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Abstract
Real-time estimation of the target’s pose is crucial for spacecraft relative navigation. If the target is uncooperative and
unknown, i.e., with no prior information, the simultaneous localization and mapping (SLAM) technique is utilized to estimate
both the target’s pose and 3D shape. Several point-feature-based methods, such as ORB-SLAM, have recently been tested for
spacecraft rendezvous. However, point features perform poorly in weak-textured targets and illumination changes, commonly
appearing in space environments. This paper presents a monocular SLAM system using point and line features for spacecraft
relative navigation. The strengths of different features are fully explored. Specifically, the line feature extraction and matching
algorithms are improved, and Plücker coordinates for line representation are used to solve the endpoint inconsistency problem.
Moreover, the smoothing approach is utilized for better state estimation while the real-time performance is guaranteed.
Compared to the ORB-SLAM, our method is more robust and accurate in complex space environments. Experiments on a
challenging dataset demonstrate that adding line features can improve the system’s robustness and pose estimation accuracy
by 63.6% with a better 3D shape reconstruction. The algorithm runs at 17.83 Hz, satisfying the real-time requirement.

Keywords Relative navigation · Uncooperative and unknown targets · Visual SLAM · Pose estimation · Line features

1 Introduction

On-orbit service (OOS) missions have been conducted more
than 130 times since the 1960s [1] and have attracted rapidly
increasing attention in recent years. These missions involve
spacecraft maintenance and debris removal [2], aiming to
extend the spacecraft’s lifetime and protect limited orbital
resources. The service platforms of OOS can be divided into
space shuttles, space stations, and satellites [3]. Satellites
have the advantages of autonomy and flexibility. They are
the favored option for future development. During the OOS
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process, navigation to the target is an essential ability of the
service satellite (called the chaser), which enables the esti-
mation of the relative pose and feedback to the closed-loop
control system in real time.

According towhether targets are equippedwith navigation
aids, e.g., markers and radio frequency antennas, they can
be classified as cooperative targets or uncooperative targets.
Currently, most OOS missions are executed on cooperative
targets. For uncooperative targets, the relative navigation
problem is more difficult, which can be solved by model-
known methods and model-unknown methods [4]. If the
3D model of the target is known in advance, the pose can
be estimated by the Perspective-n-Points (PnP) algorithm
and appearance-based methods [5]. However, no prior infor-
mation about the target is common, such as for damaged
spacecraft and unknown space debris. Research has shown
that more than 100 unknown space objects float within the
geostationary orbit belt and need to be inspected, repaired,
and removed [6]. For uncooperative and unknown targets,
the target’s pose and 3D shape should be simultaneously
estimated. This technique, called Simultaneous Localization
andMapping (SLAM), has been developed for decades in the
robotics community. Compared to pose estimation, mapping

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s42405-024-00817-2&domain=pdf
http://orcid.org/0000-0003-3320-7668


International Journal of Aeronautical and Space Sciences

or 3D shape reconstruction is indispensable if the target is
uncooperative and unknown. In addition, the reconstructed
target’s 3D shape is helpful for downstream tasks, such as
close rendezvous and maneuvers.

Electro-optical (EO) sensors are popularly used for rela-
tive navigation of spacecraft. Comparedwith LightDetection
and Ranging (LIDAR), cameras have the unique advantages
of a wide field of view (FOV) and rich color information,
making them an essential part of the chaser’s awareness sys-
tem. The method utilizing cameras as input for SLAM is
called visual SLAM, one of the hottest topics in computer
vision (CV) research [7]. Cameras can be categorized as
monocular, stereo, and Time-of-Flight (ToF). Their charac-
teristics give rise to various visual SLAM methods suitable
for different rendezvous distances. The stereo and ToF cam-
eras can recover the absolute scale, but they are limited
by a small measurement range of less than 100m. Com-
pared with them, the monocular cameras are applicable
for far rendezvous distances greater than 1km. Although
the monocular cameras lose the absolute scale, there is
no risk of collision during far rendezvous. In addition,
lightweight, low-consumption, and flexible monocular cam-
eras are acceptable for small spacecraft. Therefore, this paper
focuses on monocular SLAM applied to the relative nav-
igation of uncooperative and unknown targets. It is worth
mentioning that there are deep-learning-based methods [8]
for monocular pose estimation. However, the performance
of the neural network strongly depends on the quality of
the training data, i.e., the difference between the source
domain and the target domain, which is still an issue for
space image datasets. Monocular SLAM can work regard-
less of prior information about the target; thus, it is a more
general method.

1.1 RelatedWork

There are two estimation approaches for visual SLAM, i.e.,
filtering and smoothing (or optimization). Augenstein and
Rock [9] first proposed a monocular SLAM method uti-
lizing the Rao–Blackwellized particle filter to estimate an
unknown target’s pose and 3D shape. The kinematic state is
propagated by the linear motion model while the target is
tracked and reconstructed by SIFT features [10]. However,
the angular rate and velocity of the target in themotionmodel
are regarded as constants. Later, they improved upon previ-
ous work by utilizing a hybrid algorithm to solve significant
noise covariance caused by the target’s unknown mass cen-
ter when considering dynamics in the motion model, where
the Bayesian filter was used to predict rotation, and the mea-
surement inversion was used to predict translation [11]. For
detailed motion modeling, Sonnenburg et al. [12] proposed
an extended Kalman filter SLAM (EKF-SLAM) integrated
with rendezvous kinematics and dynamics. Although this

method successfully adapts SLAM to the spacecraft ren-
dezvous problem, the design of the filter is complex, and the
target’s movement must be restricted to a circular orbit. To
simplify dynamic modeling, Barbier and Gao [13] used the
Gaussian Processes algorithm, a machine learning method,
to model the dynamics of a rotating spacecraft without esti-
mating inertia parameters. Then, an Error-State Kalman filter
is used to estimate the spacecraft’s pose and 3D shape. For
3D shape estimation, Schnitzer et al. [14] used the Random
Sample Consensus (RANSAC) algorithm [15] to remove
the outliers of the target’s 3D shape reconstructed by EKF-
SLAM. However, it is only a post-processing step and hence
has no contribution to pose estimation. A novel work com-
bined filter-based SLAM and Structure from Motion (SfM)
to refine the target’s 3D model [16]. SfM can construct a
dense model from multi-view images. Afterward, the 3D
model can be used to enhance the visual navigation.However,
SfM is an offline method and requires significant comput-
ing resources. Filter-based SLAM methods are mainstream
in related research [17], but they have several drawbacks
compared with the smoothing approach. On the one hand,
filters estimate the latest state depending only on the last
state under the first-order Markov hypothesis so that it might
converge to a local minimum. In contrast, the smoothing
approach estimates the latest state employing historical data,
whose performance is better than filters under the condition
of enough computing resources [18]. On the other hand, fil-
ters do not have an anomaly detection mechanism, leading
to a reconstructed 3D shape with many outliers.

