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Abstract

Separating signals from an additive mixture may be an unnecessarily hard problem when
one is only interested in specific properties of a given signal. In this work, we tackle simpler
“statistical component separation” problems that focus on recovering a predefined set of
statistical descriptors of a target signal from a noisy mixture. Assuming access to samples of
the noise process, we investigate a method devised to match the statistics of the solution
candidate corrupted by noise samples with those of the observed mixture. We first analyze
the behavior of this method using simple examples with analytically tractable calculations.
Then, we apply it in an image denoising context employing 1) wavelet-based descriptors,
2) ConvNet-based descriptors on astrophysics and ImageNet data. In the case of 1), we show
that our method better recovers the descriptors of the target data than a standard denoising
method in most situations. Additionally, despite not constructed for this purpose, it performs
surprisingly well in terms of peak signal-to-noise ratio on full signal reconstruction. In
comparison, representation 2) appears less suitable for image denoising. Finally, we extend
this method by introducing a diffusive stepwise algorithm which gives a new perspective
to the initial method and leads to promising results for image denoising under specific
circumstances.

1 Introduction

We investigate the properties of a new class of source separation algorithms known as statistical component
separation methods that has recently emerged for the analysis of astrophysical data (Regaldo-Saint Blancard
et al., 2021; Delouis et al., 2022; Siahkoohi et al., 2023; Auclair et al., 2024). Contrary to standard source
separation algorithms, such as blind source separation techniques (Cardoso, 1998), these methods do not
focus on recovering the signal of interest, but on solely recovering certain statistics or features derived from
this signal. These have proven successful in separating signals of distinct statistical natures in a variety of
astrophysical contexts, such as the separation of interstellar dust emission and instrumental noise in data from
the Planck satellite (Regaldo-Saint Blancard et al., 2021; Delouis et al., 2022), the separation of interstellar
dust emission from the cosmic infrared background (Auclair et al., 2024), or the removal of glitches in seismic
data from the InSight Mars mission (Siahkoohi et al., 2023). The methodology is not specific to astrophysics,
and could be of interest to other scientific fields.
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Problem. We observe a noisy mixture y = x0 + ϵ0 with x0 the signal of interest and ϵ0 a noise process.
Signals can be viewed as vectors of RM . We refer to ϵ0 as the noise, but we make no assumption on its
distribution p(ϵ0), so that it can include any form of contaminant of the signal x0. However, we assume that
we have a way to sample p(ϵ0). Let ϕ be a function, called the representation, that maps x to a vector of
features or summary statistics in RK , with typically K ≪M . The ultimate goal of a statistical component
separation method is to recover ϕ(x0). Regaldo-Saint Blancard et al. (2021) introduced a first algorithm to
do that which consists in constructing x̂0 such that:

x̂0 ∈ arg min
x

L(x) with L(x) = Eϵ∼p(ϵ0)

[
∥ϕ(x+ ϵ)− ϕ(y)∥2

2

]
, (1)

and where the optimization of L is initialized with y. For suited ϕ, previous works have demonstrated
empirically that ϕ(x̂0) can be a relevant estimate of ϕ(x0), and that, while not expected, x̂0 also seemed to
be a reasonable estimate of x0 (see Regaldo-Saint Blancard et al. (2021); Delouis et al. (2022); Siahkoohi
et al. (2023); Auclair et al. (2024)).1 The goal of this paper is to give first formal elements to explain these
results, establish performance baselines, and introduce new methods for solving the problem. For numerical
experiments, we will approximate the expected value involved in L by Monte Carlo estimates. Introducing Q
independent noise samples ϵ1, . . . , ϵQ ∼ p(ϵ0), the corresponding empirical loss L̂ reads:

L̂(x) = 1
Q

Q∑
i=1
∥ϕ(x+ ϵi)− ϕ(y)∥2

. (2)

Related work. Aside from the literature mentioned above, we are not aware of directly related work on
this precise problem. However, we mention that adjacent problems of task-adapted reconstructions were
explored in learning contexts. In particular, Mairal et al. (2012) investigated task-adapted dictionary learning,
for which sparse data representations can be tuned to specific tasks. More recently, Adler et al. (2022)
established a framework for task-related solving of inverse problems and showed how deep neural networks
can be used for it. Finally, we add that the approach investigated in this paper shares similarities with sparse
regularization techniques proposed in the extensive denoising and component separation literature (e.g.,
Starck et al., 2005; Selesnick, 2012; Elad et al., 2023). The loss L can indeed be interpreted as a regularization
term in a denoising or component separation context. However, we emphasize that the goals differ, since
statistical component separation methods primarily focus on recovering ϕ(x0) (and not on recovering x0).

Outline. In Sect. 2, we compute the analytical expressions of the global minimizers of L for different
examples of representations ϕ and in the case of Gaussian noise ϵ0. This will give us a sense of the constraints
that ϕ must respect for ϕ(x̂0) to be a relevant estimate of ϕ(x0). In Sect. 3, we describe a first algorithm to
perform numerical experiments in typical image denoising settings for two different representations: the first
one based on wavelet phase harmonic statistical descriptors, and the second one based on ConvNet feature
maps. Then, in Sect. 4, we discuss strategies to improve the results in the case of Gaussian noise using a new
diffusive stepwise algorithm. We finally summarize our conclusions and perspectives in Sect. 5. Codes and
data are provided on GitHub.2

Notations. We refer to the components of a vector x ∈ CM as xi or x[i]. The dot product between x and y
is x · y =

∑M
i=1 xiyi, and the corresponding norm of x is ∥x∥ = (

∑M
i=1 |xi|2)1/2. The convolution of x, y ∈ CM

is x ⋆ y. We denote the matrix-vector product between A and x by Ax, or A · x when there is ambiguity. We
call sp(A) the set of eigenvalues of a matrix A. For A and B two matrices of same size, the Frobenius inner
product of A and B is ⟨A,B⟩F = Tr(A†B) =

∑
i,j AijBij , where A† = ĀT , and the corresponding norm of A

is ∥A∥F =
∑

i,j |Aij |2. For p1, p2 two independent random processes, we write p1 ∼ p2 when p1 and p2 follow
the same distribution.

1Note that alternatives losses L have been considered in Delouis et al. (2022); Siahkoohi et al. (2023); Auclair et al. (2024),
and have shown significant improvements for the estimation of ϕ(x0), respectively. A formal investigation of these alternatives is
left for future work.

2https://github.com/bregaldo/stat_comp_sep.
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2 A First Analytical Exploration

As a first exploration, we compute the set of global minimizers of L as defined in Eq. (1) for simple examples
of ϕ, and choosing for ϵ0 a Gaussian white noise distribution of variance σ2, that is p(ϵ0) ∼ N (0, σ2IM ). This
assumption for ϵ0 places us in a typical denoising framework. We also provide in App. B a discussion of how
our method relates to maximum likelihood estimation in this context.

2.1 Linear Representation ϕ(x) = Ax leads to mean subtraction

To start with, we consider the case where ϕ(x) = Ax, with A an injective matrix of size K ×M (with
necessarily K ≥M). The vector ϕ(x) then simply consists in a set of features that are linear combinations
of the input vector components. The following proposition establishes that the minimizer is necessarily
y − E [ϵ0].
Proposition 2.1. For ϕ(x) = Ax with A injective, L has a unique global minimizer equal to y − E [ϵ0].

This proposition is proven in App. A.1.1. It is a simple and informative result: if our representation is linear,
then the minimization of L can only bring us back to the observation y diminished by the mean of the noise.
In particular, when the mean of the noise is zero, this optimization has no effect, prompting us to turn to a
nonlinear operator ϕ.

2.2 Quadratic Representation ϕ(x) = x2 leads to sqrt-thresholding

A very simple nonlinear representation is the pointwise quadratic function. Without loss of generality, we only
consider the case where the dimension of x is M = 1. The solution are given by the following proposition.
Proposition 2.2. For ϕ(x) = x2 and p(ϵ0) ∼ N (0, σ2IM ), the global minimizers of L are 0 when y2 ≤ 3σ2,
and ±

√
y2 − 3σ2 when y2 > 3σ2.
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Figure 1: sqrt-thresholding function
involved in Sect. 2.2 (in blue), and
asymptotic behavior (in black).

We refer the reader to App. A.1.2 for a proof. This solution introduces
a threshold on y2. If y2 is not sufficiently large compared to the
variance of the noise σ2, then the solution is 0. Otherwise, we obtain
±
√
y2 − 3σ2. This second case demonstrates an attempt to “subtract

the noise magnitude from the signal magnitude”.

The behavior, shown in Fig. 1, is similar to that of the piecewise
linear soft-thresholding operator. One significant difference is that
it asymptotically reaches the identity function.

The intuition here is that, whenever the amplitude of the signal is
too small compared to that of the noise, it is optimal to shrink it to
zero. However, if the signal clearly stands out from the noise, then
y can be corrected accordingly through a small shrinkage.

Note that related shrinkage functions are common in the context of sparse signal processing (see e.g. Selesnick,
2012; Al-Shabili et al., 2021).

2.3 Power Spectrum Representation

A standard summary statistic for stationary signals is the power spectrum - its distribution of power over
frequency components. We consider signals of arbitrary dimension M , and a set of filters ψ1, . . . , ψK typically
well localized in Fourier space (i.e. “bandpass filters”). We assume that these filters cover Fourier space,
meaning that for any Fourier mode k, there exists a i0 such that ψ̂i0(k) ̸= 0.3 We define the power spectrum
representation as:

ϕ(x) = (∥ψ1 ⋆ x∥2
, . . . , ∥ψK ⋆ x∥2). (3)

3ψ̂ here refers to the discrete Fourier transform of ψ.
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It corresponds to a vector of K coefficients measuring the power of the input signal on the passband of each
of the filters ψ1, . . . , ψK .

