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ABSTRACT

Recent advances in large language models (LLMs) have demonstrated impressive
reasoning capacities that mirror human-like thinking. However, whether LLMs
possess genuine fluid intelligence (i.e., the ability to reason abstractly and gen-
eralize rules in novel situations) remains an open question. Existing reasoning
benchmarks either focus on domain-specific knowledge (crystallized intelligence)
or lack interpretability. To address these limitations, we propose DRE-Bench,
a dynamic reasoning evaluation benchmark grounded in a hierarchical cognitive
framework. DRE-Bench consists of 36 abstract reasoning tasks organized across
four cognitive levels, with each task featuring multiple dynamic variants that test
the same underlying latent rule. This design enables fine-grained, interpretable,
and reliable assessments of fluid intelligence. We evaluate a range of state-of-
the-art LLMs, including both general LLMs (GPT-4o, Claude 3.7) and reasoning
LLMs (o1, DeepSeek-R1, QwQ, Skywork-OR1). Experimental results reveal that
although most LLMs achieve competent and robust performance in low-level cog-
nition, they struggle with high-level cognition and exhibit limited generalization as
task complexity grows. Our findings highlight the gap between current LLMs and
true human-like fluid intelligence and offer a new path for systematically tracking
reasoning progress in LLMs.

1 INTRODUCTION

Recently, large language models (LLMs) (OpenAI, 2024b; DeepSeek-AI et al., 2025; Anthropic,
2024; OpenAI, 2024a; Yang et al., 2024a) have achieved remarkable success across various applica-
tions, such as disciplines (Cobbe et al., 2021; Lewkowycz et al., 2022), intelligent chatbots (Zhang
et al., 2023; Ouyang et al., 2022) and code generation (Chen et al., 2021; Nijkamp et al., 2023).
Models like OpenAI’s o1 (OpenAI, 2024b) leverage substantial test-time computation to refine their
reasoning processes, learn from previous errors, and explore diverse strategies, exhibiting a degree
of cognitive behavior that closely mirrors human-like thinking. As such, there is an urgent need for
a principled evaluation framework to track and quantify the reasoning intelligence of cutting-edge
LLMs systematically.

Existing reasoning benchmarks can be broadly categorized into two major types: crystallized in-
telligence (Cattell, 1963; Schipolowski et al., 2014) and fluid intelligence (Cattell, 1963; Kent,
2017). Crystallized intelligence refers to models’ ability to apply accumulated knowledge to solve
problems. Representative benchmarks such as AIME (Ye et al., 2025), GPQA (Rein et al., 2024),
and SuperGPQA (Du et al., 2025) which require multi-step reasoning grounded in domain-specific
knowledge. However, as LLMs increasingly achieve expert-level performance on such knowledge-
intensive tasks, the community gradually recognized that fluid intelligence—the ability to gener-
alize beyond memorized content and reason in novel settings—is becoming increasingly impor-
tant (Raven, 2003; Flanagan et al., 2007). In assessing the fluid intelligence of LLMs, ARC-AGI
series (Chollet, 2019; Chollet et al., 2024) raise abstract reasoning tasks and is regarded as a mile-
stone. Such tasks require LLMs to infer the latent rule solely from provided input-output training
pairs and generalize it to predict correct outputs for novel testing inputs. Figure 1(a) illustrates two
examples of such latent rules, frequency identification and category classification.
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Latent Rule 1: Identify the most frequent 
color in the grid cells above the dividing 
line, and put it under the dividing line.

Abstract Reasoning: train → test

Latent Rule 2: Classify several categories, 
and fill the corresponding colors.
1 box → blue, 2 boxes → green. Level-1

Attribute
Level-2
Spatial

Level-3
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Scalability
(human annotated)
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DRE-Bench

Previous Bench
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Dynamic
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(a) Example of Latent Rule (b) Comparison of our DRE-Bench and Previous Bench (c) Leaderboard of Intelligence on DRE-Bench
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Figure 1: (a) Examples of the latent rule hidden in test cases. (b) Compared with previous bench-
marks, our DRE-Bench demonstrates advantages in terms of hierarchy (cognition-aligned), scala-
bility (code-generated), and dynamism (varying complexity). (c) Leaderboard of LLM intelligence
on DRE-Bench, with accuracy on the y-axis and stability on the x-axis.

Although recent efforts (Chollet, 2019; Chollet et al., 2025) have attempted to measure the fluid
intelligence of LLMs, such as analyzing atomic operations (Wu et al., 2025) and the stochastic
parrot phenomenon (Yu et al., 2025), they face several limitations as shown in Figure 1(b). First,
existing benchmarks usually comprise abstract reasoning cases whose latent rules are not linked
with stages of human cognition (Primi, 2001). Consequently, it is hard to tell what level of human-
like intelligence a model has reached. Second, previous studies require manual annotation, which
is labor-intensive and constrains benchmarks’ scalability and diversity of latent rules. Third, these
benchmarks are inherently static, with each latent rule linked to only one or a few fixed cases. Such
a static nature suffers from data contamination (Li et al., 2024a; Yang et al., 2024b), making it hard
to determine whether the model truly understands the latent rule or merely memorizes it.

To address these challenges, we propose a Dynamic Reasoning Evaluation benchmark, DRE-Bench,
designed to assess the genuine fluid intelligence of large language models (LLMs). DRE-Bench
is structured around a confirmed psychology hierarchy (Primi, 2001), with four cognitive levels
ranging from simple to complex reasoning: Attribute, Spatial, Sequential, and Conceptual level.
Each level contains 3 latent rules specified by several designed abstract reasoning tasks. Due to the
simple data format of abstract reasoning tasks, we design a code-based generator and solver for each
task, which can generate multiple dynamic variants with different levels of complexity. In total,
DRE-Bench provides about 4K abstract reasoning cases. This framework enables a fine-grained,
cognition-aligned evaluation of the abstract reasoning ability and allows for a robust assessment of
fluid intelligence by analyzing both accuracy and variance across tasks with consistent latent rules.

Compared to existing benchmarks, DRE-Bench offers three key advantages as illustrated in Fig-
ure 1(b). i) Cognition-aware task hierarchy. DRE-Bench presents reasoning tasks with a cognitive
hierarchy, which explicitly aligns each task with four human-like cognitive levels. This alignment
provides good interpretability and allows mapping model behavior to specific cognitive capabili-
ties. ii) Human-Agent Collaboration Pipeline. For each latent rule, we employ LLM-driven agents
to design code-based generators and solvers, which can produce input samples and corresponding
answers accurately. To this end, our data generation pipeline achieves high correctness, efficiency,
and scalability. iii) Dynamic evaluation. DRE-Bench supports dynamic generation of multiple task
instances by flexibly varying the latent rule-related variables, obtaining extensive variants with dif-
ferent levels of complexity. This dynamic property helps avoid the data contamination issue that
static datasets are prone to (Li et al., 2024a;b; Yang et al., 2024b). Therefore, we can precisely and
comprehensively assess whether LLMs have truly grasped the underlying reasoning rules, further
tracking the fluid intelligence of current LLMs.

We conduct comprehensive experiments on DRE-Bench using a range of LLMs, including general-
purpose models without explicit reasoning capabilities such as GPT-4o (OpenAI, 2024a) and
Claude-3.7 (Anthropic, 2024), and reasoning LLMs (models with thinking) such as OpenAI-
o1 (OpenAI, 2024b), DeepSeek-R1 (DeepSeek-AI et al., 2025), QwQ (Yang et al., 2024a), Skywork-
OR1 (He et al., 2025), etc. The takeaways of our key findings are as follows:
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• As the cognitive level of the reasoning tasks increases, model accuracy consistently de-
clines, particularly for tasks involving physical concepts. Among them, OpenAI-o1 and
DeepSeek-R1 demonstrate stronger performance and stability, while Claude 3.7 stands out
in general LLMs. (Figure 1(c) and Section 4.2).

