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ABSTRACT

Driven by economic and systematic considerations, the pursuit of item fairness
in ranking has emerged as a prominent topic in recommendation and advertising
applications. Prior research has suggested various fairness aspects can be aligned
with the concept of distributive justice in sociology, such as utilitarianism, deal-
ism, and egalitarianism. However, they fail to distinguish the distinctions and
relationships among these fairness dimensions in ranking. In fact, item fairness
can be viewed as a unified challenge of fairly allocating the constrained and fluc-
tuating resources, from the perspective of cooperative game theory. In our work,
we introduce the smooth α-fairness objective for different fairness and unify item
fairness as a cooperative game problem. In such games, items are considered as
the players dividing the “cake” of user attention. In such games, we analyze the
α-fairness objective from a theoretical way and introduce an efficient approach
called α-rank. Firstly, we re-form several important axioms in cooperative games
to tell us how item fairness principles exhibit when the resource “cake” changes
in ranking. Then we designed α-rank, which applies the optimal transport to con-
duct item fairness. Theoretical analysis provides an upper bound, showcasing the
maximum total utility loss across different fairness degrees. we conducted exper-
iments in two ranking applications: recommendation and advertising. The experi-
mental results demonstrate that α-rank effectively and efficiently outperforms the
baseline methods.

1 INTRODUCTION

Ranking techniques have found extensive application in web-based platforms, such as determining
which items to display to users in recommendation and advertising scenarios with limited exposure
slots (Xu et al., 2018; Baeza-Yates et al., 1999). Recently, researchers have emphasized the impor-
tance of item fairness in ranking, as it not only prevents monopolization but also contributes to the
creation of a healthier ecosystem (Xu et al., 2023a; Patro et al., 2020; Do et al., 2021; Li et al., 2022;
Lipani, 2016).

Different from the user fairness, which pertains to ensuring that everyone has fundamental rights
and responsibilities (Matsumoto & Juang, 2016; Abdollahpouri et al., 2019). Item fairness, which
aims to equitably distribute items among users, is closely aligned with the concept of distributive
justice (Lamont, 2017; Matsumoto & Juang, 2016) in sociology. Previous research papers advo-
cate item from distinct principles: utilitarianism objective (Baeza-Yates et al., 1999; Lacerda et al.,
2006), which focused on maximizing summarization of all item utilities; dealism objective aligned
with proportion fairness (Ben-Porat & Tennenholtz, 2018), which aims to strive to achieve an allo-
cation where items possess resources in proportion to their respective weights or importance; dgal-
itarianism objective aligned with max-min fairness (Xu et al., 2023a; Do et al., 2021; Patro et al.,
2020), which equalizes the utilities of all item utilities involved in the decision-making process.

Although previous ranking models have introduced effective algorithms aligned with specific fair-
ness aspects, they often lack a clear distinction between these underlying fairness principles. In-
spired from cooperative game theory, the concept of item fairness in ranking closely resembles the
notion of fair resource allocation (Matsumoto & Juang, 2016; Xu et al., 2023a), which primarily fo-
cuses on finding a suitable resource allocation method that caters to the utility of all involved parties
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in an economic way. In a simple way, item fairness can be seen as a challenge involving resource
allocation in scenarios where resources are both limited and subject to fluctuation.

In our work, we approach the issue of item fairness in ranking from a unified perspective rooted
in cooperative game theory (Branzei et al., 2008; Peleg & Sudhölter, 2007). Within the framework
of cooperative games, each item is viewed as a participant tasked with fairly dividing the “cake” of
limited exposure slots. Inspired by cooperative games, we introduce the concept of α-fairness (Xu &
Cumanan, 2017; Bertsimas et al., 2012) to achieve a well-balanced equilibrium among item fairness
principles. As α approaches 0, 1, and ∞, it corresponds to the utilitarianism, dealism, and egali-
tarianism solutions, respectively. Optimizing α-fairness offers a smooth and adaptable approach to
achieve item fairness in accordance with varying requirements.

Then we analyze the α-fairness objective from a theoretical way and introduce an efficient approach
called α-ranking. Specifically, we begin by reforming several key axioms of cooperative games
designed for item fairness. The axioms describe how different item fairness principles behave when
the amount of resources, such as limited exposure slots, changes.

After that, we propose an efficient approach named α-rank to efficiently tackle the α-fairness opti-
mization objective in ranking. Firstly, we identify an upper-bound function for the target problem,
which conforms to the structure of a standard cooperative game and can be efficiently resolved.
Then, we utilize Sinkhorn algorithm (Swanson et al., 2020) of optimal transport (OT) (Pham et al.,
2020; Peyré et al., 2019) to map the upper-bound function back to the original space, thus arriving at
our ranking results efficiently. Finally, we offer theoretical insights into the maximum loss of total
item utilities under various α values through the upper-bound function.

We also apply α-ranking into real-world ranking scenarios, specifically in recommendation and
advertising, using two extensive public datasets. Experiment results demonstrate that α-rank can
achieve better performance while maintaining the efficiency required for industrial ranking systems.

2 RELATED WORKS

Fairness principle: Cultural perspectives on fairness exhibit significant variations, as extensively
explored in sociological research (Tyler & Allan Lind, 2002; Tyler & Smith, 1995). In practice, two
common fairness definitions are rooted: equality and equity (Matsumoto & Juang, 2016). Equality
is defined as: everyone is treated the same and provided the same resources to succeed, which aims
to ensure the fundamental rights and responsibilities of each individual. While equity is defined
as: ensuring that resources are equally distributed based on needs, which is close to the concept of
distributive justice (Lamont, 2017). In distributive justice, there are three types of allocation princi-
ples. Utilitarianism proposed by Aristotle (Sen, 1979), which aims to maximize the summation of
utilities. As for the dealism proposed by Nash (Nash Jr, 1950), it focuses on reaching an agreement
point based on the deals previously made by each side. Egalitarianism (Rawls, 1971) aims to equal-
ize the utilities of all individuals. Item fairness is more related to the distributive justice realm. In
this paper, we apply the cooperative games to unify the three principles in item fairness.

