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Abstract
In relation classification, recognizing unseen001
(new) relations for which there are no training002
instances is a challenging task. We propose003
a prompt-based model with semantic knowl-004
edge augmentation (ZS-SKA) to recognize un-005
seen relations under the zero-shot setting. We006
present a new word-level sentence translation007
rule and generate augmented instances with008
unseen relations from instances with seen rela-009
tions using that new rule. We design prompts010
based on an external knowledge graph to inte-011
grate semantic knowledge information learned012
from seen relations. Instead of using the actual013
label sets in the prompt template, we construct014
weighted virtual label words. We learn the rep-015
resentations of both seen and unseen relations016
with augmented instances and prompts. We017
then calculate the distance between the gen-018
erated representations using prototypical net-019
works to predict unseen relations. Extensive020
experiments conducted on three public datasets021
show that ZS-SKA outperforms state-of-the-art022
methods under the zero-shot scenarios. Our023
experimental results also demonstrate the effec-024
tiveness and robustness of ZS-SKA.025

1 Introduction026

Relation classification aims to infer the semantic027

relation between a pair of entities in a sentence.028

However, existing approaches based on supervised029

learning (Zhu et al., 2019; Li and Tian, 2020) or030

few-shot learning (Gao et al., 2019; Ren et al.,031

2020; Dong et al., 2020) still require labeled data.032

They can not catch up with a dynamic and open033

environment where new classes emerge. In the real-034

world setting, the classes of instances are some-035

times rare or never seen in the training data. Thus,036

we tend to learn a model similar to the way humans037

learn and recognize new concepts. Such a task is038

referred to as zero-shot learning (ZSL). We follow039

the definition of a more generalized zero-shot set-040

ting that partial classes are new (Wenpeng Yin and041

Roth, 2019).042

Zero-shot relation classification aims to classify 043

relations of name entities in a sentence that are ab- 044

sent from the learning stage. Existing approaches 045

on zero-shot relation classification still have limita- 046

tions. First, some models perform zero-shot rela- 047

tion classification by listing questions that define 048

the relation’s slot values (Levy et al., 2017). These 049

models have a strong assumption that an excellent 050

question-answering model is learned, and all val- 051

ues extracted from this model are correct. This 052

is impractical in the real-world setting. Second, 053

some existing studies formulate relation extraction 054

as a text entailment task (Obamuyide and Vlachos, 055

2018). They only predict a binary label indicating 056

whether the name entities in the given sentence can 057

be described by a given description. Third, some 058

state-of-the-art models leverage side (auxiliary) in- 059

formation to tackle zero-shot tasks. They focus 060

on class names/descriptions semantic information, 061

losing the connection or relationships between seen 062

relations and unseen relations (Gong and Eldardiry, 063

2021; Chen and Li, 2021). 064

To address the above challenges, we propose a 065

prompt-based model with semantic knowledge aug- 066

mentation (ZS-SKA) to perform zero-shot learning 067

for relation classification. We first implement data 068

augmentation by a word-level sentence translation 069

to generate augmented instances with unseen rela- 070

tions from training instances with seen relations. 071

The super-class of the triplet (subject, relation, ob- 072

ject) for augmented instances is the same as the 073

triplet of training instances. We follow a new gen- 074

eration rule introduced in Sec. 3.2.1 to generate 075

high-quality augmented instances for training in 076

zero-shot settings. Note that ZS-SKA is trained 077

only on labeled data from seen classes and aug- 078

mented data generated from seen classes. 079

Secondly, inspired by prompt-tuning on pre- 080

trained language models (Schick and Schütze, 081

2021a,b), we design the prompts based on a knowl- 082

edge graph to integrate semantic knowledge to gen- 083
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erally infer the features of unseen relations using084