• Reasoning LLMs outperform general LLMs on most abstract reasoning tasks. Moreover,
as the cognitive level increases, the difference between models becomes more pronounced:
differences may be minimal on lower-level tasks, but in higher-level tasks, stronger LLMs
will exhibit a more obvious advantage (Section 4.2).

• We analyzed model accuracy and stability across different complexities. We observed that
with the complexity of a specific task increasing, models whose performance declines may
not possess genuine fluid intelligence; only those that continue to perform well can be
considered to truly master the underlying reasoning rules (Section 4.3).

• Increasing the number of in-context training examples can slightly boost LLMs’ perfor-
mance. However, adding visual information about the abstract reasoning problems has little
positive impact, and sometimes even leads to a decrease in model accuracy (Section 4.4).

• Inference time scaling plays a more important role in low-level reasoning tasks, but may be
insufficient towards high-level latent rules as complexity increases (Section 4.4).

Overall, the contributions of this paper are summarized as follows. 1) We propose an abstract
reasoning benchmark with a cognition hierarchy, providing a more structural and comprehensive
system to analyze the LLMs’ true fluid intelligence. 2) We develop a verifiable and scalable data
engine to dynamically generate abstract reasoning data with various complexities, by designing
a generator and solver for each task. 3) We perform comprehensive evaluations on a variety of
popular LLMs, indicating that the existing LLMs still struggle to solve the reasoning problem of
high cognitive levels. Existing LLMs may not have truly internalized the underlying reasoning
rules, which highlights that they remain far from achieving true fluid intelligence.

2 RELATED WORK

2.1 EVALUATION FOR FLUID INTELLIGENCE

There have been numerous attempts to define and measure the intelligence degree of existing large
language models. Among them, the Abstraction and Reasoning Corpus(ARC) (Chollet, 2019) is re-
garded as a milestone, which defines that true intelligence should possess skill-acquisition efficiency.
This concept attracted broad attention and led to many analytical studies (Wu et al., 2025; Yu et al.,
2025; Acquaviva et al., 2022; Xu et al., 2023; Wang et al., 2023; 2024a). (Wu et al., 2025) select
some atomic abstract reasoning operations, and find that LLMs perform poorly on some atomic
operations. (Yu et al., 2025) designed PHYSICO to evaluate whether LLMs really understand the
physical phenomena they describe, by comparing language-format description and corresponding
ARC format grid. However, existing abstraction reasoning benchmarks haven’t categorized tasks
along cognitive dimensions, and can only provide a coarse-grained evaluation of LLMs’ reasoning
ability. In addition, all these benchmarks are static, implying that they are highly susceptible to
data contamination and only possess fixed complexity. Therefore, our work proposes DRE-Bench,
a hierarchical cognitive dynamic benchmark on abstract reasoning. DRE-Bench can automatically
generate data with varying levels of complexity, enabling comprehensive and fine-grained evaluation
of LLM intelligence.

2.2 DYNAMIC EVALUATION

Studies (Li et al., 2024a;b; Yang et al., 2024b) have found that static benchmarks are highly prone
to data contamination and have detected severe data contamination rates in some LLM benchmarks
like (Wang et al., 2018; 2024b). Moreover, their static nature implies a fixed level of complexity,
making it difficult to adapt to evolving model capabilities. Therefore, some researchers have pio-
neered the exploration of dynamic evaluation on LLMs. Study (Zhu et al., 2023) proposed DyVal
to dynamically generate test samples based on the graph structure to combat data contamination.
Similarly, NPHardEval (Fan et al., 2023) generates new evaluation samples for NP-hard mathemat-
ical problems. To extend dynamic evaluation to more diverse NLP tasks, (Zhu et al., 2024) further
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Figure 2: Specific abstract reasoning tasks across four cognitive levels. For each task, we visualize
two pairs of input and output, corresponding to two different values of the dynamic variable. The
arrows are labeled with variable ranges, with darker colors indicating higher complexity.

developed MPA, which employs LLM-based agents to transform existing problems into new ones.
However, most of these dynamic evaluation methods are designed for general NLP tasks and are not
applicable to more complex reasoning scenarios. More critically, the accuracy of their dynamically
generated data is difficult to verify, leaving their reliability in constant doubt. In this work, we are the
first to introduce a dynamic evaluation paradigm for abstract reasoning tasks. Our data generation
process is code-verifiable, ensuring 100% reliability of the generated samples.

3 METHOD

3.1 CONSTRUCTING COGNITION-INSPIRED ABSTRACT REASONING FRAMEWORK

Studies about fluid intelligence (Raven, 2003; Carpenter et al., 2018; Primi, 2001) indicate that the
complexity of a reasoning problem may be related to the types of rules applied in the inductive rea-
soning process. Among them, the rule-type hierarchy proposed by Ricardo (Primi, 2001) represents
a relatively comprehensive cognitive framework in psychology. This framework categorizes induc-
tive rule-type as four top-down levels, and proves the four levels form a true cognitive hierarchy: as
from rule level 1 to 4, people impose qualitatively greater demands on abstraction, working memory,
with reaction times and error rates also increasing. Therefore this categorization is suitable to assess
the human-like fluid intelligence of LLMs.

According to this cognitive hierarchy of reasoning rule and corresponding rule variables, we propose
our abstract reasoning framework as Figure 2. For the first-tier framework, we adopt four levels,
namely (1) Attribute, (2) Spatial, (3) Sequential, and (4) Conceptual. Then, for each cognitive level,
we summarize a series of related rule variables related to abstract reasoning tasks. Finally, for each
rule variable, we design three sets of dynamic case generators to enable fine-grained evaluation of
LLMs’ corresponding cognitive reasoning capabilities. The detailed dataset table is in Appendix C.

Level-1: Attribute. In the attribute level, we follow the operational dimensions identified in cog-
nitive psychology (Primi, 2001), dynamically evaluating the reasoning capabilities of LLMs along
three key rule types: size, count, and shape.

Level-2: Spatial. In the spatial level, drawing on psychological studies, we designed a set of
classic rules that comprehensively capture the notion of spatial reasoning, namely move, rotation,
and symmetry. Specifically, for the “move” rule, we design dynamic data along five directional axes:
up, down, left, right, and upper-right. For each direction, we set the moving distance from 1 to 30.
This enables a fine-grained assessment of the LLM’s understanding of both moving direction and
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Constraint C → rule
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…
C𝟑: Specific Structure C𝟒: Object Placement

Task Constraint C
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Testor

Figure 3: DRE-Bench Data Generation Pipeline: (1) Professionals identify task-specific constraints
and rules. (2) A CodeAgent collaborates with annotators to implement the generator and solver. (3)
Different configurations are used to produce diverse cases.
distance. Similarly, for the “rotation” rule, we design two types of rotation axes, namely around an
endpoint and around the center of objects. For each rotation setting, we change the rotation angle
from 0 to 360 degrees. For the “symmetry” rule, we design tasks based on horizontal, vertical, and
diagonal symmetry. For each type, the number of objects to be symmetrized can vary arbitrarily.

Level-3: Sequential. For Level-3, we incorporate reasoning rules that require multi-step infer-
ence and higher-order abstract ability. Specifically, we include: category learning, which requires
identifying categories based on shared attributes across varying contexts; sorting, which requires un-
derstanding order and rearranging placement; and planning, which involves goal-directed problem
solving by multiple reasoning steps. To precisely control task complexity within these reasoning
types, we designed corresponding rule variables: the number of categories to be distinguished, the
number of elements to be sorted, and the number of planning steps required.

Level-4: Conceptual. For Level-4, we focus on scientific concepts, which require not only high-
level abstract reasoning but also the application of conceptual knowledge. Drawing inspiration from
fundamental branches of physics (Yu et al., 2025), we introduce three representative concepts: grav-
ity, reflection, and expansion. To further increase task complexity, we progressively intensify the
application of these physical rules.