If we assume that the frequency supports of these filters are disjoint, minimizing L is equivalent to minimizing
independently for all i = 1, . . . ,K:

Li(xi) = E
[(
∥Ψi(xi + ϵ)∥2 − ∥Ψiy∥2

)2
]
, (4)

where xi is the orthogonal projection of the input x ∈ RM in the subspace spanned by the Fourier modes
of the passband of ψi, and Ψi is the injective matrix representing the linear operation x → ψi ⋆ x in that
subspace. The following proposition (proof given in App. A.1.3), determines the minimizers of Li.
Proposition 2.3. For ϕ(x) = ∥Ax∥2 with A injective and p(ϵ0) ∼ N (0, σ2IM ), introducing:

Λ = {λ ∈ sp(ATA) such that ∥Ay∥2 − E
[
∥Aϵ∥2

]
− 2σ2λ ≥ 0}, (5)

if Λ = ∅, then the global minimizer of L is unique equal to 0, otherwise, the minimizers are the eigenvectors x
of ATA associated with min Λ such that ∥Ax∥2 = ∥Ay∥2 − E

[
∥Aϵ∥2

]
− 2σ2 min Λ.4

Let us take a step back before breaking down this result. The power spectrum is a statistic that is
additive when computed on independent signals, so that for a and b two independent processes, we have
E [ϕ(a+ b)] = E [ϕ(a)] + E [ϕ(b)]. In our setting, where x0 is viewed as a deterministic quantity, this gives:

Eϵ0∼p(ϵ0) [ϕ(y)] = ϕ(x0) + Eϵ0∼p(ϵ0) [ϕ(ϵ0)] . (6)

Therefore, an unbiased estimator of the power spectrum statistics of x0 based on the observation y is:

ϕ̂(x0) = ϕ(y)− Eϵ0∼p(ϵ0) [ϕ(ϵ0)] . (7)

Now, applied to ϕi(xi) = ∥Ψixi∥2, Prop. 2.3 tells us that there is a threshold below which the minimization
of Li leads to a signal that is zero over the passband of ψi, and above which this minimization leads to a
signal xi such that ∥Ψixi∥2 = ∥Ψiy∥2 − E[∥Ψiϵ∥2]− 2σ2 min Λi = ϕ̂i(x0)− 2σ2 min Λi. For typical filters, we
usually have 2σ2 min Λi ≪ E[∥Ψiϵ∥2], so that when the signal stands out from the noise, the global minimizers
of Li have power spectra statistics that almost coincide with the unbiased estimator of the power spectrum
coefficients of x0. In conclusion, in this setting, the power spectrum representation leads to minimizers x̂0
such that ϕ(x̂0) is an explicit estimate of ϕ(x0).

We note that for filters with intersecting passbands, the previous analysis becomes significantly more technical.
We prove in App. A.1.4 a generalization of Prop. 2.2 that addresses this case.

3 Statistical Component Separation and Image Denoising

Previous works have shown that statistical component separation methods can perform surprisingly well for
image denoising provided that the representation ϕ is suited to the data (Regaldo-Saint Blancard et al., 2021;
Delouis et al., 2022; Auclair et al., 2024). Although the goal of these methods remains to estimate ϕ(x0), in
this section, we investigate numerically to which extent x̂0 can also be a relevant estimate of x0.

We focus on a typical denoising setting, where ϵ0 is a colored Gaussian stationary noise. We employ the
block-matching and 3D filtering (BM3D) algorithm (Dabov et al., 2007; Mäkinen et al., 2020) as a benchmark.
However, we emphasize that contrary to BM3D, statistical component separation methods can apply similarly
to arbitrary noise processes, including non-Gaussian or non-stationary ones. This has already been illustrated
in the previous literature on this subject, and we will consider an additional exotic noise in this section for
this purpose.

We introduce in Sect. 3.1 the vanilla algorithm used for the experiments of this section. Then, we apply this
algorithm for two distinct representations: Sect. 3.2 employs a representation based on the wavelet phase
harmonics (WPH) statistics, and Sect. 3.3 uses summary statistics defined from feature maps of a ConvNet.

4We can verify that for A a matrix of size 1× 1, we recover a result equivalent to that of Prop. 2.2.
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3.1 Vanilla Algorithm

Algorithm 1 Vanilla Statistical Component Separation
Inputs: y, p(ϵ0), Q, T , gradient-based optimizer (e.g. LBFGS)
Initialize: x̂0 = y
for i = 1 . . . T do

sample ϵ1, . . . , ϵQ ∼ p(ϵ0)
L̂(x̂0) =

∑Q
k=1 ∥ϕ(x̂0 + ϵk)− ϕ(y)∥2

/Q

x̂0 ← one_step_optim
[
x̂0,∇L̂(x̂0)

]
end for
return x̂0

Analytically determining the global minimizer of L for arbitrary representations ϕ quickly becomes intractable,
in which case one has to solve this optimization problem numerically. A straightforward way to do that is to
approximate L via Monte Carlo estimates. Introducing Q independent noise samples ϵ1, . . . , ϵQ ∼ p(ϵ0), we
define:

L̂(x) = 1
Q

Q∑
i=1
∥ϕ(x+ ϵi)− ϕ(y)∥2

. (8)

The minimization of L then takes the form of a regular stochastic optimization described in Algorithm 1, and
referred to as the vanilla algorithm in the following. This algorithm was used in Regaldo-Saint Blancard et al.
(2021), where the authors had employed a L-BFGS optimizer (Byrd et al., 1995; Zhu et al., 1997) using y as
the initial guess. We proceed similarly in the following, and fix the number of iterations to T = 30 and the
batch size to Q = 100.5

3.2 Wavelet Phase Harmonics Representation

Definition. Similarly to Regaldo-Saint Blancard et al. (2021); Auclair et al. (2024), we consider a repre-
sentation based on wavelet phase harmonics (WPH) statistics (Mallat et al., 2019; Zhang & Mallat, 2021;
Allys et al., 2020). These statistics efficiently capture coherent structures in a variety of non-Gaussian
stationary data. They rely on the wavelet transform, which locally decomposes the signal onto oriented scales.
Formally, for a random image x, the WPH statistics are estimates of covariances between pointwise nonlinear
transformations of the wavelet transform of x. Using a set of complex-valued wavelets ψ1, . . . , ψN covering
Fourier space with their respective passbands, we focus on covariances of the form:

S11
i (x) = Cov [x ⋆ ψi, x ⋆ ψi] , S00

i (x) = Cov [|x ⋆ ψi|, |x ⋆ ψi|] , (9)
S01

i (x) = Cov [|x ⋆ ψi|, x ⋆ ψi] , C01
i,j(x) = Cov [|x ⋆ ψi|, x ⋆ ψj ] . (10)

We give in App. D the technical details related to the definition and computation of these statistics. In
practice, ϕ(x) is made of K = 420 complex-valued coefficients for x a M = 256× 256 image.

Experimental Setting. We consider three different types of 256×256 images corresponding to a simulation
of the emission of dust grains in the interstellar medium (the dust image), a simulation of the large-scale
structure of the Universe (Villaescusa-Navarro et al., 2020) (the LSS image), and randomly selected images
from the ImageNet dataset (Deng et al., 2009) (the ImageNet images). We give additional details on this
data in App. C. We then consider four different noise processes: three colored Gaussian noises, namely pink,
white, and blue noises, as well as a non-Gaussian noise made of small crosses (see Fig. 2, bottom right). We
vary, for the colored noises, the amplitude σ of the noise considering 10 different levels ranging from 0.1 to
2.14 (logarithmically spaced) in unit of the standard deviation of x, and for the “crosses” noises, the density
of crosses ρ considering 10 different values ranging from 0.001 to 0.063 (logarithmically spaced)6. For each of

5We have found empirically that the batch size should be kept sufficiently high for the L-BFGS optimizer to behave correctly.
We also report that T = 30 was sufficient to achieve approximate convergence for all experiments.

6The density ρ is defined as the expected ratio of crosses to the total number of pixels.
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Figure 2: Original dust image x0 (center left), noisy realizations y for distinct colored Gaussian noise processes
and a non-Gaussian noise (top row), denoised images x̂0 using Algorithm 1 with the WPH representation
from Sect. 3.2 (middle row), and denoised images using BM3D for colored noises (bottom row, except bottom
right). Additionally, a sample of the non-Gaussian “crosses” noise is shown (bottom right). The accompanying
PSNR values are provided next to each noisy and denoised image.

theses cases, we apply Algorithm 1 for 30 different noise realizations. Each optimization takes ∼ 40 s with a
GPU-accelerated code on a A100 GPU.

Results. In Fig. 2, we compare the noise-free dust image x0 with examples of its noisy y and denoised
x̂0 versions for each noise process. In the case of the colored noises, we also include the BM3D-denoised
images in the bottom row for reference. Our method effectively reduces noise while preserving the original
image’s structure. Even with the “crosses” noise, our algorithm successfully removes most of the crosses, the
remaining ones having been most likely confused with actual structures of x0. We evaluate the quality of
the denoising in terms of peak signal-to-noise ratio (PSNR), significantly improving it in all cases. However,
BM3D outperforms our method for colored noises, which is not surprising as our approach was not explicitly
designed for that.