patterns learned from seen relations. For prompt085

design, we consider semantic knowledge informa-086

tion, including relation descriptions, super-class of087

relations and name entities, and a general knowl-088

edge graph to effectively learn the unseen relations.089

Instead of using the real label word directly in the090

prompt template, we automatically search a set of091

appropriate label words based on the knowledge092

graph for each label. The weight of each appropri-093

ate label word is calculated based on its semantic094

knowledge information in Sec. 3.2.2. We calculate095

the distance between each appropriate label with096

the true label itself to help denoise the set of ap-097

propriate label words. Then, we construct virtual098

label words in the prompt by weighted averaging099

all appropriate label word candidates.100

Finally, we apply prototypical networks (Snell101

et al., 2017) to compute a prototype representing102

each relation. Each prototype is the mean vector103

of embedded (augmented )sentences with prompts104

belonging to one relation. Euclidean distance is cal-105

culated between query sentence embeddings with106

prototypes to classify relations. The contributions107

of this paper can be summarized as follows:108

• We propose a prompt-based model with se-109

mantic knowledge augmentation (ZS-SKA) to110

predict unseen relations under the zero-shot111

setting. Unlike some previous works, ZS-112

SKA considers semantic information from dif-113

ferent granularities and does not rely on other114

complex models.115

• We present a new word-level sentence transla-116

tion rule to generate augmented instances with117

unseen relations from instances with seen rela-118

tions. The augmented sentences are then used119

as the training instances for unseen relations.120

• We propose prompts based on an external121

knowledge graph to integrate semantic knowl-122

edge information learned from seen relations.123

We construct weighted virtual label words for124

mask in prompt template instead of using ac-125

tual label sets.126

• We demonstrate that ZS-SKA significantly127

outperforms state-of-the-art methods for pre-128

dicting unseen relations under the ZSL setting129

on three public datasets. Results show the130

effectiveness and robustness of ZS-SKA.131

2 Related Work 132

2.1 Prompt Learning in NLP 133

With the development of Generative Pre-trained 134

Transformer 3 (GPT-3) (Brown et al., 2020), 135

prompt-based learning has received considerable 136

attention. Language prompts have been proved 137

to be effective in downstream tasks leveraging pre- 138

trained language models (Trinh and Le, 2018; Davi- 139

son et al., 2019; Petroni et al., 2019). Human- 140

designed prompts have achieved promising re- 141

sults in few-shot learning for sentiment classifica- 142

tion (Schick and Schütze, 2021a,b). To avoid labor- 143

intensive prompt design, studies explore prompts 144

that are generated automatically (Shin et al., 2020; 145

Jiang et al., 2020; Gao et al., 2021). However, most 146

of the studies focus on supervised or few-shot learn- 147

ing on text classification (Hu et al., 2021; Han et al., 148

2021; Gu et al., 2021), relation classification (Han 149

et al., 2021; Chen et al., 2021b) and name entity 150

recognition (Ma et al., 2021). 151

2.2 Zero-shot Relation Classification 152

Relation extraction is the problem of extracting se- 153

mantic relations between two name entities within 154

a given sentence. When no training instances are 155

available, some studies use zero-shot relation clas- 156

sification to extract unseen relation types. This 157

is typically done using question-answering mod- 158

els. In particular, by listing questions that define 159

the relation’s slot values (Levy et al., 2017; Cetoli, 160

2020). To avoid relying on question-answering 161

models, some studies formulate relation extraction 162

as a text entailment task and utilize the accessibility 163

of the relation descriptions (Obamuyide and Vla- 164

chos, 2018; Qin et al., 2020; Gong and Eldardiry, 165

2021; Chen and Li, 2021). However, these mod- 166

els only utilize class names semantic information, 167

losing the connections between relations. Other 168

studies focus on establishing the connection be- 169

tween relations with knowledge graph (Li et al., 170

2020). Nevertheless, they miss the semantic in- 171

formation from name entities. Inspired by data 172

augmentation from knowledge graph in text clas- 173

sification tasks (Zhang et al., 2019; Chen et al., 174

2021a) and prompt-based few-shot learning (Hu 175

et al., 2021), we propose a prompt-based zero-shot 176

relation classification framework incorporating ex- 177

ternal knowledge from the knowledge graph. 178

2



Figure 1: ZS-SKA architecture with components explained in Sec. 3.2.