Item fairness methods: Regarding item fairness, previous work often focused on two types: indi-
vidual fairness (Marras et al., 2022; Li et al., 2021), which concentrates on equitable treatment for
individuals, and group fairness, which categorizes items groups (Ge et al., 2021; Xu et al., 2023a).
Our work primarily focuses on individual fairness as the main objective, while group fairness can
be formulated in a similar manner. For different fairness aspects, Current mainstream ranking sys-
tems (Rendle et al., 2012; Xue et al., 2017; Yang et al., 2019) apply utilitarianism to optimize the
summation of platform profit. Dealism often relates to the proportion fairness (Bertsimas et al.,
2011). For example, Ben-Porat & Tennenholtz (2018); Patro et al. (2020); Biswas et al. (2021)
proposed the Shapley algorithm to reach the point. Optimizing objective of Egalitarianism could be
Gini Index (Do & Usunier, 2022), max-min fairness (Xu et al., 2023a; Do et al., 2021) and distance
of different groups (Jiang et al., 2021). However, they often focused on one type of fairness and
failed to distinguish the connections between different fairness principles.

Cooperative games: The field of game theory (Von Neumann & Morgenstern, 1947), is commonly
divided into: cooperative games and non-cooperative games. Different from non-cooperative game
(Nash, 1951), cooperative game involves players whose interests are neither completely opposed
nor completely coincident, allowing them to communicate and collaborate. In cooperative game
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Table 1: Detailed explanations of variable in item fairness

Symbol Value Application Explanation

vi vi =
∑

u wu,ixu,i amortized ranking (Xu
et al., 2023a; Biega et al.,

2018)

the utility of the item i
within the user arrival times

wu,i

wu,i = 1 exposure-based
fairness (Xu et al., 2023a;

Patro et al., 2020)

charging according to one
exposure of item/advertise i

to user u

wu,i = ctru,i CTR-based
fairness (Rendle et al.,
2012; Xue et al., 2017)

charging according to the
user u clicked on the item i

once

wu,i = ctru,i ∗ cvru,i CVR-based fairness (Yang
et al., 2019; Liu et al.,

2021)

charging according to the
user u conversioned on the

item i once

ctru,i, cvru,i CTR/CTR value CTR/CVR billing CTR/CVR value of user u
to item i

γi
γi = βi recommendation (Rendle

et al., 2012)
βi serves as the adjustment

factor for each item

γi = bidi ∗ βi advertising (Yang et al.,
2019; Liu et al., 2021)

bidi represents the bidding
value of the advertiser.

theory, (Shapley et al., 1953) proposed the concept of Sharpley value, offering an approach for
fairly allocating in cooperative games. Another approach, proposed by (Nash Jr, 1950), is rooted
in the concept of bargaining. To highlight the weight of importance of players’ bargaining power,
Nash (Nash Jr, 1950) introduced a generalized framework of bargaining. Kalai & Smorodinsky
(1975) proposed a solution that focuses on the proportion to the ideal utility of each player. Based
on this, Kalai (1977) proposed a max-min method to equalize the utility of all players involved.
In our research, we approach item fairness as a problem of equitable resource allocation for items,
drawing inspiration from the perspective of cooperative game theory.

3 PROBLEM FORMULATION

We first define some notations for the problem. For vector x ∈ Rn, let xi denote the i-th element
of the vector. For vector x ∈ Rn×m, let xi,j denote the element of i-th row and j-th column. Ai

denote the i-th column vector of A. x ≥ y denotes element xi should be greater or equal to yi,∀i.
In this section, we will formulate the item fairness in ranking into a constrained optimization prob-
lem. In the context of ranking, we define U representing the set of users, I representing the set
of items. When a user u ∈ U interacts with the system, the number of retrieved items is typically
limited and is often defined by a constant value denoted as K. For each user u, the decision vec-
tor xu ∈ {0, 1}|I|, where xu,i = 1 denotes item i should be recommended to user u, otherwise,
xu,i = 0. The utilities of items can be represented as a vector v ∈ R|I|

+ , where utility of certain item
vi relates to the decision vector xu.

Then, we can write the ranking problem into the following mathematical program in a general way:

vf = argmax
v∈D

f(v), D = {v(xu)|1⊤xu = K, ∀u ∈ U}, (1)

where f(·) represents the fairness optimization objective of ranking, which can vary depending on
different objectives or proposals. To better understand the item fairness application, we give an illus-
trated example in Appendix E. Previous studies proposed distinct types of optimization objectives
that correspond to different principles of fair resource allocation in terms of f(·):
(1) Utilitarianism (w/o fairness) (Rendle et al., 2012): f(v) =

∑
i γivi
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(2) Dealism (proportion fairness) (Li et al., 2022): f(v) =
∑

i γi log vi

(3) Egalitarianism (max-min fairness) (Xu et al., 2023a): f(v) = mini γivi,

where the γi is the weight of each item. In rankings, vi and γi have different forms, which are listed
in the Table 1. In the Table 1, CTR and CVR is the abbreviation of click-through-rate (CTR), and
conversion-through-rate (CVR) (Yang et al., 2019).

For various fairness principles within the objectives of ranking: utilitarianism (Matsumoto & Juang,
2016) strives to maximize the overall utilities of the items, seeking to optimize the collective benefit.
Dealism (Bertsimas et al., 2011) aims to strive to allocate items that possess resources in proportion
to their respective weights γi. Egalitarianism (Bertsimas et al., 2011) aims to equalize the utilities
of items by enhancing the utility of the worst-off items, promoting fairness through improved distri-
bution of benefits. Previous work also proposed to trade-off the different optimizing objectives for
item fairness (Abdollahpouri & Burke, 2019; Abdollahpouri et al., 2020; Hao et al., 2021; Naghiaei
et al., 2022).

In cooperative games, the α-fairness (Bertsimas et al., 2012) provides a smooth way to unify the
three types of fairness principles:

f(v;α) =

{∑
i
v1−α
i

1−α if α > 0, α ̸= 1∑
i log(vi) if α = 1

, W (α) = max
v∈D

f(v;α). (2)

where α approaches 0, 1, and ∞, it corresponds to the utilitarianism, dealism, and egalitarianism
solutions, respectively.