3.2 DATA GENERATION FRAMEWORK

After determining the cognitive level, we proceed to select the specific rule to evaluate the LLM’s
reasoning performance. To enable fine-grained assessment, we design approximately three tasks for
each rule. For example, the “move” rule includes five directional tasks: up, down, left, right, and
upper-right movement. As shown in Figure 3, for each task, we identify its underlying constraint,
then a code agent constructs a set of generators and solvers, upon human inspection, can be used to
batch-produce input-output pairs. Such a human–agent collaboration pipeline can ensure scalability
not only in the volume of data but also in the diversity of new rule.

Identifying Constraint. First, for a given task, professionals identify all case-relevant constraints,
such as <grid boundary>, <color assignment>, <object placement>, and so on. These constraints,
together with the corresponding rule, are then transformed into structured prompts, where a dy-
namic variable is explicitly defined. Each prompt subsequently invokes a code agent to generate two
functions(i.e., a generator and a solver) parameterized by the dynamic variable.

Producing Generator and Solver. In the second step, an LLM-driven code agent is employed
to implement the generator and solver functions for each task. Based on the rule and constraints
encapsulated in the prompt (example in Appendix D), the code agent produces a generator that serves
to generate the input grid, with a tunable parameter controlling the complexity of input cases. The
paired solver is also implemented to parse the input grid and generate the corresponding ground-truth
output grid. To ensure the correctness of the generator and solver, we predefine a set of parameter
configurations to verify consistency between the input and output grids. If the generator–solver
pair passes manual inspection, it is retained; otherwise, the code agent is re-invoked for refinement
until a valid pair is produced. A random seed is embedded in the generator to enable scalable and
reproducible generation of an unbounded number of diverse, constraint-satisfying samples.

Data Generation. Once the final generator and solver are established, for each rule, we can config-
ure various parameters and different random seeds to generate batches of cases with varying levels
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Table 1: Model performance across four cognitive reasoning levels and corresponding tasks.
Level 1 Attribute Level 2 Spatial Level 3 Sequential Level 4 Conceptual

Model Size Count Shape Avg-1 Rotation Move Symmetry Avg-2 Category Sort Planning Avg-3 Optics Mechanics Thermal Avg-4

General LLMs

Claude-3.7 65.22 63.14 13.33 58.76 68.57 57.80 49.33 58.43 54.44 2.50 54.44 44.05 8.00 15.87 0.00 7.96
Qwen3-32B 61.79 71.05 18.33 60.05 51.43 29.20 1.33 27.66 7.69 3.75 8.89 7.14 0.00 0.00 0.00 0.00
GPT-4o 62.81 44.48 13.33 51.2 27.30 3.80 2.67 9.9 8.89 2.50 8.89 7.61 0.00 0.00 0.00 0.00
Qwen2.5-32B 44.72 28.42 6.67 35.06 5.71 0.20 0.00 1.65 4.62 1.25 7.78 4.57 0.00 0.00 0.00 0.00

Reasoning LLMs

o1 64.75 60.00 58.33 62.45 93.08 69.69 6.67 58.88 26.67 11.25 53.33 28.92 0.00 7.94 0.00 2.65
DeepSeek-R1 60.83 69.43 8.33 57.86 82.72 78.90 16.00 62.79 44.44 0.00 44.44 35.55 0.00 1.59 0.00 0.53
o1-mini 40.33 65.43 18.33 46.25 63.04 32.10 0.00 31.78 43.33 7.50 43.33 36.16 0.00 0.00 0.00 0.00
o3-mini 31.48 60.10 71.67 45.49 50.14 20.00 1.33 23.13 25.56 7.50 25.56 21.95 0.00 31.75 0.00 10.58
QwQ-32B 78.59 61.05 13.33 65.49 64.76 22.80 4.00 29.12 12.31 0.00 34.44 14.27 0.00 0.00 0.00 0.00
SkyWork-OR1-32B 59.62 68.95 13.33 57.59 64.76 15.90 4.00 25.98 9.23 0.00 36.67 12.87 0.00 0.00 0.00 0.00

Average vs Human

Model-avg 57.01 59.21 23.50 46.57 57.15 33.04 8.53 32.91 23.72 3.63 31.78 19.71 0.80 5.72 0.00 2.17
Human-avg 75.96 82.02 71.72 77.51 84.65 77.78 44.25 70.38 75.75 29.49 89.90 65.05 49.68 76.16 16.16 47.33

of complexity. This data generation pipeline not only extends to large amounts of data with high
correctness, but also ensures scalability to conveniently integrate new rules.

4 EXPERIMENTS

In this section, we evaluate state-of-the-art large language models and investigate the following re-
search questions through experimental results: i) How do current LLMs perform in abstract reason-
ing across different cognitive levels? (Section 4.2); ii) As the complexity of dynamic data increases,
how will the LLM’s performance change? (Section 4.3); iii) Based on the performance of differ-
ent LLMs across various cognitive dimensions, to what extent has the model’s intelligence level
reached? (Section 4.3); iv) Is inference time scaling, visual information, and number of training
context samples, truly effective for abstract reasoning tasks? (Section 4.4).

4.1 EXPERIMENTAL SETTINGS

Evaluated LLMs. For completeness, we test 11 representative LLMs varying in parameters, vision
encoders, including close-sourced APIs and open-sourced LLMs. Close-sourced APIs from differ-
ent companies encompass GPT-4o (OpenAI, 2024a), OpenAI-o1 (OpenAI, 2024b), Claude-3.7 (An-
thropic, 2024) and OpenAI-o3-mini (OpenAI, 2025). Open-sourced LLMs include DeepSeek-
R1 (DeepSeek-AI et al., 2025), QwQ, Qwen2.5 (Yang et al., 2024a), and Skywork-OR1 (He et al.,
2025). See Supplementary Materials for details of evaluated LLMs. To reduce randomness, all
presented results of models are average results over three trials.

Evaluation Methods. In the DRE-Bench benchmark, accuracy serves as the primary evaluation
metric, defined as the proportion of samples for which the model’s output grid exactly matches
the ground-truth output grid. To avoid contingency, each variable contains 12 samples for each
value on average. All inferences are performed using the vLLM backend (Kwon et al., 2023). To
ensure fairness and consistency, we adopt the official standardized prompting template released by
ARCPrize (Prize, 2024).

4.2 MAIN RESULTS IN FOUR LEVELS

Based on the defined cognitive levels from psychology, we first evaluate model performance at each
level. The main results are presented in Table 1. Overall, as the cognitive level increases, model
performance exhibits a clear downward trend, which aligns with established rules in human cogni-
tive development. Among general LLMs, Claude-3.7 consistently achieves the highest performance
across all levels. Notably, it performs well even on Level 3 tasks, where many models struggle sig-
nificantly. When comparing general-purpose models with reasoning-specialized models, the latter
consistently outperform the former in terms of average cognitive level. Among the reasoning mod-
els, both OpenAI-o1 and DeepSeek-R1 demonstrate clear advantages. A substantial performance
gap is observed between vanilla LLMs and reasoning-enhanced LLMs—for example, QwQ-32B
versus Qwen2.5-32B—showing an average difference of over 20%.

Furthermore, as task difficulty increases, performance disparities among models become more pro-
nounced, highlighting the potential of incorporating dedicated reasoning paradigms for addressing
fluid intelligence problems. For Level 4 tasks, which require conceptual knowledge, all existing
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Figure 4: Model performance curves under varying complexities in four cognitive reasoning levels.

models fail, underscoring the current limitations of even advanced reasoning models. These find-
ings emphasize both the inherent challenges posed by our benchmark and its flexibility in revealing
model capabilities across a wide spectrum of cognitive demands.