3 Methodology179

In this section, we introduce the overall framework180

as shown in Figure 1 of our proposed prompt-based181

ZS-SKA, starting with problem formulation.182

3.1 Problem Definition183

We follow the definition of zero-shot from (Wen-184

peng Yin and Roth, 2019) and the same settings185

from (Chen and Li, 2021; Gong and Eldardiry,186

2021) to conduct our experiments. This is a more187

generalized zero-shot setting that partial labels are188

unseen. Given labeled instances belonging to a set189

of seen classes S, a model M : X → Y is learned,190

where Y = S ∪ U ; U is the unseen class.191

For relation classification task, let Rs =192 {
r1s , · · · , rms

}
and Ru =

{
r1u, · · · , rnu

}
denote the193

sets of seen and unseen relations, where m = |Rs|194

and n = |Ru| are the number of relations in the two195

disjoint sets, i.e., Rs ∩Ru = ∅. Given the training196

set consisting of seen relations Rs with their corre-197

sponding input sentences Xi and name entities ei1198

and ei2, unseen relations Ru, super-class of name199

entities S(ei1), S(ei2), relates to Ru and external200

knowledge graph G. Our goal is to train a zero-201

shot relation classification model M to learn the202

representations of both seen and unseen relations.203

M is learned by minimizing the semantic distance204

between the embedding of the input and relation205

representations built from the knowledge graph.206

3.2 Semantic Knowledge Augmentation 207

208

3.2.1 Data Augmentation 209

To enable the model to detect unseen relations 210

without labeled training instances, we first do data 211

augmentation by translating a sentence from its 212

original seen relation to a new unseen relation us- 213

ing an analogy. In the word level, we adopts 3Cos- 214

Mul 1 (Levy and Goldberg, 2014) to get the candi- 215

dates of new words wu: 216

wu = argmax
x∈V

cos(x, ru) · cos(x,ws)

cos(x, rs) + ϵ
(1) 217

where V is the vocabulary set, cos(·) is the cosine 218

similarity, ru is the unseen relation name, rs is the 219

seen relation name, ws is the word in seen class 220

and ϵ is a small number to prevent division by zero. 221

In the sentence level, we follow Algorithm 1 222

to translate a sentence of relation rs into a new 223

sentence of relation ru. To be more specific, we 224

translate all nouns, verbs, adjectives, and adverbs 225

in the seen sentence to a new sentence. We do 226

the translation when the super-class of rs and the 227

super-class of two corresponding name entities in 228

rs are the same with the super-class of ru and the 229

super-class of two related name entities in ru. If 230

the number of rs that conforms to the above rules is 231

larger than one, we take all the translated sentences 232

and randomly select the same number as other seen 233

relations to make a balanced training set. 234

1We use top 10 similar words to return.
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Algorithm 1: Sentence Generation for Un-
seen Relations
Input :sentence xi = [wi

1, · · · , wi
n], two

name entities ei1 and ei2, original
relation label sets Rs, target
unseen relation label ru

Output :sentence xui with relation ru
for rs ∈ Rs do

if S(ru) == S(rs) and
S(eu) == S(es) then

for w ∈ xi do
if is_valid_pos(w) then

wu = 3CosMul(w, ru, rs)
xui .append(wu)

else
xui .append(w)

else
Continue

return xui

Algorithm 2: Virtual Label Generation
Input :word wi, relation rc, threshold τ ,

number of hop K, Knowledge
Graph G, number of virtual label n

Output :virtual label rv
for wi ∈ V do

if wi·rc
|wi|×|rc| ≥ τ then
v1 = 0, v2, v3, vave = []
if wi ∈ G then

v1 = 1
else

v1= 0
for k ∈ K do

hops = find_neighbors(wi) ∈ G
if hops then

v2.append(any(hops))
v3.append(sum(hops))
vave.append(mean(hops))

else
v2,v3,vave.append(0)