4 OUR FRAMEWORK

In this section, we will first introduce five axioms of the α- fairness in ranking from the view of
cooperative game in a theoretical way. Then, we present the α-ranking to efficiently and effectively
solve the item fairness in ranking.

4.1 AXIOMS IN ITEM FAIRNESS

In this section, we will re-form several axioms in cooperative game theory (Bertsimas et al., 2011)
that one might seek in an item-fair ranking system. These axioms show that how item fairness
principles will behave when there are changes in available resources.

Axiom 1 (Pareto Optimality) The utilities of items vf is Pareto optimal, that is, there does not
exist another solution v ∈ U so that utility vector v ≥ vf and vf ̸= v.

Axiom 2 (Symmetry) When two items i and j possess equal weight and charging weight values,
indicated by γi = γj , they are expected to yield the same utility outcome, denoted as vi = vj .

Axiom 3 (Affine Invariance) If we have an affine operator A(vi) = civi, ci > 0, then fair allo-
cation under ranking is equal to the affine transformation of the fair allocation under the original
system, i.e. argmaxv f(A(v)) = A(argmaxv f(v)).

Axiom 4 (Independence of Irrelevant Alternatives) IfD1,D2 are two utility feasible set such that
D1 ⊂ D2 and argmaxv∈D2

f(v) ∈ D1, then argmaxv∈D1
f(v) = argmaxv∈D2

f(v).

Axiom 5 (Resource Monotonicity) Let D1,D2 be two utility sets and D1 ⊂ D2 and D1 ̸= D2, we
have argmaxv∈D1

f(v) ≤ argmaxv∈D2
f(v).

Axiom 1 (Pareto optimality) ensures that no situation can arise where the utility of two items can
simultaneously increase. Axiom 2 (Symmetry) ensures ranking model cannot differentiate the items
by their attributes. Axiom 3 (Affine Invariance) guarantees that the ranking outcome remains un-
changed regardless of the choice of utility numeraire. Axiom 4 (Independence of Irrelevant Alterna-
tives) illustrates that if resources are decreased for an item and the original solution lies within the
feasible region, then the solution remains the same as the original. Axiom 5 (Resource Monotonic-
ity) illustrates that increasing the feasible set will give each item equal or greater utility. Detailed
analysis can be seen in Axiom 1-4 (Nash Jr, 1950) and Axiom 5 (Kalai & Smorodinsky, 1975).
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Figure 1: Toy examples to illustrate the axioms of item fairness. Two items (item 1 and item 2) are
recommended to 30 users, with the constraint that each user can only be exposed to one item (i.e.
K = 1). Circles and triangles are utilized to visually depict the shifts in optimal solutions for each
fairness criterion when faced with changes in available resources.

Theorem 1 Utilitarianism, dealism, and egalitarianism all adhere to Axioms 1, 2, and 4. However,
utilitarianism and dealism fail to meet Axiom 5 (Resource Monotonicity), while utilitarianism and
egalitarianism do not conform to Axiom 3.

Remark 1 The axioms indicate that as α varies from 0 to 1, the system disregards the numeraire of
utilities and allocates resources in proportion to their weight γi more often.

Remark 2 The axioms suggest that as α increases from 1 to∞, the system instructs the platform to
enhance the utility of the worst-off item and simultaneously improve the utility of all items when the
resource increases more often.

The proof of Theorem 1 can be seen in Appendix A. The theorem indicates that various fairness
principles exhibit varying performance as the available resources change.

In order to better understand the axioms from the view of cooperative games, we conducted a sim-
ulation to analysis of two axioms. Figure 1 illustrates a real ranking scenario where the resource
“cake” to explore how different fairness principles perform in ranking tasks. We set each item’s
weight γi to 2 and 3, respectively.

Figure 1 (a) illustrates that optimal points corresponding to various fairness principles if change
the numeraire of resource “cake”. In this simulation, we have doubled the utility of item 2 while
keeping the utility of item 1 unchanged. The experimental findings demonstrate that utilitarianism
and egalitarianism do not adhere to Axiom 3 (Affine Invariance). Conversely, dealism maintains
its behavior of allocating resources in proportion to their weight γi for items 2 and 3, respectively,
regardless of the choice of resource numeraire.

Figure 1 (b) depicts the optimal points corresponding to various fairness principles if we increase
the size of the resource “cake”. In this illustration, the green regions represent the original feasible
region, while the blue regions indicate the expanded region where additional resources are allocated
(assigning to more 10 users than the initial 30 users). The experimental findings demonstrate that
utilitarianism and dealism do not adhere to Axiom 5 (Resource Monotonicity). Conversely, egalitar-
ianism exhibits the ability to enhance the utility of both items in the presence of resource changes.

4.2 α-RANK ALGORITHM

In this section, we will introduce α-rank approach to efficiently handle the α-fairness objective
optimization in equation 2. The overall algorithm workflow can be seen in Algorithm 1.

We observe that directly optimizing the equation 2 requires huge computational costs since it is a
non-linear, large-scale, and integral programming (Bertsekas, 1997). Therefore, firstly, we construct
an easy-solved standard cooperative game programming (equation 3), which is the upper bound
function of equation 2. Then we apply the transport optimal (OT) projection method to obtain the
final ranking result (equation 4). Finally, we prove a theoretical result to show the maximum social
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Algorithm 1: Algorithm of α-rank
Input: User set U , item set I, ranking size K, fairness coefficient α, OT coefficient λ, item weight

γi,∀i ∈ I, user-item score wu,i,∀u ∈ U ,∀i ∈ I
Output: The ranking result LK(u),∀u ∈ U

1: Get the optimal averaged exposure e∗ from equation 3.
2: Initialize m = K1, n = e∗, Cu,i = γiwu,i,∀u ∈ U ,∀i ∈ I,B = e

−C
λ

3: for t = 1, · · · , T do
4: m = K1⊘Bn
5: n = e∗ ⊘Bm
6: end for
7: x̃ = diag(m)Bdiag(n)
8: LK(u) = argmaxS⊂{1,2,...,|I|},|S|=K

∑
i∈S x̃u,i, ∀u ∈ U

utility loss across different fairness degree, named price of fairness (POF) of ranking (Bertsimas
et al., 2011; 2012).

