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ABSTRACT

Federated learning (FL) enables multiple clients to collaboratively train models
without sharing their local data, It becomes an important privacy-preserving ma-
chine learning framework. However, classical FL faces serious security and ro-
bustness problems, e.g., malicious clients can poison model updates and at the
same time claim large quantities to amplify the impact of their model updates in
the model aggregation. Existing defense methods for FL, while all handling ma-
licious model updates, either treat all quantities benign or simply ignore/truncate
the quantities of all clients. The former is vulnerable to quantity-enhanced attack,
while the latter leads to sub-optimal performance since the local data on differ-
ent clients is usually in significantly different sizes. In this paper, we propose
a robust quantity-aware aggregation algorithm for federated learning, called Fe-
dRA, to perform the aggregation with awareness of local data quantities while
being able to defend against quantity-enhanced attacks. More specifically, we
propose a method to filter out malicious clients by jointly considering uploaded
model updates and data quantities from different clients and perform quantity-
aware weighted averaging on model updates from remaining clients. Moreover,
as the number of malicious clients participating in the federated learning may dy-
namically change in different rounds, we also propose a malicious client number
estimator to predict how many suspicious clients should be filtered out in each
round. Experiments on four public datasets demonstrate the effectiveness of our
FedRA method in defending FL against quantity-enhanced attacks. Our code is
available at https://anonymous.4open.science/r/FedRA-4C1E.

1 INTRODUCTION

Federated learning (FL) is a technology to train models while protecting the privacy of training data.
It has been widely studied for many application scenarios, such as medical health (Rieke et al., 2020;
Sheller et al., 2020) and keyboard next-word prediction (Yang et al., 2018; Hard et al., 2018). One
of the classic FL algorithms is FedAvg (McMahan et al., 2017). In FedAvg, the server iteratively
averages clients’ updates with some weights determined by the quantity of each client, which means
throughout the paper the number of the training data at that client, to update the global model.

The linear aggregation applied in FedAvg has been proved to be vulnerable to poisoning at-
tacks (Baruch et al., 2019; Fang et al., 2020; Wang et al., 2020; Xie et al., 2020). However, these
attacks only focus on generating malicious updates to degrade the performance of the global model
or injecting a backdoor to the global model. Malicious clients can also submit large quantities to
obtain unfairly high weights in the model aggregation, resulting in an amplified impact of malicious
updates on the global model. We name this kind of attacks quantity-enhanced attacks.

Several methods have been proposed to defend against poisoning attacks for federated learn-
ing (Blanchard et al., 2017; Yin et al., 2018; El Mhamdi et al., 2018; Sun et al., 2019; Pillutla et al.,
2019; Portnoy et al., 2020). These defenses can be divided into three groups: quantity-ignorant,
quantity-aware, and quantity-robust defenses. Quantity-ignorant defenses aggregate updates with-
out considering quantities (Blanchard et al., 2017; Yin et al., 2018; El Mhamdi et al., 2018). These
methods are robust to quantity-enhanced attacks. However, since aggregating updates with quanti-
ties benefits model performance (Zaheer et al., 2018; Reddi et al., 2021), applying these defenses
may lead to performance degradation (Appendix C.1). Quantity-aware defenses aggregate updates
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with quantities but by default treat quantities submitted by clients as benign (Sun et al., 2019; Pillutla
et al., 2019). These defenses usually outperform quantity-ignorant defenses when without attacks.
However, their performance degrades severely when quantity-enhanced attacks occur. Quantity-
robust defenses aggregate updates with quantities and, unlike quantity-aware defenses, are robust
to quantity-enhanced attacks. Portnoy et al. (2020) propose to truncate quantities with a dynamic
threshold and apply quantity-aware TriMean (Yin et al., 2018) to aggregate updates. However, it
does not filter out malicious updates by jointly considering quantities and updates and may truncate
benign quantities, which leads to sub-optimal performance.

Meanwhile, some existing defenses (Blanchard et al., 2017; Yin et al., 2018; El Mhamdi et al., 2018)
need a hyper-parameter that represents the upper bound of the number of malicious clients to be fil-
tered out in each round. However, in cross-device federated learning, the server samples only a group
of clients to participate in training in each round due to the large number of all clients. As a result,
the number of malicious clients in each round changes dynamically. Over-estimating the number
of malicious clients will lead to some benign clients being filtered out, while under-estimating the
number of malicious clients makes some malicious updates selected in model aggregation.

In this paper, we propose a quantity-robust defense, called FedRA, for federated learning. It filters
out malicious clients by taking both quantities and updates into consideration. More specifically,
FedRA first computes the L1-distance between each pair of updates. Since the variance of benign
local updates are usually small when the quantities of these clients are large, the expectation of
distance between benign updates with larger quantities should be smaller. Based on this observation,
we multiply the distance between each pair of updates with a coefficient relevant to their quantities,
which is defined as quantity-robust distance. Then, a group of updates with the smallest quantity-
robust distance to their neighbors are selected. FedRA aggregates them with weights proportional
to their quantities. Finally, to tackle the problem of the dynamic number of malicious clients in
each round in cross-device federated learning, we propose a malicious client number estimator to
dynamically determine the number of malicious clients in each round.

The main contributions of this paper are as follows:

• We propose a robust quantity-aware aggregation method for federated learning to aggregate
updates with quantities while defending against quantity-enhanced attacks.

• We theoretically prove FedRA is quantity-robust by proving the aggregation error of Fe-
dRA is irrelevant to malicious quantities.

• We propose to dynamically estimate the number of malicious clients in each round and
empirically show that it can handle the over-estimating and under-estimating problem.

• We conduct experiments on four public datasets to validate the effectiveness of FedRA.

2 RELATED WORKS

Federated learning (McMahan et al., 2017) enables multiple clients collaboratively train models
without sharing their local datasets. There are three steps in each round of federated learning. First, a
central server randomly samples a group of clients and distributes the global model to them. Second,
the selected clients train the model with their local datasets and upload their model updates to the
central server. Finally, the central server aggregates the received updates to update the global model.
In FedAvg (McMahan et al., 2017), updates are weight-averaged according to the quantity of each
client’s training samples. The above steps are performed iteratively until the global model converges.

However, the classical federated learning is vulnerable to poisoning attacks, e.g., untargeted at-
tacks (Baruch et al., 2019; Fang et al., 2020) and backdoor attacks (Liu et al., 2017; Bagdasaryan
et al., 2020; Wang et al., 2020; Xie et al., 2020; Bhagoji et al., 2019). In this paper, we focus on
defending against untargeted attacks, which aim to degrade the performance of the global model
on all input samples. To defend against the attacks, several robust aggregation methods have been
proposed. Yin et al. (2018) propose Median and Trimean that apply coordinate-wise median and
trimmed-mean, respectively, to filter out malicious updates. Blanchard et al. (2017) propose Krum
and mKrum that compute square-distance-based scores to select and average the updates closest to
a subset of neighboring updates. Bulyan (El Mhamdi et al., 2018) is a combination of mKrum and
Trimean: it first selects several updates through mKrum and then aggregates them with Trimean. We
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note that the above defense methods do not consider quantities of clients’ training samples, which
we categorize as quantity-ignorant methods, and the convergence speeds and model performance of
these methods are compromised (Zaheer et al., 2018; Reddi et al., 2021), especially for long-tailed
data distributions (see Appendix C.1) that are common in real-world scenarios (Zhang et al., 2017;
Zhong et al., 2019; Li et al., 2017).