αwi =
∑

v
Dim(v)

else
Continue

γv =
αwi ·E(wi)+···+αwn ·E(wn)∑

α

return rv

3.2.2 Prompts from Knowledge Graph 235

For relation classification, the core issue is to ex- 236

tract the relations related to the two given name 237

entities from all aspects and granularities. For 238

zero-shot tasks, we design prompts used as train- 239

ing instances to help train the model because there 240

is no real training data available. From this per- 241

spective, we construct prompts based on external 242

knowledge graph ConceptNet (Speer and Havasi, 243

2013), a knowledge graph that connects words and 244

phrases of natural language with labeled edges, for 245

zero-shot relation classification. Nodes in Concept- 246

Net are entities, and edges connecting two nodes 247

are semantic relations between the entities. 248

Because of the relation classification task, we 249

wrap the input sequence with a template, which 250

is a piece of natural language text. To be more 251

specific, we build prompts as ‘S(ei1) is [MASK] 252

of S(ei2)’ 2. The [MASK] here is a virtual label 253

word rv representing the relation between ei1 and 254

ei2. Unlike using real words, we build the virtual 255

label word that can primarily represent the relation 256

in each sentence. Instead of building a virtual label 257

word by simply using the mean vector of the top_k 258

high-frequency words (Ma et al., 2021), we build 259

our virtual label word based on a knowledge graph 260

using the following strategy. 261

We firstly represent a relation r as five sets of 262

nodes in ConceptNet by processing the class label 263

rc, class hierarchy S(rc), class description D(rc) 264

and hierarchy of two name entities S(ei1) and 265

S(ei2). We consider whether a word wi is related 266

to the members of the five sets above within K 267

hops or not. The value of K is determined through 268

grid search on the validation set. For each of the 269

five sets above, we consider v1 (whether wi is a 270

node in G in that set), v2 (whether wi’s neighbor 271

is a node in G), v3 (number of neighbors of wi 272

in G). The above values associated with each set 273

demonstrate the semantic distance of wi and the 274

corresponding set. Detailed construction of virtual 275

label rv is shown in Algorithm 2. 276

3.3 Model Architecture and Training 277

3.3.1 Instance Encoder 278

Figure 2 shows the architecture of the encoder used 279

in this paper. We first tokenize and lemmatize all 280

words in a sentence. Tow special tokens [CLS] and 281

2We consider different locations of prompts such as before
and after the input sentence. There is a similar performance,
so we put the prompts after each input sentence.
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Figure 2: BERT-CNN Instance Encoder.

[SEP] are appended to the first and last positions,282

respectively. Then BERT (Devlin et al., 2019) is283

used to generate the contextual representation for284

each token wi. Because the relation is not only285

related to the original two name entities in aug-286

mented sentences generated by data augmentation287

in Sec. 3.2.1, we have not used any position embed-288

dings to indicate the positions of ei1 and ei2. Let289

hi represent the hidden state of the input sentence.290

We use a convolutional layer CNN(·) and a ReLU291

activation function, together with a max-pooling292

layer max(·), to derive the representation vector:293

hi = max(ReLU(CNN(xi))) (2)294

where xi is the tokenized input sentence:295

xi = wi−n−1
2
, · · · , wi+n−1

2
(3)296

We obtain the hidden state vectors of prompts hp297

generated in Sec. 3.2.2 as:298

hp = E(S(ei1))⊕ E(rv)⊕ E(S(ei2)) (4)299

where E(·) denotes the embedding function, S(·)300

represents the super-class of the input word and301

rv is the virtual label embedding introduced in302

Sec. 3.2.2. The final representation for each in-303

stance is the concatenation of hi and hp.304

3.3.2 Model Training305

The objective of training ZS-SKA is to minimize306

the distance between each instance embedding307

hi ⊕ hp and the prototype ci embedding represent-308

ing each relation. Instead of using a softmax layer309

to classify seen relations and unseen relations, we310

adopt prototypical networks to compute a proto-311

type for each relation after BERT-CNN encoder.312

Table 1: The statistics of each dataset.