What’s more, we conduct a human study to validate our cognitive-aligned data framework. We
extract 10% samples(about 400) from DRE-Bench based on its data distribution, and release a ques-
tionnaire to 40 professional annotators covering 19-50 age ranges. They are requested to fill out
the test output as LLMs evaluated. Specifically, we provided a salary of 30 dollars per hour to
each participant. The detailed age distribution of participants, UI interface, and readme instructions
are in Appendix E.4. We can observe in Table 1 that human accuracy also generally decreases
as the level increases, which validates the justification of our 4-level framework. Compared with
LLMs, human accuracy is slightly higher on average, indicating that existing LLMs have not yet
reached human-level abstract reasoning, which is consistent with studies (Chollet, 2019; Chollet
et al., 2025). Furthermore, we conducted an independent t-test on the distributions of models and
humans in Appendix Table 9. It demonstrates the statistical significance of humans’ and models’
results on DRE-Bench, further validating the data framework.

4.3 DYNAMIC TRENDS ACROSS DIFFERENT COGNITIVE LEVELS

Since our generator is capable of producing data with varying levels of complexity, we conduct a
fine-grained evaluation to assess model performance across data with different complexity. Figure 4
illustrates representative performance curves of nine LLMs for each cognitive level, with cases under
the same rule gradually increasing in difficulty. More task curves are provided in Appendix E.3.

As Figure 4, since tasks on the Level-1 Attribute involve basic enumeration without sub-
stantial cognitive demands, most models consistently achieved high average accuracy, and increases
in complexity had minimal impact. As for Level-2 Spatial, performance differences among
models became increasingly pronounced, lower-performing models continued to struggle with even
simple cases. Impressively, models with high accuracy remained robust, relatively unaffected by
the increase in case complexity. This suggests that these models have, to some extent, acquired the
capability to resolve spatial reasoning problems. Regarding tasks in Level-3 Sequential, we
observe a substantial performance drop as the number of required planning steps increases. Most
models can only manage the simplest scenarios, with a consistent failure point emerging when the
planning depth reaches two steps. This highlights that current LLMs remain limited in intelligence
and have yet to truly master such sequential rules. Finally, at Level-4 Conceptual, almost all
models fail to provide correct solutions, even in the simplest cases under the gravity rule, indicating
that current models have only a rudimentary grasp of physical concepts and have yet to internalize
even the most fundamental principles of intuitive physics. In general, as task complexity increases
across each cognitive level, the accuracy of models tends to decrease or fluctuate accordingly.

To further illustrate the performance and stability of each model on dynamic task variants, Figure 5
presents the mean accuracy and corresponding variance across different cognitive levels. Here,
we choose several top-performing models to analyze: o1, Claude 3.7, DeepSeek-R1, and QwQ-
32B. As shown in the figure, for the majority of Level-1 attribute tasks, OpenAI-o1, DeepSeek-
R1, and Claude-3.7 demonstrate strong performance and high stability. However, when the task
level increases to Level-2 spatial, Claude-3.7 exhibits substantial fluctuations in performance,
indicating limited generalization capabilities at this level. In contrast, OpenAI-o1 and DeepSeek-
R1 maintain comparable performance and stability to those observed at Level-1, highlighting
the advantage of reasoning models in solving more cognitively demanding tasks. Moreover, in
Level-3 sequential, most of the scatter points are concentrated in the lower-left region, suggesting
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Figure 5: Scatter plots of model accuracy versus variance in cognitive reasoning levels and corre-
sponding tasks, where points closer to the upper-left indicate higher accuracy and greater stability.

that current models struggle to generalize effectively across the more complex and varied tasks at
higher levels. The full results of accuracy versus variance on all evaluated models in Figure 14.

4.4 ABLATION STUDY

Impact of the Number of In-context Learning Samples. Previous work (Brown
et al., 2020; OpenAI, 2023; Work) has demonstrated the effectiveness of in-
context learning in enhancing models’ performance across some LLM tasks.
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Figure 6: The average accuracy of all eval-
uated LLMs on different in-context training
numbers.

Therefore in this section, we investigate how the
quantity of in-context samples affects performance
in the abstract reasoning scenario. The average re-
sults of all evaluated models are shown in Figure 6.

Overall, increasing the number of in-context sam-
ples helps models better capture underlying rules
and improve performance. In higher levels like
Level-2 Spatial, Level-3 Sequential
and Level-4 Conceptual, increasing the num-
ber of in-context training samples leads to notice-
able performance improvements. However, for
Level-1 tasks, increasing the number of sam-
ples yields limited improvement. This suggests that
adding more in-context examples has a limited im-
pact when the model has already mastered the task
or lacks the inherent capability to solve it.

Impact of the Auxiliary Visual Information. Previous studies (LeGris et al., 2024; Patterson
et al., 2014) have shown that humans tend to perform better on abstract reasoning tasks when the
grids are visualized, as visualization can aid in recognizing patterns and rules. Motivated by these
findings, we investigate whether adding auxiliary visual information can enhance model perfor-
mance. Specifically, we visualize each case by two formats: single-image, which presents all three
training input-output pairs along with the test input in a single image; and multi-image, which pro-
vides them as seven separate images. What’s more, we provide the CoT and non-CoT prompts
setting for visual information. Two common CoT instructions are employed: CoT1-“let’s think step
by step” (Kojima et al., 2022), CoT2-“let’s think step by step and reflect on whether your answer
is correct” (Shinn et al., 2023). GPT-4o and Claude 3.7 support at least seven images, therefore
Table 2 presents their experiment results across all four cognitive levels. Overall, neither adding
single-image nor multi-image format inputs can consistently outperform the text-only baseline, and
in some instances, accuracy even declines. These results suggest that current models struggle to
derive meaningful improvements in abstract reasoning from auxiliary visualized image inputs.

Impact of the Inference Time. It is demonstrated in (DeepSeek-AI et al., 2025; OpenAI, 2024b;
Qin et al., 2024; Huang et al., 2024) that inference-time scaling plays a crucial role in enhancing
model performance on reasoning tasks. Building upon these, we take a step to examine how the
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Table 2: Comparison of accuracy across text-only(-), single image (S-Img), multi-image (M-Img),
and CoT-augmented settings.

GPT-4o
Vision L-1 L-2 L-3 L-4

- 88.42 2.86 5.00 0.0
S-Img 78.95 1.44 0.00 0.00
S-Img + CoT1 78.87 1.17 0.00 0.00
S-Img + CoT2 79.11 2.86 0.00 0.00
M-Img 74.74 8.57 5.00 0.00
M-Img + CoT1 74.82 8.82 4.50 0.00
M-Img + CoT2 77.29 7.86 5.50 0.00

Claude-3.7
Vision L-1 L-2 L-3 L-4

- 95.26 25.71 45.00 15.87
S-Img 96.84 17.14 31.25 15.87
S-Img + CoT1 96.97 16.33 31.75 15.87
S-Img + CoT2 95.28 18.71 33.50 16.67
M-Img 97.89 17.14 35.00 12.70
M-Img + CoT1 96.73 17.14 34.50 14.13
M-Img + CoT2 97.14 16.86 35.25 13.33

model’s inference time varies as the complexity of reasoning tasks increases. According to related
methods, we use the response latency to measure the inference time. The results are presented
in Figure 7. We observe that at the low-level count task, as task complexity increases, the model
tends to engage in deeper reasoning and can effectively maintain relatively stable and high accuracy.
However, in high-level tasks (i.e., planning), even though the model’s inference time increases, it
still fails to solve the more complex cases. This indicates that simply increasing inference time is
insufficient to compensate for the model’s inherent limitations in high-level reasoning.
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Figure 7: Changing trend in o1’s accuracy and in-
ference time as task complexity increases.

Table 3: Results of direction and symmetry.