4.2.1 UPPER BOUND FUNCTION CONSTRUCTION

Theorem 2 There exists τ > 0, s.t. we have the following function

Ŵ (α) =max
e

∑
i

γiηig(e;α)

s.t.
∑
i∈I

ei = K, 0 ≤ ei ≤ 1, ηi = τ
∑
u∈U

wu,i,∀i ∈ I

g(e;α) =

{∑
i
e1−α
i

1−α if α > 0, α ̸= 1∑
i log(ei) if α = 1

,

(3)

where Ŵ (α) ≥ maxv∈U f(v;α) and the variable ei = 1
|U|

∑
u∈U xu,i, which is the averaged

exposure of certain item i within a period of time.

The proof of Theorem 2 can be seen in Appendix B. The optimal value e∗ represents the average
exposure of items achieved under the α-fairness optimization objective. Then we will apply the
Sinkhorn algorithm (Pham et al., 2020) to project the averaged exposure e∗ to recommendation list
x ∈ {0, 1}|U|×|I| discussed in Section 3.

4.2.2 OPTIMAL TRANSPORT PROJECTION

We obtain the final ranking result by utilizing the following sample process, where x̃ (i.e. ranking
score distribution) is derived from the OT projection process.

LK(u) = argmax
S⊂{1,2,...,|I|},|S|=K

∑
i∈S

x̃u,i, ∀u ∈ U . (4)

We construct a matrix C = R|U|×|I|, where the element Cu,i = γiwu,i. An OT problem can be
formulated as:

x̃ = argmin
x≥0

⟨x,−C⟩+ λH(x) s.t. x1 = K1, 1⊤x = e∗ , (5)

where 1 denotes a vector of ones, e∗ denotes the optimal value of equation 3 and λ is the coef-
ficient of entropy regularizer. ⟨x,−C⟩ results transport plan lies on the Pareto frontier. H(x) =∑

u

∑
i xu,i log(xu,i), which forces the variable xu,i into the feasible region [0, 1]. The constraint

condition ensures that the ranking satisfies the limitation that each user can only be ranked among
the top K items, and it also guarantees that the exposure of each item aligns optimally with the
predefined exposure vector e∗.

6



Under review as a conference paper at ICLR 2024

0.00.10.20.30.40.50.60.70.8
Gini@5

3.40

3.42

3.44

3.46

3.48

3.50

3.52

3.54

3.56

eC
N
@
5

α=0

α=1

α=3
α=4

α-rank
P-MMF
FairRec
FairRec+
Welf

(a) Yelp K=5

0.20.30.40.50.6
Gini@5

5.0

5.2

5.4

5.6

5.8

6.0

6.2

6.4

eC
PM
@
5

α=0
α=1

α=2
α=5

α-rank
P-MMF
FairRec
FairRec+
Welf

(b) Ipinyou K=5

0.00.10.20.30.40.50.60.70.8
Gini@10

6.80

6.85

6.90

6.95

7.00

7.05

eC
N
@
10

α=0

α=1

α=2

α=3
α-rank
P-MMF
FairRec
FairRec+
Welf

(c) Yelp K=10

0.200.250.300.350.400.450.50
Gini@10

9.75

10.00

10.25

10.50

10.75

11.00

11.25

11.50

eC
PM
@
10

α=0 α=1
α=2

α=5

α-rank
P-MMF
FairRec
FairRec+
Welf

(d) Ipinyou K=10

Figure 2: Pareto frontier of four different datasets with different top-K ranking.

This problem can be efficiently solved by the Sinkhorn algorithm (Swanson et al., 2020), where the
solution of the form x̃ = diag(m)Bdiag(n), where diag(·) denote the generating diagonal matrix
from vector,B = e

−C
λ , and m ∈ R|U|, n ∈ R|I|, which iteratively computes

m← K1⊘Bn, n← e∗ ⊘Bm,

where ⊘ denotes element-wise division.

4.2.3 PRICE OF ITEM FAIRNESS

Typically, when conducting fairness adjustments in ranking, it may result in the redistribution of
resources that can lead to a reduction in the total utilities (

∑
i vi) of the system. In this section, we

aim to bound the price of item fairness (POF) (Bertsimas et al., 2011), which measures the maximum
social utility loss across different fairness degrees, i.e. different α values.

Theorem 3 The price of item fairness is quantified as the relative reduction in the sum of utilities
when comparing the fair solution to the utilitarian solution, represented as:

POF =
W (0)−W (α)

W (0)
≤ 1−O(|U|−

α
1+α ), (6)

Remark 3 The Theorem 3 holds that when increasing the item fairness degrees (α becomes larger)
in a ranking system, there is a bound on the rate 1−O(|U|−

α
1+α ) at which utilities will decrease.

5 EXPERIMENT

We evaluate the performance of α-rank. In the experiment, we mainly conduct the CTR/CVR-based
fairness discussed in Table 1. For the exposure-based fairness, please see the Appendix I. The source
code and experiments have been shared in supplementary file.

5.1 EXPERIMENTAL SETTINGS

Dataset. The experiments were based on two large-scale, publicly available ranking applications,
including: Yelp1: a large-scale businesses recommendation dataset. It has 154543 samples, which

1https://www.yelp.com/dataset
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Figure 3: Sub-figure (a) illustrates the price of item fairness (POF) change w.r.t fairness degree
α.Sub-figure (b) describes online inference items for α-rank and other baselines w.r.t user size |U|.

Figure 4: Visualization of α-rank result.

contains 17034 users, 11821 items. Ipinyou (Liao et al., 2014)2: a large-scale advertising dataset.
We only used the clicked data, which contains 18588 samples, which contains 18565 users, 149
advertisements. Every advertisement has a bidding price.