We further evaluate our algorithm’s performance for colored noises using PSNR and the relative error of
ϕ(x̂0). In Fig. 3, we present the PSNR and relative errors of WPH statistics for different coefficient classes as
a function of noise level σ. Our method consistently improves PSNR, but BM3D performs better across all
noise levels. We note that our method’s performance degrades for very high σ, potentially due to structure
hallucination caused by extreme initial noise.7 In terms of WPH statistics relative error, our method effectively
reduces noise impact and outperforms BM3D in most cases. Notably, it excels in S11 and S01 coefficients,
except for the high-noise regime in S11. However, for S00 and C01 coefficients, in the cases of blue and
white noise, BM3D performs comparably or better than our method. Since a perfect PSNR implies perfect
statistics recovery, we interpret this as the sign that a regular denoising algorithm, when adapted to the noise
process, can also provide precise estimates of ϕ(x0). However, we point out that the normalization of the
WPH statistics may play a crucial role on these metrics (see App. D), and a fairer comparison should explore

7WPH statistics may also define generative models with a sampling procedure sharing important similarities with Algorithm 1
(see Allys et al. (2020); Zhang & Mallat (2021); Regaldo-Saint Blancard et al. (2021); Régaldo-Saint Blancard et al. (2023)).
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Figure 3: PSNR and relative errors of the WPH statistics per class of coefficients as a function of the noise
level σ for the denoised dust images as described in Sect. 3.2 for each type of colored noise.
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Figure 4: Same as Fig. 2 for the “crosses” noises as a function of the density of crosses ρ.

7



Published in Transactions on Machine Learning Research (02/2024)

its role in this precise setting. We report similar results in Fig. 4 for the “crosses” noise. These demonstrate
a clear mitigation of the noise in all regimes.

We report in Figs. F.1, F.2, F.4, F.5, and F.7 equivalent results for the LSS and ImageNet data. The overall
conclusions are the same.

3.3 ConvNet-based Representation

Definition. To further explore the dependence on the representation ϕ for the performance of a statistical
component separation for image denoising, we define a representation based on feature maps of a ConvNet.
We make use of the VGG-19_BN network (Simonyan & Zisserman, 2015) which was trained for image
classification on ImageNet. We only employ the first two convolutional blocks of the networks (each of these
being made of a sequence of Conv2d, BatchNorm2d, and ReLU blocks), which, for each 224× 224 RGB image
x, output a set of 64 224× 224 feature maps f(x) = (f1(x), . . . , f64(x)). We define a representation ϕ(x) of
dimension K = 64 from these feature maps by taking the squared Euclidean norm of each feature map, that
is:

ϕ(x) = (∥f1(x)∥2
, . . . , ∥f64(x)∥2). (11)

This representation shares structural similarities with the WPH statistics and its parent the wavelet scattering
transform statistics (Bruna & Mallat, 2013; Mallat, 2016). However, contrary to these previous transforms
which employ generic wavelet filters, the filters of the VGG convolutional layers are specifically trained for
the analysis of ImageNet data.
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Figure 5: Root-mean-square error on
the coefficients of the ConvNet-based
representation ϕ as a function of the
noise level σ for the denoised ImageNet
images for each type of colored noise.

Results. We conduct the same experiment as in Sect. 3.2 in this
setting focusing on randomly selected ImageNet images. We show in
Fig. F.8 examples of resulting images before and after denoising, and
we show in Fig. 5 the root-mean-square error on the coefficients of
the representation ϕ as a function of σ (mean and standard deviation
computed across 50 randomly selected test images). While Fig. 5
indicates that our method significantly reduces the impact of the noise
on the representation ϕ, we see in Fig. F.8 that it performs poorly
as a regular denoiser in comparison to BM3D. This is an interesting
result, as it shows that the representation ϕ we have built here is not
as well suited for image denoising as the WPH representation was.
Given the fact that VGG networks were trained for a classification
problem, it is likely that their feature maps are partly robust to the
noise in the input. A spectral analysis of the denoised maps further
shows that there remains a significant amount of noise in the small
scales, suggesting that the feature maps are weakly impacted by the
noise at small scales.

4 Diffusive Statistical Component Separation

Taking inspiration from the diffusion-based generative modeling literature (Ho et al., 2020; Song et al., 2021),
we investigate to which extent statistical component separation methods can benefit from the idea of breaking
down the optimization into a sequence of optimization problems involving noises of smaller amplitude.

We introduce in Sect. 4.1 a new algorithm that leverages this idea in the case of Gaussian noises and apply it
to the dust data introduced in Sect. 3. We then study in Sect. 4.2 the limit regime where the amplitude of
the noise tends to zero. This gives us an alternative way to perform statistical component separation giving
promising results in specific circumstances.
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4.1 A “Diffusive” Algorithm

Stable process. We assume that ϵ0 is a stable noise process, that is for any ϵ1, . . . , ϵP
i.i.d.∼ p(ϵ0), we have∑P

i=1 ϵi ∼ αϵ0 + β for some scalar constants α and β. A practical example is that of Gaussian processes,
since for ϵ0 ∼ N (0,Σ), we clearly have

∑P
i=1 ϵi ∼ Pϵ0 ∼ N (0, PΣ). Introducing α ∈ RP such that αi > 0 for

all i, and ∥α∥2 =
∑

i α
2
i = 1, and provided that E [ϵ0] = 0, we can break down ϵ0 into “smaller” independent

noise processes as follows:

ϵ0 =
P∑

i=1
αiϵi, with ϵ1, . . . , ϵP

i.i.d.∼ p(ϵ0), (12)

where the variance of αiϵi can be made arbitrarily small by taking a sufficiently small value for αi.

Algorithm. In this setting, we leverage this decomposition by breaking down the minimization of L into
“simpler” optimization problems involving noises of smaller variance, with the goal of finding a better optimum
x̂0. We introduce Algorithm 2 for this purpose. This algorithm starts from x̂P = y and builds a sequence of
signals x̂P −1, . . . , x̂0 such that for all i ∈ {P − 1, . . . , 0}:

x̂i ∈ arg min
x

L(x;αi+1, x̂i+1) = Eϵ∼p(ϵ0)

[
∥ϕ(x+ αi+1ϵ)− ϕ(x̂i+1)∥2

]
. (13)

Algorithm 2 Diffusive Statistical Component Separation

Input: y, p(ϵ0), Q, T , P , α ∈ RP with ∥α∥2 = 1 and αi > 0, gradient-based optimizer
Initialize: x̂P = y
for i = P − 1 . . . 0 do

x̂i = x̂i+1
for j = 1 . . . T do

sample ϵ1, . . . , ϵQ ∼ p(ϵ0)
L̂(x̂i) =

∑Q
k=1 ∥ϕ(x̂i + αi+1ϵk)− ϕ(x̂i+1)∥2

/Q

x̂i ← one_step_optim
[
x̂i,∇L̂(x̂i)

]
end for

end for
return x̂0

A sufficient condition for a perfect reconstruction to be achieved is that x̂i ≈ x0 + ϵ̃i with
ϵ̃i ∼ (1−

∑P −i−1
j=0 α2

P −j)1/2ϵ0. We do not expect this strong condition to hold for arbitrary functions
ϕ, but the design of ϕ should be guided in that sense.

We also note that a stepwise approach had also been employed in Delouis et al. (2022), and we draw some
connections between the two approaches in App. E. We show that these two approaches rely on related
objective functions. A further exploration of the pros and cons of each of these two algorithms is left for
future work.

Experiment. We apply Algorithm 2 to the dust data introduced in Sect. 3 in the case of the Gaussian
white noise and the WPH representation with αi = 1/

√
P and P = ⌊10σ⌋. We compare in Fig. 6 the results

of this algorithm to those of Algorithm 1. We see that this approach slightly improves the results for every
metric except for the relative error on the C01 coefficients at an intermediate noise level where these are
slightly deteriorated. Although these numerical experiments are not showing significant improvements, having
at least consistent results suggest that, from a theoretical perspective, component separation methods can be
understood as the aggregation of these small optimization problems. We push this idea further in the rest of
this section.
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Figure 6: Same as Fig. 3 for the white noise case only, and comparing results obtained with Algorithm 1 (see
Sect. 3.2), Algorithm 2 with a non-perturbative loss (see Sect. 4.1), Algorithm 2 with the perturbative loss
introduced in Sect. 4.3, and BM3D.

4.2 Limit Regime for Infinitely Small Noises

We study the limit regime of infinitely small noises to give a more formal perspective to Algorithm 2. We
introduce L(x, α) = E

[
∥ϕ(x+ αϵ)− ϕ(y)∥2

]
and expands it with respect to α ∈ R.

Proposition 4.1. For ϕ a twice differentiable function, and ϵ0 arbitrarily distributed with E [ϵ0] = 0, we
have:

L(x, α) = ∥ϕ(x)− ϕ(y)∥2 + α2 [⟨Jϕ(x)TJϕ(x),Σ⟩F + ⟨Hϕ(x),Σ⟩F · (ϕ(x)− ϕ(y))
]

+ o(α2), (14)

where Jϕ(x) is the Jacobian matrix of ϕ (of size K ×M), Hϕ(x) is its Hessian tensor (of rank 3, and size
K ×M ×M), and Σ is the covariance matrix of ϵ0.8

The proof is given in App. A.2.1. The zeroth-order term of this expansion has a clear interpretation. It
prevents the representation of x from moving too far from that of y. However, the second order term is more
intricate as it combines first and second order derivatives of ϕ, which are weighted by the covariance of the
noise. As an example, let us consider Σ = σ2IM . We then get:

⟨Jϕ(x)TJϕ(x),Σ⟩F = σ2 ∥Jϕ(x)∥2
F , (15)

⟨Hϕ(x),Σ⟩F · (ϕ(x)− ϕ(y)) = σ2 Tr [Hϕ(x)] · (ϕ(x)− ϕ(y)) . (16)

The first term is proportional to the squared norm of the Jacobian matrix, while the second term is a dot
product between the vector of Hessian traces with the vector ϕ(x) − ϕ(y). The trace of Hϕi(x) directly
relates to the mean curvature of the function ϕi at point x, so that this dot product quantifies the alignment
between ϕ(x)− ϕ(y) and the vector of mean curvatures for each component of ϕ.