Move Symmetry

Model Up Down Left Right Horizontal Vertical

DeepSeek-R1 91.0 94.5 88.5 85.0 48 0
o1 80.0 86.5 76.5 77.0 12 8
Claude-3.7 82.0 95.0 48.0 44.0 52 36

o1-mini 15.0 34.0 53.5 57.5 0 0
Qwen3-32B 52.0 54.5 22.5 16.5 4 0
o3-mini 7.5 20.0 34.0 38.5 0 4
QwQ-32b 28.5 17.0 35.5 32.0 12 0
SkyWork-OR1-32B 5.5 4.5 31.0 37.5 12 0
GPT-4o 3.0 8.5 2.0 5.5 8 0
Qwen2.5-32B 1.0 0.0 0.0 0.0 0 0

4.5 CASE STUDY

Analysis of Spatial Orientations. Upon closer examination of the results, we find that current
models may demonstrate a distinct understanding of spatial orientation compared to humans. As
shown in Table 3, the models achieve higher and more consistent accuracy in vertical (up/down)
directions than in horizontal (left/right) ones in Move. Similarly, in symmetry tasks, performance
is better for horizontal symmetry than for vertical symmetry. However, from the perspective of
human cognition, directional distinctions are typically perceived as equivalent (Aflalo & Graziano,
2008; Ambinder et al., 2009). These findings suggest that current LLMs may exhibit systematic
divergences from human cognitive patterns in processing spatial orientation.

Analysis of Error Cases. As shown in Figure 8, we randomly select error cases from four cog-
nitive levels and visualize the model output alongside the corresponding ground-truth for analysis.
In Level-1 and Level-2, the differences between the model’s error predictions and the correct
answers are relatively subtle, indicating that the model roughly understands the required operation.
However, in Levels-3 and Level-4, the incorrect outputs become significantly more disorga-
nized and divergent from the ground truth, suggesting a complete failure to grasp the underlying rule.
This is especially evident in Level-4, where physical concepts pose substantial challenges to the
models. These observations highlight that as the cognitive level increases, the nature of model errors
becomes increasingly complex and unreasonable. The results of two auxiliary evaluation metrics:
grid size precision and grid matching percentage in Appendix E.2 also confirm this circumstance.
More detailed analysis of model failure modes on high-level tasks, see the Appendix Figure 16
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Level-1 Attribute

Input

Ground truth Model output

Level-2 Spatial

Input

Ground truth Model output

rule: Apply a horizontal symmetry 
operation，to each object on both 

sides of the central axis.

Level-3 Sequential

Input

Ground truth Model output

rule: From the red square, plan a 
path connecting blue squares. Each 
step, connect the nearest square 
directly in above/below/left/right.

Level-4 Conceptual

Input

Ground truth Model output

rule: Construct multi-reflection 
trajectory. The light will reflect 

upon the blue obstacle, and will be 
absorbed upon the red obstacle.

rule: Based on the regular 
patterns in the image, denoise to 

recover the complete image.

Figure 8: Error cases on o1: input, ground truth, and model output grids are visualized for each case.

5 CONCLUSION

In this work, we present DRE-Bench, a benchmark designed to evaluate the fluid intelligence of
large language models (LLMs) through abstract reasoning tasks. By combining a hierarchical task
design, a scalable generator–solver pipeline, and dynamic task instantiation, DRE-Bench provides
interpretability, scalability and robustness beyond prior benchmarks. Our experiments show that
while reasoning-oriented models outperform general LLMs, their accuracy declines as cognitive
level increases and case complexity rises. The results indicates that true fluid intelligence remains
out of reach for current LLMs. DRE-Bench offers a principled framework for tracking reasoning
progress and guide the development of future models with stronger generalizable intelligence.

ETHICS STATEMENT

This work complies fully with the ICLR Code of Ethics. No private, sensitive, or personally identi-
fiable information was collected or used. The study involves no human subjects, no experiments on
vulnerable populations, and no interventions requiring IRB approval. We confirm that our method-
ology and results do not raise foreseeable risks of harm, misuse, or ethical concerns beyond standard
scientific research practices.

REPRODUCIBILITY STATEMENT

We present DRE-Bench, a benchmark for evaluating the fluid intelligence of large language models
via abstract reasoning tasks structured in a four-level cognitive hierarchy. Compared with previous
benchmarks, DRE-Bench probes latent rules across tasks and variants to provide interpretability,
dynamic robustness, and scalability for tracking reasoning capabilities. We affirm the value of
reproducibility in scientific research and therefore summarize the details of dataset, method, and
experiments as follows:

• Dataset. The detailed document and distribution of DRE-Bench are in Appendix C.
And our dataset and all pairs of generator and solver have been available at
the anonymous github link https://anonymous.4open.science/status/
DRE-Bench-8098;

• Method. The prompt templates to instruct code agent are detailed in Appendix D;

• Experiment. Details about evaluated LLMs, results of two auxiliary evaluation metrics,
more dynamic evaluation curves, example of two visual formats, and detailed table of vari-
ance are in Appendix E;
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A APPENDIX

B LLM USAGE STATEMENT

We used LLMs(Gpt-5) to refine the writing, including checking grammar, polishing, and correcting
typos. To ensure the writing quality, we further check and refine all the LLMs generated text. We
assure that ideas, methods, code implementations, experiments, analyses, and conclusions aredone
by human researchers ourselves.

C DETAILS OF DRE-BENCH

C.1 DETAILED DATASET CONTENT AND DISTRIBUTION

To provide a more concrete overview of our dataset, we present its detailed composition and distri-
bution in the table 4 below. This includes the specific rules, tasks, and descriptions across the four
cognitive levels, along with the corresponding variables, variable ranges, and the number of data
samples for each task.

Table 4: Descriptions, cognitive levels, variables, value ranges, and examples of the six atomic
operations used in this paper.

Level Name Description Variable Value Range Number

Attribute
Size Change the size of the whole grid

or one object while maintaining the
rules.

size {10–30} 629

Count Change the number of grids to be
counted.

number {2–10} 570

Shape Change the shape of an object. shape {1–10} 450

Spatial
Moving Move the object several steps to-

wards one of {Up, Down, Left,
Right, Up Right}.

distance {1–30} 1500

Rotation Rotate the object around the {End-
point, Center}.

angle {0°, 360°} 108

Symmetry Perform {Vertical, Horizontal, Cen-
ter} symmetry of the object.

number {1, 9} 75

Sequential
Categorization Classify objects based on examples,

and apply the corresponding rule to
each category.

category {1, 6} 65

Sort Rearrange objects according to a se-
quential rule.

order {1, 9} 240

Planning Start from an object, plan and exe-
cute a path.

step {1, 9} 105

Conceptual
Gravity Objects in mid-air should fall down-

ward according to gravity.
number {1, 9} 63

Reflection The light reflects upon hitting walls. number {1, 9} 100
Expansion Objects expand when heated until

obstructed.
number {1–9} 50

Total – – – – 3955

C.2 DATASET DOCUMENT

We provide comprehensive documentation of our dataset along with its intended use cases. The
dataset and accompanying resources are available at the following link: https://anonymous.
4open.science/status/DRE-Bench-8098, which includes metadata, format details, and
so on.
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D DETAILS OF METHOD

Our method employs two sequential system prompts to instruct code agent to implement generator
and solver functions for each rule task. Based on the designed rule and corresponding constraints,
the first system prompt guides the LLM to generate a structured code-like rule description, And the
second system prompt translates this description into a complete Pygame program. We tested with
different LLM-based code agents, including Gemini 2.5-Pro, Claude Opus 4-thinking, GPT-o3, and
GPT-4o, and ultimately selected Gemini-2.5-Pro as the code agent in our experiments due to its
higher success rate of generation. This two-prompt design ensures a clear division between rule
modeling and executable code generation.

