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Abstract

Distilling pre-trained 2D diffusion models into 3D assets has driven remarkable advances in
text-to-3D synthesis. However, existing methods typically rely on Score Distillation Sam-
pling (SDS) loss, which involves asymmetric KL divergence—a formulation that inherently
favors mode-seeking behavior and limits generation diversity. In this paper, we introduce
Dive3D, a novel text-to-3D generation framework that replaces KL-based objectives with
Score Implicit Matching (SIM) loss, a score-based objective that effectively mitigates mode
collapse. Furthermore, Dive3D integrates both diffusion distillation and reward-guided op-
timization under a unified divergence perspective. Such reformulation, together with SIM
loss, yields significantly more diverse 3D outputs while improving text alignment, human
preference, and overall visual fidelity. We validate Dive3D across various 2D-to-3D prompts
and find that it consistently outperforms prior methods in qualitative assessments, includ-
ing diversity, photorealism, and aesthetic appeal. We further evaluate its performance on
the GPTEval3D benchmark, comparing against nine state-of-the-art baselines. Dive3D also
achieves strong results on quantitative metrics, including text–asset alignment, 3D plausi-
bility, text–geometry consistency, texture quality, and geometric detail.

1 Introduction

Text-to-3D generation—the task of creating 3D contents from natural language descriptions—has attracted
enormous interest Poole et al. (2022); Shi et al. (2023); Lin et al. (2023), due to its broad applications in
vision and graphics. Recent advances, such as 3D representations(Mildenhall et al., 2021; Kerbl et al., 2023),
large-scale pre-trained vision-language models(Radford et al., 2021), advanced text-to-image diffusion and
flow models(Rombach et al., 2022), and differentiable rendering techniques, have further accelerated progress
in this field. In particular, powerful text-to-image diffusion models such as Stable Diffusion series(Rombach
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(b) Dive3D unifies SDS and reword guidance, producing higher-quality and human-preferred 3D models.

A baby bunny sitting on top of a 
stack of pancakes.

A model of a house in 
Tudor style.

A full and fragrant bundle 
of fresh, colorful blooms.

A Chimpanzee dressed like 
Henry VIII king of England.

(a) Dive3D generates more diverse (e.g., background, lighting, geometry) 3D models using a score-based divergence. Prompt: A pirate ship in the sky.

ProlificDreamer (4 samples) Ours (4 samples)

Figure 1: We propose Dive3D, a novel text-to-3D generation framework that enables both diverse and
high-fidelity 3D content creation. Top: Compared to ProlificDreamer, which exhibits mode collapse under
the same prompt, Dive3D generates a diverse set of realistic and semantically aligned 3D outputs. Bottom:
Dive3D unifies SDS and human-preference rewards within a divergence-based framework, effectively com-
bining diffusion priors and reward signals to boost both visual quality and prompt alignment. All results
are represented as textured mesh assets.

et al., 2022; Ramesh et al., 2022; Saharia et al., 2022), lay a strong foundation for text-driven 3D synthesis:
by leveraging pre-trained 2D diffusion priors and multi-view rendering, one can optimize a 3D asset so that
its renderings align with a given text prompt. This capability opens new avenues for 3D content creation,
enabling even non-experts to “describe and create” novel 3D assets in freestyles.

Several paradigms have emerged to tackle text-to-3D generation. Diffusion distillation-based meth-
ods—exemplified by Score Distillation Sampling (SDS) in DreamFusion Poole et al. (2022)—optimize 3D
representations by aligning multi-view renderings with pre-trained text-to-image diffusion priors Rombach
et al. (2022). Reward-guided approaches Mohammad Khalid et al. (2022); Jain et al. (2022) further refine
these approaches by directly incorporating human-preference or CLIP-based rewards, boosting both seman-
tic alignment and perceived quality. Despite their impressive fidelity and text alignment, both diffusion-
distillation and reward-guided methods suffer from a critical limitation: limited generative diversity. Even
when prompted with intentionally vague or open-ended descriptions, current models tend to converge on a
narrow set of similar outputs.

We analyze this limitation and trace its root to the utilization of Kullback–Leibler (KL) divergence. Specif-
ically, the objectives optimized by both SDS and reward-based methods can be reformulated as minimizing
an asymmetric KL divergence, which shares a fundamental limitation: KL divergence inherently encourages
mode-seeking behavior by penalizing samples that deviate from high-density regions of the target distribu-
tion. As a result, the generative model tends to collapse to a few dominant modes, severely suppressing
output diversity.

