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Abstract

Machine learning models are prone to relying on
spurious correlations. Recently, there has been
substantial progress towards solving this prob-
lem using invariant learning methods. These meth-
ods exploit the invariance of causal mechanisms
across environments to distinguish between causal
and spurious parts of the feature space. Existing
methods have produced impressive results in con-
strained settings, but rely on assumptions that limit
their applicability to real-world problems. In this
work, we relax one of these assumptions: the ab-
sence of concept drift. We examine a simple case of
concept drift, in which the label distribution is in-
fluenced by environment-dependent additive shifts.
We show that in this setting, existing methods fail.
We then present a new method, called alternating
invariant risk minimization (AIRM), that solves
the problem. It works by alternating between us-
ing invariant risk minimization to learn a causal
representation, and using empirical risk minimiza-
tion to learn environment-specific shift parameters.
We evaluate AIRM on two synthetic datasets, and
show that it outperforms baselines.

1 INTRODUCTION

A problem with most machine learning models is that they
incorporate associations rather than causal relationships.
This makes them prone to relying on spurious correlations.
Spurious correlations offer a tempting “short-cut” to inflate
training performance, but do not reliably hold in new set-
tings. Hence, models that exploit them tend to have poor
generalization performance.

This problem can have alarming real-world consequences.
A recent study found that models trained to detect COVID-
19 from chest X-rays learned to rely on correlated artifacts

of the data collection process rather than anatomical infor-
mation DeGrave et al. [2021]. Despite their strong training
accuracy, these models failed when tested in new hospitals.
Similar results have also been found for skin cancer screen-
ing Winkler et al. [2019] and pneumonia detection Zech
et al. [2018].

To solve this problem, machine learning researchers have be-
gun to turn to ideas from causal inference. One idea exploits
the connection between invariance and causality Neuberg
[2003], Bühlmann [2020]. Whereas spurious correlations
are often unstable across settings, causal relationships re-
main invariant across different experimental settings. Ex-
ploiting this has led to a new set of causal estimation meth-
ods that work by identifying invariances across data col-
lected from heterogeneous environments. This line of work
was pioneered by Peters et al. [2016], which introduced In-
variant Causal Prediction (ICP), a method that works by us-
ing statistical hypothesis tests to identify invariances. Other
studies followed, including Invariant Risk Minimization
(IRM) Arjovsky et al. [2019], which enforces invariance
using an optimization-based approach. IRM was one of the
first to use the principle of invariance to learn causal repre-
sentations within deep networks, and it has inspired many
further studies that analyze or extend it Ahuja et al. [2020],
Rosenfeld et al. [2020], Yin et al. [2021], Ahuja et al. [2021],
Liu et al. [2021]. Collectively, these works show that invari-
ant learning methods are useful for reducing the reliance of
machine learning models on spurious information.

Although there has been substantial progress in the area
of invariant learning, existing methods make restrictive as-
sumptions that often do not hold in the real-world. In this
work, we focus on alleviating one of these assumptions: the
absence of concept drift across data collection environments.
Concept drift refers to a change in P(y|x), the relationship
between the input and target variables Tsymbal [2004]. It
is often induced by a hidden context variable. For exam-
ple, the outcome for a hospitalized patient might depend
upon both documented patient data and unmeasured factors,
such as the quality of the caregivers. When collecting data
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from multiple environments, it is quite plausible that they
have different hidden contexts, and therefore exhibit concept
drift. Notably, this drift can occur even when we condition
solely on the subset of x that are causes of y. Such drift
directly violates the main invariance assumption underly-
ing existing methods. This leads us to the question: Can
invariance-based methods still be used to estimate causes
in the presence of concept drift? And if so, how?

In this study, we make progress towards answering this
question. We consider a simple example of concept drift,
in which a single environment-dependent hidden variable
influences the label distribution through a constant-mean
shift. We show that even in this simple setting, existing in-
variant learning methods fail. To solve this problem, we
introduce a new method, called alternating invariant risk
minimization (AIRM). AIRM works by alternating between
two optimization phases: it uses IRM to learn a causal rep-
resentation, and then it uses empirical risk minimization
(ERM) to learn the environment-specific shift parameters.
Through synthetic data experiments, we show that AIRM is
able to distinguish between spurious and causal variables,
and outperforms baselines on out-of-distribution (OOD)
adaptation problems.