With the development of spaceborne computers, smooth-
ing is a viable approach for the relative navigation of
spacecraft. Tweddle et al. [19] proposed a comprehensive
smoothing-based SLAM for a spinning space target. Incre-
mental smoothing and mapping (iSAM) [20] is adapted
to estimate the target’s movement and inertial parameters,
where the motion model incorporates rigid body kinemat-
ics and dynamics under the probabilistic factor graph, and
the target’s 3D shape is tracked and reconstructed by SURF
features [21]. The method was successfully evaluated in
the International Space Station microgravity environment.
Nonetheless, utilizing SURF features and the smoothing
approach requires extensive calculations, resulting in a low
frame rate. Owing to fast and robust ORB features [22], a
lightweight smoothing-based SLAM method, ORB-SLAM
[23], was applied to rendezvous to a spacecraft by Dor and
Tsiotras [24]. Unlike previous works, the relative dynamics
between the chaser and the target are not treated. Experi-
ments were conducted on a video captured from the Hubble
Space Telescope [25], which demonstrated the potential for
space application. If depth information is available from
range sensors, ORB features can be improved to ORBFPFH
features [26]. Yan et al. [27] employed it for accurate and
robust pose estimation for uncooperative and unknown tar-
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gets. Most existing filter-based or smoothing-based SLAM
methods leverage point features (SIFT, SURF, ORB, ORBF-
PFH) for visual tracking. However, they do not carefully
consider illumination changes and weak-textured targets,
which strongly affects the algorithm’s robustness, resulting
in tracking loss. Moreover, the target’s 3D shape represented
by a spare point cloud is difficult to recognize and is not
conducive to subsequent visual tasks. Several SLAM meth-
ods can directly manipulate pixels without feature extraction
for pose estimation and dense reconstruction. For exam-
ple, Large Scale Direct SLAM (LSD-SLAM) [28] has been
explored for spacecraft pose estimation [29]. However, these
methods are based on the grayscale invariance hypothesis,
which may be invalid in space environments with remark-
able illumination changes.

Fortunately, other features, such as lines and circles, can be
used for pose estimation in addition to point features.Meng et
al. [30] proposed a single perspective circle and line method
for satellite pose estimation. The line segment is used to elim-
inate the ambiguity caused by the duality of the circle and
recover the roll angle around the normal of the circle. Hu and
Jiang [31] improved the circle-based pose estimationmethod
with two lines, where descriptors are used to evaluate the
error levels under noisy conditions. These methods treat line
features as constraints for solving the singularity problem,
but the demand of an observed circle limits their application.
Liu et al. [32] used 2D–3D line correspondences for space-
craft pose estimation. 2D lines are extracted from images and
directly match the lines of the spacecraft’s 3D model, and
then PnP is used to estimate the target’s pose. Bechini et al.
[33] proposed a lightweight framework utilizing a learning-
based line segment detector with effective PnP (EPnP) to
calculate the target’s initial pose under the known 3Dmodel,
and then the junctions of line segments are used to refine the
pose by optimizing keypoint reprojection error. Zhang et al.
[34] utilized the target’s contour for pose estimation, where
2D–3D correspondences are established by contour feature
matching. Liu et al. [35] used different geometric primitives
of the target for pose estimation by geometric curve fitting,
where the pose was initialized by the target’s template. These
methods use other robust features instead of point features in
complex space environments. However, they highly rely on
prior information about the target’s 3D model or template.
The application of robust features for relative navigation to
unknown targets has not been explored yet.

Luckett [36] concluded that for spacecraft pose estima-
tion, point-feature-based methods are the most accurate but
with the worst robustness; circle-feature-based methods are
the most robust but limited by the small number of cir-
cles; line-feature-based methods are robust, and line features
frequently appear in artificial objects. Line features can be
extracted by Canny edge detector [37] followed by Hough
transform [38], which is commonly used for spacecraft edge

detection [39, 40]. However, they are sensitive to thresh-
olds with many false detections. Compared with them, Line
Segment Detector (LSD) [41] and Edge Drawing Lines
(EDLines) [42] do not require parameter tuning. Capuano
et al. [43] proposed parallel processing streams for robust
feature extraction, where Shi-Tomasi corner detection [44],
Hough transform, and LSD are employed to extract point and
line features of the spacecraft. Then, the feature synthesis
process retains the same features in all three sets. However,
utilizing several parallel algorithms increases the number of
calculations. Directly employing line feature detection algo-
rithms, such as LSD and EDLines, always leads to poor
real-time performance. Therefore, the primary consideration
of feature extraction is the trade-off between accuracy and
speed. Different from shallow handcrafted features, the neu-
ral network has a solid ability to extract high-level abstract
features. After training with a large amount of data, learning-
based methods achieve high accuracy and a fast inference
speed. Bechini et al. [33] exploredM-LSD [45] for spacecraft
edge detection to accelerate line feature extraction by a con-
volution neural network (CNN). However, before utilizing
the CNNmodel, it should be retrained on the domain dataset,
which still requires significant effort. In space environments,
illumination changes can cause pronounced variances in the
endpoints of lines, and lines are easily cut into many line
segments, which makes feature matching and reconstruction
more difficult. Until now, these problems have not been care-
fully considered in the research.

1.2 Contributions of Paper

This work focuses on monocular SLAM for spacecraft rel-
ative navigation in challenging space environments. The
strengths of point and line features are fully explored. Com-
pared with the existing research, the contributions of this
paper are as follows:

1) Amonocular SLAMmethod is applied to spacecraft rela-
tive navigation to the uncooperative and unknown target,
which is a difficult problem with no prior information
or assistance from range sensors. Different from filter-
based methods, smoothing-based SLAM is utilized for
state estimation with outlier detection. We are not con-
cerned about the dynamics of the target, which is feasible
for monocular-based far rendezvous because the target’s
inertia parameters are only needed if close operation.