System Prompt 1: Rewrite the given rule and constraints into a structured rule description
"""
You are an imaginative world architect and a technical artist. Your mission is to fuse a

series of fundamental latent rules provided by the user (e.g., physics, math, artistic
concepts) to create a concrete, detailed, and dynamic virtual scene.

Your output must adhere to the following guidelines:
1. **Structured Output**: Use a clear key-value format to describe the scene, making it

easy to parse later.
2. **Code-like Description**: Use precise, quantifiable language, as if writing pseudocode

or a configuration file. Avoid vague, literary descriptions.

3. **Dynamics and Interaction**: Focus on describing the behavior of elements, their
interaction rules, and how they embody the user’s core rules.

Example Output Format:
Scene Name: [A creative name for the scene]
Core Rules: [Summarize the user’s concepts and how they are manifested in the scene]
Element List:
- Element A:
- Type: [e.g., Static Body, Dynamic Particle, Interactive Character]
- Visual Description: [A concise description of its appearance, material, color]
- Initial State: [Position coordinates, rotation angle, initial velocity, etc.]
- Behavioral Rules: [Describe how it moves, changes, and embodies the core concepts]

- Element B:
...

Physics & Interaction Rules:
- Rule 1: [e.g., Global gravity is set to a vector of (0, 0.1)]
- Rule 2: [e.g., When Element A and B collide, trigger a ’symmetrical’ bounce effect]
- Rule 3: [e.g., An element must find a path from a start to an end point, demonstrating ’

pathfinding’]
"""

System Prompt 2: Instruct the code agent to produce generator and solver fuctions based on
the detailed rule description.
"""
You are a senior Python game developer and an expert in using the Pygame library. Your task

is to write a single, complete, and executable Pygame program that simulates the scene
, strictly following the structured scene description provided by the user.

Your code must adhere to the following guidelines:
1. **Code Completeness**: Generate a single, complete Python script that includes all

necessary Pygame initialization, the main loop, event handling, and rendering code.
2. **Precise Implementation**: The code’s logic must accurately implement every element,

behavior, and physical rule from the scene description.
3. **Readability**: The code must be clean and well-commented. Especially in the parts

implementing core concepts (like gravity, pathfinding, rotation), explain how the code
corresponds to the design document.

4. **No External Assets**: Use Pygame’s drawing functions (e.g., ‘pygame.draw‘) to create
geometric shapes. Do not rely on any external image or audio files.

"""

E EXPERIMENTAL DETAILS

E.1 DETAILS OF EVALUATED LLMS

Table 6 lists the 11 representative LLMs examined in this study. To facilitate transparent comparison,
each model is annotated along four dimensions: Model Type (General models are trained for broad-
domain language generation, whereas Reasoning models have undergone additional fine-tuning or
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alignment specifically targeting reasoning tasks.), Param (Whenever the developer discloses the
parameter count, we report it verbatim. For proprietary APIs that do not reveal their scale, the entry
is marked “ –– ”.), Vision Modality, and Open-source.

E.2 RESULTS OF TWO AUXILIARY EVALUATION METRICS ON DRE-BENCH

To evaluate more thoroughly, we have provided the results of LLMs by their accuracy, the variance
of accuracy, and the accuracy curve. Besides, we further calculate two additional metrics to further
assess the model’s performance:

Grid Size Precision: checks if the LLM’s output grid size matches the ground truth (GT) grid. If
matching scores 1; otherwise, it scores 0. This assesses the model’s ability to handle grid dimen-
sions.

Grid Matching Percentage: the proportion of matching elements between the response and GT grids.
If the grid sizes are unequal, the score is set to 0. This percentage offers a finer-grained score.

Table 5: The average results of grid size precision/grid matching percentage/original accuracy in
four levels.

Level 1 Attribute Level 2 Spatial Level 3 Sequential Level 4 Conceptual

Model Size Count Shape Avg-1 Rotation Move Symmetry Avg-2 Category Sort Planning Avg-3 Optics Mechanics Thermal Avg-4

General LLMs

Claude-3.7 100/99/65 100/91/63 100/42/13 100/83/58 100/88/68 99/64/57 100/89/49 99/78/58 100/73/54 100/94/2 100/88/54 100/83/44 100/61/8 100/75/15 100/59/0 100/65/7
Qwen3-32B 91/90/61 100/95/71 100/45/18 96/82/60 100/67/51 90/42/29 36/20/1 77/43/27 85/57/7 83/77/3 100/63/8 88/64/7 64/22/0 100/50/0 100/51/0 88/41/0
GPT-4o 100/89/62 100/84/44 100/40/13 100/76/51 99/59/27 95/10/3 86/65/2 93/40/9 98/66/8 100/95/2 98/64/8 98/73/7 96/47/0 100/59/0 98/40/0 98/49/0
Qwen2.5-32B 72/61/44 100/78/28 100/29/6 89/60/35 67/18/5 17/1/0 5/3/0 28/6/1 91/54/4 63/58/1 93/38/7 84/51/4 96/42/0 93/34/0 66/33/0 85/36/0

Reasoning LLMs

o1 99/97/64 100/88/60 100/65/58 99/86/62 100/97/93 94/76/69 64/53/6 87/75/58 87/71/26 100/94/11 100/86/53 94/81/28 96/52/0 100/60/7 100/62/0 98/58/2
DeepSeek-R1 99/99/60 100/95/69 100/24/8 99/80/57 100/89/82 95/85/78 92/81/16 92/81/62 100/89/44 100/90/0 100/86/44 100/89/35 100/57/0 100/53/1 100/58/0 100/56/0
o1-mini 85/83/40 100/93/65 100/43/18 94/78/46 90/69/63 63/36/32 17/10/0 57/38/31 70/56/43 76/72/7 97/74/43 79/65/36 76/29/0 22/9/0 80/47/0 59/28/0
o3-mini 78/71/31 99/92/60 100/78/71 91/81/45 82/56/50 55/23/20 21/14/1 53/30/23 54/42/25 78/74/7 91/47/25 71/52/21 76/36/0 100/73/31 73/42/0 83/50/10
QwQ-32B 94/94/78 100/95/61 100/35/13 97/81/65 100/82/64 85/34/22 88/64/4 90/57/29 88/62/12 92/86/0 100/79/34 92/73/14 100/44/0 93/37/0 82/31/0 91/37/0
SkyWork-OR1-32B 93/92/59 100/95/68 100/43/13 97/82/57 100/85/64 64/27/15 94/71/4 83/57/25 96/62/9 100/92/0 100/80/36 98/75/12 100/44/0 96/43/0 2/0/0 66/29/0

As Table 5, most models have high grid size precision, indicating they can roughly infer the overall
size of the required output grid. Meanwhile, grid matching percentages are lower, but remain above
binary accuracy, suggesting that models often produce outputs close to the ground truth. And both
grid size precision and grid matching percentage decrease as cognitive level increases, consistent
with the original accuracy, validating our data framework.

Table 6: Evaluated LLMs in this study with type, specification, vision modality, and open-source
status

Model Name Model Type Param Vision Modality Open-source

Claude-3.7 General – Multi-modal No
Qwen3-32B General 32B Text-only Yes
GPT-4o General – Multi-modal No
Qwen2.5-32B General 32B Text-only Yes

o1 Reasoning – Multi-modal No
DeepSeek-R1 Reasoning 671B Text-only Yes
o1-mini Reasoning – Text-only No
o3-mini Reasoning – Text-only(API) No
QwQ-32B Reasoning 32B Text-only Yes
SkyWork-OR1 Reasoning 32B Text-only Yes

E.3 MORE DYNAMIC EVALUATION CURVES

Since our generator is capable of producing data with varying levels of complexity, we conduct
a fine-grained evaluation to assess model performance across different cognitive levels. The four
figures below illustrate performance curves of all rules corresponding to each cognitive level.