2 PROBLEM SETUP

To make the problem setup clear, we begin with a motivat-
ing example. Consider the task of predicting skin cancer
risk from dermoscopic images. Assume that we collect data
from multiple dermatology practices, and that our goal is to
use this data to train a model that works well on data col-
lected from future, unseen dermatology practices. In order
to achieve this, we desire a model that avoids relying on
spurious correlations. For example, in this domain, there is a
known problem with models learning to use the presence of
inked markings as a feature Winkler et al. [2019]. Dermatol-
ogists are typically more likely to add these markings if they
believe the lesion may be cancerous, but since markings are
not causally related to skin cancer, this correlation cannot
be depended upon to hold in all settings.

For ease of understanding, first consider a simplified version
of this problem. For each dermoscopic image, we observe
three variables: x1, a continuous variable representing the
abnormality of the lesion; x2, a binary variable indicating
the presence of markings; and y, a continuous cancer risk
score assessed by a dermatologist. For now, we let xxx =<
x1, x2 >. Later, we examine the more difficult setting in
which xxx is an image that indirectly contains x1 and x2.

We consider datasets of the form D = {(xxx, y)} that come
from different dermatology practices, or training environ-
ments e ∈ Etr. We aim to learn a predictive function
f : xxx → y, which performs well on unseen test environ-
ments e ∈ Etest. We examine two variations of this problem.

In the first, we make assumptions that are consistent with
those adopted in prior work. In the second, we relax these
assumptions and introduce the presence of concept drift.

2.1 TRADITIONAL SETTING

We start by considering a setting that is consistent with the
assumptions made in prior work.

Example 1. Assume that the data is generated according to
the Structural Causal Model (SCM) Wright [1921]:

x1 ← N (0, σ2
e,x1

)

y ← x1 +N (0, σ2
e,y)

x2 ← Bernoulli(σ(κey +N (0, 1)))

where σe,x1
, σe,y , and κe are environment-specific parame-

ters.

We include a visualization of the corresponding directed
acyclic graph (DAG) in Figure 1a. The SCM implies that
lesion abnormality, x1, is a direct cause of the cancer risk
assessment, y, and that the presence of markings, x2, is a
spurious variable. The SCM also implies that the relation-
ship between x2 and y differs across environments, since
it is modulated by the environment-dependent parameter
κe. This encodes the assumption that in some environments,
a high cancer risk assessment may increase the likelihood
of markings, whereas in others it may have a negligible or
inverse effect. An ideal predictive function f would ignore
x2 and use only x1.

x1

y

x2

(a) Example 1

x1c

yxy

x2

(b) Example 2

Figure 1: DAGS for two example problems.

Existing invariant learning methods, such as IRM, are able
to find this solution, as we show in Section 4. While the im-
plementation details of existing methods differ, the intuition
behind why they work is largely the same. Most existing
methods exploit the following invariance assumption:

Assumption 1. Let ϕ(xxx) be a representation of xxx in which
only the causal information in xxx is retained. Then,

Ee[y|ϕ(xxx)] = Ee′ [y|ϕ(xxx)]



for all e, e′ ∈ Etr ∪ Etest.

This assumption is useful because it implies that one can
identify the causal parts of xxx by searching for a represen-
tation that satisfies this invariance property. Indeed, this
strategy works for Example 1. ϕ(xxx) = x1, since x1 is a
direct cause of y and x2 is not. E[y|x1] = x1 is the same
for all environments, whereas E[y|x2] and E[y|x1, x2] are
environment dependent.

Example 1 serves as an illustration of how, under the right
conditions, existing invariant learning methods are a power-
ful tool for causal estimation. We next explore what happens
when the concept-drift assumption is not satisfied.