2) Wecombine point and line features to handle illumination
changes and weak-textured targets. Point-feature-based
methods have high accuracy for pose estimation. Line
features are robust to illumination changes and are usu-
ally detectable in artificial objects. Specifically, different
line representations are used in our method. Plücker
coordinates are used for line reconstruction to solve the
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endpoint inconsistency problem, and the intuitive end-
point representation is used for the target’s 3D shape. In
addition, a unified cost function, including point and line
features, is utilized for state estimation.

3) Directly using the line feature detection algorithm can
lead to poor performance. Therefore, hidden parameter
adjustment is utilized to improve the speed of feature
extraction. Moreover, the rejection strategy is used to
discard the unqualified line segments, and the merging
algorithm is subsequently used to connect the discon-
tinuous line segments, which can generate longer line
segments for accurate line feature matching.

The rest of the paper is organized as follows: Sect. 2 states
the relative navigation problem modeled by SLAM; Sect.
3 details the proposed monocular SLAM method utilizing
point and line features; Sect. 4 validates our method on a
public rendezvous dataset; and finally, Sect. 5 provides con-
clusions and future work.

2 Problem Statement

This section illustrates the mathematical model of typi-
cal SLAM adapted to the relative navigation problem. Our
method does not restrict the target trajectory, but there is an
assumption that the target spins slowly without motion blur.
High-speed motion of the target can lead to image artifact,
which is a disaster for visual SLAM.

2.1 Reference Frames

State variables are calculated and expressed in different ref-
erence frames. It is essential to distinguish them to perform
accurate coordinate transformations. The definitions of the
reference frames refer to [24], shown in Fig. 1. Typically,
SLAMassumes the environment is static, with amobile robot
moving around. In our scenario, even though the target floats
and spins in space, SLAM is still applicable when consider-
ing the relative motion of a rigid body of the target.

Earth Centered Inertial (ECI) frame provides global coor-
dinates of spacecraft positions with respect to the Earth. It is
defined as E = {

E; êx , êy, êz
}
, where E is the origin located

at the center of the Earth, and êx , êy, êz ∈ S
2 are three orthog-

onal unit vectors. êz points along the Earth’s rotation axis
toward the poles, êx lies in the equatorial plane and points to
the equinox, and êy = êz×êx is determined by the right-hand
Cartesian coordinate system. The positions of the chaser and
the target expressed in the frame E are given by rES , rET ∈ R

3,
respectively, where S is the chaser’s center of mass, and T
is the target’s center of mass. Thus their relative position is
given by rE = rET − rES .

The chaser’s fixed-body frame describes the attitude
changes of the spacecraft itself. It is defined as S ={
S; ŝx , ŝy, ŝz

}
, where S is the origin, and the unit vectors

S = {
S; ŝx , ŝy, ŝz

}
are aligned with the chaser’s prin-

cipal axes of inertia. The frame S is calibrated before
launch. Attitude can be represented by rotation matrix, axis
angle, Euler angles, and quaternions. A group of rotation

Fig. 1 Reference frames for relative navigation
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matrices R forms a special orthogonal group SO (3) ={
R ∈ R

3×3|RRT = I , det (R) = 1
}
. Euler angles are intu-

itive for visualization, among which yaw, pitch, and roll
angles demonstrate rotation around ŝz, ŝy, ŝx , respectively.
Quaternions q are non-singular and usually used for calcu-
lation.

The camera’s fixed-body frame records the local coordi-
nates of the target under the camera’s view. It is defined as
C = {

C; ĉx , ĉy, ĉz
}
, where C is the origin located at the

optical center of the camera, ĉz is aligned with the camera’s
optical direction, ĉx is parallel to the x-axis direction of the
image plane, and ĉy = ĉz × ĉx . The coordinate transforma-
tion between the frameS and the frameC is known in advance
from the designer. For convenience, we usually treat the pose
estimation problem as the estimation of the target’s pose with
respect to the frame C instead of the frameS because features
are observed in the frame C.

Similarly, the target’s fixed-body frame is defined as
T = {

T; t̂x , t̂y, t̂z
}
, where T is the origin, and the unit vec-

tors t̂x , t̂y, t̂z ∈ S
2 are aligned with the target’s principal

axes of inertia. In our method, we are not concerned about
relative dynamics, i.e., T is not estimated. Instead, the tar-
get’s attitude is expressed by an interested frame selected by
the algorithm, called the feature frame. To some extent, it is
still a pose estimation problem because the only difference
between the frame T and the feature frame is a fixed coordi-
nate transformation. An obvious benefit is that it simplifies
the motion model without considering relative dynamics in
complex space environments.

Feature frame is used to express the localization of the
target’s components. It is defined as N = {

N; n̂x , n̂ y, n̂z
}
,

where N is the origin, and n̂x , n̂ y, n̂z ∈ S
2 are three orthogo-

nal unit vectors. The target’s components are represented by
point and line features. They consist of the target’s 3D shape,
i.e., the 3D map in the typical SLAM concept. The frameN
is determined by the algorithm in the pose initialization pro-
cess.

There are several coordinate transformations among these
reference frames. In a projective space P3 (Pn = R�=0 ×R),
for a homogeneous vector x̄A ∈ P

3 expressed in the frameA
and a homogeneous vector x̄B ∈ P

3 expressed in the frame
B, a rotation matrix RB

A ∈ SO (3) and a translation vector
tBA ∈ R

3 represents a rigid body transformation:

x̄B =
[
RB
A tBA
0 1

]
x̄A (1)

The transformation pair RB
A, tBA is equivalent to a trans-

formation matrix TB
A , given by:

TB
A �

[
RB
A tBA
0 1

]
(2)

A group of transformation matrix T forms a special

Euclidean group SE (3) =
{
T =

[
R t
0 1

]
∈ R

4×4|R ∈
SO (3) ,

t ∈ R
3
}
, whose continuous and smooth properties are used

for nonlinear optimization.
Pose estimation aims to calculate the rigid body trans-

formation TS
T . However, there is no information about the

frame T , which is not studied in this paper. Note that fea-
tures expressed in the frameN are initialized at time t0, and
we consider the frame N{t=t0} to be equivalent to the frame
T for representation of the target. After that, when the cam-
era tracks the target, N{t} changes over time. Thus, the pose
estimation objective is converted to calculate TS

N . For con-
venience, we usually estimate T C

N , given by:

T C
N =

(
TS
C

)−1
TS
N (3)

where TS
C is available for the designer. Here, we assume that

it is an identity matrix.
If the global location of the camera T E

C is available
by onboard sensors or Global Navigation Satellite System
(GNSS), the global location of the target T E

N can be calcu-
lated by:

T E
N = T E

C T C
N (4)

It is important to realize that monocular SLAM estimates
the pose T C

N with a scale ambiguity:

T C
N =

[
RC
N λtCN
0 1

]
(5)

where λ is a scale factor estimated by range sensors, which
is not considered in our method.