#instances #relations avg. len.
FewRel 56,000 80 24.95

Wiki-ZSL 94,383 113 24.85
NYT 134,152 53 38.81

Each prototype is the average instance embeddings 313

belonging to one relation: 314

ci =
1

N

N∑
i=1

fϕ(hi ⊕ hp) (5) 315

where ci represents the prototype for each relation, 316

fϕ is the BERT-CNN encoder, hi is the representa- 317

tion for each original or augmented sentence and 318

pi is denotes the prompt embeddings introduced in 319

Sec. 3.2.2. The probabilities of the relations in Rs 320

and Ru for a query instance x is calculated as: 321

pϕ(y = ri|x) =
exp(−d(fϕ(hi ⊕ hp), ci))∑|R|
j=1 exp(−d(fϕ(hi ⊕ hp), cj))

(6) 322

where d(.) is Euclidean distance for two vectors. 323

4 Experiments 324

We conduct several experiments with ablation stud- 325

ies on three public datasets: FewRel (Han et al., 326

2018), Wiki-ZSL (Sorokin and Gurevych, 2017; 327

Chen and Li, 2021) and NYT (Riedel et al., 2010) 328

to show that our proposed model outperforms other 329

existing state-of-the-art models, and our proposed 330

model is more robust compared with the other mod- 331

els in zero-shot learning tasks. 332

4.1 Evaluation Settings 333

4.1.1 Dataset 334

In our experiments, we evaluate our model 335

over three widely used datasets: FewRel (Han 336

et al., 2018), Wiki-ZSL (Chen and Li, 2021) and 337

NYT (Riedel et al., 2010). FewRel and Wiki-ZSL 338

are two balanced datasets and NYT is an unbal- 339

anced dataset. The statistics of FewRel, Wiki-ZSL, 340

and NYT datasets are shown in Table 1. We pro- 341

vide more detailed description in the Appendix. 342

4.1.2 Zero-shot Settings 343

We follow the experiment settings as (Chen and 344

Li, 2021) to enable zero-shot relation classifica- 345

tion tasks. We randomly select m unseen relations 346

and remove all the instances related to these m re- 347

lations in the training set to ensure that these m 348
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relations have not appeared in training data. For349