2.2 CONCEPT DRIFT SETTING

Consider the assumptions encoded by the DAG associated
with Example 1 (Figure 1a). The assumption that all of
the variables are observed simplifies the problem because
it implies that x contains all the information necessary to
determine y, up to noise. However, there are many cases
where this is not true. For example, in the skin cancer predic-
tion problem, there are multiple factors that may influence a
dermatologist’s assessment of cancer risk that are not observ-
able in the dermoscopic images. These include the clinical
training received by the dermatologist, the dermatologist’s
level of risk aversion, and the dermatologist’s knowledge
about the patient’s medical history.

To encode this understanding, we introduce a new variable
c, which represents the hidden context that influences a der-
matologist’s assessment of cancer risk given dermoscopic
images. The distribution of c is likely to vary across en-
vironments, e.g., dermatology practices. Since c causally
influences y, when the distribution of c is different across
environments, the conditional probability of y given its ob-
served direct causes (x1), will also differ. In other words, c
induces a concept drift across environments. The presence
of this type of concept drift directly violates Assumption
1. Since most existing invariant learning methods rely on
Assumption 1, they do not work in this setting, as we now
show.

Example 2. Assume the following SCM:

x1 ← N (0, σ2
e,x1

)

yx ← x1 +N (0, σ2
e,y)

c← N (µe, σ
2
e,c)

y ← yx + c

x2 ← Bernoulli(σ(κey +N (0, 1)))

where σe,x1
, σe,y , σe,c, µe, and κe are environment specific

parameters.

The DAG corresponding to Example 2 is shown in Figure 1b.

This problem is similar to Example 1, with several differ-
ences. We introduce the variable yx to represent the best
assessment of cancer risk given just the lesion abnormality
score. Whereas in Example 1 this quantity was the observed
variable y, we now assume that it is a latent variable that
influences the observed labels. We use the variable c to rep-
resent the hidden contextual factors that, in addition to x1,
influence the dermatologist’s assessment of cancer risk y.
We assume that the observed label y is the sum of the cancer
risk associated with the lesion abonormality score yx and
the risk attributed to contextual factors c.

In this example, ϕ(xxx) = x1 since it is still the case that x1

is the only observed cause of y. However, the conditional
probability of y given ϕ(xxx) now varies across environments;
i.e., E[y|ϕ(xxx)] = E[y|x1] = x1 + µe. Hence, Assumption
1 no longer holds. As we verify empirically in Section 4,
existing invariant learning methods that rely on Assumption
1 fail to solve this problem. We describe a new method for
solving this problem in the next section.

3 OUR METHOD: ALTERNATING IRM

We introduce a new method for causal estimation from multi-
environment data that works even in the presence of certain
types of concept drift. We constrain the set of concept drifts
with the following assumptions:

Assumption 2a. Let ϕ(xxx) be a representation of xxx in which
only the causal information in xxx is retained. Then there
exists a latent variable yx such that:

Ee[yx|ϕ(xxx)] = Ee′ [yx|ϕ(xxx)]

for all e, e′ ∈ Etr ∪ Etest.

Assumption 2a represents the idea that if we were able to re-
move the effect of the latent context variable, we would still
expect the relationship between y and the causal covariates
to be invariant.

Assumption 2b. Let c be a random variable that is dis-
tributed according to an environment-specific normal distri-
bution: c ∼ N (µe,c, σ

2
e,c). Then,

y = yx + c

With Assumption 2b, we limit the set of latent context vari-
ables we consider to those that act by shifting the conditional
label distribution up or down. While this is reasonable in
some scenarios (e.g., risk labels produced by dermatologists
with different levels of risk aversion), it may be too simplis-
tic in others. We leave the consideration of more complex
contextual variables for future work.

This set of assumptions is strictly weaker than the set con-
sidered in prior work. If we assume that c = 0 for all
environments, we recover Assumption 1.