In the rules in Level-1, namely size, count, and shape, the models achieved relatively high average
accuracy and stable performance since these tasks involve basic enumeration without substantial
cognitive demands.
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Figure 9: Model performance curves under varying complexities in level-1.
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Figure 10: Model performance curves under varying complexities in level-2.
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Figure 11: Model performance curves under varying complexities in level-3.
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Figure 12: Model performance curves under varying complexities in level-4.
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Sample 1 Sample 2 Sample 1

Figure 13: Samples of visualization format to multimodal LLMs.

For the rotation, move, and symmetry rules in Level-2, performance gaps between models became
more obvious compared to Level-1. But models still remain stable in these rules, and haven’t
dropped much.

Regarding tasks in Level-3, we observe a substantial performance drop as the complexity of rules
increases, whether on category reasoning, sorting, or planning.

In Level-4, although the complexity of the cases is small, models still fail to provide correct
solutions and consistently present low accuracy.

E.4 VISUALIZATION FORMAT

To provide multimodal LLMs with visual information, we designed two methods for incorporating
the visual modality: one using a single image, and the other using multiple images. The figure 13
below shows some examples of single-image visual information. And multi-image means giving six
input and output images of training samples and one input image of a testing sample to the LLM,
respectively, and telling it what these images represent.

E.5 DETAILED TABLE

Since plotting the accuracy and variance of all models together would make the graph unclear (or:
cluttered), the Table 7 lists the specific accuracy and variance for each model to supplement the
scatter plot in the main text.

Table 7: Detailed model performance across reasoning tasks (Accuracy [%] / Variance)

Model Level 1: Attribute Level 2: Spatial Level 3: Sequential Level 4: Conceptual

Size Number Shape Rotation Move Symmetry Category Sort Planning Optics Mechanics Thermal

o1-mini 69.48/0.0133 65.43/0.0058 18.33/0.0814 63.04/0.0336 32.10/0.0215 0.00/0.0 43.33/0.0154 7.50/0.0069 43.33/0.0778 0/0.0 0.00/0.0 0/0.0
o3-mini 55.37/0.0131 60.10/0.0145 71.67/0.0381 50.14/0.0471 20.00/0.0173 1.33/0.0021 25.56/0.0183 7.50/0.0019 25.56/0.0180 0/0.0 31.75/0.0 0/0.0
gpt-4o 35.20/0.0271 44.48/0.0209 13.33/0.0156 27.30/0.0328 3.80/0.0082 2.67/0.0085 8.89/0.0354 2.50/0.0019 8.89/0.0143 0/0.0 0.00/0.0 0/0.0
Claude-3.7 50.48/0.0232 63.14/0.0037 13.33/0.0889 68.57/0.0599 57.80/0.0606 49.33/0.0853 54.44/0.0392 2.50/0.0044 54.44/0.1025 8/0.2 15.87/0.3 0/0.0
deepseek-r1 76.92/0.0074 69.43/0.0015 8.33/0.0114 82.72/0.0085 78.90/0.0159 16.00/0.0299 44.44/0.0169 0.00/0.0 44.44/0.1202 0/0.0 1.59/0.1 0/0.0
o1 80.79/0.0106 60.00/0.0063 58.33/0.0447 93.08/0.0101 69.69/0.0275 6.67/0.0064 26.67/0.0415 11.25/0.0436 53.33/0.1178 0/0.0 7.94/0.0 0/0.0
qwq-32b 78.59/0.0574 61.05/0.0190 13.33/0.0889 64.76/0.0440 22.80/0.0295 4.00/0.0192 12.31/0.0430 0.00/0.0 34.44/0.1247 0/0.0 0.00/0.0 0/0.0
skywork-32b 59.62/0.0405 68.95/0.0110 13.33/0.0456 64.76/0.0740 15.90/0.0167 4.00/0.0192 9.23/0.0340 0.00/0.0 36.67/0.0844 0/0.0 0.00/0.0 0/0.0
qwen3-32b 61.79/0.0574 71.05/0.0070 18.33/0.1347 51.43/0.0790 29.20/0.0353 1.33/0.0021 7.69/0.0580 3.75/0.0100 8.89/0.0099 0/0.0 0.00/0.0 0/0.0
qwen2.5-32b 44.72/0.1156 28.42/0.0260 6.67/0.0122 5.71/0.0270 0.20/0.0002 0.00/0.0 4.62/0.0210 1.25/0.0010 7.78/0.0062 0/0.0 0.00/0.0 0/0.0

E.6 SCATTER PLOTS OF ACCURACY VERSUS VARIANCE ON ALL MODELS

In Figure 5, we select several top-performing models and present their results. We now additionally
present the full results of all models in Figure 14, and we are still able to draw similar conclusions
to the main content.
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Figure 14: Scatter plots of accuracy versus variance on all models across four levels.

Figure 15: Results of inference time scaling in more models and more tasks.

E.7 MORE EXPERIMENTS OF INFERENCE TIME SCALING

To supplement Figure 7, we not only evaluated inference time on a larger set of models but also on
more tasks across four levels. To obviously reveal the trend of accuracy changing, we selected the
task with the highest average model accuracy for each level—namely, count, rotation, agent, and
mechanics. In addition, the Level-4 mechanics task is so challenging that only Claude 3.7, O1, and
O3-mini achieve non-near-zero accuracy. Thus, we expanded the inference-time experiments on the
four tasks using these three models.

As Figure 15, in the level-1 count task, as task complexity increases, the model tends to engage in
deeper reasoning and can effectively maintain relatively stable and high accuracy. In the Level-2 ro-
tation task, the models exhibit a clear trend: rotations by single multiples of 45° yield substantially
lower accuracy than rotations by multiples of 90°. This is reasonable, as prior studies (Appelle,
1972) have demonstrated that it is more difficult for humans to perceive lines at 45° diagonal orien-
tations. However, in high-level tasks (i.e., level-3,level-4), even though the model’s inference time
increases, it still fails to solve the more complex cases. This indicates that simply increasing infer-
ence time is insufficient to compensate for the model’s inherent limitations in high-level reasoning.

E.8 DETAILED ANALYSIS OF MODEL FAILURE MODES

In detail, we first visualized the model outputs for the Level-3 and Level-4 tasks and found that
the error patterns are highly diverse. Next, we compare errors made by different models on the
same task, and summarize some common error patterns from the Category, Planning, Gravity, and
Reflection tasks, as illustrated in Figure 16:

Category Task: In this task, most models were able to correctly identify the object blocks, but
failed to fill in the correct colors. A common issue was misunderstanding the color-to-category
correspondence (error 1, 2, 3). Another issue was missing objects during the recoloring process,
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(1) (2) (3) (4)

Correct Rule Transformation

(1) (2) (3) (4)

Error Patterns of LLMs

(1) (2) (3) (4)

(1) (2) (3) (4)

Rule: Classify several categories, and fill the corresponding 

colors. 1 box → blue, 2 boxes → green.

Rule: From the red square, plan a path connecting blue squares. Each 

step, connect the nearest square directly in above/below/left/right.

Rule: The blue line represents the ground, due to gravity, 

elongated objects will fall downward to ground.

Rule: Construct multi-reflection trajectory. The light will reflect upon 

the blue obstacle, and will be absorbed upon the red obstacle.

(1,2,3): wrong color-to-category correspondence, (4) uncolored object

(1,2,3): redundant connections, cause loops, (4) incomplete connections

(1,2): object stop falling in mid-air, (3,4) even pass through the ground

(1,2): only restate the input light, (3,4) produce symmetric patterns

Catrgory

Task

Planning

Task

Gravity

Task

Reflection

Task

Figure 16: Some typical error patterns in high-level tasks: Category, Planning, Gravity, Reflection

where some objects were left uncolored (error 4). However, most models were able to complete part
of the coloring task, indicating that they correctly identified some of the object categories.