8We denote by ⟨Hϕ(x),Σ⟩F the vector of RK such that component i equals ⟨Hϕi
(x),Σ⟩F.
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4.3 A Perturbative Algorithm

We note that contrary to Eq. (1), Eq. (14) got rid of the expected value over ϵ, and the second-order expansion
of L(x, α) now only depends on the covariance matrix Σ of the noise, which is often known or easy to estimate
from a set of noise samples. Then, provided L(x, α) can be correctly approximated by its second-order
expansion in α, one can evaluate the loss in a much more straightforward way that does not rely on a noisy
Monte Carlo estimate. In this limit regime, the computational challenge lies in efficiently computing the
second-order term of Eq. (14) in a differentiable way.

We compute in App. A.3 the relevant analytical expressions to do so for ϕ the WPH representation introduced
in Sect. 3.2. We then apply Algorithm 2 for the dust image in the Gaussian white noise case with αi = 1/

√
P ,

P = ⌊10σ⌋, and T = 10, and by replacing the loss L with by its truncated second-order Taylor expansion as
explicited in Eq. (14). We empirically found that the most stable setting is the one where the WPH statistics
only include the S11 and S01 coefficients. We report in Fig. 6 the quantitative results in this setting for the
PSNR and relative errors on these coefficients as a function of σ. Our method performs remarkably well in
comparison to the previous results. It is very close to BM3D in terms of PSNR and outperforms it in the
high noise regime in terms of relative errors on the S11 and S01 coefficients. The fact that the relative error
for the S01 coefficients is higher than for the noisy data in the low noise regime however suggests a form of
instability for this range of σ. Nevertheless, we find these results promising and a clear demonstration of the
relevance of this “diffusive” perspective on statistical component separation methods.

5 Conclusion

This paper has explored several aspects of statistical component separation methods. Section 2 has exhibited
analytically the global minimizers of L for several examples of representations ϕ in the case of Gaussian
white noise. We have shown that a linear ϕ cannot extract any information on x0, while a simple quadratic
representation leads to a form of sqrt-thresholding of the observation y. For ϕ a power spectrum representation,
which can be viewed as a more general quadratic representation, the minimizers of L lead to relevant estimations
of ϕ(x0). Then, in Sect. 3, we have approached numerically the minimizers of L introducing Algorithm 1 in
an image denoising setting for two representations where analytical calculations are intractable: 1) WPH
statistics, 2) statistics derived from the feature maps of a ConvNet. For 1), Algorithm 1 acts as a regular
image denoiser while not explicitly constructed for this. Although it does not outperform BM3D in terms of
the PSNR metric, it better recovers the coefficients ϕ(x0) for most classes of coefficients and experimental
settings. Additionally, it may extend to arbitrary noise processes as it was illustrated with an exotic noise
made of small crosses. For 2), the impact on the noise was clearly mitigated in ϕ(x̂0), but the resulting images
x̂0 were still very noisy, showing that this representation is less suited for image denoising. Finally, in Sect. 4,
we have introduced Algorithm 2, a “diffusive” statistical component separation method that can be applied in
contexts where the noise is a stable process. These ideas led in some cases to better results than Algorithm 1
in a denoising setting. And more importantly, it supported the idea that statistical component separation
methods can be described as the sequence of optimization problems with noises of smaller amplitudes. This
idea will be pushed further in future work.
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A Proofs

A.1 Proofs of Sect. 2

We give the proofs of the results presented in Sect. 2. Assuming that ϵ0 is a Gaussian white noise of variance
σ2, that is p(ϵ0) ∼ N (0, σ2IM ), we compute the set of global minimizers of L as defined in Eq. (1) in the
following cases:

1. ϕ(x) = Ax with A an injective matrix of size K ×M ,

2. ϕ(x) = x2 for M = 1,

3. ϕ(x) = ∥Ax∥2 with A an injective matrix of size K ′ ×M ,

4. ϕ(x) = (∥A1∥2
, . . . , ∥AK∥2) with A1, . . . , AK K injective matrices of size K ′ × M such that

AT
1 A1, . . . , A

T
KAK are co-diagonalizable.

For each case, note that L(x) is infinitely differentiable and obviously bounded from below by 0, and we will
show below that lim

x→+∞
L(x) = +∞ to demonstrate the existence of a global minimum.

We will then determine the global minimizers by studying the zeros of the gradient of L, which, in its general
form, reads:

∇L(x) = 2Eϵ∼p(ϵ0)
[
Jϕ(x+ ϵ)T · (ϕ(x+ ϵ)− ϕ(y))

]
, (17)

where Jϕ is the Jacobian matrix of ϕ.

A.1.1 ϕ(x) = Ax with A injective

Proposition 2.1. For ϕ(x) = Ax with A injective, L has a unique global minimizer equal to y − E [ϵ0].

Proof. We have:
L(x) = E

[
∥A(x+ ϵ− y)∥2

]
. (18)

If A is injective of size K ×M (in which case, we necessarily have K ≥M), ATA is positive-definite and we
call λmin > 0 its smallest eigenvalue. We have ∥Ax∥2 ≥ λmin ∥x∥2, so that:

L(x) ≥ λminE
[
∥x+ ϵ− y∥2

]
= λmin ∥x∥2 +O(∥x∥). (19)

This shows that lim
x→+∞

L(x) = +∞ so that a global minimum does exist.

Now, noticing that Jϕ(x) = A, we have:

∇L(x) = 2AT · E [ϕ(x+ ϵ)− ϕ(y)] , (20)
= 2AT · ϕ(E [x+ ϵ− y]), (21)
= 2AT · ϕ(x− y + E [ϵ]), (22)
= 2ATA · (x− y + E [ϵ]). (23)

For injective A, ATA is invertible, and we have ∇L(x) = 0 ⇐⇒ x = y − E [ϵ]. This shows that, in this case,
the only global minimizer is y − E [ϵ].

Note that this result is independent of the noise distribution p(ϵ0).

This result can be extended to non-injective matrices A. In this case, there is an affine subspace of solutions
with the same loss value along shifts within the null space of A. By a similar procedure as above, we obtain
that x = y − E [ϵ] + v, where v ∈ kerA. Non-injectivity does not change the overall conclusion that, besides
the subtraction of the mean of the noise, denoising does not take place.
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A.1.2 ϕ(x) = x2 for M = 1

Proposition 2.2. For ϕ(x) = x2 and p(ϵ0) ∼ N (0, σ2IM ), the global minimizers of L are 0 when y2 ≤ 3σ2,
and ±

√
y2 − 3σ2 when y2 > 3σ2.

Proof. For ϕ(x) = x2 and K = M = 1, we can show by expanding L that:

L(x) = ∥x∥4 +O(∥x∥2) −→
x→+∞

+∞. (24)

This proves the existence of a global minimum.

Now, injecting ϕ′(x) = 2x in Eq. (17), we get:

L′(x) = 4E
[
(x+ ϵ)((x+ ϵ)2 − y2)

]
, (25)

= 4E
[
(x+ ϵ)3 − (x+ ϵ)y2] , (26)

= 4E
[
x3 + ϵ3 + 3x2ϵ+ 3xϵ2 − xy2 − ϵy2] , (27)

= 4
(
x3 + x(3σ2 − y2)

)
, (28)

where we have used the fact that E [ϵ] = E
[
ϵ3
]

= 0 and E
[
ϵ2
]

= σ2. The zeros of L′ are thus x = 0 or
x = ±

√
y2 − 3σ2 when y2 ≥ 3σ2.

By looking at the values of L′′(x) = 12x2 + 12σ2 − 4y2 at these points, we find that whenever y2 > 3σ2,
L′′(0) < 0 so that 0 cannot be a local minimizer. In this case, we only have ±

√
y2 − 3σ2 left to be the global

minimizers.

All of this shows that the global minimizers of L are 0 when y2 ≤ 3σ2, and ±
√
y2 − 3σ2 when y2 > 3σ2.

This denoising function x = sgn(y)
√

max(0, y2 − 3σ2) is similar to the soft-thresholding function stλ(y) =
sgn(y) max(|y − λ|, 0), sharing the flat region around the origin. The main difference is that it contrary to
soft-thresholding, this function approaches the identity function for high values. It also has infinite derivatives
at the border of its flat region.

A.1.3 ϕ(x) = ∥Ax∥2 with A injective

Proposition 2.3. For ϕ(x) = ∥Ax∥2 with A injective and p(ϵ0) ∼ N (0, σ2IM ), introducing:

Λ = {λ ∈ sp(ATA) such that ∥Ay∥2 − E
[
∥Aϵ∥2

]
− 2σ2λ ≥ 0}, (29)

if Λ = ∅, then the global minimizer of L is unique equal to 0, otherwise, the minimizers are the eigenvectors x
of ATA associated with min Λ such that ∥Ax∥2 = ∥Ay∥2 − E

[
∥Aϵ∥2

]
− 2σ2 min Λ.9

Proof. With A an injective matrix of size K ′ ×M , we have:

L(x) = E
[(
∥A(x+ ϵ)∥2 − ∥Ay∥2

)2
]
, (30)

= E
[
∥A(x+ ϵ)∥4 + ∥Ay∥4 − 2 ∥A(x+ ϵ)∥2 ∥Ay∥2

]
. (31)

Writing that ∥A(x+ ϵ)∥2 = ∥Ax∥2 + ∥Aϵ∥2 + 2Ax ·Aϵ, we can show that:

E
[
∥A(x+ ϵ)∥2

]
= ∥Ax∥2 + E

[
∥Aϵ∥2

]
, (32)

E
[
∥A(x+ ϵ)∥4

]
= ∥Ax∥4 + E

[
∥Aϵ∥4

]
+ 4σ2 ∥∥ATAx

∥∥2 + 2 ∥Ax∥2 E
[
∥Aϵ∥2

]
, (33)

9We can verify that for A a matrix of size 1× 1, we recover a result equivalent to that of Prop. 2.2.
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where we have used the facts that E [Aϵ] = 0 and E
[
ϵϵT
]

= σ2IM . We can then rewrite L as follows:

L(x) = ∥Ax∥4 + 4σ2 ∥∥ATAx
∥∥2 + 2 ∥Ax∥2

(
E
[
∥Aϵ∥2

]
− ∥Ay∥2

)
+ L(0). (34)

Same as Sect. A.1.1, with λmin = min sp(ATA) > 0, where sp(ATA) is the spectrum of ATA, we can show
that:

L(x) ≥ λ2
min ∥x∥

4 +O(∥x∥2), (35)
which leads to lim

x→+∞
L(x) = +∞ and proves the existence of a global minimum.