Under these assumptions, if we knew the environment-
specific means µe of the context variables, we could com-
pute yx from y, up to noise. Then, with known yx, the task
of training an invariant prediction model that maps from xxx
to yx is exactly the problem considered in the traditional
setting (see Section 2.1), which can be solved with existing
methods. Conversely, if we knew the correct causal model
mapping xxx to yx, we could estimate µe from y and yx, up to
noise. Our method, called Alternating Invariant Risk Mini-
mization (AIRM), is based on this intuition.

We include pseudocode describing our method in Algo-
rithm 1. It takes training data from a set of environments
e ∈ Etr and the loss function ℓ to minimize as input. It
produces two sets of parameters: (1) ϕϕϕ, the parameters of
a function f(xxx;ϕϕϕ) that maps from xxx to predictions of the
latent variable yx, and (2) {βe}e∈Etr , intercept terms used
to capture the effect of the hidden context variables. The
resulting predictions for environment e are generated as
ŷ = f(xxx;ϕϕϕ) + βe.

AIRM estimates parameters by alternating between two
phases of optimization:

1. Given the current estimate of each βe, it applies IRM
to estimate ϕϕϕ, considering y − βe as the targets.

2. Given the current estimate of ϕϕϕ, it applies empirical
risk minimization (ERM) to estimate the βe parameters.
This can be done using SGD. Alternatively, when using
mean squared error (MSE) loss, we can compute these

estimates directly as βe =
1
ne

ne∑
i=1

yi − f(xxxi;ϕϕϕ).

There are four hyperparameters: λ the weight of the invari-
ance penalty of IRM, k1 the number of SGD steps to take
for each IRM optimization phase, k2 the number of SGD
steps to take in each ERM optimization phase, and η the
learning rate.

Our method is designed for the domain adaptation evalua-
tion scenario. While the invariant prediction model ϕϕϕ can
be directly applied to new environments, to estimate βe we
need environment-specific data. Therefore, we assume that
for each test environment e ∈ Etest, we have a small amount
of adaptation data that can be used to learn βe. Given a
trained model ϕϕϕ and data from a new environment e, we
estimate βe using ERM.

4 EXPERIMENTS

We evaluate AIRM with two experiments conducted on
synthetic data. The first experiment directly follows from
the example problems described in Section 2. The second
uses a slightly more challenging example in which the inputs
are images.

We compare AIRM to the baselines listed below. Each

Algorithm 1 AIRM
Input: De = {(xxx, y)}ne

i=1 from e ∈ Etr, ℓ, λ, k1, k2, η
Output: f(·;ϕϕϕ), {βe}e∈Etr

Initialize ϕϕϕ, {βe}e∈Etr randomly
while not converged do

fix {βe}e∈Etr ▷ (1) IRM optimization phase
yx,i ← yi − βe for yi ∈ De, e ∈ Etr
for step← 1 to k1 do

Re(f(·;ϕϕϕ))← 1
ne

ne∑
i=1

ℓ(f(xxxi;ϕϕϕ), yx,i) for e ∈ Etr

LIRM (f(·;ϕϕϕ))←∑
e∈Etr

Re(f(·;ϕϕϕ))+λ||∇w|w=1.0R
e(w ·f(·;ϕϕϕ))||2

ϕϕϕ← ϕϕϕ− η ∂
∂ϕϕϕLIRM (f(·;ϕϕϕ))

end for
fix ϕϕϕ ▷ (2) ERM optimization phase
ci ← yi − f(xxxi;ϕϕϕ) for xxxi ∈ De, e ∈ Etr
for step← 1 to k2 do

for e in Etr do
R(βe)← 1

ne

ne∑
i=1

ℓ(βe, ci) for e ∈ Etr

βe ← βe − η ∂
∂βe

R(βe)

end for
end for

end while

are used to estimate a prediction function f . We con-
sider two forms of f : (1) a global model fg = fg(xxx;ϕϕϕ)
and (2) a model with an environment-specific intercept
fe = fg(xxx;ϕϕϕ) + βe.

• ERM minimizes the objective:

∑
e∈Etr

Re(f) =
∑
e∈Etr

1

ne

ne∑
i=1

ℓ(f(xxx), yi) (1)

We let f = fg for problems without concept drift and
f = fe for problems with concept drift.