hyperparameter and configuration of ZS-SKA, we350

implement ZS-SKA with PyTorch and optimize351

it with SGD optimizer. The initial learning rate352

is selected via grid search within the range of353 {
1e− 1, 1e− 2, 1e− 3, 1e− 4

}
for minimizing354

the loss, the cosine similarity threshold is selected355

from 0 to 1 with step size 0.1. Table 5 in Appendix356

shows other parameters used in the experiment.357

4.1.3 Baselines and Evaluation Metrics358

We compare our proposed model to several state-359

of-the-arts models in zero-shot learning tasks. For360

clean FewRel and Wiki-ZSL datasets, we com-361

pare our model with CNN (Zeng et al., 2014),362

Bi-LSTM (Zhang et al., 2015), Attentional Bi-363

LSTM (Zhou et al., 2016), R-BERT (Wu and364

He, 2019), ESIM (Chen et al., 2017), CIM (Rock-365

täschel et al., 2016) and ZS-BERT (Chen and Li,366

2021). The seven baselines above are reported367

by (Chen and Li, 2021). We also compare the ro-368

bustness of our model with the most state-of-the-art369

re-implemented ZS-BERT. For noisy NYT dataset,370

we compare our model with the re-implemented371

CDNN (Zeng et al., 2014), REDN (Li and Tian,372

2020) and ZSLRC (Gong and Eldardiry, 2021).373

The evaluation metrics adopted in this paper are374

the Precision, Recall, and F1-score, similar to those375

used for the above baselines.376

4.2 Results and Discussion377

4.2.1 Main Results378

Results on Balanced Datasets The evaluation379

results of zero-shot learning on Wiki-ZSL and380

FewRel are shown in Table 2. We compare our381

proposed model ZS-SKA with models reported382

by (Chen and Li, 2021). Obviously, ZS-SKA sig-383

nificantly outperforms other state-of-the-art mod-384

els on both balanced datasets. Our proposed ZS-385

SKA outperforms a recently proposed method (ZS-386

BERT) by 6.9% precision, 5.7% recall, and 3.9%387

F1-score on Wiki-ZSL, 9.8% precision, 13.5% re-388

call, and 10.2% F1-score on FewRel. The perfor-389

mance improvement indicates that semantic knowl-390

edge augmentation is competitively more beneficial391

for relation classification than only incorporating392

text description of relations. To compare the ro-393

bustness of ZS-SKA with the strongest baseline394

ZS-BERT, we conduct further experiments with395

different percentages (varying m) of unseen rela-396

tions in Sec. 4.2.2.397

Results on Unbalanced Dataset The experiment 398

results on unbalanced dataset NYT by varying m 399

unseen relations are shown in Table 3. To make 400

fair comparisons, we use the same splitted NYT 401

dataset and follow the same threshold schema pro- 402

vided by (Gong and Eldardiry, 2021). We remove 403

data augmentation module and only implement the 404

prompts generated through the knowledge graph as 405

similar side information in ZSLRC model. Appar- 406

ently, the proposed ZS-SKA achieves a substantial 407

gain in precision, recall and F1-score over other 408

baselines on the NYT dataset. When the num- 409

ber of unseen relations in the testing set becomes 410

larger, the superiority of ZS-SKA gets more signif- 411

icant and robust. Such results indicate the effec- 412

tiveness of leveraging prompts using virtual labels 413

constructed from the knowledge graph instead of 414

using keywords learned from the distribution of 415

training data on the noisy dataset. 416

Figure 3: F1 scores of models with different proportions
of unseen relations.

4.2.2 Ablation Study 417

To evaluate the robustness and effectiveness of 418

modules in ZS-SKA, we conduct an ablation study 419

on Wiki-ZSL by removing prompts from ZS-SKA 420

to make comparisons with the most state-of-the-art 421

model ZS-BERT and our model ZS-SKA. From 422

Figure 3, we observe that our proposed model ZS- 423

SKA is more robust when increasing the propor- 424

tions of unseen relations in the testing set. ZS- 425

BERT performs much better when only 10% of 426

unseen relations exist. However, the performance 427

drops drastically when more unseen relations ap- 428

pear. Removing the prompts in ZS-SKA performs 429

slightly better when only 10% of unseen relations 430

exist. Nevertheless, the performance drops more 431
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Table 2: Results with m = 15 on Wiki-ZSL and FewRel.

Wiki-ZSL FewRel
Precision Recall F1 Precision Recall F1

CNN (Zeng et al., 2014) 14.58 17.68 15.92 14.17 20.26 16.67
Bi-LSTM (Zhang et al., 2015) 16.25 18.94 17.49 16.83 27.62 20.92
Att Bi-LSTM (Zhou et al., 2016) 16.93 18.54 17.70 16.48 26.36 20.28
R-BERT (Wu and He, 2019) 17.31 18.82 18.03 16.95 19.37 18.08
ESIM (Chen et al., 2017) 27.31 29.62 28.42 29.15 31.59 30.32
CIM (Rocktäschel et al., 2016) 29.17 30.58 29.86 31.83 33.06 32.43
ZS-BERT (Chen and Li, 2021) 34.12 34.38 34.25 35.54 38.19 36.82
ZS-SKA 41.03 40.12 38.13 45.34 51.67 47.02