Planning Task: Here, many models struggled with the required path-planning ability. A large
portion of cases produced redundant connections, causing the wrong loops instead of a directed path
(error 1, 2, 3). Conversely, others produced incomplete connections, only managed to construct
partial paths(error 4). This may be because the planning task involves multiple steps, which creates
substantial difficulty for models.

Gravity Task: In this task, several cases captured the basic physical sense that objects should move
downward, but how objects interact with the ground was captured incompletely. Some cases caused
the object to inadequate-descend (error 1, 2, stopping in mid-air), whereas others caused it to over-
descend (error 3, 4, passing through the ground), showing that they failed to correctly infer the
concept of gravity.

Reflection Task: Most cases did not get the rule that a light ray should reflect upon hitting obstacles.
Some outputs simply restated the input pattern (error 1, 2), while others produced symmetric patterns
that is irrelevant to the intended reflection (error 3, 4). Generally, models perform poorly on this
task, and compared with gravity, they show an even weaker understanding of the physical concept
of reflection.

E.9 MORE DETAILED DESIGN AND STATISTICAL ANALYSIS OF HUMAN EXPERIMENT

E.9.1 DETAILED AGE DISTRIBUTION

We further analyze the age distribution and geographical distribution of participants in the human
study, and the results are presented in Figure 17. We can see that the age distribution of our
participants is relatively balanced, embodying a certain degree of representativeness.
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Figure 17: The distribution of human participants’ age (2 years per bin).

E.9.2 SIGNIFICANCE TESTING

To perform significance testing, we calculate the standard deviation of human accuracy on different
tasks and conduct an independent t-test between the two distributions of human and model accuracy.

The standard deviation of human accuracy: The results of Table 8 show the standard deviation
among human participants in different tasks. Most standard deviations belong to a normal range
(less than 3), which can validate the credibility of our human study.

Table 8: The mean and standard deviation among human participants in different tasks.

Result Level 1: Attribute Level 2: Spatial Level 3: Sequential Level 4: Conceptual

Size Count Shape Rotation Move Symmetry Category Sort Planning Optics Mechanics Thermal

Mean 75.96 82.02 71.72 84.65 77.78 44.25 75.75 29.49 89.90 49.70 76.16 16.16
Std 0.93 1.42 1.61 1.67 1.64 1.34 1.70 1.57 1.52 1.52 1.61 1.23

Independent t-test between the two distributions of human and model accuracy: Furthermore,
based on the evaluation results of models and humans, we conducted an independent t-test on their
distributions. The p-values for all tasks are reported in Table 9, where the majority of values are
below 0.05. These results demonstrate the statistical significance of humans’ and models’ results
on our proposed benchmark, validating that the claimed conclusion—humans relatively outperform
current models—is well supported.

Table 9: Independent t-test between the two distributions of human and model accuracy. (t-statistic
/ p-value)

Result Level 1: Attribute Level 2: Spatial Level 3: Sequential Level 4: Conceptual

Size Count Shape Rotation Move Symmetry Category Sort Planning Optics Mechanics Thermal

t-statistic -3.7147 -1.1487 -3.0798 -1.7772 -3.8474 -2.9810 -2.2172 -2.2668 -5.0581 -3.6903 -9.9144 -2.8960
p-value 0.0014 0.2649 0.0061 0.0915 0.0010 0.0076 0.0390 0.0352 6.9822e-05 0.0015 6.0433e-09 0.0092
p-value< 0.05 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

E.9.3 THE AVERAGE SOLVING TIME PER TASK

Specifically, based on the dwell time on each question in the questionnaire, we computed the average
solving time for all participants across each task. Table 10 presents the average solving time and
accuracy of human participants for tasks on different levels. We can observe that, despite some
fluctuations, the average human solving time generally increases as the task level becomes higher.
This could further substantiate our claimed cognitive alignment and reveal the underlying difficulty
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gradient. However, we also note that for tasks with lower accuracy, the time spent by participants
does not decrease too much. This indicates that participants engaged in continuous reasoning and
attempts, rather than giving up quickly when the tasks were challenging, further substantiating our
human study.

Table 10: Average accuracy and solving time of human participants across cognitive levels. (sec-
onds)

Metric Level 1: Attribute Level 2: Spatial Level 3: Sequential Level 4: Conceptual

Size Count Shape Rotation Move Symmetry Category Sort Planning Optics Mechanics Thermal

Accuracy-avg 75.56 82.22 68.89 91.11 75.56 46.67 73.33 24.44 88.89 46.67 77.78 17.78
Time-avg 73.4 63.4 62.2 90.2 88.8 93.0 109.8 106.4 105.8 165.8 132.1 147.3

E.9.4 DETAILED INSTRUCTIONS OF THE QUESTIONNAIRE

We provided very clear instructions in the questionnaire README, which explained the definition
of abstract reasoning tasks, identified the given training samples, and explained how to fill in the
answers for the test samples. Such explicit and detailed instructions improve the usability of the
questionnaire and ensure the rigor of the human study. The specific instruction is as follows:

Detailed instructions of the questionnaire.
"""
Your task is to complete a questionnaire consisting of 400 questions. Each question is an

abstract reasoning task. To solve each question, you can follow the steps below:

1, Reason out the transformation rule by analyzing the three training sample pairs, namely
how the input grids are converted into corresponding output grids.

2, Apply the transformation rule to the test input grid and generate the correct test
output grid.

For convenience, the test output grid has been pre-initialized with the content of the test
input grid, so you can directly perform the rule-based transformation.

When you finish a question, click "Next" to proceed to the next one. After completing all
questions, click "Final Submit."

"""

E.9.5 THE UI INTERFACE DESIGN OF THE RELEASED QUESTIONNAIRE

We carefully designed the UI interface for the questionnaire and have open-sourced the UI code
at https://anonymous.4open.science/r/DRE-Bench-8098. To exclude potential influencing factors in
the human study, we adopted several user-friendly measures in the questionnaire design, mainly as
follows:

General interface. As the ui example in Figure 18, the first three rows correspond to the training
sample pairs, where the input grid is shown on the left and the output grid on the right. In the
fourth row, the left side displays the test input grid, while the right side is the test output grid that
participants must fill in.

To mitigate visual overload caused by large grids. Many of the abstract reasoning tasks involve
relatively large grids, often exceeding 15×15 in size. As previous research (Baddeley, 2012), hu-
mans could easily lose track of numerical positions within the grid, causing errors even when they
correctly understood the rule. In contrast, LLMs are less affected due to their strong ability to re-
state longer contexts (Hsieh et al., 2024; Bai et al., 2024). To fill this gap, we added row and column
numbers to the test input grid in the UI, making it easier for humans to locate specific positions (as
shown in the red box in Figure 19).

To reduce the unnecessary burden of reproducing large grids. In abstract reasoning tasks, the
ground truth output is derived from applying a transformation rule on the test input. Therefore,
in many tasks, a large portion of the output grid remains identical to the input. Since the restate
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Figure 18: The general UI interface of an example of abstract reasoning question

Figure 19: The marked row and column numbers of grids.

ability of models is stronger than humans (Hsieh et al., 2024; Bai et al., 2024), we initialized the
output grid with the input grid, helping humans to focus primarily on the reasoning logic and rule
transformation. (as shown in the red box in Figure 20).
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Figure 20: The output grid is initialized with the input grid, helping humans to focus primarily on
the reasoning logic and rule transformation.

Figure 21: The highlighted cells in the output grid that differ from the input grid in bright blue.

To highlight the actual reasoning operations. To further emphasize the reasoning logic, we visu-
ally highlighted all cells in the output grid that differ from the input grid in bright blue. This provides
a user-friendly and intuitive way to visualize the transformation human induced. (as shown in the
red box in Figure 21).

In summary, the final questionnaire version has undergone multiple rounds of review by the co-
authors. To exclude potential confounding factors, we have carefully designed UI enhancements to
make the questionnaire more accessible to human participants.
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