• IRM (Arjovsky et al. [2019]) minimizes the objective:∑
e∈Etr

Re(fg) + λ||∇w|w=1.0R
e(w · fg)||2 (2)

Since IRM was designed to estimate global functions,
we only use it for this purpose. We introduce two new
variants of IRM to estimate environment-specific func-
tions, which we describe next.

• IRM-PA: a new variant of IRM for environment-
specific prediction functions. It applies the invariance
penalty to all parameters. It minimizes:∑

e∈Etr

Re(fe) + λ||∇w|w=1.0R
e(w · fe)||2 (3)

• IRM-PP: a new variant of IRM for environment-
specific prediction functions. It applies the invariance



penalty only to the global parameters ϕϕϕ. It minimizes:∑
e∈Etr

Re(fe) + λ||∇w|w=1.0R
e(w · fg)||2 (4)

4.1 BASIC SYNTHETIC DATA

We evaluate AIRM on the skin cancer prediction problem de-
scribed in Section 2. We start with data generated according
to the SCM in Example 1. We then generate data according
to the SCM in Example 2, the concept drift setting.

For both experiments, we include two training environments:
e1 with parameters {σe1,x1 = 1, κe1 = 5, σe1,y = 1}, and
e2 with parameters {σe2,x1 = 2, κe2 = 2, σe2,y = 2}. We
evaluate on a test environment e3 with parameters {σe3,x1

=
2, κe3 = −2, σe3,y = 2}. κe is positive for e1 and e2 but is
negative for e3. This means that the probability that x2 = 1
is positively correlated with y in the training environments,
but negatively correlated with y in the test environments.
Thus, models that use x2 will generalize poorly to the test
environment. When we generate data for the concept drift
setting, we use {µ1 = 1, µ2 = 0, µ3 = −1} as the means
of the environment-specific c distributions. We set σe,c =
0.1 for all environments. We use 10,000 examples from e1
and e2 as training data. We use 1,000 examples from e3 as
adaptation data to estimate environment-specific parameters,
and 10,000 examples as test data.

We set the hyperparameters: λ = 10, 000, η = 0.01, and
k1 = 1. When implementing AIRM, we compute the esti-
mates of βe directly in phase 2 rather than using SGD, so we
don’t need to set k2. We report results for 5 random seeds.

We consider linear prediction functions of the form
fg(xxx;ϕϕϕ) = ϕϕϕTxxx (global) and fe = fg + βe (environment-
specific).

Example 1 (traditional setting): The optimal model pa-
rameters in this setting are (ϕ1, ϕ2) = (1, 0), since x1 is
causal and x2 is spurious. Without concept drift, there is no
need for environment-specific intercepts βe.

We compare AIRM with ERM and IRM. The results are
shown in Figure 2. We see that ERM performs substantially
worse on the test data than do the other two methods. The top
plot shows that ERM obtains the largest error in estimating
each of the ϕϕϕ parameters. The large value it obtains for ϕ2

indicates that it has learned to use the spurious feature x2.
In contrast, both IRM and AIRM learn to limit reliance on
this feature.

Whereas ERM and IRM are used to train a single global
model fg, AIRM learns environment-specific intercepts in
addition to fg. This provides it with an extra degree of
freedom that is not necessary in this setting. Despite this, we
see in the right plot that AIRM obtains performance similar
to that of IRM.

(a) MAE of ϕϕϕ estimates. (b) MSE on the test data.

Figure 2: Results of our method (AIRM) and baselines on
Example 1 (no concept drift) The red line indicates the MSE
of an oracle model ϕϕϕ = (1, 0).

Example 2 (concept drift setting): As in the prior example,
the optimal ϕϕϕ in this setting is (1, 0). With the addition of
concept drift, it is now useful to learn environment-specific
intercepts βe. The optimal value for each βe is µe, the mean
of the environment-specific context variable distribution.