2.2 MotionModel andMeasurement Model

SLAM is a state estimation problem that is formulated as
follows:

xk = f (xk−1, uk) + ωk, k = 1, . . . , N (6)

zk, j = h
(
xk, y j

) + vk, j , j = 1, . . . , M (7)

For the motion model of Eq. (6), xk represents the target’s
pose with respect to the camera at time k, defined as xk =
T C
N {t=k}. For convenience, We denote this as xk = Tk . It

can be converted to the pose vector x = [
rT, qT

]T
, where

the position is r = [
rx , ry, rz

]T, and the attitude is q =
[q1, q2, q3, q4]T. uk is the control input obtained by motion
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sensors. ωk is noise under zero-mean Gaussian distribution
with covariance Rk . The target’s pose is propagated by f (·)
(here xk is regarded as the pose vector):

xk = xk−1 + ẋk−1�t + ωk (8)

where �t = tk − tk−1 and ωk ∼ N (0, Rk). There are two
reasons for modeling f (·) as a speed motion model. First,
because the target is in motion, the maneuver of the chaser is
not equal to uk , i.e., the relative motion depends on both the
chaser’s movement and the target’s movement. One solution
is to use the relative speed for pose propagation, which is
calculated by the two previous estimated poses. Second, not
considering rendezvous dynamics can simplify the motion
model in complex space environments.

For the measurement model of Eq. (7), y j represents the
j th feature composing the target’s 3D shape, and zk, j is the
measurement of y j at time k. vk, j is noise under zero-mean
Gaussian distribution with covariance Qk, j . Here, h(·) is a
pinhole camera model projecting the 3D world onto the 2D
image, shown in Fig. 2.

First, the feature PN = [X ,Y , Z ] expressed in the frame
N is transferred to PC = [

X ′,Y ′, Z ′] expressed in the frame
C. Then it is projected onto the image plane pC = [x, y, z]

under a pinhole camera model, where the feature loses depth
information. After that, images are generated on the pixel
plane [u, v]. The process is calculated by:

Z

⎡

⎣
u
v

1

⎤

⎦ = K PC = [K |0] T C
N P̄N

=
⎡

⎣
fx 0 cx 0
0 fy cy 0
0 0 1 0

⎤

⎦
[
RC
N tCN
0 1

]
⎡

⎢⎢
⎣

X
Y
Z
1

⎤

⎥⎥
⎦ (9)

K is the intrinsic matrix of the camera, calibrated by [46],
where fx = α f , fy = β f , and

[
cx , cy

]
are the pixel coordi-

nates of the center of the pixel plane. α is the scale factor of
the x-axis from the image plane to the pixel plane, β is the
scale factor of the y-axis from the image plane to the pixel
plane, and f is the focal length.

For the 3D features y j and its 2D measurement zk, j ,
according to Eq. (9), the projection process is modeled as
follows:

sz̄k, j = K
(
Rk y j + tk

) + vk, j (10)

Fig. 2 The measurement model
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where s is the depth of the feature y j , Rk, tk are the rota-
tion matrix and the translation vector of the target’s pose Tk ,
respectively, and vk, j ∼ N

(
0, Qk, j

)
.

The state is predicted by the motion model and updated
by the measurement model. If the initial state x0, the control
input uk , and the measurement zk, j are known, the pose xk
and the features y j can be iteratively estimated according to
Eq. (6) and Eq. (7), which is known as the filter approach.
For the smoothing approach, a batch of data is utilized for
better estimation, which can be divided into full SLAM
that processes all historical data (called global optimization)
and sliding-window-based SLAM that processes data within
the window length (called local optimization). Considering
real-time performance, it is impractical to implement global
optimization constantly. Thus, global optimization is exe-
cuted only at some special moments while local optimization
is used for ordinary processing.

To model the batch state estimation problem, we define:

x = {x1, . . . , xN } (11)

y = {y1, . . . , yM } (12)

u = {u1, . . . , uk} (13)

z = {
z1, j , . . . , zk, j

}
(14)

The SLAM problem is viewed as solving the probability
distribution of x, y with known control input u and measure-
ment z, i.e., P (x, y|z, u). Using the Bayes rule, we have:

P (x, y|z, u) = P (z, u|x, y) P (x, y)

P (z, u)

∝ P (z, u|x, y) P (x, y) (15)

It is difficult to solve the posterior probability distribution
directly, and we would like to find the optimal estimate of the
state. Generally, we do not know the prior P(x, y), and then
it turns to a maximum likelihood estimation (MLE) problem
(equivalently minimizing the negative log-likelihood):

(x, y)∗ = argmax P (z, u|x, y)
= argmin− log P (z, u|x, y) (16)

Assuming that each input and measurement is indepen-
dent, we have:

P (z, u|x, y) =
∏

k

P (uk |xk−1, xk)

∏

k, j

P
(
zk, j |xk, y j

)
(17)

Furthermore, because ωk ∼ N (0, Rk) and vk, j ∼
N

(
0, Qk, j

)
, we have:

P (uk |xk−1, xk) ∝ exp

(
−1

2
(xk − f (xk−1, uk))

T R−1
k (xk − f (xk−1, uk))

)
(18)

P
(
zk, j |xk, y j

) ∝ exp

(
−1

2

(
zk, j − h

(
xk, y j

))T
Q−1

k, j

(
zk, j − h

(
xk, y j

))) (19)