In this paper, we present Dive3D, a novel framework that replaces KL-based objectives with Score Implicit
Matching (SIM)—a score-based divergence loss that directly matches the gradient fields of the probability
density of generated contents and the diffusion prior. This formulation avoids the mode-seeking tendencies
of KL and encourages exploration of multiple high-probability regions, thereby promoting diversity without
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sacrificing fidelity or alignment. Furthermore, Dive3D unifies both diffusion distillation and reward-guided
optimization under a divergence-based perspective. Combined with SIM loss, this formulation enables a
principled integration of diffusion priors, human preferences, and diversity-promoting objectives within a
single framework. As a result, Dive3D generates 3D assets that are not only realistic and well-aligned with
text prompts, but also significantly more diverse.

Through extensive experiments on standard text-to-3D benchmarks, we demonstrate that Dive3D achieves
state-of-the-art performance, substantially outperforming existing SDS- and reward-based approaches across
visual fidelity, prompt adherence, and generative diversity.

2 Related Works

Diffusion Distillation Based Methods Diffusion distillation methods (Luo, 2023) leverage pre-trained
text-to-image diffusion models (Rombach et al., 2022; Saharia et al., 2022; Balaji et al., 2022) to guide the
optimization of 3D representations by aligning rendered views with diffusion priors. This line of work was
pioneered by Score Distillation Sampling (SDS) in DreamFusion (Poole et al., 2022), which initiated an era
of 3D synthesis by transferring the knowledge embedded in 2D diffusion priors. However, these diffusion-
driven optimization techniques typically rely on minimizing KL divergences (Poole et al., 2022; Wang et al.,
2024; Luo et al., 2024a), often resulting in mode-seeking behavior where generated 3D objects collapse
into a single plausible solution with limited diversity. Moreover, the straightforward use of 2D diffusion
priors can introduce visual artifacts such as over-saturated colors, overly smooth geometry, and even Janus
artifacts (Jain et al., 2022; Chen et al., 2023; Wang et al., 2024). To address these challenges, recent studies
have explored various improvements, including timestep annealing (Huang et al., 2024a; Wang et al., 2024;
Zhu et al., 2024), coarse-to-fine training (Lin et al., 2023; Wang et al., 2024; Chen et al., 2023), component
analysis (Katzir et al., 2024), and formulation refinements (Zhu et al., 2024; Wang et al., 2024; Liang et al.,
2023; Tang et al., 2023a; Wang et al., 2023b; Yu et al., 2024; Armandpour et al., 2023; Wu et al., 2024b; Yan
et al., 2024). Additional efforts have focused on geometry-texture disentanglement (Chen et al., 2023; Ma
et al., 2023a; Wang et al., 2024) and mitigating the multi-face (Janus) problem by replacing text-to-image
diffusion with novel view synthesis or multi-view diffusion (Liu et al., 2023; Long et al., 2023; Liu et al., 2024;
Weng et al., 2023; Ye et al., 2023; Wang & Shi, 2023; Shi et al., 2023). Notably, diffusion distillation has
also seen rapid progress in other domains, such as one-step diffusion models (Luo et al., 2023a; 2024b; Yin
et al., 2024; Zhou et al., 2024b; Geng et al., 2024; Huang et al., 2024b) and various related approaches (Nie
et al., 2022; Zhang et al., 2023a;b; Luo et al., 2023b).

Reward Optimization based Methods. Another category of approaches optimizes 3D outputs directly
using reward models, such as visual-language alignment losses or human-preference reward models instead
of (or in addition to) a diffusion prior. Early methods like CLIP-Mesh (Mohammad Khalid et al., 2022) and
DreamFields (Jain et al., 2022) directly maximize the CLIP score (Radford et al., 2021) between rendered
images and the text prompt, enabling zero-shot text-to-3D without 3D datasets. While conceptually simple,
these CLIP-guided approaches often yielded suboptimal geometry or texture (e.g. unrealistic shapes) and
required expensive optimization. More recently, DreamReward (Ye et al., 2024) uses a learned internal
3D preference-reward model (Reward3D) trained on internally collected human feedback data to guide
generation. DreamReward improves alignment of generated shapes with user intent, achieving better text
relevance as judged by the reward function. Reward-based methods explicitly push for semantic or aesthetic
alignment, but relying solely on them can compromise visual fidelity if the reward is not perfectly aligned
with 3D realism (e.g. CLIP might encourage implausible textures). They may also require costly human
data collection to train the internal 3D reward model.