Starting from Eq. (34) and using the fact that ∇ϕ(x) = 2ATAx, we show that:

∇L(x) = 4
(
∥Ax∥2 + E

[
∥Aϵ∥2

]
− ∥Ay∥2

)
ATAx+ 8σ2(ATA)2x. (36)

Since ATA is an invertible matrix, we then have:

∇L(x) = 0 ⇐⇒ (α(x)IM +ATA)x = 0, (37)

with α(x) = 1
2σ2

(
∥Ax∥2 + E

[
∥Aϵ∥2

]
− ∥Ay∥2

)
.

Let us take a non-zero solution x of ∇L = 0. Then, the matrix α(x)IM + ATA must be singular, which
is equivalent to the fact that −α(x) = λ ∈ sp(ATA). Being a zero of ∇L leads to ATAx = λx, so that
∥Ax∥2 = xTATAx = λ ∥x∥2 and then

∥∥ATAx
∥∥2 = λ ∥Ax∥2. By injecting this to Eq. (34), we finally get:

L(x) = L(0)− ∥Ax∥4
, (38)

= L(0)−
(
∥Ay∥2 − E

[
∥Aϵ∥2

]
− 2σ2λ

)2
. (39)

Therefore, the global minimum is reached when λ is the smallest eigenvalue of ATA constrained by
∥Ax∥2 = ∥Ay∥2 − E

[
∥Aϵ∥2

]
− 2σ2λ ≥ 0. Reciprocally, introducing

Λ = {λ ∈ sp(ATA) such that ∥Ay∥2 − E
[
∥Aϵ∥2

]
− 2σ2λ ≥ 0}, (40)

we verify that, if Λ = ∅, the global minimizer of L is 0, and if Λ ̸= ∅, the global minimizers are eigenvectors x
of ATA associated with min Λ such that ∥x∥2 = 1

min Λ

(
∥Ay∥2 − E

[
∥Aϵ∥2

])
− 2σ2.

A.1.4 ϕ(x) = (∥A1x∥2
, . . . , ∥AKx∥2) with A1, . . . , AK injective and AT

1 A1, . . . , A
T
KAK co-diagonalizable

For any matrix A of size M × P and a subset ΞQ = {k1 < · · · < kQ} of {1, . . . ,M}, we denote by AΞQ
the

Q× P submatrix of A such that
[
AΞQ

]
i,j

= Aki,j . We also denote by A+ the Moore-Penrose inverse of the
matrix A. Finally, we denote by span(e1, . . . , en) the subspace generated by the vectors e1, . . . , en.
Proposition 2.4. We consider ϕ(x) = (∥A1x∥2

, . . . , ∥AKx∥2) with A1, . . . , AK injective and
p(ϵ0) ∼ N (0, σ2IM ). Introducing SAi

= AT
i Ai, we assume that SA1 , . . . , SAK

are co-diagonalizable. We
choose an orthonormal basis (e1, . . . , eM ) to co-diagonalize them (there always exists one). We call
Λ = (λi,j)1≤i≤M,1≤j≤K the corresponding matrix of eigenvalues, where λi,j is the eigenvalue of SAj as-
sociated with ei. We also assume that Λ is of rank K and that any submatrix of Λ with size K × K is
invertible.

In that case, introducing:

∆ = (∆1, . . . ,∆M ) with ∆i =
K∑

j=1

(
λi,j(∥Ajy∥2 − E

[
∥Ajϵ∥2

]
)− 2σ2λ2

i,j

)
, (41)

Γ = {Ξ ⊂ {1, . . . ,M} | ∀1 ≤ i ≤ K,
[
Λ+

Ξ ∆Ξ
]

i
≥ 0}, (42)

if Γ = ∅, then the global minimizer of L is unique equal to 0, otherwise, the minimizers are the x ∈ span(ei)i∈Ξ

satisfying (∥A1x∥2
, . . . , ∥AKx∥2) = Λ+

Ξ ∆Ξ where Ξ ∈ argmax
Ξ̃∈Γ

∥∥∥Λ+
Ξ̃ ∆Ξ̃

∥∥∥.
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Proof. We have:

L(x) = E

[
K∑

i=1

(
∥Ai(x+ ϵ)∥2 − ∥Aiy∥2

)2
]
, (43)

=
K∑

i=1
E
[
∥Ai(x+ ϵ)∥4 + ∥Aiy∥4 − 2 ∥Ai(x+ ϵ)∥2 ∥Aiy∥2

]
. (44)

Using the facts that E [Aiϵ] = 0, E
[
Aiϵ ∥Aϵ∥2

]
= 0, and E

[
ϵϵT
]

= σ2IM , this loss reads:

L(x) =
K∑

i=1

[
∥Aix∥4 + 4σ2 ∥∥AT

i Aix
∥∥2 + 2 ∥Aix∥2

(
E
[
∥Aiϵ∥2

]
− ∥Aiy∥2

)]
+ L(0). (45)

The existence of the global minimum is guaranteed for the same reasons as Prop. 2.3.

The expression of ∇L(x) reads:

∇L(x) =
K∑

i=1

[
4
(
∥Aix∥2 + E

[
∥Aiϵ∥2

]
− ∥Aiy∥2

)
AT

i Aix+ 8σ2(AT
i Ai)2x

]
, (46)

and we have:

∇L(x) = 0 ⇐⇒
[

K∑
i=1

αAi(x)SAi + S2
Ai

]
x = 0, (47)

where we have introduced:

αAi
(x) =

(
∥Aix∥2 + E

[
∥Aiϵ∥2

]
− ∥Aiy∥2

)
/(2σ2), (48)

SAi
= AT

i Ai. (49)

We notice that:

∇L(x) = 0 =⇒ xT∇L(x) = 0, (50)

⇐⇒ xT
N∑

i=1
S2

Ai
x = −

N∑
i=1

αAi
(x)xTSAi

x, (51)

⇐⇒
N∑

i=1
∥SAi

x∥2 = −
N∑

i=1
αAi

(x) ∥Aix∥2
. (52)

Therefore, with x a global minimizer of L(x), we have:

L(x) =
K∑

i=1

[
∥Aix∥4 − 4σ2αAi(x) ∥Aix∥2 + 2 ∥Aix∥2

(
E
[
∥Aiϵ∥2

]
− ∥Aiy∥2

)]
+ L(0), (53)

=
K∑

i=1
∥Aix∥2

[
∥Aix∥2 − 4σ2αAi(x) + 2E

[
∥Aiϵ∥2

]
− 2 ∥Aiy∥2

]
+ L(0), (54)

= L(0)−
K∑

i=1
∥Aix∥4

. (55)

We take a non-zero global minimizer x =
∑M

i=1 xiei. Introducing ΞQ = {i ∈ {1, . . . ,M} | xi ̸= 0}, for all
i ∈ ΞQ, Eq. (47) leads to:

K∑
j=1

αAj
(x)λi,j + λ2

i,j = 0, (56)
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⇐⇒
K∑

j=1
λi,j ∥Ajx∥2 =

K∑
j=1

(
λi,j(∥Ajy∥2 − E

[
∥Ajϵ∥2

]
)− 2σ2λ2

i,j

)
, (57)

⇐⇒ [ΛNAx]i = ∆i, (58)

where we have introduced:

NAx = (∥A1x∥2
, . . . , ∥AKx∥2)T , (59)

∆i =
K∑

j=1

(
λi,j(∥Ajy∥2 − E

[
∥Ajϵ∥2

]
)− 2σ2λ2

i,j

)
. (60)

In a more compact form, we have:
ΛΞQ

NAx = ∆ΞQ
. (61)

By assumption, if Q ≥ K then the K×K matrix ΛT
ΞQ

ΛΞQ
is invertible, and if Q < K, then the Q×Q matrix

ΛΞQ
ΛT

ΞQ
is invertible. Using the fact that NAx = ΛT

ΞQ
Nx,ΞQ

where Nx = (x2
1, . . . , x

2
M )T , we show that:

NAx =
{

(ΛT
ΞQ

ΛΞQ
)−1ΛT

ΞQ
∆ΞQ

, if Q ≥ K,
ΛT

ΞQ
(ΛΞQ

ΛT
ΞQ

)−1∆ΞQ
, if Q < K,

(62)

that is:
NAx = Λ+

ΞQ
∆ΞQ

. (63)

We note that necessarily, all components of Λ+
ΞQ

∆ΞQ
are positive.

By injecting this previous expression in L(x), we get:

L(x) = L(0)− ∥NAx∥2
, (64)

= L(0)−
∥∥∥Λ+

ΞQ
∆ΞQ

∥∥∥2
. (65)

Reciprocally, introducing:

Γ = {Ξ ⊂ {1, . . . ,M} | ∀1 ≤ i ≤ K,
[
Λ+

Ξ ∆Ξ
]

i
≥ 0}, (66)

we verify that, if Γ = ∅, the global minimizer of L is 0, otherwise, the global minimizers are the x ∈ span(ei)i∈Ξ

satisfying NAx = Λ+
Ξ ∆Ξ where Ξ ∈ argmax

Ξ̃∈Γ

∥∥∥Λ+
Ξ̃ ∆Ξ̃

∥∥∥.