Substituting Eq. (17), Eq. (18) and Eq. (19) into Eq. (16),
the MLE problem turns to the least squares problem:

(x, y)∗ = argmin
∑

k

(xk − f (xk−1, uk))
TR−1

k (xk

− f (xk−1, uk)) +
∑

k, j

(zk, j − h(xk, y j ))
TQ−1

k, j

(
zk, j − h

(
xk, y j

))
(20)

The errors of each input and measurement are defined as
follows:

euk = xk − f (xk−1, uk) (21)

ezk, j = zk, j − h
(
xk, y j

)
(22)

Therefore, Eq. (20) can be simplified as follows:

(x, y)∗ = argmin
∑

k

eTuk R
−1
k euk +

∑

k

eTzk, j Q
−1
k, j ezk, j (23)

This can be solved by the nonlinear optimization method.
Actually, we do not consider the motion error because uk is
unavailable. Despite that, the motion model can provide an
initial estimated pose, and then the pose is optimized based
on the measurement error, which is detailed in Sect. 3.1.3.
Finally, we construct a least squares problem that includes
only the measurement error:

min J (x, y) =
∑

k

eTzk, j Q
−1
k, j ezk, j (24)

3 Methods

This section introduces our method adapted from the ORB-
SLAM [23]. Typical SLAMalgorithms consist of a front-end
tracking thread and a back-end mapping thread, which can
simultaneously estimate the camera pose and reconstruct
the environment. In addition, a loop closure thread is uti-
lized to detect the place where the camera has been seen
before, and then a similarity wrap is performed to correct
the cumulative errors. The multi-threaded strategy ensures
the system’s real-time requirement. ORB-SLAM follows the
above framework with a faster running speed. Unfortunately,
point features are not robust for spacecraft relative naviga-
tion due to illumination changes and weak-textured targets.
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Fig. 3 The proposed architecture

Therefore, the proposed method incorporates point and line
features to improve the system’s robustness. The algorithm’s
architecture is shown in Fig. 3. The difference between the
ORB-SLAM and our method is especially highlighted in
pink. We do not consider loop closure for fair performance
comparison because the ORB-SLAM can not work well in
our experimental conditions. More details are introduced in
the following.

3.1 Front-End: Target Tracking

Some image pre-processing processes, including mask crop-
ping and Gaussian filtering, should be considered. Object
detection must be implemented first because the target occu-
pies only a small portion of the image area. In this work,
we do not focus on this problem and use a mask to crop the
target from the background. After that, Gaussian filtering is
employed for image noise. Then, the sequence images are
fed into the tracking thread.

3.1.1 Feature Extraction

Implementing ORB features is consistent with the ORB-
SLAM, except for assigning features by quadtree. The
quadtree divides the image into several small squares, and
then the ORB features with high quality are uniformly sam-
ples from the squares. This strategy can improve the accuracy

of pose estimation. However, we do not adopt the quadtree
because the target is weak-textured so that a few ORB fea-
tures can be detected for pose estimation.

Line features are extracted by Line Segment Detector
(LSD) [41]. However, directly employing LSD leads to poor
real-time performance. Therefore, we use hidden parameter
adjustment to improve the speed of feature extraction. Fu et
al. [47] reported that although LSD does not require param-
eter tuning, several hidden parameters can be modified to
speed up detection: the scale of the image s = (0, 1] and the
minimal density threshold d. The scale s is used for image
downsampling before detecting line segments. The smaller
the image size, the fewer pixels need to be processed, i.e.,
with faster speed. The minimal density threshold d is used
to reject pixels with small gradients for line segment gen-
eration. The generation speed can be improved by reducing
the number of considered pixels. These parameters should
be selected considering the trade-off between accuracy and
speed.

In this work, we set s = 0.6 (default 0.8) and d = 0.6
(default 0.7) by controlled variable studies, shown in Fig.
4. We run the algorithm with different parameter settings.
Root mean square error (RMSE) of absolute trajectory error
(ATE) [48] is used to calculate the accuracy of pose estima-
tion. Notice that decreasing the parameter s can significantly
reduce the time consumption with negligible accuracy loss,
and the effect of reducing the parameter d is limited because
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Fig. 4 Hidden parameter adjustment

most areas of images are black space backgrounds with small
gradients.

Line features are described by Line Band Descriptor
(LBD) [49], which is used for line feature matching. Before
computing the LBD of line segments, we implement a
rejection strategy and merge disconnected line segments
for accurate line feature matching. The rejection strategy
includes two stages, i.e., length suppression and response
suppression. We consider the line segments whose lengths
are less than 30 pixels to be noise. This process also rejects
some real short-line segments, but their contribution to state
estimation is negligible. Furthermore, we preserve only the
top 40 line segments with the largest response, which can
decrease the number of line segments to accelerate thematch-
ing process. After that, we utilize a merging algorithm to
connect line segments from the same line.

We adopt the merging algorithm [50] to connect line
segments. First, line segments are sorted in descending

order according to length to reduce the impact of short-line
segments because long line segments are credible with con-
tinuously strong gradients. Then, line segments are clustered
based on angular similarity and spatial proximity, shown in
Fig. 5. Line segments are clustered with different colors. In
particular, the line segments with white color are not classi-
fied.

Suppose all line segments are involved inL . For the line
segment L1, the group G1 with close angular similarity is
selected by:

G1 = {∀L2 ∈ L : |θ2 − θ1| < τθ } (25)

where θ1, θ2 are the angles of L1, L2, respectively, and τθ is
set to 4 degrees.

Line segments are further grouped based on spatial prox-
imity. Specifically, the distances between the endpoints of L1

and the endpoints of L2 are calculated, and then the group
G2 with close spatial proximity is selected by:
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Fig. 5 Grouping line segments

Fig. 6 Line segment merging

G2 = {∀L2 ∈ G1 : d (s1, s2) < τs ∨ d (e1, e2) < τs

∨ d (s1, e2) < τs ∨ d (e1, s2) < τs} (26)

where sn, en are the start point and end point of Ln , respec-
tively, d(·) is the Euclidean distance, and τs = ξs |L1| is an
adaptive thresholds related to the length of L1. Here, we set
ξs = 0.2.