Sun et al. (2019) propose Norm-bound that clips the L2 norm of received updates to a predefined
threshold. Pillutla et al. (2019) propose RFA that computes weights for each update by running
an approximation algorithm to minimize the quantity-aware geometric median of updates. These
two methods are categorized into quantity-aware defenses. They take quantities into consideration
when aggregating updates but by default treat all received quantities as benign. Portnoy et al. (2020)
point out that received quantities may be malicious and can be exploited to increase the impact of
malicious updates. They further propose a Truncate method that truncates received quantities within
a dynamic threshold in each round, which guarantees any 10% clients do not have more than 50%
samples. The Truncate method is categorized into quantity-robust method. However, quantities of
benign clients with a large number of training samples may also be truncated, resulting in degraded
performance. Meanwhile, they handle the malicious update filtering and the quantity truncation
separately, leading to sub-optimal update filtering.

3 PROBLEM DEFINITION

Suppose that training samples are sampled from a distribution D in sample space Z . Let f(w; z)
denote the loss function of model parameter w ∈ W at data point z, and F (w) = Ez∼D[f(w; z)] is
the corresponding population loss function. The goal is to minimize the population loss by training
the model parameter, i.e., w∗ = argminw∈W F (w).

Assume that there are N clients in total and M of them are malicious. The i-th client has a local
dataset Di, where any z ∈ Di is independently sampled from distribution D. The empirical loss
of the i-th client is Fi(w) = 1

||Di||
∑

z∈Di
f(w; z). In the t-th round, the central server randomly

samples n clients and distributes the global model wt to them. To simplify the theoretical analy-
sis, we follow FedSGD (McMahan et al., 2017) and Trimean (Yin et al., 2018) with the following
assumption: a benign client will submit update git = ∇Fi(wt) and quantity qi = ||Di||, while a ma-
licious client can submit an arbitrary update and an arbitrary quantity to the server. After receiving
the updates and quantities from the sampled n clients, the server computes the global update with a
certain aggregation rule A: gt+1 = A(g1

t , ..., gnt , q1, ..., qn).

Some existing defenses, e.g., mKrum (Blanchard et al., 2017), Bulyan (El Mhamdi et al., 2018), and
Trimean (Yin et al., 2018), need to estimate the number of malicious clients m in each round with
a fixed parameter for all rounds. However, in cross-device federated learning, the server samples a
group of clients in each round due to the large number of clients. The number of malicious clients
m in each round follows a hypergeometric distribution and is thus hard to be estimated by a fixed
parameter. In our work, we consider two settings: fixed-ratio setting and dynamic-ratio setting. In
the fixed-ratio setting, the number of malicious clients m in each round is fixed, i.e., m = ⌈nMN ⌉.
Since m is not a random variable, estimating m with a fixed parameter is feasible. Although the
fixed-ratio setting is not aligned with the cross-device federated learning, we use this setting to
analyze the upper bound capability of defenses to filter out malicious updates. In the dynamic-ratio
setting, the overall number of malicious clients M is fixed, but the exact number of malicious clients
in each round is unknown, which is more aligned with real-world federating learning scenarios.

Definition 1 (Sub-exponential random variable). A random variable X with E[X] = µ is called
sub-exponential with parameters (v2, α) if E[eλ(X−µ)] ≤ e

1
2 v

2λ2

, ∀|λ| < 1
α .

Definition 2 (Lipschitz). h is L-Lipschitz if |h(w)− h(w′)| ≤ L||w− w′||2, ∀ w,w′.

Definition 3 (Smoothness). h is L-smooth if |∇h(w)−∇h(w′)| ≤ L||w− w′||2, ∀ w,w′.
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4 BASE AGGREGATION

In this section, we introduce L1-based Krum, the quantity-ignorant base aggregation of our FedRA.
Then we introduce L1-based QKrum, which selects multiple clients with L1-based Krum and applies
non-uniform aggregation. We show that L1-based QKrum is a quantity-aware aggregation.

4.1 L1-BASED KRUM

The L1-based Krum changes the squared L2 distance in Krum (Blanchard et al., 2017) to L1 dis-
tance. More specifically, for the update of the i-th client gi, we first compute the L1 distance between
gi and other (n − 1) updates. For any j ̸= i, we denote i → j to indicate that gj belongs to the
(n − m − 2) updates closest to gi in terms of the L1 distance. Then we compute a score for gi,
denoted as s(i) =

∑
j:i→j ||gi − gj ||1. Finally, L1-Krum(g1, ..., gn) = gi∗ , where i∗ refers to the

client with the minimum score, s(i∗) ⩽ s(i), ∀ i.

Assumption 1 For all z ∈ Z and w ∈ W , ∂kf(w; z) is sub-exponential with parameters (v2k, αk)
where E[∂kf(w; z)] = µk,Var(∂kf(w; z)) = σ2

k, vk = σk, and αk < σk√
2 ln 2n

.

Proposition 1 Let g1, ..., gn−m be independently identically distributed updates with the same
quantity q, where gi ∈ Rd, and E [gi] = µ. Let gn−m+1, ..., gn be any random vectors in Rd.
Suppose that Assumption 1 holds for all benign updates. If 2m+ 2 < n and define

ζ(n,m) =
def

3
√
2 ln 2(n−m) + (n− 2)

√
2 ln 2(n−m)

(n− 2m− 2)
√
q

= O(
√
lnn), (1)

where σ ∈ Rd is [σ1, ..., σd], then the L1-based Krum satisfies E [||g− µ||1] ⩽ ζ(n,m)||σ||1.

Proposition 1 is proved in Appendix A.1.

We state the statistical error guarantees of the L1-based Krum for smooth non-convex F .

Assumption 2 (Smoothness of f and F ). For any z ∈ Z , we assume that the partial derivative of
f(·; z) with respect to the k-th dimension of its first argument, denoted as ∂kf(·; z), is Lk-Lipschitz
for each k ∈ [1, d] and function f(·; z) is L-smooth. We also assume that F (·) is LF -smooth. Let
L̂ := (

∑d
k=1 L

2
k)

1
2 . It is obvious that LF ⩽ L ⩽ L̂.

Assumption 3 (Minimizer inW). Let w∗ = argminw∈W F (w). We assume that∇F (w∗) = 0.

Theorem 1 Assume that Assumptions 1, 2 and 3 hold, and 2m + 2 < n. Choose η = 1/LF . If
wt+1 = wt − ηgt, after T iterations with L1-based Krum, we have

min
t=0,...,T

E [||∇F (wt)||22] ⩽
2LF

T
E[F (w0)− F (w∗)] + (ζ(n,m)||σ||1)2. (2)

Theorem 1 is proved in Appendix A.3.

4.2 L1-BASED QKRUM

The L1-based Krum is a quantity-ignorant defense. We can easily improve the L1-based Krum to
a quantity-aware algorithm by selecting multiple clients and apply non-uniform aggregation. We
name this algorithm L1-based QKrum. However, L1-based QKrum is not quantity-robust.