We present a comparison of AIRM and the baselines in
Figure 3. In the right plot, we see that AIRM performs
nearly as well on the test data as an oracle that knows the
correct model parameters. It outperforms all of the other
methods, including IRM and its variants. The left plot shows
that AIRM is the only method that is able to learn to avoid
relying on the spurious feature x2. The center plot displays
the βββ estimation errors. It includes all of the methods except
IRM, since IRM does not produce estimates of environment
intercepts. We see that AIRM has a low MAE compared to
all of the baselines.

While IRM obtains strong performance on Example 1, its
subpar performance on this example demonstrates its inabil-
ity to handle concept drift. In contrast, AIRM performs well
in both problem settings.

4.2 SYNTHETIC DERMATOLOGY IMAGES

We next consider a slightly more realistic problem. We
generate data using the same process as our previous ex-
periments, except that instead of providing x1 and x2 as
features, we let xxx be an image that indirectly encodes x1

and x2. We generate synthetic images of skin lesions using a
process inspired by prior work Ghandeharioun et al. [2021].
Examples are shown in Figure 4. We control the size of
the lesion based on the lesion abnormality score x1, so that
lesions with larger abnormality scores are larger in size. We
include markings when x2 = 1 and exclude them otherwise.

We use the same parameters for the training environments
and the test environment as the prior example. We use
25,000 examples from e1 and e2 as training data, 1,000
examples from e3 as adaptation data, and 10,000 examples
from e3 as test data. We use λ = 100, 000, η = 0.001, and
k1 = 1, and report results for 5 seeds. We again consider
linear prediction functions of the form fg(xxx;ϕϕϕ) = ϕϕϕTxxx



(a) MAE of ϕϕϕ estimates. (b) MAE of βββ estimates. (c) MSE on the test data.

Figure 3: Results of our method (AIRM) and baselines on Example 2 (with concept drift). The red line indicates the MSE of
an oracle model ϕϕϕ = (1, 0), βe = µe.

Figure 4: Examples of the synthetic skin lesion images with
and without inked markings.

(global) and fe = fg + βe (environment-specific).

Since the pixels that encode x1 and x2 vary by image, there
isn’t a clear optimal setting of ϕϕϕ, as there was in the prior ex-
periment. Instead, as an oracle, we consider a model trained
using ERM on the same data, but with the spurious variable
(the presence of markings) removed. We present the results
on the test data in Figure 5.

Example 1 (traditional setting): In the left plot in Figure 5,
we see that there is a large gap between the performance of
the ERM oracle and standard ERM. This is evidence that
the poor generalization performance of ERM results from
its reliance on the spurious markings feature. Both IRM and
AIRM have better test performance than ERM, indicating
that they rely less on the spurious feature. Although these
methods show improvements over ERM, their performance
is not as close to the oracle as it was in the previous experi-
ment. This suggests that the problem is more difficult when
the relevant variables are entangled in a high-dimensional
space rather than provided directly.

Example 2 (concept drift setting): In the right plot in
Figure 3, we again see a large gap between the test per-
formance of ERM and the oracle model, illustrating that a
model trained with ERM learns to use the spurious variable.
Although the other baselines perform better than ERM, they
still have much higher test error compared to AIRM. AIRM
is the only method that obtains performance comparable to
the oracle model.

(a) Traditional Setting. (b) Concept Drift Setting.

Figure 5: Results of our method (AIRM) and baselines on
synthetic dermatology image data for the traditional and
concept drift settings.

5 CONCLUSION

Existing invariance-based causal estimation methods as-
sume that the data collection environments do not exhibit
concept drift – an assumption that does not hold in many
situations. We introduce a new method, called AIRM, that
extends IRM to enable invariance-based causal estimation
in settings that include concept drift. This work contributes
to the broad goal of making machine learning models more
robust and causality-aware.

In this study, we examined a limited range of parameter
settings. In the future, we plan to conduct a rigorous param-
eter sensitivity analysis. Since we would like to ground our
empirical results in theoretical insight, we plan to analyze
the theoretical properties of AIRM, such as its convergence
behavior. Finally, we intend to consider a broader set of con-
cept drifts, and to extend the method to address classification
problems.