Afterward, the line segments in group G2 are merged
according to theperceptionofmergeability,which is inversely
proportional to the length of the shorter line segment, angu-
lar difference, and relative spatial distance. Finally, the newly
generated line segment is rejected by a threshold τ ∗

θ , repre-
senting the angular difference between the new line segment
and L1, calculated by:

τ ∗
θ =

(
1 − 1

1 + e−2(λ−1.5)

)
τθ (27)

where λ = |L2||L1| + d
τs

(d is the closest distance between the
endpoints of L1 and the endpoints of L2).

The merging algorithm is the post-processing of line fea-
ture detection, shown in Fig. 6. There are 40 line segments
detected at first.Aftermerging, 25 line segments are reserved.

In the line feature matching process, mismatches may
occur. Line segment merging algorithm is helpful to improve
matching performance, shown in Fig. 7. We use the angle
histogram to detect outliers, whose angles are significantly
different from the overall. The outliers are colored in yel-
low. There are 5 outliers before merging among 37 matching
lines. After merging, there is no outlier among 14 matching
lines. In this way, the accuracy of feature matching can be
improved.

3.1.2 Initialization

If there are enough point features with accurate matching
between two images, the initialization process executes the
same as the ORB-SLAM. We briefly introduce the estima-
tion of the transformation R, t between two image frames.
Assuming that pixels on the first frame is p1 = [u1, v1]T, and
pixels on the second frame is p2 = [u2, v2]T, they satisfy the
epipolar constraint:
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Fig. 7 Line feature matching by
LBD

p̄T2 K
−Tt∧RK−1 p̄1 = 0 (28)

where K is the camera intrinsicmatrix and t∧ =
⎡

⎣
0 −t3 t2
t3 0 −t1
t2 t1 0

⎤

⎦

is the skew-symmetricmatrix of t = [t1, t3, t3]T. Eq. (28) can
be simplified as follows:

xT2 Ex1 = 0 (29)

where x1 = K−1 p̄1, x2 = p̄T2 K
−T and E = t∧R, called

essentialmatrix. Theunknownparameters of thematrix E are
eight up to a scale for the monocular camera. It is calculated
by the eight-point algorithm [51]. Finally, the singular value
decomposition (SVD) is used to recover the transformation
R, t from the matrix E with positive depth verification.

After successful initialization, the initial two images’
3D point and line features are constructed by triangulation,
which is detailed in Section 3.2.1. The feature frame N is
considered to coincide with the first camera frame. Once we
have defined the feature frameN , we can estimate the target’s
pose T C

N according to themotionmodel and themeasurement
model. Meanwhile, the target’s 3D shape is simultaneously
reconstructed from the keyframes.

3.1.3 Pose Estimation

As mentioned above, the initial pose is provided by the
motion model, and then the refined target’s pose is optimized
by the measurement error. The measurement error is calcu-
lated by the reprojection process, shown in Fig. 8. p, p′ are
the projected point and the matching point, respectively. The
projected line segment l is represented by the endpoints xs
and xe. Its matching line segment l ′ is represented by the
endpoints x ′

s and x ′
e.

Fig. 8 The reprojection error

When 3D features are projected onto the current frame, the
projected 2D features are inconsistent with their correspond-
ing measurements. The correspondence 2D features with the
minimumHamming distance are searched byORB for points
and LBD for line segments. Then, the reprojection errors of
point and line features are defined as:

Ep : ∥∥p − p′∥∥ (30)

El : {d1, d2} =
{
xTs l

′
c, x

T
e l

′
c

}
(31)

where ‖·‖ is the Euclidean distance, and l ′c is the line coeffi-
cient calculated by:

l ′c = x̄ ′
s × x̄ ′

e∥∥x̄ ′
s × x̄ ′

e

∥∥ (32)

We utilize a unified cost function including point and line
features [52] to represent the reprojection error of the cur-
rent frame. The error terms are comparable when lines are
represented by their endpoints. Considering the reprojection
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errors of 3D points Xi on the image Ik represented by ei, j ,
and the reprojection errors of 3D lines L j on the image Ik
represented by e′

k, j = d1 and e′′
k, j = d2, the cost function is

given by:

J = eTk,i

−1
k,i ek,i + e′T

k, j

′
k, j

−1e′
k, j + e′′T

k, j

′′
k, j

−1e′′
k, j (33)


k,i ,

′
k, j ,


′′
k, j are the covariance matrices related to the

detected scale levels of the point and line features. Eq. (33)
is solved by the Levenberg–Marquardt algorithm [53]. In the
tracking thread, we optimize only the target’s current pose,
while in the reconstruction thread, we use bundle adjustment
to optimize both the target’s pose and the 3D features, which
is detailed in Sect. 3.2.2.

In the optimization process, we detect outliers using the
chi-square test. The reprojection error e obeys zero-mean
Gaussian distribution with its correspondence covariance �.
The higher the number of pyramid layers is, the lower the fea-
ture extraction accuracy with larger covariance. The statistic
of the chi-square test is calculated by r = eT�−1e. For the
monocular camera, the statistical threshold is set to rt = 5.99
at a significance level of 0.05. Thus, we consider the features
as outliers if r > rt .

If the tracking of the target is lost, we perform relocaliza-
tion. All 3D point features project onto the current frame, and
the target’s pose is estimated by the EPnP algorithm [54].

3.2 Back-End: Target Reconstruction

The target is tracked continuously while its 3D shape is
estimated by the reconstruction thread. For real-time perfor-
mance, the keyframe strategy is utilized as a sliding window.
Keyframes are selected according to the number of observed
features of the current frame and the duration between the last
keyframe and the current frame. More observed features and
longer durations vote for the current frame as the keyframe.
We only operate the keyframes for the target’s 3D shape
reconstruction.

The number of keyframes increases with the time passing
by. Thus, we conduct keyframe culling to reduce redundancy
in the final process of the reconstruction thread. If the fea-
tures of the current keyframe can be abundantly observed for
the other keyframes, we consider the current keyframe to be
redundant and delete it.

3.2.1 Map Creation and Culling

The map concept for typical SLAM is the same as the tar-
get’s 3D shape in our problem. Themapmodule manages 3D
features, keyframes and covisibility graph. Specifically, the
covisibility graph is created to save the co-view relationship
between keyframes. Two keyframes have a co-view relation-
ship if they observe several of the same features. It is used in

the optimization process to search related keyframes and 3D
features.