Lemma 1 For any sample z ∈ Z , suppose that E[∇f(w; z)] = µ and E[(∂kf(w; z) − µk)
2] =

σ2
k, then for the update of any benign client i, we have E[gi] = µ. When Assumption 1 holds,

E[
√

qi||gi − µ||1] ≤
√
2 ln 2||σ||1.

Lemma 1 is proved in Appendix A.4. It indicates that with a larger quantity, the variance of an
update becomes smaller. Suppose

∑
i∈C q

i is a constant, where C is the set of selected clients. For
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any benign client i, if he is selected, variance proportional to
√
qiσ will be added, since E[qi||gi −

µ||1] ≤
√
2 ln 2

√
qi||σ||1. It inspires us to analyze E[

√
qj ||gj − µ||1] for client j ∈ C.

We give an example to show the error of L1-based QKrum can be an arbitrary value. We analyze
the client i∗ with the smallest selection score.

Example 1 Suppose there are five benign updates g1, ..., g5 with the same quantities qb, where
gi = [gi] and gi ∼ N (0, 1). Let gm = [ϵ] be the malicious update in R1 and qm be the arbitrary
quantity. Suppose ∃ ϵ ̸= 0 such that the probability of gb being selected pm ̸= 0. If Assumption 1
holds, when qm = (k/(pm · ϵ))2, the error of L1-based QKrum satisfies

E[||√q(g− µ)||1] ≥ k, (3)

where k can be arbitrary positive value, µ = [0], g and q are the updates and quantity of client i∗.

Example 1 is proved in Appendix A.5. It shows that the error of L1-based QKrum can be an arbitrary
value when facing the quantity-enhanced attack.

5 FEDRA: QUANTITY-ROBUST AGGREGATION FOR FEDERATED LEARNING

Algorithm 1 Robust Quantity-Aware Aggregation

Input: N , M̃ , n, {(git, qit)|i ∈ [n]}
1: S ← ∅, m̃← ⌈nM̃N ⌉
2: for i ∈ [n] do

3: s(i)← (qit)
γ
∑

i→j

√
qitq

j
t

qit+qjt
||git − gj

t ||1
4: S ← S ∪ {s(i)}
5: end for

c←
{
n− m̃− 1 fixed-ratio,
n−MCNE(n,S) dynamic-ratio.

6: selects c clients C with smallest scores in S
7: gt ← 1∑

i∈C qit

∑
i∈C q

i
tgit

In this section, we introduce the details of
our FedRA, which contains two core compo-
nents, i.e. quantity-robust aggregation and ma-
licious client number estimator. The quantity-
robust aggregation improves the scores in L1-
based QKrum by jointly considering both up-
dates and quantities. The malicious client
number estimator dynamically determines the
number of malicious clients in each round,
which is more suitable for the dynamic-ratio
setting. The complete algorithm of our FedRA
is shown in Algorithm 1.

5.1 QUANTITY-ROBUST AGGREGATION

Since the variance of benign local updates are
usually small when quantities of these clients are large, the expectation of distance between benign
updates with larger quantities should be smaller. Based on this observation, in our FedRA, we design
a quantity-robust score as follows

s(i) = (qi)γ
∑
j:i→j

Q(i, j), Q(i, j) =

√
qiqj

qi + qj
||gi − gj ||1, (4)

where i→ j denotes that gj belongs to the (n−m−2) updates closest to gi in terms of the Q value,
γ ⩽ 0.5 is a hyper-parameter. We analyze the error of the client i∗ that has the smallest score.

Proposition 2 Let g1, ..., gn−m be benign updates with quantities q1, ..., qn−m, where gi ∈ Rd. Let
gn−m+1, ..., gn be malicious updates in Rd and qn−m+1, ..., qn be their quantities. Suppose that
Assumption 1 holds for all benign updates. If 2m+ 2 ⩽ n, γ = 0.5 and define

∆1 =

√
2 ln 2(n−m) +m

√
2 ln 2(n−m)∑

i∈B qi
max

benign i
[qi + 1] min

benign i

√
qi||σ||1,

g =
1∑

j:i∗→j
benign j

qj

∑
j:i∗→j
benign j

qjgj , ∆ = (
√

2 ln 2(n−m) +
√
2 ln 2)||σ||1 +∆1,

(5)

then FedRA satisfies E[√q||g − g||1] ⩽ ∆1. Denote B as the (n-m-2) benign clients with smallest
quantities. If max

malicious i
qi <

∑
i∈B

qi, then E[√q||g− µ||1] ⩽ ∆.
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Proposition 2 is proved in Appendix B.1, which can be easily extended to scenarios where multiple
clients are selected. Comparing with the L1-based QKrum, the error of our FedRA is not controlled
by malicious quantity. Thus FedRA is quantity-robust.

We state the statistical error guarantees of FedRA for smooth non-convex F .

Theorem 2 Assume that Assumptions 1, 2 and 3 hold, 2m + 2 < n, γ = 0.5 and max
malicious i

qi <∑
i∈B

qi. Choose η = 1/LF . If wt+1 = wt − ηgt, after T iterations with FedRA, we have

min
t=0,...,T

E[||∇F (wt)||22] ≤
2LF

T
E[F (w0)− F (w∗)] +

1

T

T−1∑
t=0

1

qt
∆2, (6)

where qt is the quantity of the selected clients at the t-th round.

Theorem 2 is proved in Appendix B.3.

5.2 MALICIOUS CLIENT NUMBER ESTIMATOR

Algorithm 2 Malicious Client Number Estimator
Input: n, {s(i)|i ∈ [n]}
Output: m̃

1: L ← ∅
2: for i = 0, 1, ..., n do
3: m̃← i
4: Estimate µb, σb, µm, σm by Eq 9
5: Compute l̂(i) through Eq 8
6: L ← L ∪ {l̂(i)}
7: end for
8: m̃← argmaxm̃ L

The above quantity-robust aggregation algo-
rithm needs a parameter c to decide how many
updates to be selected. In the fixed-ratio setting,
we can set c = n − m̃ − 1 = n − ⌈nM̃N ⌉ − 1,
where m̃ is the estimated number of malicious
clients in each round and M̃ is the estimated
number of overall malicious clients. How-
ever, the number of malicious clients changes
in different rounds in the dynamic-ratio setting.
Over-estimating m̃ will lead to some benign
clients being filtered, while m̃ makes some ma-
licious updates selected in model aggregation.
Therefore, we propose a malicious client num-
ber estimator to predict the number of mali-
cious clients in each round. Our malicious client estimator computes the number of malicious clients
m̃ by maximizing the log-likelihood as follows:

l̂(m̃) = ln p(m̃, s(1), ..., s(n)) = ln p(m̃) +

n∑
i=1

ln p(s(i)|m̃). (7)

We assume the scores of benign and malicious clients follows two independent Gaussian distribu-
tions, and malicious clients get the largest scores. In Appendix C.4, we show some score distri-
butions in our experiments as the empirical evidence for the assumption. We first sort the scores
by ascending order, i.e., s(i) < s(j),∀i < j. Since m follows the hypergeometric distribution
H(n,M,N), we have

l̂(m̃) ∝ ln
(
M̃
m̃

)(
N−M̃
n−m̃

)
− (n− m̃) lnσb − m̃ lnσm

−
n−m̃∑
i=1

(s(i)− µb)
2

2σ2
b

−
n∑

i=n−m̃+1

(s(i)− µm)2

2σ2
m

,
(8)

where µb and σ2
b are the mean and variance of benign scores, and µm and σ2

m are those of malicious
scores. The mean and variance of the two Gaussian distributions are estimated as follows:

µb =
1

n− m̃

n−m̃∑
i=1

s(i), σ2
b =

1

n− m̃− 1

n−m̃∑
i=1

(s(i)− µb)
2

µm =
1

m̃

n∑
i=n−m̃+1

s(i), σ2
m =

1

m̃− 1

n∑
i=n−m̃+1

(s(i)− µm)2.