Table 3: Results with different m values on NYT.

m=15 m=30
Precision Recall F1 Precision Recall F1

CDNN (Zeng et al., 2014) 27.94 44.10 33.72 10.17 25.62 14.23
REDN (Li and Tian, 2020) 66.52 65.47 66.98 57.19 56.80 56.99
ZSLRC (Gong and Eldardiry, 2021) 96.06 93.84 93.59 94.81 90.46 89.76
ZS-SKA 96.23 94.68 94.42 95.91 90.38 91.27

significantly than ZS-SKA. It is probably because432

prompts constructed by virtual labels contain the433

semantic information of unseen relations, which434

shorten the distance between the query sentence435

of an unseen relation with the prototype of such436

unseen relation.437

(a) (b)

Figure 4: Examples of denoising in virtual label con-
struction on FewRel and Wiki-ZSL datasets.

4.2.3 Case Study438

Data Augmentation Table 4 shows an example439

of the augmented data following the the translat-440

ing rule in Sec. 3.2.1 on Wiki-ZSL dataset. Rela-441

tion ‘place_of_birth’ is a seen class, and the four442

relations ‘place_of_death’, ‘residence’, ‘country’443

and ‘educated_at’ are from unseen classes. We444

follow the data augmentation method introduced445

in Sec. 3.2.1 to generate augmented training in- 446

stances for these unseen relations. We observe 447

that if the super-class of the relation and the super- 448

class of the two name entities are the same, i.e. 449

‘place_of_death’ with ‘place_of_birth’, ‘residence’ 450

with ‘place_of_birth’, the generated sentences have 451

a good quality with the name entities having the 452

unseen relations. If the super-class of the relation 453

or super-class of the two name entities of unseen 454

relation is different from that of the seen relation, 455

i.e. ‘country’ with ‘place_of_birth’, ‘educated_at’ 456

with ‘place_of_birth’, though the generated sen- 457

tences contain the tone of the target (unseen) re- 458

lation, such as the words in blue, the original two 459

name entities do not have the target unseen relation. 460

For example, the generated sentence of relation 461

’country’ in Table 4 can be explained that Arsenal 462

is from a European country, but such relation is 463

lost between the original two name entities ‘Rich’ 464

and ‘Arsenal’. Therefore, we follow the rule of 465

using the relation and name entities from the same 466

super-class with that of unseen relations to gener- 467

ate high-quality augmented instances for training 468

in zero-shot settings. 469

Virtual Label Construction Figure 4 shows an 470

example of the ranking top ten components of the 471

constructed virtual label before denoising and after 472

denoising. The virtual labels shown in Figure 4 are 473

generated by Algorithm 2 proposed in Sec. 3.2.2. 474
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Table 4: Examples of sentence generation from seen relations by data augmentation. Words in red are name entities
for each sentence. S(·) denotes the super-class of the relation or name entities.

Relation r S(r) S(e1) S(e2) Sentence

place_of_birth location person location
Jessica (born in Manchester) is a British track
and field athlete who competes in the heptathlon.

place_of_death location person location
Johnson (died in Liverpool) is a Military track
and field athlete who competed in the decathlon.

residence location person location
Mansion (resided in Villa) is a Colonial residence
and peri alumnus who dominates in the decathlon.

country location location location
Rich (retired in Arsenal) is a European track and
field athlete who competes in the decathlon.

educated_at act person org.
Jess (motivate in Liverpool) is a British aims and
professional athlete who educated in the decathlon.