In the map, 3D features are reconstructed by triangu-
lation. For line features, we can directly triangulate their
endpoints like point features. However, it will cause a sig-
nificant error because differences in the matching endpoints
are pronounced under illumination changes, shown in Fig.
9(a). To solve the endpoint inconsistency problem, we uti-
lize Plücker coordinates to represent an infinite 3D line. In
Plücker coordinates, a 6D vector L = (

mT , dT
)
is used to

describe a 3D line, where m ∈ R
3, called the momentum

vector, is normal to the plane of the line L intersecting the
origin, and d ∈ R

3 represents the line direction, shown in
Fig. 9(b). The 3D line can be reconstructed by forward pro-
jecting the matching 2D line segments l1 and l2 from two
images [55]. There are two 3D planes π1 and π2 across the
line segments and the viewpoints, shown in Fig. 9(c), which
are calculated by:

π1 = PT
1 l1, π2 = PT

2 l2 (34)

where Pi = [K |0] Ti is the 3×4 projection matrix involving
the camera’s intrinsic and its pose, and li = x̄is × x̄ie.

Then, the Plücker coordinates of the 3D line can be
extracted from the dual Plücker matrix L∗, given by:

L∗ = π1π
T
2 − π2π

T
1 =

[
[d]× m
−mT 0

]
(35)

Finally, we covert the Plücker coordinates to the endpoints
representation by endpoint trimming [56], shown in Fig. 9(d),
which is implemented by selecting a line segment lt parallel
to the image’s x-axis and creating a plane πt for cutting:

πt = lTt P (36)

p̄t = L∗πt (37)

where P is the projection matrix, and pt is the 3D trimming
point. In this way, the target’s 3D shape is intuitively visible,
and the line projection process is much easier when directly
projecting the endpoints.

We also perform outlier detection for line reconstruction
by checking the depth and the reprojection error of the 3D
line. If the depth of the endpoint is negative or far from the
3D point features, we delete the line segment. In addition, if
the reprojection error of the midpoint of the line segment is
large, we also delete the line segment.

For map culling, 3D features are compared with their
nearby features via descriptors. Similar features are fused
by deleting redundant features. Thus, the number of features
can be kept at a reasonable size.
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Fig. 9 3D line reconstruction

3.2.2 Bundle Adjustment

Bundle adjustment (BA) is used to optimize both the target’s
pose and the location of the 3D features by minimizing the
measurement error. BA considers a batch of poses Tk and
features y j selected by the covisibility graph, and the opti-
mization problem is defined as follows:

min
∑

k, j

∥∥zk, j − h
(
Tk, y j

)∥∥2 (38)

According to Eq. (33), the cost function of BA is given
by:

J =
∑

i, j,k

ρ
(
eTk,i


−1
k,i ek,i + e′Tk, j
′

k, j
−1e′k, j + e′′Tk, j
′′

k, j
−1e′′k, j

)

(39)

where ρ(·) is .
We utilize a factor graph to model the optimization prob-

lem, shown in Fig. 10. If we only optimize the posewith fixed
features, the problem is modeled as a hypergraph consisting
of unary edges and one vertex. Tk is the estimated pose, and
ek,i , ek, j are the measurement errors. When we simultane-
ously optimize poses and features, vertices include poses and
features, and binary edges represent the measurement errors
if the poses observe the features. Graph optimization can be
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Fig. 10 Graph optimization

solved by some libraries [57]. For real-time performance, we
operate up to 20 keyframes for the BA.

4 Experiments

The proposed method is validated on a challenging dataset,
the Satellite Hardware-In-the-loop Rendezvous Trajectories
(SHIRT) dataset [58], which includes sequential images of
a mockup satellite in simulated rendezvous trajectories. We
use the subset of the SHIRT dataset containing 230 synthetic
images from OpenGL in the ROE1 rendezvous scenario,
where the chaser maintains the along-track separation while
the target spins around one principal axis, shown in Fig.
11. When the light condition changes, it is hard to detect
enough point features on the textured-less Tango spacecraft.
However, our algorithm can still work with the help of line
features.

Experiments are conducted by an Intel Core i5-10400F
CPU (2.90 GHz) with 8GB of memory, and the codes are
written in C++. Due to the randomness, we run each algo-
rithm five times. We show the quantitative analysis of the
estimated pose and the qualitative analysis of the estimated
3D shape. In addition, we test the running time for the
real-time requirement. All trajectories are derived from the
estimated pose and aligned by a similarity warp with respect
to the ground truth (GT).

For comparison, the ORB-SLAM is conducted on the
same dataset. The results of the pose estimation of the ORB-
SLAM are shown in Fig. 12. The estimated pose is drawn
in solid lines, while the GT is drawn in dashed lines. The
GTs show that the target is rotating around the z-axis, caus-
ing periodic motions of the y-axis and the z-axis, and the
r -angle varying from -180◦ to 180◦. Meanwhile, the chaser
is approaching the target along the x-axis, causing the dis-
tance to decrease slowly.

Until there are enough point features for initialization,
the chaser continuously estimates the target’s pose from
the sequential images. Because the ORB-SLAM performs
poorly on weak-textured targets under illumination changes,
tracking of the target is frequently lost. As shown in experi-
ments 1, 2, 3 and 4, the tracking of the target is almost lost
at about 2 s to 3 s. In experiment 5, although the chaser can
relocate and keep tracking with the help of relocalization,
the estimated pose has significant errors. The largest offset
of the translation part is 0.179 m (up to a scale), and the
largest offset of the rotation part is 1.776 (unit-less). Large
errors always appear around tracking loss, which is unaccept-
able for relative navigation. The results show that using only
point features for SLAM is not robust and has low accuracy
in harsh space environments.

To improve the system’s performance,we add line features
to the ORB-SLAM. The same configurations for ORB fea-
tures are employed. The result of the pose estimation of our
method is shown in Fig. 13. Comparedwith theORB-SLAM,
our method can effectively improve the system’s robustness.
Even though the tracking of the target is lost, the chaser can
relocate quickly by EPnP due to accurate 3D shape recon-
structionwith the help of line features. Thus, large pose errors
would not appear around tracking loss. Overall, the estimated
pose is basically consistent with the GT. There are fluctua-
tions of the x-axis, the pitch angle, and the yaw angle, but the
errors are still small. The largest offset of the translation part
decreases to 0.026 m (up to a scale), and the largest offset
of the rotation part decreases to 0.343 (unit-less). The result
illustrates that although fluctuations occur when point fea-
tures decrease abundantly, our method can robustly track the
target with the help of line features.