(9)
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Table 1: Dataset description and statistics.

Dataset Task #Classes #Train #Test #Clients #Train per client
Mean Std Max

MNIST Image Classification 10 60,000 10,000 3,025 19.77 179.28 6,820
CIFAR10 Image Classification 10 50,000 10,000 3,115 16.05 200.14 8,933

Adult Income Prediction 2 32,561 16,281 1,671 19.49 114.19 2,403
MIND Text Classification 18 71,068 20,307 2,880 24.68 299.61 9,398
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Figure 1: Performance of defenses in the fixed-ratio IID setting. The y-axes are the values of
accuracy. The x-axes are the values of quantity-enlarging factors.

One may ask how s(i) is computed since it is relevant with m̃. A reasonable way is to initialize
m̃ = ⌈nM̃N ⌉, iteratively compute s(i) and run the malicious client number estimator to update m̃.
However, our experiments indicate that the performance without iterative approximation is already
great enough. The algorithm of our malicious client number estimator is summarized in Algorithm 2.

6 EXPERIMENTS

6.1 DATASETS AND EXPERIMENTAL SETTINGS

Dataset. We conduct experiments on four public datasets: MNIST (LeCun et al., 1998), CI-
FAR10 (Krizhevsky et al., 2009), Adult (Dua & Graff, 2017), and MIND (Wu et al., 2020). The
quantities follow a long-tailed distribution, i.e., log-normal distribution. The average sample size of
clients is around 20, and the σ of the log-normal distribution is 3. We randomly shuffle the dataset
and partition it according to the quantities. The details of the datasets are shown in Table 1.

Configurations. In our experiments, we use CNN networks as base models for the MNIST and
CIFAR10 datasets. For the Adult dataset, we apply a three-layer feed-forward network as the
base model. For the MIND dataset, we use a Text-CNN as the base model, and initialize the
word embedding matrix with pre-trained Glove embeddings (Pennington et al., 2014). We apply
FedAdam (Reddi et al., 2021) to accelerate model convergence in all methods. We apply dropout
with dropout rate 0.2 to mitigate over-fitting. The learning rate is 0.001 for CIFAR10 and Adult
and 0.0001 for MNIST and MIND. The maximum of training rounds is 10,000 for MNIST and CI-
FAR10, 2,000 for Adult, and 15,000 for MIND. The ratio of malicious clients M/N is 0.1. The
number of clients sampled in each round n is 50. γ is 0.1. The server estimates M̃ as M .
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Figure 2: Performance of defenses in the dynamic-ratio setting. The y-axes are the values of accu-
racy. The x-axes are the values of quantity-enlarging factors.

Baselines. We compare our FedRA with several baseline methods, including 1) Median (Yin et al.,
2018), applying coordinate-wise median on each dimension of updates; 2) Trimean (Yin et al.,
2018), applying coordinate-wise trimmed-mean on each dimension of updates; 3) Krum (Blanchard
et al., 2017), selecting the update that is closest to a subset of neighboring updates based on the
square distance; 4) mKrum (Blanchard et al., 2017), a variance of Krum that selects multiple updates
and averages the selected updates; 5) Bulyan (El Mhamdi et al., 2018), selecting multiple clients with
mKrum and aggregating the selected updates with Trimean; 6) Norm-bounding (Sun et al., 2019),
clipping the L2 norm of each update with a certain threshold; 7) RFA (Pillutla et al., 2019), applying
an approximation algorithm to minimize the geometric median of updates; 8) Truncate (Portnoy
et al., 2020), limiting the quantity of each client under a dynamic threshold in each round and
applying quantity-aware Trimean.

Attack Model. We suppose an attacker controls malicious clients. Each malicious client, if sam-
pled, submits malicious updates and a malicious quantity. We implement three existing untargeted
poisoning attack methods to create malicious updates, including 1) Label Flip Fang et al. (2020):
a data poisoning attack that manipulates labels of training samples; 2) LIE Baruch et al. (2019):
adding small enough noise in updates to circumvent defenses; 3) Optimize Fang et al. (2020): a
model poisoning attack that adds noise in the opposite position of benign updates. To create mali-
cious quantities, the attacker first computes the mean and variance of benign quantities, which are
denoted as µm

q and σm
q , respectively. The malicious quantity is calculated as q = µm

q + αqσ
m
q ,

where αq ∈ {0, 1, 2, 5, 10} is the quantity-enlarging factor.

6.2 PERFORMANCE EVALUATION IN FIXED-RATIO SETTING

In this subsection, we conduct experiments in the fixed-ratio setting to analyze the effectiveness
of quantity-robust aggragtion. The experimental results are shown in Figure 1. We can make the
following observations from the figure. First, our FedRA outperforms the best quantity-ignorant
defense in the fixed-ratio settings. This is because our method performs weighted averaging on
selected updates based on their quantities. Second, our FedRA has stable performance with different
quantity-enlarging factors. This is because FedRA can defend against quantity-enhanced attacks by
jointly considering updates and quantities to filter malicious clients. These two observations reflect
the effectiveness of our FedRA algorithm. Third, the performance of quantity-aware defenses, i.e.,
RFA and Norm-bound, becomes worse with larger quantity-enlarging factors. This is because these
quantity-aware defenses by default treat received quantities as benign, which is vulnerable to the
quantity-enhanced attack. Finally, Truncate has stable performance with different quantity-enlarging

8



Under review as a conference paper at ICLR 2023

factors, but its performance is lower than FedRA. This is because the Truncate algorithm is quantity-
robust by limiting quantities submitted by malicious clients. However, it also restricts quantities of
benign clients. Meanwhile, it does not filter malicious clients by jointly considering quantities and
updates. Thus, it has sub-optimal performance.

6.3 PERFORMANCE EVALUATION IN DYNAMIC-RATIO SETTING

In this subsection, we conduct experiments in the dynamic-ratio setting to analyze the effectiveness
of our malicious client number selector. The experimental results are shown in Figure 2. Besides
the same observations in the fixed-ratio setting, we can make several additional observations. First,
our FedRA has stable performance with different quantity-enlarging factors. It outperforms or has
similar performance as the best quantity-ignorant defense. This shows the effectiveness of our Fe-
dRA with the malicious client estimator. Second, the algorithms that need to estimate the number
or the upper bound of malicious clients, i.e., mKrum, Trimean, Bulyan, and Truncate, have lower
performance in the dynamic-ratio setting than in the fixed-ratio setting. This is because the number
of malicious clients in each rounds changes dynamically. Over-estimating makes a subset of benign
clients excluded, while under-estimating causes some malicious clients selected in some rounds.