During the pre-processing step, users and items that had interactions with fewer than 5 items or users
were excluded from the entire dataset to mitigate the issue of extreme sparsity. Following (Zhang
et al., 2022; Xu et al., 2023b), we used BPR (Rendle et al., 2012) model to compute the CTR-CVR
value of user-item pair. For each user-item pair (u, i), the model will output the CTR-CVR value
wu,i. For the item weight γi, a value of 1 is assigned for recommendation applications, while for
advertising applications, γi = log(bidi), where bidi represents the bidding price of an advertisement.

Evaluation. As for the evaluation metrics, the performances of the models were evaluated from
two aspects: social welfare, and fairness degree. As for the social welfare, following the practices
in (Wu et al., 2021; Xu et al., 2023b; Yang et al., 2019), we utilized excepted Click/Conversion
Number (eCN) for recommendation application and expected Cost Per Mile (eCPM) for advertising
application under top-K ranking.:

eCN@K =
1

|U|
∑
i∈I

vi, eCPM@K =
1

|U|
∑
i∈I

bidivi. (7)

.

As for the fairness degree, we utilized the Gini Index (Do & Usunier, 2022; Do et al., 2021), which
is the most common measure of item utility inequality under top-K ranking. Formally, it defines as:

Gini@K =

∑
i

∑
j |γivi − γjvj |

2|I|
∑

i γivi
, (8)

where it ranges from 0 to 1, with 0 representing perfect equality (every item has the same utility),
and 1 representing perfect inequality (one item has all the utility, while every item else has none).

Baselines. The following representative item fairness models were chosen as the baselines:

FairRec (Patro et al., 2020) and FairRec+ (Biswas et al., 2021) proposed to ensure Max-Min Share
(α-MMS) of exposure for the items. Welf (Do et al., 2021) use the Frank-Wolfe algorithm to maxi-
mize the Welfare functions of worst-off items. P-MMF (Xu et al., 2023a) utilized the mirror descent
method to improve the worst-off item’s utility.

2http://contest.ipinyou.com/
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5.2 EXPERIMENT RESULTS

Figure 2 shows the Pareto frontiers Xu et al. (2023a) of Gini Index (abbreviated as Gini.) and
eCN/eCPM on two application datasets with different ranking size K. The Pareto frontiers were
constructed by systematically adjusting various parameters of the models and then selecting the
points with the best performance in terms of both Gini@K and eCN@K/eCPM@K, resulting in an
optimized trade-off between item fairness and total utilities.

Analyzing the Pareto frontiers, it becomes evident that the proposed α-rank method consistently
outperforms the baseline methods (as indicated by the α-rank curves occupying the upper right cor-
ner). This Pareto dominance signifies that, for a given eCN@K/eCPM@K level, α-rank achieves
superior Gini@K values, and for a given Gini@K level, it attains better eCN@K/eCPM@K perfor-
mance. These results highlight that α-rank significantly outperforms the baseline methods.

5.3 EXPERIMENT ANALYSIS

We also conducted experiments to analyze α-rank on Yelp for Top-10 ranking. For ablation studies
and Lorenz curve Gastwirth (1971) analysis, please see Appendix H and Appendix G, respectively.

Price of item fairness. Firstly, we conducted an experiment to demonstrate how the price fairness
of the item in Figure 3 (a) changes with respect to variations in the fairness degree α, ranging from
0.0 to 3.0. we directly compute the POF based on equation 6. From the curve, it is evident that as
we increase the fairness degree α, the α-rank approach leads to a reduction in the total utilities of
items. The experiment verified the theoretical analysis results in Theorem 3.

Inference time. We conducted experiments to investigate the total inference time of the α-rank
method compared to other item fairness baselines. In our analysis, our objective is to assess the
total inference time across various user sizes |U|, within real-world ranking applications. Therefore,
we conducted tests to measure the total inference time of various models in relation to the varying
number of users, all while keeping the number of items constant.

Figure 3 (b) reports the curves of total inference time (s) w.r.t. user size |U|. It’s worth noting that
the α-rank method exhibits a remarkably low inference time, typically taking less than ten million
seconds across different user sizes. Furthermore, when compared to other baseline methods, the
inference time of these alternatives tends to increase either linearly or exponentially with changing
user sizes, whereas α-rank consistently maintains a low inference time. The α-rank method involves
matrix operations with limited sensitivity to changes in user size.

Visualizing ranking results. In Figure 4, we visualize the ranking result matrix x̃ and the utility
vector v of items generated by the α-rank method for different values of α (0, 1, and 3), where these
values correspond to utilitarianism, dealism, and egalitarianism, respectively. The distribution of
vector v reflects the fairness degree of items. The detailed histogram of utility level of items under
different α can be seen in Appendix F.

The results clearly demonstrate that the utilitarianism solution consistently ranks the most popular
items highly for users, thereby enhancing overall utility but potentially leading to market dominance
by a few top items. Regarding dealism, α-rank approach tends to distribute rankings to items in
proportion to their contribution to the market. For egalitarianism, α-rank method strives to provide
equal exposure and similar utilities to every item in the ranking. The experiment also served as
validation that α-rank method can effectively adapt to various fairness principles as intended.

6 CONCLUSION

This paper proposes α-rank model that aims to unify the item fairness in ranking from the cooper-
ative game theory view. Firstly, we conducted an analysis of various fairness principles in ranking
and unified these principles within the framework of cooperative game theory. Then we introduced
the approach of α-rank can well-balance different fairness principles. Theoretical results to estab-
lish the maximum total utility loss for different values of α. Finally, Experiment results show that
α-rank can outperform the state-of-the-art baselines efficiently and effectively.

9
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A PROOF OF THEOREM 1

A.1 AXIOM 1

Suppose exist another solution v ∈ U so that utility vector v ≥ vf and vf ̸= v.

For the utilitarianism, we have
1⊤v ≥ 1⊤vf , vf ̸= v,

which verifies that v is a better solution compared to vf . There is a contradiction. Therefore,
utilitarianism satisfies the Axiom 1.

For the dealism, we have
1⊤ log(v) ≥ 1⊤ log(vf ), vf ̸= v,

which also verifies that v is a better solution compared to vf . There is a contradiction. Therefore,
dealism satisfies the Axiom 1.

For the egalitarianism, we have
vi = vj ,∀i, j ∈ I,v ∈ U .