To further analyze the accuracy of the pose estimation, we
utilize the metric of Absolute Trajectory Error (ATE) [48].
ATE is used to evaluate the overall consistency between the
estimated trajectory and the GT. We consider the full trans-
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Fig. 11 The performance of feature tracking

formation, including the translation part and the rotation part,
to calculate the unit-lessATE. In Fig. 14, the curve of theATE
shows that the ORB-SLAM performs well at the beginning
because there are enough point features. However, under the
conditions of illumination changes and the weak-texture tar-
get, the number of detected point features reduces, and the
estimated pose has significant errors, especially around the
moments of tracking loss, which is reflected in the peaks of
the ATE.

For our method, we report the ATE of the median result
of the five executions, shown in Fig. 15. For quantitative
analysis, we calculate the statistics of the ATE. The accu-
racy of the ORB-SLAM is strongly affected by tracking loss
with a large maximum and standard deviation of the ATE.
However, the minimum and the median of the ATE of the
ORB-SLAM are smaller than our method, demonstrating
that point-feature-based pose estimation has the best accu-
racy if there are enoughpoint features. In another perspective,

when the endpoints of lines are treated equally as points, the
number of endpoints is much less than the number of point
features, so point features still play a dominant role in pose
estimation. However, we have a better performance consid-
ering the error distribution reflected in the root mean squared
error (RMSE) of the ATE. RMSE of the ATE is always used
to represent the overall accuracy. The RMSE of the ORB-
SLAM is 0.374, and the RMSE of our method is 0.136.
Our method improves the accuracy of the pose estimation
by 63.6%.

Next, the target’s 3D shape estimation is evaluated. Due
to the lack of the GT of the 3D model, a qualitative analysis
is given by visualization of 3D features, shown in Fig. 16.
The estimated 3D shape by the ORB-SLAM in Fig. 16(a) is
only with point features, making it difficult to recognize the
target’s structure. There are many outliers of points around
the target, which may be caused by feature mismatching and
map creation from larger pose errors. In comparison, our
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Fig. 12 The results of pose
estimation by the ORB-SLAM

123



International Journal of Aeronautical and Space Sciences

Fig. 13 Pose estimation by our
method
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Fig. 14 ATE of the ORB-SLAM

Fig. 15 ATE of our method

method in Fig. 16(b) shows that point features are distributed
in the corners of the target with fewer outliers, and utiliz-
ing line features helps to gather structural information. It is
clear that there is a plane on the bottom of the 3D shape,
and three cylindrical antennas can be recognized, which can
guide downstream on-orbit tasks. Due to the light conditions,
some reconstructed 3D lines may not be detected in subse-
quent frames. These lines are deleted by map culling so that
a few 3D lines can be preserved in the map. This proves that
a few line features can improve the system’s performance.
In addition, although there are outliers of 3D lines triangu-
lated by mismatching of 2D line segments, the tracking of
the target is still robust with the impact on these incorrect

3D features because we reject the outliers with significant
reprojection errors in the optimization process.

For the real-time requirement, the mean execution times
of each operation are given in Table 1. Although adding line
features can improve the system’s robustness and accuracy,
it also increases computational complexity. Compared with
the ORB-SLAM, the running time of our method mainly
increases in feature extraction and optimization, as expected.
Althoughwe utilize hidden parameter adjustment to improve
the speed of feature extraction, the computational complex-
ity is still high. In pose estimation and bundle adjustment,
employing line features for optimization inevitably increases
the running time. The frame rate of the ORB-SLAM is
approximately 28.00 Hz, and the frame rate of our method
is approximately 17.83 Hz, which is acceptable for online
running (larger than 10 Hz). Our method sacrifices a certain
amount of operating efficiency in exchange for significant
improvements in the robustness and accuracy of the system.

5 Conclusion

For uncooperative and unknown targets, visual SLAM shows
excellent potential in solving the relative navigation problem.
Dynamics-based state estimation is difficult when there is no
maneuver of the chaser. Vision-based SLAM methods are
powerful among the solutions for spacecraft relative naviga-
tion, which estimate relative pose (up to a scale) by simply
leveraging camera images.

In this work, we add line features to monocular point-
feature-based SLAM for spacecraft rendezvous to a weak-
textured target under illumination changes. It is a real and
difficult scenario in which existing research has not been
carefully considered. Specifically, in the tracking thread,
fast and accurate line feature extraction and matching are
designed for the real-time requirement. In the reconstruc-
tion thread, the endpoint inconsistency problem is solved
by Plücker coordinates. In addition, a unified cost function
including point and line features are utilized for state estima-
tion. The results show that our method strongly improves the
system’s robustness and pose estimation accuracy by 63.6%.
The reconstructionof the 3Dshapebecomesbetterwith fewer
outliers and easier identificationwith the help of line features.
Even though the real-time performance is reduced, the algo-
rithm still guarantees real-time performance at 17.83 Hz.

We hope that this work can inspire researchers to utilize
more image features for robust spacecraft relative navigation
in challenging space environments. Moreover, the smooth-
ing approach should be explored further. Even though we
use a simple motion model, the smoothing approach still
performs well with outlier detection. We believe that with
the development of onboard computing resources, advanced
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Fig. 16 3D shape estimation
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Table 1 Running times

Operations ORB-SLAM (ms) Ours (ms)

Feature extraction 2.16 10.06

Initialization 8.36 9.33

Pose estimation 9.23 13.83

Map creation and culling 2.21 4.08

Bundle Adjustment 13.63 18.58

Keyframes culling 0.12 0.22

Total 35.71 56.10

smoothing-based SLAMmethods from the robotics commu-
nity can be applied to spacecraft relative navigation.

In future work, considering the system’s accuracy and
real-timeperformance,weplan to utilize faster line extraction
methods, such as CNN-based feature extraction, to reduce
computational complexity and explore other line representa-
tions for optimization to evaluate the system’s performance.
In addition, loop detection and correction will be included to
enhance the system’s accuracy.
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