For K = 1, we check that we recover Prop. 2.3.

A.2 Proofs of Sect. 4

A.2.1 Proof of Eq. (14)

Proposition 4.1. For ϕ a twice differentiable function, and ϵ0 arbitrarily distributed with E [ϵ0] = 0, we
have:

L(x, α) = ∥ϕ(x)− ϕ(y)∥2 + α2 [⟨Jϕ(x)TJϕ(x),Σ⟩F + ⟨Hϕ(x),Σ⟩F · (ϕ(x)− ϕ(y))
]

+ o(α2), (67)

where Jϕ(x) is the Jacobian matrix of ϕ (of size K ×M), Hϕ(x) is its Hessian tensor (of rank 3, and size
K ×M ×M), and Σ is the covariance matrix of ϵ0.
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Proof. We introduce α ∈ R, and assume that ϕ is twice differentiable, and that ϵ0 is arbitrarily distributed
with E [ϵ0] = 010. In this context, we expand ϕ(x+ αϵ) as a function of t at second order as follows:

ϕ(x+ αϵ) = ϕ(x) + αJϕ(x)ϵ+ 1
2α

2ϵTHϕ(x)ϵ+ o(α2), (68)

where Jϕ(x) =
(

∂ϕi

∂xj
(x)
)

i,j
is the Jacobian matrix of ϕ (of size K ×M), and Hϕ(x) =

(
∂2ϕi

∂xj∂xk
(x)
)

i,j,k
is a

Hessian tensor of rank 3 and size K ×M ×M . The second order term must be understood as a contraction
on the second and third indices of the Hessian tensor.

Let us propagate this expansion in:

L(x, α) = Eϵ∼p(ϵ0)

[
∥ϕ(x+ αϵ)− ϕ(y)∥2

]
, (69)

= E

[∥∥∥∥(ϕ(x)− ϕ(y)) + αJϕ(x)ϵ+ 1
2α

2ϵTHϕ(x)ϵ+ o(α2)
∥∥∥∥2
]
, (70)

= ∥(ϕ(x)− ϕ(y))∥2 + α2E
[
∥Jϕ(x)ϵ∥2

]
+ 2α (ϕ(x)− ϕ(y)) · E [Jϕ(x)ϵ] (71)

+ α2 (ϕ(x)− ϕ(y)) · E
[
ϵTHϕ(x)ϵ

]
+ o(α2), (72)

= ∥(ϕ(x)− ϕ(y))∥2 + α2
(
E
[
∥Jϕ(x)ϵ∥2

]
+ (ϕ(x)− ϕ(y)) · E

[
ϵTHϕ(x)ϵ

])
+ o(α2), (73)

where we have used the fact that E [Jϕ(x)ϵ] = Jϕ(x)E [ϵ] = 0. Introducing the covariance matrix Σ of ϵ, we
verify that:

E
[
∥Jϕ(x)ϵ∥2

]
= E

[
ϵJϕ(x)TJϕ(x)ϵ

]
= ⟨Jϕ(x)TJϕ(x),Σ⟩F, (74)

E
[
ϵTHϕ(x)ϵ

]
= ⟨Hϕ(x),Σ⟩F, (75)

so that:

L(x, α) = ∥ϕ(x)− ϕ(y)∥2 + α2 [⟨Jϕ(x)TJϕ(x),Σ⟩F + ⟨Hϕ(x),Σ⟩F · (ϕ(x)− ϕ(y))
]

+ o(α2). (76)

A.3 Proofs of Sect. 4.3

We compute the explicit expressions of the Jacobian matrix Jϕ(x) and the Hessian tensor Hϕ(x) for ϕ the
operator giving the WPH statistics employed in Sect. 3.2. We break down these computations by first
computing first and second-order derivatives for simpler ϕ functions, namely ϕ(x) = ψ ⋆ x and ϕ(x) = |ψ ⋆ x|.
We assume periodic boundary conditions, so that for any v ∈ KM , we formally manipulate ṽ ∈ KZ defined
by ṽ[i] = v[i mod M ] for any i ∈ Z, and the ‘tilde’ symbol is omitted for convenience. Below, the filters
ψ, ψ1, and ψ2 are assumed to be complex-valued filters. For a filter ψ, we define the adjoint filter ψ† by
ψ†[i] = ψ[−i]. The convolution operation corresponds to the periodic convolution. For z ∈ C∗, we introduce
sg(z) = z/|z|. The notation ⟨x⟩ refers to the average over the components of x, that is ⟨x⟩ = 1

Q

∑Q
i=1 xi. We

denote the element-wise product of x and y by xy, or x⊙ y when there is ambiguity.

Derivatives of ϕ(x) = ψ ⋆ x Since ϕ is linear, we simply have:

Jϕ(x) = ψ ⋆ ·, (77)
Hϕ(x) = 0, (78)

that is:
∂

∂xj
(ψ ⋆ x[i]) = ψ[i− j], (79)

∂2

∂xj∂xk
(ψ ⋆ x[i]) = 0. (80)

10Note that we can always redefine x0 ← x0 + E [ϵ0] for this to be the case.
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Derivatives of ϕ(x) = |ψ ⋆ x| Where ϕ(x) is nonzero, we have:

∂

∂xj
(|ψ ⋆ x|[i]) = ∂

∂xj

√
|ψ ⋆ x|2[i], (81)

= 1
|ψ ⋆ x|[i] (Re(ψ ⋆ x)[i] Re(ψ)[i− j] + Im(ψ ⋆ x)[i] Im(ψ)[i− j]) , (82)

= 1
|ψ ⋆ x|[i] Re

(
ψ ⋆ x[i]ψ[i− j]

)
, (83)

= Re
[
sg(ψ ⋆ x)[i]ψ[i− j]

]
, (84)

which leads to:
Jϕ(x) = Re

[
(sgψ ⋆ x)⊙ (ψ ⋆ ·)

]
. (85)

The computation of Hϕ(x) now demands to derive x→ sg(ψ ⋆ x):

∂

∂xj
(sg (ψ ⋆ x)[i]) = ∂

∂xj
ψ ⋆ x[i]× 1

|ψ ⋆ x|[i] −
ψ ⋆ x[i]
|ψ ⋆ x|2[i]

∂

∂xj
|ψ ⋆ x|[i], (86)

= ψ[i− j]
|ψ ⋆ x|[i] −

ψ ⋆ x[i]
|ψ ⋆ x|2[i] Re

(
sg(ψ ⋆ x)[i]ψ[i− j]

)
, (87)

= 1
2|ψ ⋆ x|[i]

[
ψ[i− j]− (ψ ⋆ x)2

|ψ ⋆ x|2
[i]ψ[i− j]

]
, (88)

= 1
2|ψ ⋆ x|[i]

[
ψ[i− j]− sg(ψ ⋆ x)2[i]ψ[i− j]

]
. (89)

Therefore:

∂2

∂xj∂xk
(|ψ ⋆ x|[i]) = Re

[
∂

∂xk
(sg(ψ ⋆ x)[i])ψ[i− j]

]
, (90)

= 1
2|ψ ⋆ x|[i] Re

[
ψ[i− k]ψ[i− j]− sg(ψ ⋆ x)2[i]ψ[i− k]ψ[i− j]

]
. (91)

Derivatives of ϕ(x) = ⟨|ψ ⋆ x|2⟩ Using the above, we get:

∂

∂xj
⟨|ψ ⋆ x|2⟩ = ⟨ ∂

∂xj
(ψ ⋆ x)× ψ ⋆ x⟩+ ⟨ ∂

∂xj
(ψ ⋆ x)× ψ ⋆ x⟩, (92)

= 2
M

Re
(

M∑
i=1

ψ[i− j]× ψ ⋆ x[i]
)
, (93)

= 2
M

Re
(
ψ† ⋆ ψ ⋆ x

)
[j], (94)

and:
∂2

∂xj∂xk
⟨|ψ ⋆ x|2⟩ = 2

M
Re
(
ψ† ⋆ ψ

)
[j − k]. (95)

Derivatives of ϕ(x) = ⟨|ψ ⋆ x|⟩2 We get:

∂

∂xj
⟨|ψ ⋆ x|⟩2 = 2⟨|ψ ⋆ x|⟩ × 1

M

M∑
i=1

Re
[
sg(ψ ⋆ x)[i]ψ[i− j]

]
, (96)

= 2
M
⟨|ψ ⋆ x|⟩Re

[
ψ† ⋆ sg(ψ ⋆ x)

]
[j], (97)

and:

∂2

∂xj∂xk
⟨|ψ ⋆ x|⟩2 = 2 ∂

∂xj
⟨|ψ ⋆ x|⟩ ∂

∂xk
⟨|ψ ⋆ x|⟩+ 2⟨|ψ ⋆ x|⟩ ∂2

∂xj∂xk
⟨|ψ ⋆ x|⟩, (98)
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= 2
M2 Re

[
ψ† ⋆ sg(ψ ⋆ x)

]
[j]× Re

[
ψ† ⋆ sg(ψ ⋆ x)

]
[k] (99)

+ 1
M
⟨|ψ ⋆ x|⟩

M∑
i=1

Re
[
ψ†[j − i]ψ†[k − i]
|ψ ⋆ x|[i] − ψ†[j − i] sg(ψ ⋆ x)2[i]ψ†[k − i]

|ψ ⋆ x|[i]

]
, (100)

= 2
M2 Re

[
ψ† ⋆ sg(ψ ⋆ x)

]
[j]× Re

[
ψ† ⋆ sg(ψ ⋆ x)

]
[k] (101)

+ 1
M
⟨|ψ ⋆ x|⟩ × Re

[
ψ† ⊗ 1

|ψ ⋆ x|
⊗ ψ†[j, k]− ψ† ⊗ sg(ψ ⋆ x)2

|ψ ⋆ x|
⊗ ψ†[j, k]

]
, (102)

where we have introduced the notation a ⊗ b ⊗ c [j, k] =
∑M

i=1 a[j − i]b[i]c[k − i]. Conveniently, note that
a⊗ b⊗ c [j, j] = ac ⋆ b[j].