6.4 ABLATION STUDY ON MALICIOUS CLIENT NUMBER ESTIMATION

LIE Label Flip Optimize
Adult

0.80

0.85

LIE Label Flip Optimize
MNIST

0.5

1.0

LIE Label Flip Optimize
CIFAR10

0.2

0.4

0.6

LIE Label Flip Optimize
MIND

0.2

0.4

0.6

MCNE over-estimation under-estimation

Figure 3: Results of malicious client number estimator,
under-estimating and over-estimating the number of mali-
cious client in the dynamic-ratio setting.

In this subsection, we compare ap-
plying the malicious client num-
ber estimator (MCNE) with under-
estimating and over-estimating the
number of malicious clients m̃. For
the experiments of under-estimation ,
we set the estimated number of ma-
licious clients m̃ as 5, which equals
the expectation of selected malicious
clients in each round. For the ex-
periments of over-estimation, we set
the estimated number of malicious
clients m̃ as 15, since p(m >
15) ⩽ 1.54−5. The experimen-
tal results are shown in Figure 3.
The performance of experiments
with MCNE is consistently higher
than those with over-estimation and
under-estimation. This is because the
number of malicious clients follows a
hypergeometric distribution in the dynamic-ratio setting, which is hard to be estimated by a fixed
parameter. Under-estimating the number of malicious clients makes some malicious clients selected
in some rounds, while over-estimation filters some benign clients in most rounds.

7 CONCLUSION

In this paper, we propose a robust quantity-aware aggregation method for federated learning, called
FedRA. It aims to aggregate clients’ local model updates with awareness of clients’ quantities to
benefit model performance while being quantity-robust to defend against quantity-enhanced attacks.
FedRA filters out malicious clients by jointly considering uploaded model updates and quantities
from different clients and perform quantity-aware weighted averaging on model updates from re-
maining clients. Since the number of malicious clients varies in different rounds, we further design
a malicious client number estimator to determine the number of clients to be selected in each round.
Experiments on four public datasets demonstrate the effectiveness of our robust quantity-aware ag-
gregation for federated learning.

9



Under review as a conference paper at ICLR 2023

REFERENCES

Eugene Bagdasaryan, Andreas Veit, Yiqing Hua, Deborah Estrin, and Vitaly Shmatikov. How to
backdoor federated learning. In AISTATS, pp. 2938–2948, 2020.

Gilad Baruch, Moran Baruch, and Yoav Goldberg. A little is enough: Circumventing defenses for
distributed learning. In NIPS, volume 32, 2019.

Arjun Nitin Bhagoji, Supriyo Chakraborty, Prateek Mittal, and Seraphin Calo. Analyzing federated
learning through an adversarial lens. In ICML, pp. 634–643, 2019.

Peva Blanchard, El Mahdi El Mhamdi, Rachid Guerraoui, and Julien Stainer. Machine learning with
adversaries: Byzantine tolerant gradient descent. NIPS, 30, 2017.

Dheeru Dua and Casey Graff. UCI machine learning repository, 2017. URL http://archive.
ics.uci.edu/ml.
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Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Jingjing Li, Ke Lu, Zi Huang, and Heng Tao Shen. Two birds one stone: On both cold-start and
long-tail recommendation. In MM, pp. 898–906, 2017.

Yingqi Liu, Shiqing Ma, Yousra Aafer, Wen-Chuan Lee, Juan Zhai, Weihang Wang, and Xiangyu
Zhang. Trojaning attack on neural networks. In NDSS, 2017.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In AISTATS, pp.
1273–1282, 2017.

Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove: Global vectors for word
representation. In EMNLP, pp. 1532–1543, 2014.

Krishna Pillutla, Sham M Kakade, and Zaid Harchaoui. Robust aggregation for federated learning.
arXiv preprint arXiv:1912.13445, 2019.

Amit Portnoy, Yoav Tirosh, and Danny Hendler. Towards federated learning with byzantine-robust
client weighting. arXiv preprint arXiv:2004.04986, 2020.

Sashank J. Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett, Keith Rush, Jakub Konečný,
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SUPPLEMENTARY MATERIAL

A BASE AGGREGATION

A.1 PROOF OF PROPOSITION 1

Proof. Without loss of generality, we assume malicious vectors are placed in the last m positions
in the arguments of the L1-based Krum, i.e., g = L1-Krum(g1, ..., gn−m, ..., gn). For each index i,
we denote the number of benign indexes j such that i → j as δc(i), and the number of malicious
indexes j such that i→ j as δb(i). We have

δc(i) + δb(i) = n−m− 2,

n− 2m− 2 ≤ δc(i) ≤ n−m− 2,

δb(i) ≤ m.

(1)

We denote the i∗ as the index selected by L1-Krum.

E[||g− µ||1] ≤
∑

benign i

E[||gi − µ||1I(i∗ = i)]

+
∑

malicious k

E[||gk − µ||1I(i∗ = k)],
(2)

where I denotes the indicator function. We focus on the case that i∗ = i for some correct index i in
Equation 2. We first prove the following lemma.

Lemma 2 Let g1, ..., gn be independent identically distributed random vectors with the same quan-
tity q, where gi ⊆ Rd, and E [gi] = µ. Supposing that Assumption 1 holds, then we have

E[max
i
||gi − µ||1] ≤

√
2 ln 2n||σ||1/

√
q, (3)

where σ is a d-dimensional vector denoted as [σ1, ..., σd].

Proof. See Appendix A.2.

Applying Lemma 2 on the first term of Equation 2, we obtain∑
benign i

E[||gi − µ||1I(i∗ = i)] ≤ E[ max
benign i

||gi − µ||1]

≤
√

2 ln 2(n−m)||σ||1/
√
q.

(4)

Next we focus on the case that i∗ = k for some malicious index k in Equation 2.∑
malicious k

E[||gk − µ||1I(i∗ = k)]

≤
∑

malicious k

E[||µ− 1

δc(k)

∑
j:k→j
benign j

gj ||1I(i∗ = k)]

+
∑

malicious k

E[||gk − 1

δc(k)

∑
j:k→j
benign j

gj ||1I(i∗ = k)]

≤ E[ max
malicious k

1

δc(k)

∑
benign j

||µ− gj ||1]

+
∑

malicious k

E[||gk − 1

δc(k)

∑
j:k→j
benign j

gj ||1I(i∗ = k)]

(5)

12
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If k is selected by the L1-based Krum, it implies for any correct index i∑
malicious k

I(i∗ = k)[
∑
j:k→j
benign j

||gk − gj ||1 +
∑
j:k→j

malicious j

||gk − gj ||1]

≤
∑
j:i→j
benign j

||gi − gj ||1 +
∑
j:i→j

malicious j

||gi − gj ||1.
(6)

Therefore, for any correct index i∑
malicious k

||gk − 1

δc(k)

∑
j:k→j
benign j

gj ||1I(i∗ = k)

≤
∑

malicious k

I(i∗ = k)

δc(k)

∑
j:k→j
benign j

||gk − gj ||1

≤ 1

n− 2m− 2

∑
j:i→j
benign j

||gi − gj ||1 +
1

n− 2m− 2

∑
j:i→j

malicious j

||gi − gj ||1.

