi ∈ (0, 1)

0 Zi ∈ {0, 1}

d

dµi

d∑
i=1

P(Zi ≥ 0) =
d

dµi
erf

(
µi√
2σ

)
,

where erf() is the Gauss error function and X̃ :,i denotes the i−th column of X̃ . After training, we
remove the stochasticity (εi in (6)) from the gates and retain features satisfying Zi > 0. At each step
of the training procedure, we compute a kernelK, (see (1)), based on a mini-batch of size m. The
complexity of this calculation is O(mk2) [7], using the top k nearest neighbors for each point. A
pseudo code describing the steps of our method is shown in Algorithm 1.

4.3.1 Raising L to the t’th Power

Replacing the Laplacian L in equations (8) and (9) by its t-th power, Lt, with t > 1 corresponds to
taking t random walk steps [24]. This suppresses the smallest eigenvalues of the Laplacian, while
preserving its eigenvectors. We used t = 2, which was observed to improve the performance of our
proposed approach (see Appendix for additional details).

5 Experiments

To demonstrate the capabilities of DUFS, we begin by presenting an artificial two-moons experi-
ment. We then report results obtained on several standard datasets and compare them to existing
unsupervised feature selection algorithms. When applying the method to real data we perform feature
selection based on Eq. (8) using several values of λ. In the Appendix (Section S2), we describe a
procedure for choosing the optimal value of λ. Next, following the analysis in [34], we perform
k-means clustering using the leading 50, 100, 150, 200, 250, or 300 selected features and average
the results over 20 runs. Leading features are identified by sorting the gates based on P(Zi) (see
(7)). The number clusters k is set as the number of classes, and the sample labels are utilized to
evaluate clustering accuracy. The best average clustering accuracy is recorded along with the number
of selected features |S|.
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Figure 5: Evaluating the precision and recall of feature selection, in addition to clustering quality
as a function of epoch number. We apply the parameter-free loss variant (see (9)) on the noisy
two-moons data with a total of d features, out of which only the leading 2 capture the structure of the
two-moons. Left: feature selection precision. Here, precision is defined as the ratio between amount
of retrieved informative features and all retrieved features, that is:

∑2
i=1 P (Zi>0)∑d
i=1 P (Zi>0)

. Middle: feature
selection recall. Here, recall is defined as the ratio between amount of retrieved informative features
and all informative features, that is:

∑2
i=1 P (Zi>0)

2 . Note that, in all of these examples, the gates
converge to “deterministic” values. Namely, P (Zi > 0) ' 1 for informative features i = 1, 2, and
P (Zi > 0) ' 0 for the nuisance features i = 3, ..., d. Right: clustering accuracy obtained with the
retrieved features (recorded every 10 epochs). Here, clustering is performed using spectral clustering
[26] with a Gaussian kernel.

5.1 Noisy Two-Moons

In the first experiment, we use a two-moons-shaped dataset (see Fig. 1) concatenated with nuisance
features. The first two coordinates f1,f2 are generated by adding a Gaussian noise, with zero mean
and variance of σ2

r = 0.1, to two nested half circles. Nuisance features f i, i = 3, ..., d, are drawn
from a multivariate Gaussian distribution with zero mean and identity covariance. The total number of
samples is n = 100. Note that the small sample size makes the task of identifying nuisance features
more challenging.

We evaluate the convergence of the parameter-free loss (9) using gradient decent. We use a different
number of features d and plot the precision and recall of feature selection throughout training (see
Fig. 5). In all of the presented examples, perfect precision and recall are achieved at convergence.

5.2 Noisy Image Data

In the following experiment, we evaluate our method on two noisy image datasets. The first is a
noisy variant of MNIST [19], in which each background pixel is replaced by a random value drawn
uniformly from [0, 1] (see also [29]). Here, we focus only on the digits ‘3‘ and ‘8‘. The second dataset
is a noisy variant of PIXRAW10P (abbreviated PIX10), created by adding noise drawn uniformly
from [0, 0.3] to all pixels. In both datasets, the images were scaled into [0, 1] prior to the addition
of noise. We applied DUFS and LS to both datasets, identifying low frequency features. In the top
panels of Fig. 6, we present the leading 50 features retained on the noisy MNIST along with the
average clustering accuracy over 20 runs of k-means. In this case, DUFS’ open gates concentrate at
the left side of the handwriting area, which is the side that distinguishes ‘3‘ from ‘8‘. This allows
DUFS to achieve a higher clustering accuracy comparing to LS. The bottom panels of Fig. 6 show
the leading 300 features retained on noisy PIX10 along with the average clustering accuracy. Here,
DUFS selects features which are more informative for clustering the face images. We refer the reader
to Appendix S4 for additional information on this experiment and for extended results on COIL20
and COIL100 [25].