Therefore, if v ≥ vf and vf ̸= v, there must be

vi > vf
i ,∀i ∈ I,

and therefore,
min
i

vi > min
i

vf
i ,

which is a contradiction with the optimization objective. Therefore, egalitarianism satisfy the Axiom
1.

Q.E.D.

A.2 AXIOM 2

As the formulation doesn’t take item attributes into account and applies the same operation to all
items, it becomes evident that the Axiom holds.

A.3 AXIOM 3

For utilitarianism, consider the following CTR matrix for recommendation,[
0.1 0.2 0.3
0.5 0.4 0.1
0.7 0.5 0.3

]
,

where the element in i-th row and j-column is wu,i and ranking size is 1. In such a matrix, the utili-
tarianism solution is 0.3+0.5+0.7 = 1.5 since it always chooses the highest value among the items
of certain user (i.e. selects the highest value of one row). However, we apply the transformation A,
such that the matrix becomes [

0.1 ∗ 4 0.2 0.3
0.5 ∗ 4 0.4 0.1
0.7 ∗ 4 0.5 0.3

]
,

then the utilitarianism solution is 0.4 + 2 + 2.8 ̸= 4 ∗ 1.5. Therefore, utilitarianism does not satisfy
Axiom 3.

For dealism, for the transformation A, we have

f(A(v)) = max
∑
i

log(civi) = max
∑
i

log(vi) = f(v).

Therefore, dealism satisfies Axiom 3.

For egalitarianism, it is easy to observe if could happen

argmin
i

vi ̸= argmin
i

civi,

therefore, egalitarianism does not satisfy Axiom 3.
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A.4 AXIOM 4

It is evident that all three optimization objectives do not take resource available levels into consider-
ation. In simpler terms, if the resources allocated to an item are reduced, and the initial solution still
falls within the feasible region, the solution remains unchanged from the original.

A.5 AXIOM 5

For the utilitarianism, consider the matrix[
0.1 0.2 0.3
0.5 0.4 0.1

]
,

where the element in i-th row and j-column is wu,i and ranking size is 1. In the context of ranking
applications, we assume that each item is exposed at most once. Therefore, the ranking model will
choose 0.3 in the first row and 0.5 in the second row. However, if we increase the resource to[

0.1 0.2 0.3
0.5 0.3 0.1
0.7 0.1 0.1

]
,

the ranking model will choose 0.3 in the first row, 0.3 in the second row and 0.7 in the third row.
The first item’s utility decreases from 0.4 to 0.3. Therefore, utilitarianism does not satisfy Axiom 5.

Similarly, dealism does not satisfy Axiom 5.

For egalitarianism, D1 ⊂ D2 and D1 ̸= D2, we have

vi = vj ,∀i, j ∈ I,v ∈ U ,
and since it satisfies the Axiom 1, we therefore have

argmax
v∈D1

f(v) ≤ argmax
v∈D2

f(v).

Q.E.D.

B PROOF OF THEOREM 2

According to the equation 1, we have

W (α) = max f(v;α),

s.t. 1⊤xu = K, ∀u ∈ U
xu,i = {0, 1}, ∀i ∈ I, u ∈ U

vi = γi
∑
u∈U

wu,ixu,i, ∀i ∈ I

Let abbreviate |U| = N and ei =
1
N

∑
u∈U xu,i.

Therefore, we can relax the first condition as∑
u∈U

∑
i∈I

xu,i = NK,

i.e. ∑
i∈I

ei = K (9)

We also relax the second condition as

0 ≤
∑
u∈U

xu,i ≤ N, ∀i ∈ I

i.e.
0 ≤ ei ≤ 1,∀i ∈ I. (10)
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Finally, their exists τ > 0,, we can relax the third condition as∑
u∈U

wu,ixu,i ≤ τ
∑
u∈U

wu,i

∑
u∈U

xu,i,

i.e. ∑
u∈U

wu,ixu,i ≤ Nηiei, (11)

where ηi = τ
∑

u∈U wu,i.

Combining Equation 9, 10, 11, we have Ŵ (α) ≥W (α).

Q.E.D

C LEMMA 1

Lemma 1 Given the vector x ∈ RN ,
∑N

i=1 wix
1−α
i ≥ C, for any α > 0, wi > 0,xi > 0, we have

N∑
i=1

wixi ≥ CσαN− α
1+α , (12)

where σ = mini xi.

C.1 PROOF OF LEMMA 1

We can observe that f(x) = x1+α is a concave function, therefore, we apply the Hölder inequality,
we have when 1

1+α + α
1+α = 1,

C ≤
N∑
i=1

wixi ∗
1

xα
i

≤ (

N∑
i=1

w1+α
i x1+α

i )
1

1+α (

N∑
i=1

1

x1+α
i

)
α

1+α (13)

From concave attribute, we have

(

N∑
i

wixi)
1+α ≥

N∑
i=1

w1+α
i x1+α

i ,

therefore, we have

(

N∑
i=1

w1+α
i x1+α

i )
1

1+α ≤
N∑
i=1

wixi (14)

Let σ = mini xi, we have

(

N∑
i=1

1

x1+α
i

)
α

1+α ≤ N
α

1+α

σα
(15)

Then combining equation 14 and equation 15 the equation 13 becomes:

N∑
i=1

wixi ≥ CσαN− α
1+α

Q.E.D
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D PROOF OF THEOREM 3

To simply the symbol, let mi = γiηi. The objective becomes:

Ŵ (α) =max
e

∑
i

mi
e1−α
i

1− α

s.t.
∑
i

ei = K

0 ≤ ei ≤ 1

(16)

, where the input e optimal value is z, which represents be the best allocation under the α-fairness
criterion.

Firstly, we will bound the Ŵα: without generality, we assume that:
m1z1 ≥ m2z2 ≥ · · · ,≥ m|I|z|I|. (17)

The necessary first-order condition for the optimality of e can be expressed as:

∇Ŵα(z)(e− z) ≤ 0,∀e ∈ E ,
where

E = {e|
∑
i

ei = K, 0 ≤ ei ≤ 1}.