(7)

We focus on the second term of Equation 7. Since any correct index i has n−m− 2 neighbors and
m + 1 non-neighbors. There exists at least one benign index ς(i), which is farther from i than any
of its neighbors. Therefore, ∀j : i→ malicious j, ||gi − gj ||1 ≤ ||gi − gς(i)||1. Then we have∑

malicious k

||gk − 1

δc(k)

∑
j:k→j
benign j

gj ||1I(i∗ = k)

≤ 1

n− 2m− 2

∑
j:i→j
benign j

||gi − gj ||1 +
δb(i)

n− 2m− 2
||gi − gς(i)||1.

(8)

∑
malicious k

E[||gk − 1

δc(k)

∑
j:k→j
benign j

gj ||1I(i∗ = k)]

≤ 2
√
2 ln 2(n−m)

(n− 2m− 2)
√
q
||σ||1 +

δb(i)

n− 2m− 2

∑
benign j ̸=i

E[||gi − gj ||1I(ς(i) = j)]

≤ 2
√
2 ln 2(n−m)

(n− 2m− 2)
√
q
||σ||1 +

δb(i)

n− 2m− 2
E max

benign j ̸=i
||gi − gj ||1

≤
2
√
2 ln 2(n−m) + 2m

√
2 ln 2(n−m)

(n− 2m− 2)
√
q

||σ||1.

(9)

Putting Equation 9 back to Equation 5, we obtain∑
malicious k

E[||gk − µ||1I(i∗ = k)] ≤
3
√
2 ln 2(n−m) + 2m

√
2 ln 2(n−m)

(n− 2m− 2)
√
q

||σ||1 (10)

Putting everything back together, we get

E[||g− µ||1] ≤
3
√
2 ln 2(n−m) + (n− 2)

√
2 ln 2(n−m)

(n− 2m− 2)
√
q

||σ||1. (11)

A.2 PROOF OF LEMMA 2

Proof. We first convert the problem of computing the expectation of the maximum of the L1 norm
of the d-dimensional vectors into the problem of computing expectations of the maximum of each
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dimension of the d-dimensional vectors.

E[max
i
||gi − µ||1] = E[max

i

∑
k∈{1,...,d}

|gik − µk|]

≤
∑

k∈{1,...,d}

E[max
i
|gik − µk|].

(12)

Following the same logic in Appendix A.4, it is easy to prove gik is sub-exponential with parameters

(
v2
k

q , αk

q ), where vk = σk and αk ≤ σk√
2 ln 2n

. Define xi
k = gik − µk. Denote a list of values

X = {x1
k,−x1

k, ..., x
n
k ,−xn

k}, and zk = maxi |gik − µk| = maxx∈X x. We then obtain

eλE[zk] ≤ E[eλzk ] = E[max
x∈X

eλx] ≤
∑
x∈X

E[eλx] ≤ 2ne
λ2σ2

k
2q . (13)

E[zk] ≤
ln 2n

λ
+

λσ2
k

2q
. (14)

Setting λ =
√
2q ln 2n
σk

< q
αk

, we can get

E[zk] ≤ σk

√
2 ln 2n/

√
q. (15)

Putting Equation 15 back to Equation 12, we obtain

E[max
i
||gi − µ||1] ≤

√
2 ln 2n||σ||1/

√
q, (16)

where σ is a d-dimensional vector denoted as [σ1, ..., σd].

A.3 PROOF OF THEOREM 1

Proof. Following the proof of Theorem 2 in Yin et al. (2018), using the smoothness of F (·) and
setting η = 1/LF , we have

F (wt+1) ≤ F (wt)−
1

2LF
||∇F (wt)||22 +

1

2LF
||gt −∇F (wt)||22. (17)

According to Proposition 1, we further obtain

E[F (wt+1)−F (w∗)] ≤ E[F (wt)−F (w∗)]− 1

2LF
E[||∇F (wt)||22]+

1

2LF
(ζ(n,m)||σ||1)2. (18)

Sum up Equation 18, we have

0 ≤ E[F (wT )− F (w∗)]

≤ E[F (w0)− F (w∗)]− 1

2LF

T−1∑
t=0

E[||∇F (wt)||22] +
T

2LF
(ζ(n,m)||σ||1)2,

(19)

which implies

min
t=0,...,T

E[||∇F (wt)||22] ≤
2LF

T
E[F (w0)− F (w∗)] + (ζ(n,m)||σ||1)2. (20)

A.4 PROOF OF LEMMA 1

Proof. As defined in Section 3, we have gik = 1
qi

∑
z∈Di

∂kf(w; z). Therefore, we can obtain

E[gik] =
1

qi

∑
z∈Di

E[∂kf(w; z)] = µk, (21)
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E[(gik − µk))
2] = E[(

1

qi

∑
z∈Di

∂kf(w; z)− µk)
2]

=
1

(qi)2

∑
z∈Di

E[(∂kf(w; z)− µk)
2] =

σ2
k

qi
.

(22)

Since ∂kf(w; z) is sub-exponential with parameters (v2k, αk), we have

e
λ

qi

∑
z∈Di

(∂kf(w;z)−µk) ≤ e
1

2qi
v2λ2

, (23)

when λ ≤ qi

αk
. It shows gik is sub-exponential with parameters (

v2
k

qi ,
αk

qi ), where vk = σk and
αk ≤ σk√

2 ln 2n
. n is the number of clients sampled by server in each round.

Follow the same logic in Lemma 2, we have

E[|gik − µk|] ≤
√
2 ln 2

σk√
qi
. (24)

Obviously, we can obtain

E[gi] = µ, E[
√
qi||gi − µ||1] ≤

√
2 ln 2||σ||1. (25)

A.5 PROOF OF EXAMPLE 1

Proof. Since benign updates are independently distributed and are with the same quantities q, the
probability of each benign updates being selected is the same. Therefore, due to µ = 0 we can have

E[
√
q||g− µ||1] = E[

√
qm||gm − µ||1]pm + E[

√
qb||g1 − µ||1](1− pm) ≥ √qm|ϵ|pm. (26)

In L1-based QKrum, since whether gm is selected is only related to the distance between gm and
its neighbors, pm is irrelevant with qm. Therefore, we can treat pm as a constant. When qm =
(k/(pm · ϵ))2, we have

E[
√
q||g− µ||1] ≥ k, (27)

where k can be arbitrary positive value.

B QUANTITY-AWARE ROBUST AGGREGATION

B.1 PROOF OF PROPOSITION 2

Proof. Similar to Appendix A.1, we analyze benign i∗ and malicious i∗ separately.

E[
√
q||g− µ||1] ≤

∑
benign i

E[
√

qi||gi − µ||1I(i∗ = i)]

+
∑

malicious k

E[
√

qk||gk − µ||1I(i∗ = k)],
(28)

where q and g are the quantity and update of selected client i∗.