5.3 Clustering of Real World Data

Here, we evaluate the capabilities of the proposed approach (DUFS) on real-world high dimensional
datasets whose properties are summarized in Table 1 3. We compare DUFS to Laplacian Score (LS)
[4], Multi-Cluster Feature Selection (MCFS) [6], Local Learning based Clustering (LLCFS) [37],
Nonnegative Discriminative Feature Selection (NDFS) [20], Multi-Subspace Randomization and

3All datasets are publicly available, see description in Appendix section S7

9



Figure 6: Noisy image experiments. Top: examples of noisy MNIST digits highlighted with the
leading 50 features selected by DUFS (left) and LS (right). Bottom: examples from the noisy PIX10
datasets overlaid with the leading 300 features selected by DUFS (left) and LS (right). This figure is
best viewed in color. The grayscale of MNIST images is inverted to improve visibility.

Collaboration (SRCFS) [14], and Concrete Auto-encoders (CAE) [1]. We compare the accuracy of
clustering based on the feature selected by DUFS to those selected by the 6 baselines, and all features
(All). As can be seen in table 1, DUFS outperforms all baselines on 9 datasets and ranks second
on the remaining 3. Overall, the median and mean rankings of DUFS are 1 and 1.31, respectively.
In the Appendix, we present a complementary table with the standard deviations of the clustering
accuracies obtained in this example. Our results demonstrate that our method is extremely useful
in bioinformatics; for example, when scientists study single-cell RNA sequencing (scRNA-seq),
accurate cluster assignments are vital for downstream analysis. In table 1, the bottom 4 datasets were
sequenced using scRNA-seq technology; on these datasets, DUFS improves the cluster assignments
by 23.0% (on average) compared with assignments obtained based on all features.

Datasets LS [4] MCFS [6] NDFS [20] LLCFS [37] SRCFS [14] CAE [1] DUFS All Dim/Samples/Classes/Type

GISETTE 75.8 (50) 56.5 (50) 69.3 (250) 72.5 (50) 68.5 (50) 77.3 (250) 99.5 (50) 74.4 4955 / 6000 / 2 / Image
PIX10 76.6 (150) 75.9 (200) 76.7 (200) 69.1 (300) 75.9 (100) 94.1 (250) 88.4 (50) 74.3 10000 / 100 / 10 / Image
COIL20 60.0 (300) 59.7 (250) 60.1 (300) 48.1 (300) 59.9 (300) 65.6 (200) 65.8 (250) 53.6 1024 / 1444 / 20 /Image
Yale 42.7 (300) 41.7 (300) 42.5 (300) 42.6 (300) 46.3 (250) 45.4 (250) 47.9 (200) 38.3 1024 / 165 / 15 /Image
RCV1 54.9 (300) 50.1 (150) 55.1 (150) 55.0 (300) 53.7 (300) 54.9 (300) 62.2 (300) 50.0 24408 / 21232 / 2 / Text
TOX-171 47.5 (200) 42.5 (100) 46.1 (100) 46.7 (250) 45.8 (150) 47.7 (100) 49.1 (50) 41.5 5748 / 171 / 4 / Bio
ALLAML 73.2 (150) 72.9 (250) 72.2 (100) 77.8 (50) 67.7 (250) 73.5 (250) 74.5 (100) 67.3 7192 / 72 / 2 / Bio
PROSTATE 56.8 (300) 57.3 (300) 58.3 (100) 57.8 (50) 60.6 (50) 56.9 (250) 64.7 (150) 58.1 5966 / 102 / 2 /Bio
SRBCT 41.1(300) 43.7(250) 41.0(50) 34.6(150) 33.49(50) 62.6 (200) 51.7 (50) 39.6 2308 / 83 / 4 / Bio
BIASE 83.8 (200) 95.5 (300) 100 (100) 52.2 (300) 50.8 (50) 85.1 (250) 100 (50) 41.8 25683 / 56 / 4 / Bio
INTESTINE 43.2 (300) 48.2 (300) 42.3 (100) 63.3 (200) 58.1 (300) 51.9 (50) 71.9 (250) 54.8 3775 / 238 / 13 / Bio
FAN 42.9 (150) 45.5 (150) 48.8 (100) 29.0 (50) 29.0 (100) 35.2 (300) 49.0 (50) 37.5 25683 / 56 / 8 / Bio
POLLEN 46.9 (150) 66.5 (300) 48.9 (50) 35.0 (100) 34.9 (300) 58.0 (250) 60.2 (50) 54.9 21810 / 301 / 4 / Bio

Mean rank 4.0 5.0 4.08 4.77 5.31 3.23 1.31
Median rank 4 5 4 5 6 3 1

Table 1: Left sub-table: Average clustering accuracy on several benchmark datasets. Clustering is
performed by applying k-means to the features selected by the different methods. The number of
selected features is shown in parenthesis. Right sub-table: Properties of the real world data used for
empirical evaluation.

6 Conclusions

In this paper, we propose DUFS, a novel unsupervised feature selection method that introduces learn-
able Bernoulli gates into a Laplacian score. DUFS has an advantage over the standard Laplacian score,
as it re-evaluates the graph Laplacian based on the subset of selected features. We demonstrate that
our proposed approach captures structures in the data that are not detected by the standard Laplacian
score. Finally, we experimentally demonstrate that our method outperforms current unsupervised
feature selection baselines on several real-world datasets.
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