The equation can be equivalently written as:

g⊤e ≤ 1,∀e ∈ E , (18)
where

gi =
miz

−α
i∑

i miz
1−α
i

. (19)

We observe the Equation equation 18, which is a well-studied knapsack problem (Salkin &
De Kluyver, 1975), with the best solution:∑K

k=1 m|I|−k+1z
−α
|I|−k+1∑

i miz
1−α
i

≤ 1, (20)

since according the equation 17, we have
m1z

−α
1 ≤ m2z

−α
2 ≤ · · · ,≤ m|I|z

−α
|I| .

From the equation 20 , exists 0 < λ < 1, we have:∑
i

miz
1−α
i ≥ λW 0z−α

1 , (21)

since
K∑

k=1

m|I|−k+1z
−α
|I|−k+1 ≥ z−α

1 λ

K∑
k=1

m[k] = λW 0z−α
1 ,

where m[k] denotes the k-th largest element of mi.

Taking the equation 21 into Lemma 1, we have
|I|∑
i

mizi ≥ λW 0(
z|I|

z1
)αN− α

1+α . (22)

Therefore,

POF =
W (0)−W (α)

W (0)
≤ W (0)− Ŵ (α)

W (0)

≤ 1− λ(
z|I|

z1
)αN− α

1+α

= 1−O(N− α
1+α ).

Q.E.D.
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Figure 5: An illustrative example to visualize item fairness in ranking applications.
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Figure 6: Visualization of items utilities for different α.

E AN ILLUSTRATIVE EXAMPLE OF ITEM FAIRNESS

In this section, we will give an illustrative example of item fairness.

Figure 5 provides an illustrative example of item fairness in the ranking process. In this scenario,
we assume the recommender system includes users u1 and u2, and there are six items in the RS
available for recommendation to these users.

In a simple way, we suppose u1 and u2, and the system ranks a list of K = 3 items from six item
candidates. The ranking model will make the ranking list LK(u1), LK(u2) based on the decision
variable x. For example, in the case of user u1, the recommendation will expose items with a value
of 1 for the decision vector x.

We also set the weight γi × wu,i of item i. The utilities v of items are determined by aggregating
the scores of the exposed items across the entire user set. For example, for the first item i1 (yellow
cloth), the utility v1 is computed as 1 ∗ 0.8 + 0 ∗ 0.2 = 0.8. We aim to balance the utilities of items
from utilitarianism, dealism, and egalitarianism, respectively.

F VISUALIZATION OF ITEM UTILITY

To give a better understanding of how the hyperparameter α influences fairness under different
ethical principles (utilitarianism, dealism, and egalitarianism), we plotted histograms of item utility
for each of the different values of α (0, 1, and 3).

As illustrated in Figure 6, when α increases from 0 to 3, the maximum utility of items decreases,
while the minimum utility increases. This indicates a shift toward a more equitable and fair distri-
bution of utility among items.
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When α = 0 (corresponding to utilitarianism), the difference in utility level between items is very
large(more than 56.9). When α = 3 (corresponding to egalitarianism), utility levels converge, and
the difference between the highest and lowest utility narrows to a mere 8.34.

Obviously, when α is small, α-rank focuses more on maximizing the overall utility, allocating most
exposure toward the item with the largest wui. On the contrary, for larger values of α, α-rank places
greater emphasis on fairness among items. When α falls in between, α-rank strives to achieve a
balance between accuracy and fairness, ensuring that more items receive adequate exposure while
enhancing the overall utility of the item group.

G LORENZ CURVE OF DIFFERENT FAIRNESS MODELS
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(b) P-MMF

0 20 40 60 80 100
Worst item ratio(%)

0

20

40

60

80

100

To
p1

0 
ite

m
 re

co
m

m
en

de
d 

ra
tio

(%
) λ=0

λ=0.01
λ=0.1
λ=1
λ=∞

(c) Welf
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Figure 7: The Lorenz curves for different models on item exposure.

To comprehensively analyze the item fairness of α-rank and other baselines, we conducted an anal-
ysis employing Lorenz curves Gastwirth (1971), as shown in Figure 7, to visualize the distribution
of item utility. Lorenz curve is a well-established tool for assessing distributional inequality in dif-
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Figure 8: Gini and eCN change w.r.t the coefficient of entropy regularizer λ in OT under different α

ferent scenarios. The gini coefficient is the area between the Lorenz curve and the absolute fairness
line.

Here are the steps we took to plot the Lorenz curve. Firstly, we sort the items according to their
utility level, from low to high. Then, we calculate the percentage of total utility for each percentage
of items separately. Finally, we plot these percentage data as a curve that shows the proportion
of utility (y%) occupied by the worst x% of items. Note that the x-axis represents the cumulative
percentage of item numbers, while the y-axis represents the cumulative utility percentage. It is
crucial to highlight that the diagonal line extending towards the upper right corner signifies a state
of absolute fairness.

We can see that in Figure 7 (a), when α → 0, α-rank predominantly emphasizes total utility level,
and the fairness shows poor performance. In contrast, as α → ∞, α-rank increasingly prioritizes
fairness, resulting in a distribution of item utility that tends towards egalitarianism.

We can show that influence can be exerted on the equity of utility distribution through parameter tun-
ing of other baselines P-MMF, Welf, FairRec, and FairRec+. Compared with other baseline models,
α-rank has a greater range of control over the distribution through hyperparameter adjustments. As
the parameter α varies from 0 to infinity, it causes the Lorenz curve to shift in a manner where all
item utilities can be taken into consideration. However, other baseline methods are sensitive to their
parameters, which can make them challenging to adjust with respect to the requirements of practical
applications.

H ABLATION EXPERIMENT OF α−RANK

To better investigate the performance of our model under different parameters settings, we conducted
a series of ablation experiments on the Yelp dataset under ranking size K = 10. Similar experiment
results are also oberseved on other dataset and other ranking size K.

H.1 ABLATION STUDY ON OT COEFFICIENT λ

In this section, we conducted experiments using two metrics, Gini@10 and eCN@10, to investigate
how the OT regularizer coefficient λ influences model performance. We adjusted λ value within the
range of [0, 10].