Feed-forward Methods. Feed-forward methods train neural networks to directly generate 3D content
from text using large synthetic 3D datasets or cross-modal supervision. For example, CLIP-Forge (Sanghi
et al., 2022) and CLIP-Sculptor (Sanghi et al., 2023) leverage CLIP embeddings for zero-shot text-to-shape
generation. More recently, advances in large reconstruction models (LRMs)(Hong et al., 2023) have enabled
rapid 3D model prediction from single or sparse-view images, inspiring these developments of methods like
Instant3D(Li et al., 2023) and Turbo3D (Hu et al., 2024) that first generate multi-view images from text and
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then use a feed-forward 3D reconstructor (trained on synthetic data) to instantly produce representations
such as NeRF or 3D Gaussian Splatting. However, the quality of these approaches depends heavily on
the underlying text-to-multi-view generator, often recasting the challenge as one of diffusion distillation or
reward-based optimization.

3 Preliminary

In this section, we review the key concepts and mathematical formulations underlying our work. We first
describe text-to-image diffusion models, then explain how these models are adapted for text-to-3D generation
via diffusion distillation, and finally review reward-guided text-to-3D methods.

3.1 Text-to-Image Diffusion Models

Diffusion models Sohl-Dickstein et al. (2015); Ho et al. (2020); Song et al. (2020b) are a class of generative
models that iteratively transform noise into data using a stochastic process. Let x0 ∼ qdata(x) denote a data
sample. The forward diffusion process corrupts x0 by gradually adding noise described by the stochastic
differential equation (SDE):

dxt = F (xt, t) dt + G(t) dwt, t ∈ [0, T ], (1)
where F (xt, t) is a drift function, G(t) is a scalar-valued diffusion coefficient, and wt denotes a standard
Wiener process. To generate samples, the reverse diffusion process is used to progressively denoise an initial
noise sample (Song et al., 2020b;a; Zhang & Chen, 2022; Liu et al., 2022; Lu et al., 2022; Xue et al., 2023).

The marginal core function ∇xt
log pt(xt) is typically approximated by a continuous-indexed neural network

sϕ(xt, t). This score network is trained using the weighted denoising score matching objective:

L(ϕ) = Et,x0,ϵ

[
λ(t)

∥∥∥∥sϕ

(
αtx0 + σtϵ, t

)
+ ϵ

σt

∥∥∥∥2

2

]
, (2)

where ϵ ∼ N (0, I), and the functions αt and σt are determined by the noise schedule.

By conditioning on text inputs, these diffusion models can be extended to text-to-image synthesis. In this
setting, a conditional score network sϕ(xt, y, t) ≈ ∇xt

log pt(xt|y) is used, where y is the text prompt describ-
ing the image content. Popular models such as Stable Diffusion (Rombach et al., 2022) and MVDiffusion (Shi
et al., 2023) have demonstrated that this approach yields high-quality, semantically aligned images.

3.2 Text-to-3D Generation by Diffusion Distillation

A prevalent paradigm for text-to-3D synthesis leverages pretrained text-to-image diffusion models to guide
the optimization of a 3D representation. Let g(θ, c) be a differentiable renderer that maps the 3D parameters
θ to a 2D image under camera pose c, qθ(xt|c) be the distribution of rendered images at diffusion time t,
and p(xt|yc) be the target conditional distribution given a view-dependent text prompt yc defined by a
pretrained diffusion model. The loss that aligns each rendered view of the 3D model with the conditional
diffusion prior can be formulated as:

LCDP(θ) = Et,c

[
ω(t) DKL

(
qθ(xt|c)

∥∥ p(xt|yc)
)]

, (3)

where ω(t) is a weighting function. In practice, the gradient of loss (3) writes (please refer to Luo et al.
(2024a) and Wang et al. (2023a) for a comprehensive derivation):

∇θLCDP(θ) ≈ Et,ϵ,c

[
ω(t) (ϵϕ(xt, yc, t)− ϵ) ∂g(θ, c)

∂θ

]
, (4)

where ϵϕ(xt, yc, t) = −σtsϕ(xt, yc, t) is the noise prediction of the diffusion model.