Derivatives of ϕ(x) = ⟨|ψ1 ⋆ x| × ψ2 ⋆ x⟩ We get:

∂

∂xj
⟨|ψ1 ⋆ x|ψ2 ⋆ x⟩ = ⟨ ∂

∂xj
(|ψ1 ⋆ x|)× ψ2 ⋆ x⟩+ ⟨|ψ1 ⋆ x| ×

∂

∂xj

(
ψ2 ⋆ x

)
⟩, (103)

= 1
M

M∑
i=1

[
Re
[
sg(ψ1 ⋆ x)[i]ψ1[i− j]

]
ψ2 ⋆ x[i] + |ψ1 ⋆ x|[i]ψ2[i− j]

]
, (104)

= 1
2M

M∑
i=1

[
sg(ψ1 ⋆ x)[i]ψ1[i− j]ψ2 ⋆ x[i] + sg(ψ1 ⋆ x)[i]ψ1[i− j]ψ2 ⋆ x[i]

]
(105)

+ 1
M
ψ†

2 ⋆ |ψ1 ⋆ x|[j], (106)

= 1
2M

[
ψ†

1 ⋆
(
sg(ψ1 ⋆ x)× ψ2 ⋆ x

)
+ ψ†

1 ⋆ (sg(ψ1 ⋆ x)× ψ2 ⋆ x)
]

[j] (107)

+ 1
M
ψ†

2 ⋆ |ψ1 ⋆ x|[j]. (108)

We break down the calculation of the second-order derivatives of ϕ by first calculating:

∂

∂xk

(
ψ†

2 ⋆ |ψ1 ⋆ x|[j]
)

=
M∑

i=1
ψ†

2[j − i] Re
[
sg(ψ1 ⋆ x)[i]ψ1[i− k]

]
, (109)

= 1
2

M∑
i=1

[
ψ†

1[k − i] sg(ψ1 ⋆ x)[i]ψ†
2[j − i] (110)

+ψ†
1[k − i]sg(ψ1 ⋆ x)[i]ψ†

2[j − i]
]
, (111)

= 1
2

[
ψ†

2 ⊗ sg(ψ1 ⋆ x)⊗ ψ†
1 + ψ†

2 ⊗ sg(ψ1 ⋆ x)⊗ ψ1
†] [j, k]. (112)

We also have:
∂

∂xk
(sg(ψ1 ⋆ x)× ψ2 ⋆ x) [i] = ψ2 ⋆ x[i]

2|ψ1 ⋆ x|[i]

[
ψ1

†[k − i]− sg(ψ1 ⋆ x)2[i]ψ†
1[k − i]

]
(113)

+ sg(ψ1 ⋆ x)[i]ψ2
†[k − i], (114)

(115)

so that:

∂

∂xk
ψ†

1 ⋆ (sg(ψ1 ⋆ x)× ψ2 ⋆ x) [j] = 1
2

M∑
i=1

ψ†
1[j − i] ψ2 ⋆ x[i]

|ψ1 ⋆ x|[i]
ψ1

†[k − i] (116)

− 1
2

M∑
i=1

ψ†
1[j − i]ψ2 ⋆ x× sg(ψ1 ⋆ x)2[i]

|ψ1 ⋆ x|[i]
ψ†

1[k − i] (117)
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+
M∑

i=1
ψ†

1[j − i] sg(ψ1 ⋆ x)[i]ψ2
†[k − i], (118)

= 1
2

[
ψ†

1 ⊗
ψ2 ⋆ x

|ψ1 ⋆ x|
⊗ ψ1

† + ψ†
1 ⊗

ψ2 ⋆ x× sg(ψ1 ⋆ x)2

|ψ1 ⋆ x|
⊗ ψ†

1 (119)

+2ψ†
1 ⊗ sg(ψ1 ⋆ x)⊗ ψ2

†] [j, k]. (120)

Therefore:

∂2

∂xj∂xk
⟨|ψ1 ⋆ x|ψ2 ⋆ x⟩ = 1

4M

[
ψ†

1 ⊗
ψ2 ⋆ x

|ψ1 ⋆ x|
⊗ ψ1

† + ψ1
† ⊗ ψ2 ⋆ x

|ψ1 ⋆ x|
⊗ ψ†

1 (121)

− ψ†
1 ⊗

ψ2 ⋆ x× sg(ψ1 ⋆ x)2

|ψ1 ⋆ x|
⊗ ψ†

1 − ψ
†
1 ⊗

ψ2 ⋆ x× sg(ψ1 ⋆ x)2

|ψ1 ⋆ x|
⊗ ψ†

1 (122)

+ 2ψ†
1 ⊗ sg(ψ1 ⋆ x)⊗ ψ†

2 + 2ψ1
† ⊗ sg(ψ1 ⋆ x)⊗ ψ†

2 (123)

+2ψ†
2 ⊗ sg(ψ1 ⋆ x)⊗ ψ†

1 + 2ψ†
2 ⊗ sg(ψ1 ⋆ x)⊗ ψ1

†] [j, k]. (124)

Summary for ψ† = ψ and Σ = diag(σ2) For ϕ(x) ∈ C, we only focus on simplified expressions of:

⟨J†
ϕ(x)Jϕ(x),Σ⟩F =

M∑
i=1
| ∂ϕ
∂xi

(x)|2σ2
i , (125)

⟨Hϕ(x),Σ⟩F =
M∑

i=1

∂2ϕ

∂x2
i

(x)σ2
i . (126)

We get for ⟨J†
ϕ(x)Jϕ(x),Σ⟩F:

ϕ(x) = Ŝ11(x) → 4
M2

M∑
i=1

Re (ψ ⋆ ψ ⋆ x)2 [i]× σ2[i] (127)

ϕ(x) = Ŝ00(x) → 4
M2

M∑
i=1

Re [ψ ⋆ ψ ⋆ x− ⟨|ψ ⋆ x|⟩ × ψ ⋆ sg(ψ ⋆ x)]2 [i]× σ2[i] (128)

ϕ(x) = Ŝ01(x) → 1
4M2

M∑
i=1

∣∣∣3ψ ⋆ |ψ ⋆ x|+ ψ ⋆ (sg(ψ ⋆ x)× ψ ⋆ x)
∣∣∣2 [i]× σ2[i] (129)

ϕ(x) = Ĉ01(x) → 1
4M2

M∑
i=1

∣∣∣ψ1 ⋆
(
sg(ψ1 ⋆ x)× ψ2 ⋆ x

)
+ ψ1 ⋆ (sg(ψ1 ⋆ x)× ψ2 ⋆ x) (130)

+2ψ2 ⋆ |ψ1 ⋆ x||2 [i]× σ2[i]. (131)

And we get for ⟨Hϕ(x),Σ⟩F:

ϕ(x) = Ŝ11(x) → 2
M

Re (ψ ⋆ ψ) [0]
M∑

i=1
σ2[i] (132)

ϕ(x) = Ŝ00(x) → 1
M

M∑
i=1

Re
[
2ψ ⋆ ψ[0]− 2

M
[Re (ψ ⋆ sg(ψ ⋆ x))]2 (133)

+⟨|ψ ⋆ x|⟩
(
ψ2 ⋆

(sg(ψ ⋆ x))2

|ψ ⋆ x|
− |ψ|2 ⋆ 1

|ψ ⋆ x|

)]
[i]× σ2[i] (134)

ϕ(x) = Ŝ01(x) → 1
4M

M∑
i=1

[
6|ψ|2 ⋆ sg(ψ ⋆ x) + 3ψ2 ⋆ sg(ψ ⋆ x) (135)
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−ψ2 ⋆ (sg(ψ ⋆ x)3)
]

[i]× σ2[i] (136)

ϕ(x) = Ĉ01(x) → 1
4M

M∑
i=1

[
2|ψ1|2 ⋆

ψ2 ⋆ x

|ψ1 ⋆ x|
+ 4ψ1ψ2 ⋆ sg(ψ1 ⋆ x) + 4ψ1ψ2 ⋆ sg(ψ1 ⋆ x) (137)

−ψ2
1 ⋆

(
ψ2 ⋆ x

|ψ1 ⋆ x|
× sg(ψ1 ⋆ x)2

)
− ψ2

1 ⋆

(
ψ2 ⋆ x

|ψ1 ⋆ x|
× sg(ψ1 ⋆ x)2

)]
[i]× σ2[i]. (138)

B Relation to Maximum Likelihood Estimation

We investigate the links between statistical component separation methods and maximum likelihood estimation
(MLE).