When i∗ is benign, according to Lemma 1 and Lemma 2, we have∑
benign i

E[
√
qi||gi − µ||1I(i∗ = i)] ≤ E[ max

benign i

√
qi||gi − µ||1]

≤
√

2 ln 2(n−m)||σ||1.
(29)
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When i∗ is malicious, the error can be formulated as∑
malicious k

E[
√
qk||gk − µ||1I(i∗ = k)]

≤
∑

malicious k

E[
√
qk||gk − 1∑

j:i∗→j
benign j

qj

∑
j:i∗→j
benign j

qjgj ||1I(i∗ = k)]

︸ ︷︷ ︸
Term 1

+
∑

malicious k

E[
√
qk||( 1∑

j:i∗→j
benign j

qj

∑
j:i∗→j
benign j

qjgj)− µ||1I(i∗ = k)]

︸ ︷︷ ︸
Term 2

.

(30)

For Term 1, we have ∑
malicious k

E[
√
qk||gk − 1∑

j:i∗→j
benign j

qj

∑
j:i∗→j
benign j

qjgj ||1I(i∗ = k)]

≤
∑

malicious k

E[
√
qk∑

j:i∗→j
benign j

qj

∑
j:i∗→j
benign j

qj ||gk − gj ||1I(i∗ = k)]

(31)

Denote B as the (n-m-2) benign clients with smallest quantities. Since
√

qk

qj(qj+qk)
> 1

qj+1 , we
have ∑

malicious k

E[
√

qk||gk − 1∑
j:i∗→j
benign j

qj

∑
j:i∗→j
benign j

qjgj ||1I(i∗ = k)]

≤
max

benign i
[qi + 1]∑
i∈B qi

∑
malicious k

E[
√

qk
∑

j:i∗→j
benign j

√
qkqj

qk + qj
||gk − gj ||1I(i∗ = k)].

(32)

If i∗ = k is selected by the FedRA, it implies for any correct index i

∑
malicious k

√
qk[

∑
j:i∗→j
benign j

√
qkqj

qk + qj
||gk − gj ||1 +

∑
j:i∗→j
malicious j

√
qkqj

qk + qj
||gk − gj ||1]I(i∗ = k)

≤
√
qi

∑
j:i→j
benign j

√
qiqj

qi + qj
||gi − gj ||1 +

√
qi

∑
j:i→j

malicious j

√
qiqj

qi + qj
||gi − gj ||1.

(33)

We focus on the second term of Equation 33. Since any correct index i has n−m−2 neighbors and
m+ 1 non-neighbors. There exists at least one benign index ς(i), which has Q value score than any

of its neighbors. Therefore, ∀ j : i → malicious j,
√

qiqj

qi+qj ||g
i − gj ||1 ≤

√
qiqς(i)

qi+qς(i)
||gi − gς(i)||1.

Then we have

√
qi

∑
j:i→j

malicious j

√
qiqj

qi + qj
||gi − gj ||1 ≤ m

√
qi

√
qiqς(i)

qi + qς(i)
||gi − gς(i)||1. (34)
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Lemma 3 Let gi and gj be any pair of independently distributed benign updates and qi and qj be
the corresponding quantities. Suppose that Assumption 1 holds, we then have

E [||gi − gj ||1] ≤
√
2 ln 2

√
qi + qj

qiqj
||σ||1. (35)

Lemma 3 is proved in Appendix B.2. With Lemma 3, bringing Equation 34 and 33 back to Equa-
tion 32, we can obtain

∑
malicious k

E[
√
qk||gk − 1∑

j:i∗→j
benign j

qj

∑
j:i∗→j
benign j

qjgj ||1I(i∗ = k)]

≤
√
2 ln 2(n−m) +m

√
2 ln 2(n−m)∑

i∈B qi
max

benign i
[qi + 1] min

benign i

√
qig||σ||1.

(36)

It is easy to prove the following conclusion with the same logic.

E[
√
q||g− 1∑

j:i∗→j
benign j

qj

∑
j:i∗→j
benign j

qjgj ||1

≤
√
2 ln 2(n−m) +m

√
2 ln 2(n−m)∑

i∈B qi
max

benign i
[qi + 1] min

benign i

√
qig||σ||1.

(37)

For Term 2, according to Lemma 1 we have∑
malicious k

E[
√
qk||( 1∑

j:i∗→j
benign j

qj

∑
j:i∗→j
benign j

qjgj)− µ||1I(i∗ = k)]

≤
√

2 ln 2∑
j:i∗→j
benign j

qj
max

malicious i
[
√

qi]||σ||1 ≤

√
2 ln 2∑
i∈B qi

max
malicious i

[
√

qi]||σ||1

(38)

Therefore, if all malicious quantities qi satisfy qi ≤
∑

i∈B qi, then we have∑
malicious k

E[
√

qk||( 1∑
j:i∗→j
benign j

qj

∑
j:i∗→j
benign j

qjgj)− µ||1I(i∗ = k)] ≤
√
2 ln 2||σ||1.

(39)

Bring everything back to Equation 28, and define

∆1 =

√
2 ln 2(n−m) +m

√
2 ln 2(n−m)∑

i∈B qi
max

benign i
[qi + 1] min

benign i

√
qig||σ||1. (40)

We have
E[
√
q||g− µ||1] ≤ (

√
2 ln 2(n−m) +

√
2 ln 2)||σ||1 +∆1. (41)

B.2 PROOF OF LEMMA 3

Proof. Similar to Appendix A.2, we first convert the problem into computing expectations of each
dimension.

E[||gi − gj ||1] = E[
∑

k∈{1,...,d}

|gik − gjk|]

=
∑

k∈{1,...,d}

E[|gik − gjk|].
(42)
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Since any z ∈ Di are independent, if |λ| < qi

αk
, we then have

E[eλ(g
i
k−µk)] = E[e

λ

qi

∑
z∈Di

(∂kf(w;z)−µk)] ≤ e
λ2σ2

k
2qi , (43)

which implies gik is sub-exponential with parameters (σ
2
k

qi ,
αk

qi ), where αk < σk√
2 ln 2n

.

Let |λ| < min( qi

αk
, qj

αk
). Since gik and gjk are independently distributed, we can obtain

E[eλ(g
i
k−gj

k)] = E[eλ((g
i
k−µk)−(gj

k−µk))]

= E[eλ(g
i
k−µk)]E[e−λ(gj

k−µk)]

≤ e
λ2σ2

k
2

qi+qj

qiqj .

(44)

Then following similar steps in Appendix A.2 and setting λ =
√
2 ln 2n
σk

√
qiqj

qi+qj , we can have

E[||gi − gj ||1] ≤
√
2 ln 2||σ||1

√
qi + qj

qiqj
. (45)

B.3 PROOF OF THEOREM 2

Proof. Using the smoothness of F (·), we have

F (wt+1) ≤ F (wt) + ⟨∇F (wt),wt+1 − wt⟩+
LF

2
||wt+1 − wt||22

= F (wt)−
η

qt
⟨√qt∇F (wt),

√
qt(gt −∇F (wt)) +

√
qt∇F (wt)⟩

+
η2LF

2qt
||√qt(gt −∇F (wt)) +

√
qt∇F (wt)||22

= F (wt) + (
η2LF

2
− η)||∇F (wt)||22 +

η2LF

2qt
||√qt(gt −∇F (wt))||22

+ (
η2LF − η

qt
)⟨√qt∇F (wt),

√
qt(gt −∇F (wt))⟩.