The red words in Figure 4 (a) are irrelevant to the475

relation ‘religion_of’. After we refine the virtual476

label sets using the distance metric, these irrele-477

vant words are filtered out in our virtual label sets,478

removing the noise in the knowledge graph.479

4.2.4 Hyperparameter Sensitivity480

We examine how some primary hyperparameters,481

including threshold τ for denoising virtual label482

sets and the number of virtual labels n in Algo-483

rithm 2 affect the performance of ZS-SKA. By484

fixing m = 15 and varying τ and n, the results in485

terms of F1 scores and Accuracy on NYT, FewRel486

and Wiki-ZSL datasets are exhibited in Figure 5.487

We find that parameters τ and n affect the noisy488

dataset more than the clean and balanced dataset.489

We conjecture that because both τ and n are used490

for removing noise and getting more related seman-491

tic information in prompts construction, the noise492

in prompts may impact more on noisy datasets be-493

cause noisy datasets are more sensitive to the noise.494

If the threshold τ is between 0.5 and 0.6, it495

achieves the best performance on all three public496

datasets. This is reasonable that when τ is too low,497

most connected nodes in the knowledge graph are498

used to construct virtual label words. Thus, when499

building the prompts for each relation, it is more500

likely to bring the noise to the relation class. In501

contrast, when τ gets too high, some highly related502

nodes are filtered out to construct virtual labels.503

We would suggest setting τ between 0.5 to 0.6 to504

derive satisfying results across datasets. As for the505

number of words n to construct virtual labels, we506

find that increasing the number of related words n507

to construct virtual labels can achieve better perfor-508

mance. It is reasonable because, including more509

nodes (words) from the knowledge graph to con-510

struct the virtual label representing the relation in- 511

formation, more semantic knowledge information 512

is contained, leading to a shorter distance between 513

the query sentence embedding with the prototype 514

constructed from the prompts.

Figure 5: Effects on varying threshold τ and number of
virtual labels n on NYT, FewRel and Wiki-ZSL datasets.

515

5 Conclusion and Future Work 516

In this paper, we propose a prompt-based ZS-SKA 517

utilizing semantic knowledge augmentation to de- 518

tect unseen relations with no corresponding labeled 519

data available for training to tackle with zero-shot 520

relation classification task. The experiments show 521

that with augmented instances and prompts gener- 522

ated through a knowledge graph, ZS-SKA outper- 523

forms other state-of-the-art models under zero-shot 524

learning. We have also conducted extensive experi- 525

ments to study different aspects of ZS-SKA, from 526

ablation study to hyperparameter sensitivity, and 527

demonstrate the effectiveness and robustness of our 528

proposed model. We plan to explore the follow- 529

ing directions in future work: (1) Different ways 530

of instance generation and prompt designs for se- 531

mantic augmented data. (2) Better approaches for 532

constructing virtual labels in the prompt template. 533
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A Dataset Description781

In the following, we describe each dataset in detail.782

• FewRel (Han et al., 2018). The FewRel783

dataset is a human-annotated balanced few-784

shot RC dataset consisting of 80 types of rela-785

tions, each of which has 700 instances.786

• Wiki-ZSL (Chen and Li, 2021). The Wiki-787

ZSL dataset is a subset of Wiki-KB (Sorokin788

and Gurevych, 2017), which filters out both789

the ’none’ relation and relations that appear790

fewer than 300 times.791

• NYT (Riedel et al., 2010). The NYT dataset792

was generated by aligning Freebase relations793

with the New York Times corpos (NYT).794

There are 53 possible relations in total. It795

is an unbalanced noisy dataset because all the796

relations have a different number of sentences.797

B Parameter Settings798

Table 5: Parameter Settings

Parameter Value
Word Embedding Dimension 768
Hidden Layer Dimension 300
Sentence Max Length 128
Convolutional Window Size 3
Batch Size 4
Initial Learning Rate α 0.01
Number of Hops K 1
Similarity Threshold τ 0.6
Number of Virtual Label n 5
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