The Score Distillation Sampling (SDS) loss, introduced in DreamFusion Poole et al. (2022), improves gen-
eration quality by employing classifier-free guidance (CFG)(Ho & Salimans, 2022; Ahn et al., 2024; Karras

4



Published in Transactions on Machine Learning Research (12/2025)

3D Objects 𝑝𝒛𝜃

Prompt 𝑦 : A carton-style house with vibrant colors and unique design.

𝒛𝜃~𝑝𝒛𝜃

𝒙~𝑝(𝒙|𝒛𝜃 , 𝑐)

Human 
Preference

Noise

Reward

Τ𝑑 𝛼 ∗ 𝑙𝐶𝐷𝑃 𝜃 − 𝛾 ∗ 𝑙𝑈𝐷𝑃 𝜃 + 𝜆 ∗ 𝑙𝐸𝑅 𝜃 𝑑𝜃
Rendered images 𝒙

Text-to-Image 
Diffusion

𝑙𝐶𝐷𝑃 = 𝐷[0:𝑇][𝑞𝜃(𝒙|𝑐)||𝑝𝜙(𝒙|𝑦
𝑐)]

Noise Image 
Diffusion

𝑙𝑈𝐷𝑃 = 𝐷[0:𝑇][𝑞𝜃(𝒙|𝑐)||𝑝𝜙(𝒙)]

𝑙𝐸𝑅 = 𝐷[0:𝑇][𝑞𝜃(𝒙|𝑐)||𝑝𝐸𝑅(𝒙, 𝑦
𝑐)]

Figure 2: Overview of Dive3D. Dive3D reformulates both SDS loss and human-preference rewards within
a unified divergence-based framework, revealing that both rely on KL divergence, DKL(·, ·)—an asymmetric
objective that inherently favors mode-seeking and leads to model collapse and limited diversity. Dive3D
replaces this with a Score Implicit Matching-based divergence, D[0,T ](·, ·), which aligns score fields rather
than probability densities, effectively mitigating mode collapse and enabling more diverse and faithful 3D
generation.

et al., 2024; Li et al., 2024), which replaces the original conditional score in Eq.4 with a weighted difference
between the conditional and unconditional score estimates,

ϵ̂ϕ(xt, yc, t) = (1 + γ)ϵϕ(xt, yc, t)− γ ϵϕ(xt, t)

= ϵϕ(xt, yc, t) + γ
(

ϵϕ(xt, yc, t)− ϵϕ(xt, t)
)

= −σt

[
sϕ(xt, yc, t) + γ

(
sϕ(xt, yc, t)− sϕ(xt, t)

)]
,

(5)

∇θLSDS(θ) ≈ Et,ϵ,c

[
ω(t) (ϵ̂ϕ(xt, yc, t)− ϵ) ∂g(θ, c)

∂θ

]
. (6)

This adjustment is equivalent to incorporating an additional regularization term into the Score Distillation
Sampling (SDS) loss - the so-called CFG-reward as introduced by (Luo et al., 2024c) (LSDS = LCDP +
γLCFR), effectively acting as an implicit likelihood term that better aligns the generated image with the text
prompt and enforces pose constraints. Increasing the weighting factor γ strengthens this alignment, thereby
improving the semantic calibration of the 3D renderings.

3.3 Text-to-3D Generation via Reward Guidance

An alternative approach leverages reward signals to steer the generation of 3D content. Pioneering works
such as DreamFields Jain et al. (2022), CLIP-Mesh Mohammad Khalid et al. (2022), and X-Mesh Ma et al.
(2023b) leverage CLIP scores Radford et al. (2021) to align 3D representations with text prompts. In these
methods, a reward function is defined as:

r(y, x, c) = f
(
g(θ, c)

)⊤
h(yc), (7)

where f(·) and h(·) are embedding functions for images and text, respectively, and g(θ, c) is the rendered
image. Maximizing this reward encourages the 3D model to generate outputs that are semantically aligned
with the text.

Recent methods, such as DreamRewardYe et al. (2024), combine the SDS loss with reward-based signals to
further enhance semantic alignment and human-preference consistency. For example, DreamReward modifies
the SDS loss as:

LReward(θ) = LSDS(θ)− λEt,c, xt

[
ω(t) r

(
yc, x̂0(xt)

)]
, (8)

where xt ∼ qθ(xt|c), x̂0 = 1
αt

[xt − σtϵϕ(xt, y, t)] is an estimate of the denoised image, and λ balances the
influence of the reward. Similar to Eq. 5, the reward function acts as an additional regularization term in
SDS-based 3D generation.