(46)

Let η = 1
LF

. According to Proposition 2, we further obtain

E[F (wt+1)− F (w∗)] ≤ E[F (wt)− F (w∗)]− 1

2LF
E[||∇F (wt)||22] +

1

2qtLF
∆2. (47)

Sum up Equation 47, we have

0 ≤ E[F (wT )− F (w∗)]

≤ E[F (w0)− F (w∗)]− 1

2LF

T−1∑
t=0

E[||∇F (wt)||22] +
1

2LF

T−1∑
t=0

1

qt
∆2,

(48)

which implies

min
t=0,...,T

E[||∇F (wt)||22] ≤
2LF

T
E[F (w0)− F (w∗)] +

1

T

T−1∑
t=0

1

qt
∆2. (49)

C ADDITIONAL EXPERIMENT

C.1 IMPORTANCE OF QUANTITY

In this subsection, we state the importance of quantity. We first analyze which factors influence
the impact of quantities. We introduce non-uniform aggregation as performing weighted averaging
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Figure 4: Performance of non-uniform and uniform aggregation in different data distributions. The
x-axes are the values of accuracy. The y-axes are the values of σ in the Gaussian distributions or the
log-normal distributions.

Table 2: Performance of different existing defense methods without attacks.

Uniform Median Tmean Krum mKrum Bulyan Non-uniform Norm-bound RFA

IID

Adult 0.8492 0.8171 0.8548 0.8318 0.8517 0.8546 0.8583 0.8587 0.8581
MNIST 0.9878 0.8744 0.9876 0.8656 0.9885 0.9881 0.9933 0.9935 0.9927

CIFAR10 0.5322 0.3451 0.5515 0.5376 0.5351 0.5545 0.6488 0.6525 0.6454
MIND 0.6700 0.6476 0.6825 0.6147 0.6712 0.6818 0.6948 0.6945 0.6927

non-IID

Adult 0.8471 0.7638 0.8512 0.7638 0.8521 0.8541 0.8587 0.8585 0.8569
MNIST 0.9864 0.4478 0.9866 0.3470 0.9883 0.9872 0.9922 0.9915 0.9905

CIFAR10 0.5224 0.1930 0.5397 0.2058 0.5335 0.5407 0.5771 0.5773 0.5547
MIND 0.6293 0.5745 0.6105 0.5435 0.6386 0.6251 0.6815 0.6760 0.6761

on updates according to client quantities, while uniform aggregation as averaging updates without
considering quantities. It is obvious that when all benign clients have same quantities, it is unnec-
essary to apply non-uniform aggregation. Meanwhile, we find non-uniform aggregation does not
always significantly outperform uniform aggregation in some datasets (Table 3 on MIND 1, Table 5
on LEAF 2, and Table 4 on ML-1M 3). We conduct experiments to study the impact of

• Skewness: We sample the clients’ quantities from Gaussian distributions and log-normal
distributions, respectively, and set the average quantity as 20.

• Variance: We vary the σ of the Gaussian distributions and the log-normal distributions.
Higher σ means higher variance of clients’ quantities.

• non-IID: For the IID setting, we randomly divide dataset into clients local datasets. For the
non-IID setting, we guarantee the local datasets of most clients contain only one class.

The experimental results are shown in Figure 4, wherein we can make several observations. First,
when client quantities are sampled from log-normal distributions, the performance difference be-
tween the uniform aggregation and the non-uniform aggregation gets more significant. It shows that
skewness is one of the important factors. Second, under the log-normal settings, when we enlarge
the variance of quantities, the performance difference becomes larger. It shows that variance is an-
other important factor. Finally, comparing the IID and non-IID settings, the performance difference
does not change, which shows that non-IID is not an important factor. Since the log-normal dis-
tribution is a log-tailed distribution, which is common in real-world scenarios and has been widely
researched, we think it is necessary to study the robustness of federated learning algorithms under
this setting.

1https://msnews.github.io/
2https://leaf.cmu.edu/
3https://grouplens.org/datasets/movielens/
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Table 5: Performance on LEAF.

FEMNIST CelabA Shakespeare Reddit
Non-uniform 80.19 87.16 47.80 11.73

Uniform 80.01 87.52 47.97 11.68
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Figure 5: Performance of defenses in the fixed-ratio non-IID setting. The x-axes are the values of
accuracy. The y-axes are the values of quantity-enlarging factors.

Table 3: Performance of recommendation on MIND.

AUC MRR nDCG@5 nDCG@10
Non-uniform 66.56 31.40 34.69 41.05

Uniform 64.24 29.88 32.56 39.10

Table 4: Performance on ML-1M.

Hit@10 nDCG@10
Non-uniform 67.12 38.32

Uniform 59.00 32.48

We further test the performance of different existing defense methods without attacks under the
log-normal distribution with σ = 3.0. The experimental results are shown in Table 2. The quantity-
ignored defenses have lower performance than the quantity-aware defenses on the four datasets,
which shows the importance of quantity.

C.2 PERFORMANCE EVALUATION IN NON-IID SETTING

In this subsection, we first conduct experiments in the fixed-ratio non-IID setting. The results are
shown in Figure 5. We can observe that the performance of our FedRA is stable with quantity-
enlarging factors except in Adult under Label Flip attacks. The performance of FedRA is higher
than that of the best quantity-ignorant defense except for the Adult dataset. It might be because the
defense in the Adult dataset is more sensitive with the non-IID setting. We then conduct experiments
in the dynamic-ratio non-IID setting. The results are shown in Figure 6. The performance of our
FedRA is stable with the quantity-enlarging factors and higher than that of the best quantity-ignorant
defense except those with the Label-Flip attack. It might be because the quantity-robust scores may
not follow two distant Gaussian distributions that we have assumed. Overall, our method does not
have a theoretical guarantee for non-IID settings, and the above results empirically prove that our
FedRA can have great performance in most of the non-IID settings.
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Figure 6: Performance of defenses in the dynamic-ratio non-IID setting. The x-axes are the values
of accuracy. The y-axes are the values of quantity-enlarging factors.
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Figure 7: Performance of sqaure-FedRA and FedRA in the fixed-ratio IID setting. The x-axes are
the values of accuracy. The y-axes are the values of quantity-enlarging factors.

C.3 PERFORMANCE OF SQUARED-L2-DISTANCE-BASED FEDRA

In this subsection, we compare the performance of Squared-L2-distance-based FedRA (referred to
as square-FedRA) with our L1-based FedRA in the fixed-ratio IID setting. The experimental results
are shown in Figure 7. Our L1-based FedRA outperforms square-FedRA.

C.4 DISTRIBUTIONS OF CLIENT SCORES

In this subsection, we show some distributions of client scores in our experiments. The distributions
support the assumptions in our malicious client number estimator that the scores of benign and
malicious clients follow two independent Gaussian distributions, and malicious clients get the largest
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Figure 8: Distributions of client scores.

scores. In Figure 8, we show the distributions of client scores with quantity-enlarge factor αq = 10
at 200, 1000, 1000 and 1000 steps for Adult, MIND, MNIST and CIFAR10 dataset respectively.

D EXPERIMENTAL ENVIRONMENTS

We conduct experiments on a single V100 GPU with 32GB memory. The version of CUDA is 11.1.
We use pytorch 1.9.1.
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