Estimation of x0. In a denoising context, the goal is to recover x0 given y. A naive application of MLE
would be to maximize the likelihood p(y |x0). Assuming a Gaussian noise with covariance Σ, we have
p(y |x0) ∝ exp

(
− 1

2 ∥y − x0∥2
Σ

)
with ∥y − x0∥2

Σ = (y − x0)T Σ−1 (y − x0), which leads to the trivial estimate
x̂0 = y. Since in this setting, naive MLE can only bring us back to the noisy data, one typically confuses MLE
with the estimation of a maximum a posteriori (MAP), which requires the definition of a prior distribution
p(x) over the target signal (see e.g. Elad et al., 2023). With p(x) ∝ exp (−λρ(x)), still in the case of a
Gaussian noise, a MAP estimate x̂0 of x0 reads:

x̂0 ∈ arg min
x

[
1
2 ∥y − x∥

2
Σ + λρ(x)

]
. (139)

This minimization problem aims to strike a balance between two constraints: one enforcing proximity to
the noisy data y, and the other imposing a prior constraint, typically in the form of a regularity constraint
over x. The parameter λ controls the relative weight of these two constraints. A statistical component
separation method can be remotely related to MLE in this picture. The estimate x̂0 as defined in Eq. (1)
can be interpreted as an MLE estimate by choosing ρ(x) = L(x) = Eϵ∼p(ϵ0)

[
∥ϕ(x+ ϵ)− ϕ(y)∥2

2

]
and picking

λ→ +∞. Moreover, by initializing the optimization of L(x) with y, an implicit notion of proximity to y is
implied.

Estimation of ϕ(x0). When focusing on the estimation of ϕ(x0) given y, which is the ultimate goal of a
statistical component separation method, MLE methods require an explicit model connecting ϕ(x0) to y.
The approach taken in this paper share similarities with the sampling process of maximum entropy models
as defined in Bruna & Mallat (2019). For the purpose of this discussion, we model x0 as a realization of a
macrocanonical model with density p(x) = Z−1 exp

(
−θϕ(x0) · ϕ(x)

)
, where θϕ(x0) is a vector of parameters

fixed so that Ex∼p(x) [ϕ(x)] = ϕ(x0). In this context, assuming a Gaussian noise with covariance Σ, the
likelihood p(y |ϕ(x0)) can be written as:

p(y |ϕ(x0)) ∝
∫

exp
(
−θϕ(x0) · ϕ(x′)− 1

2 ∥y − x
′∥2

Σ

)
dx′. (140)

This likelihood remains generally intractable, which prevents further connections to the statistical component
separation method presented in this paper.

C Complementary Details on the Data

We give further details on the nature of the data used for the experiments in Sect. 3 and 4.

The dust image This image corresponds to a simulated intensity map of the emission of dust grains in
the interstellar medium. It was taken from the work of Régaldo-Saint Blancard et al. (2023), and we refer to
this paper for further details on the way it was generated.
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The LSS image This image was built from a cosmological simulation taken from the Quijote
suite (Villaescusa-Navarro et al., 2020). This simulation describes the evolution of fluid of dark mat-
ter in a 1 (Gpc/h)3 periodic box for a ΛCDM cosmology parameterized by (Ωm,Ωb, h, ns, σ8) =
(0.3223, 0.04625, 0.7015, 0.9607, 0.8311) (high-resolution LH simulation). We take a snapshot at z = 0
of the dark matter density field at z = 0 and project a 500 × 500 × 10 (Mpc/h)3 slice along the thinnest
dimension. Our test image is the logarithm of this projection.

The ImageNet image We have randomly picked a RGB image of the ImageNet dataset (Deng et al.,
2009) from the “digital clock” class. For the experiments of Sect. 3.2, to simplify, we have first preprocessed
the image by averaging it over the channel dimension.

D Definition and Computation of the WPH statistics

We use the same bump-steerable wavelets as in Regaldo-Saint Blancard et al. (2021) with J = 7 and L = 4,
which leads to a bank of J × L = 28 wavelets. For a given image x, the covariances introduced in Sect. 3.2
are estimated as follows:

Ŝ11
i (x) = ⟨|x ⋆ ψi|2⟩, Ŝ00

i (x) = ⟨|x ⋆ ψi|2⟩ − ⟨|x ⋆ ψi|⟩2, (141)
Ŝ01

i (x) = ⟨|x ⋆ ψi| × x ⋆ ψi⟩, Ĉ01
i,j(x) = ⟨|x ⋆ ψi| × x ⋆ ψj⟩, (142)

where ⟨·⟩ is a spatial average operator. Moreoever, in the numerical experiments of this paper, these coefficients
are systematically normalized according to the Ŝ11 coefficients of the noisy map y as follows:

S̃11
i (x) = Ŝ11

i (x)
Ŝ11

i (y)
, S̃00

i (x) = Ŝ00
i (x)
Ŝ11

i (y)
, (143)

S̃01
i (x) = Ŝ01

i (x)
Ŝ11

i (y)
, C̃01

i,j(x) =
Ĉ01

i,j(x)√
Ŝ11

i (y)Ŝ11
j (y)

. (144)

As it was reported in the related literature (Zhang & Mallat, 2021; Allys et al., 2020; Regaldo-Saint Blancard
et al., 2021; Régaldo-Saint Blancard et al., 2023), this normalization acts as a preconditioning of the loss
function L, and has then a direct impact on the optimum x̂0 one gets with a given optimizer. The quality of
the results then a priori depends on this normalization, and it worth noticing than alternative approaches as
in Delouis et al. (2022) could have been explored.

E Connection with Delouis et al. (2022)

We draw connections between Algorithm 2 and the algorithm introduced in Delouis et al. (2022), which is
formally described in Algorithm 3. These connections show that the two algorithms are very related. A
further exploration of the pros and cons of each of these two algorithms is left for future work.

The following lemma highlights the similarities between the loss function L defined in Eq. (1) and the one
involved in Algorithm 3.

Lemma E.1. Introducing σϕ(x + ϵ)2 = E
[
|ϕ(x+ ϵ)|2

]
− |E [ϕ(x+ ϵ)]|2, that is the vector of variances of

each component of ϕ(x+ ϵ), we have:

L(x) = Eϵ∼p(ϵ0)

[
∥ϕ(x+ ϵ)− ϕ(y)∥2

]
, (145)

= ∥σϕ(x+ ϵ)∥2 + ∥E [ϕ(x+ ϵ)]− ϕ(y)∥2
. (146)
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Algorithm 3 Statistical Component Separation as in Delouis et al. (2022)
Input: y, p(ϵ0), Q, T , P
Initialize: x̂0 = y
for i = 1 . . . P do

sample ϵ1, . . . , ϵQ ∼ p(ϵ0)
m =

∑Q
k=1 ϕ(x̂0 + ϵk)/Q

σ =
(∑Q

k=1(ϕ(x̂0 + ϵk)−m)2/Q
)1/2

B = m− ϕ(x̂0)
for j = 1 . . . T do
L̂(x̂0) = ∥[ϕ(x̂0) +B − ϕ(y)] /σ∥2

x̂0 ← one_step_optim
[
L̂(x̂0)

]
end for

end for
return x̂0

Proof.

L(x) = Eϵ∼p(ϵ0)

[
∥ϕ(x+ ϵ)− ϕ(y)∥2

]
, (147)

= E
[
∥ϕ(x+ ϵ)∥2

]
+ ∥ϕ(y)∥2 − 2E

[
Re
(
ϕ(x+ ϵ) · ϕ(y)

)]
, (148)

= E
[
∥ϕ(x+ ϵ)∥2

]
+ ∥ϕ(y)∥2 − 2 Re

(
E [ϕ(x+ ϵ)] · ϕ(y)

)
, (149)

= E
[
∥ϕ(x+ ϵ)∥2

]
− ∥E [ϕ(x+ ϵ)]∥2 + ∥E [ϕ(x+ ϵ)]∥2 (150)

+ ∥ϕ(y)∥2 − 2 Re
(
E [ϕ(x+ ϵ)] · ϕ(y)

)
, (151)

= ∥σϕ(x+ ϵ)∥2 + ∥E [ϕ(x+ ϵ)]− ϕ(y)∥2
. (152)

Thanks to this lemma, now L appears as the sum of two terms. The first one constrains the norm of the
variance vector σϕ(x+ ϵ) to be minimal, while the second one constrains the mean vector E [ϕ(x+ ϵ)] to be
close to ϕ(y). In the light of this new expression of L, Algorithm 3 aims to minimize the related following loss:

L̃(x) =
∥∥∥∥E [ϕ(x+ ϵ)]− ϕ(y)

σϕ(x+ ϵ)

∥∥∥∥2
, (153)

which appears to be the second term of Eq. (146) normalized by the first term of the same equation. However,
instead of minimizing directly L̃, Algorithm 2 makes the following approximations:

E [ϕ(x+ ϵ)] ≈ ϕ(x) +B, (154)
σϕ(x+ ϵ) ≈ σ, (155)

where B and σ are repectively the bias and standard deviation terms explicited in Algorithm 2. Same as in
Algorithm 2, Algorithm 3 adopts a stepwise approach, where B and σ are updated at each step i ∈ {1, . . . , P}
using the x̂0 signal obtained from the previous step.

F Additional Results

We show in Figs. F.1, F.2, and F.3 (respectively, F.4, F.5, F.6, and F.7) equivalent results to Figs. 2, 3, and
4, respectively, for the LSS (ImageNet) data. We also show in Fig. F.8 equivalent results to Fig. 2 for the
ImageNet data and a ConvNet-based representation.
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Figure F.1: Same as Fig. 2 for the LSS image.
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Figure F.2: Same as Fig. 3 for the LSS image.
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Figure F.3: Same as Fig. 4 for the LSS image.
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Figure F.4: Same as Fig. 2 for an ImageNet image.
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Figure F.5: Same as Fig. 3 for the ImageNet image shown in Fig. F.4.
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Figure F.6: Same as Fig. 4 for the ImageNet image.
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Figure F.7: Same as Fig. 3 for randomly selected ImageNet images. We show the mean and standard deviation
of the metrics computed across random batches of test ImageNet images.
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Figure F.8: Same as Fig. 2 for an example of ImageNet image and a ConvNet-based representation (see
Sect. 3.3).
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