Figure 8 (a) illustrates how the Gini metric changes with λ. We can observe that Gini remains
relatively stable across the λ values ranging from 0 to 10. Therefore, we can conclude that λ value
is not sensitive to the fairness metric Gini. Moreover, as the parameter α increases, α-rank begins to
prioritize fairness among items more prominently, resulting in a decrease in Gini.
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Figure 9: Gini and eCN change w.r.t user size |U|

Curves in Figure 8 (b) report the change in eCN with respect to λ, ranging from 0 to 10. We can
see that the eCN value shows a drastic change when λ transitions from 0 to 4. Specifically, when
α = 0, eCN increases by 1.6% (from 6.21 to 6.31), and when α = 3, eCN decreases by 1.3% (from
5.87 to 5.80). As α increases, the decreasing trend of eCN@10 becomes more pronounced.

In the OT problem, λ controls the size of the entropy regularizer. By tuning the parameter λ, we can
trade-off between smoothness and convexity of the exposure probability distribution among items. A
higher λ will emphasize more on the smoothness of the probability distribution, implying a reduced
disparity in exposure among items. When α is relatively small (α ≤ 0.01), a slight reduction
in the difference in exposure probability among items allows some items with lower wu,i to gain
more exposure, resulting in an increase in eCN. However, when α becomes larger, the increased
smoothness of probability distributions leads to a decrease in exposure for items with higher wu,i,
consequently resulting in a decrease in eCN@10.

H.2 ABLATION STUDY ON USER SIZE |U|

In this section, we conducted experiments on the performance of α-rank with respect to user size |U|,
which is significant for understanding how α-rank adapts to different user sizes. For the experimental
setting, we randomly sampled |U| ∈ [5, 500] numbers of users. Finally, we plotted the curve based
on the mean and variance of Gini@10 and eCN@10.

Figure 9 (a) illustrates that Gini@10 remains nearly constant regardless of changes in user size. This
shows that α-rank demonstrates consistent fairness performance even when confronted with varying
user sizes.

However, Figure 9 (b) reveals a decline in eCN@10 as user size increases. Furthermore, the extent
of eCN@10 reduction diminishes with higher α values. This is because when the number of users
is relatively small, their interests tend to be more focused, making it easier for α-rank to allocate
exposure. As α increases from 0 to 3, α-rank transitions from prioritizing accuracy to equalizing
exposure across items.

H.3 ABLATION STUDY ON ITEM SIZE |I|

Similarly, we study the influence of item size |I| on the performance of α-rank. To conduct our
analysis, we randomly sampled |I| ∈ [20, 300] numbers of items for three times and plotted the
figure using the mean and variance of Gini@10 and eCN@10.

The curves, drawn in Figure 10 (a), reveal a notable trend: Gini@10 increases as item size grows.
The trend is particularly pronounced when α is relatively small (α < 0.01). In contrast, when α is
relatively large (i.e. α ≥ 1), we can barely see the trend of increase, and the curves nearly overlap,
where Gini@10 is extremely close to 0. This observation highlights the role of the parameter α in
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Figure 10: Gini and eCN change w.r.t the item size |I|

0.0315

0.0320

0.0325

0
6

12
18

x( = 0, 1, 3)

0 10 20 30
item ID

0

1
item utility

user ID

Figure 11: Visualization of exposure-based α-rank result

stabilizing item fairness, even when dealing with large item sizes. Moreover, it demonstrates that by
adjusting α, we can maintain item fairness even if the item size is high.

In Figure 10 (b), we observed a similar pattern to Figure 10 (a). With item size |I| increases,
eCN@10 also rises and such increase becomes more and more apparent as α increases. This sug-
gests that α-rank can achieve a more accurate and user-satisfying result when applied to larger item
datasets.

I EXPOSURE-BASED FAIRNESS

In this section, we aim to analyze the exposure-based fairness Xu et al. (2023a); Patro et al. (2020)
performance of α-fairness and other baselines. In exposure-based fairness, we set wu,i = 1 dis-
cussed in Table 1. The exposure-based fairness focuses on the exposure of each item as their utili-
ties.

I.1 VISUALIZING RANKING RESULT

In Figure 11, we visualized the ranking result matrix x̃ and the utility vector v of exposure-based
α-rank at different values of alpha (0, 1, and 3). As we can see in Figure 11, no matter what value
of α we choose, exposure-based α-rank tends to equalize item exposure and allocate utility more
fairly among items.

21



Under review as a conference paper at ICLR 2024

0.00.10.20.30.40.50.6
Gini@10

6.80

6.85

6.90

6.95

7.00

eC
N
@
10

α-rank
P-MMF
FairRec
FairRec+
Welf

Figure 12: Pareto Frontier of exposure-based α-rank and other baselines
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Figure 13: Gini and eCN change w.r.t the coefficient of OT regularizer λ in OT under different α

I.2 PARETO FRONTIER

To verify the effectiveness of α-rank in exposure-based fairness, we conducted a comparative anal-
ysis by plotting the Pareto frontiers of α-rank against all baseline methods. Figure 12 illustrates
the performance of α-rank in comparison to other baseline algorithms. From the figure, we can
observe that α-rank also outperforms the baselines in terms of both Gini@10 and eCN@10 metrics
in the realm of exposure-based fairness. These results also verify the effectiveness of α-rank over
the baselines.

I.3 ABLATION STUDY ON OT COEFFICIENT λ

We also study the effect of the hyperparameter λ in the performance of α-rank in exposure-based
fairness. Specifically, we explore how varying values of λ influence the quality of recommendations
when α is set to different values within the range of 0 to 3.

Figure 13 presents that both Gini@10 and eCN@10 curves show a consistent decreasing trend as
λ increases. This trend becomes less pronounced as λ reaches larger values. The experiment also
verifies the parameter λ in the OT projection controls the smoothness and the convexity of the
exposure probability distribution between items.

Furthermore, it is noteworthy that curves for different α are basically the same. In the exposure-
based α-rank algorithm, the weight ηi of items in equation 3 is the same for all items. In simpler
terms, every item holds the same weight within the system, resulting in the same underlying principle
regardless of the specific value of α.
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