While the results of this initial study are promising, addi-
tional work is needed to understand how AIRM performs
under a more comprehensive set of conditions. We plan
to evaluate AIRM on real-world data, including real-world
skin lesion datasets such as Tschandl et al. [2018].



Acknowledgements

We gratefully acknowledge the support of Quanta Computer
and the Media Lab Consortium Member Companies.



References

Kartik Ahuja, Karthikeyan Shanmugam, Kush Varshney,
and Amit Dhurandhar. Invariant risk minimization games.
In International Conference on Machine Learning, pages
145–155. PMLR, 2020.

Kartik Ahuja, Ethan Caballero, Dinghuai Zhang, Jean-
Christophe Gagnon-Audet, Yoshua Bengio, Ioannis
Mitliagkas, and Irina Rish. Invariance principle meets
information bottleneck for out-of-distribution generaliza-
tion. Advances in Neural Information Processing Systems,
34, 2021.

Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and David
Lopez-Paz. Invariant risk minimization. arXiv preprint
arXiv:1907.02893, 2019.

Peter Bühlmann. Invariance, causality and robustness. Sta-
tistical Science, 35(3):404–426, 2020.

Alex J DeGrave, Joseph D Janizek, and Su-In Lee. Ai
for radiographic covid-19 detection selects shortcuts over
signal. Nature Machine Intelligence, 3(7):610–619, 2021.

Asma Ghandeharioun, Been Kim, Chun-Liang Li, Brendan
Jou, Brian Eoff, and Rosalind W Picard. Dissect: Disen-
tangled simultaneous explanations via concept traversals.
arXiv preprint arXiv:2105.15164, 2021.

Jiashuo Liu, Zheyuan Hu, Peng Cui, Bo Li, and Zheyan
Shen. Heterogeneous risk minimization. In Interna-
tional Conference on Machine Learning, pages 6804–
6814. PMLR, 2021.

Leland Gerson Neuberg. Causality: models, reasoning, and
inference, by judea pearl, cambridge university press,
2000. Econometric Theory, 19(4):675–685, 2003.

Jonas Peters, Peter Bühlmann, and Nicolai Meinshausen.
Causal inference by using invariant prediction: identifi-
cation and confidence intervals. Journal of the Royal
Statistical Society: Series B (Statistical Methodology), 78
(5):947–1012, 2016.

Elan Rosenfeld, Pradeep Ravikumar, and Andrej Risteski.
The risks of invariant risk minimization. arXiv preprint
arXiv:2010.05761, 2020.

Philipp Tschandl, Cliff Rosendahl, and Harald Kittler. The
ham10000 dataset, a large collection of multi-source der-
matoscopic images of common pigmented skin lesions.
Scientific data, 5(1):1–9, 2018.

Alexey Tsymbal. The problem of concept drift: definitions
and related work. Computer Science Department, Trinity
College Dublin, 106(2):58, 2004.

Julia K Winkler, Christine Fink, Ferdinand Toberer, Alexan-
der Enk, Teresa Deinlein, Rainer Hofmann-Wellenhof,
Luc Thomas, Aimilios Lallas, Andreas Blum, Wilhelm
Stolz, et al. Association between surgical skin markings
in dermoscopic images and diagnostic performance of a
deep learning convolutional neural network for melanoma
recognition. JAMA dermatology, 155(10):1135–1141,
2019.

Sewall Wright. Correlation and causation. 1921.

Mingzhang Yin, Yixin Wang, and David M Blei.
Optimization-based causal estimation from heterogenous
environments. arXiv preprint arXiv:2109.11990, 2021.

John R Zech, Marcus A Badgeley, Manway Liu, Anthony B
Costa, Joseph J Titano, and Eric Karl Oermann. Variable
generalization performance of a deep learning model to
detect pneumonia in chest radiographs: a cross-sectional
study. PLoS medicine, 15(11):e1002683, 2018.


	Introduction
	Problem Setup
	Traditional Setting
	Concept Drift Setting

	Our Method: Alternating IRM
	Experiments
	Basic Synthetic Data
	Synthetic Dermatology Images

	Conclusion