5



Published in Transactions on Machine Learning Research (12/2025)

4 Method

In this section, we introduce Dive3D, a principled framework that boosts both diversity and fidelity in
text-to-3D synthesis by replacing KL-divergence guidance with score-based divergence optimization (see
Fig.2). In Sec.4.1, we demonstrate that existing SDS and reward losses are both linear combinations of
KL divergences—and thus prone to mode collapse and mode-seeking. Then, in Sec. 4.2, we present our
score-based divergence formulation, which overcomes these limitations and delivers significantly more varied
and higher-quality 3D outputs.

4.1 SDS and Reward Guidance are Both KL Divergences

The SDS Loss. The classifier-free guidance in the SDS loss (Eqs. 5–6) can be rewritten as

sϕ(xt, y, t)− sϕ(xt, t) ≈ ∇xt log p(xt|y)−∇xt log p(xt). (9)

Substituting Eq. 9 into Eq. 6 and integrating, the SDS loss can be expressed as the difference between two
KL divergence terms:

LSDS(θ) = (1 + γ)LCDP(θ)− γ LUDP(θ)

= (1 + γ)Et,c

[
ω(t) DKL

(
qθ(xt|c)

∥∥ p(xt|yc)
)]

− γ Et,c

[
ω(t) DKL

(
qθ(xt|c)

∥∥ p(xt)
)]

.

(10)

This formulation makes explicit that the SDS loss balances two KL divergences—one that promotes prompt
fidelity (LCDP) and one that modulates diversity via the unconditional prior (LUDP). Increasing γ strengthens
text–image alignment but narrows diversity by shrinking the effective entropy.

The Explicit Reward Loss. Assuming the reward defines an exponential distribution,

pER(yc, xt) ∝ exp
(

r
(
yc, x̂0(xt)

))
, (11)

the explicit reward loss in Eq. 8 can likewise be interpreted as a KL divergence.

LER(θ) = Et,c

[
ω(t) DKL

(
qθ(xt|c)

∥∥ pER(yc, xt)
)]

= Et,c, xt

[
ω(t)

(
log qθ(xt|c)− log pER(yc, xt)

)]
= constant− Et,c, xt

[
ω(t) r

(
yc, x̂0(xt)

)]
,

(12)

where the first term is a constant because the distribution qθ(xt|c) is typically a uniformly-distributed
collection of N particles (i.e., qθ(xt|c) = 1/N). Serving as a measure of the joint distribution of prompts and
images, the explicit reward loss not only enhances text alignment during 3D generation but also provides
the flexibility to incorporate additional criteria, such as human preference Xu et al. (2023); Murray et al.
(2012), photorealism Kirstain et al. (2023), and geometric consistency Ye et al. (2024).

Unified KL Divergence Framework. Collecting these components, we can unify all loss terms in the
diffusion- or reward-based text-to-3D generation framework by defining three core KL-based terms:

LCDP(θ) = Et,c

[
ω(t)DKL

(
qθ(xt|c)

∥∥ p(xt|yc)
)]

,

LUDP(θ) = Et,c

[
ω(t)DKL

(
qθ(xt|c)

∥∥ p(xt)
)]

,

LER(θ) = Et,c

[
ω(t)DKL

(
qθ(xt|c)

∥∥ pER(yc, xt)
)]

.

(13)
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Both SDS and reward-guided objectives are simply linear combinations of these divergences:

LSDS = (1 + γ)LCDP − γLUDP,

LReward = LSDS + λLER.
(14)

This unified view permits flexible tuning of the weights on each term (see Appendix), yielding higher-fidelity
generations. However, both theory and experiments Luo et al. (2025); Zhou et al. (2024b;a) show that relying
on the inherently asymmetric KL divergence (DKL(q|p) ̸= DKL(p|q)) destabilizes training and induces mode-
seeking, thereby constraining the diversity of generated 3D assets.

DreamFusion Poole et al. (2022) Fantasia3D Chen et al. (2023) ProlificDreamer Wang et al. (2024) Dive3D (Ours)

Michelangelo style statue of dog reading news on a cellphone.

DreamFusionOurs

Ours DreamFusion

A model of a house in Tudor style.

Ours

A chimpanzee dressed like Henry VIII king of England.

DreamFusion

A plate of fried chicken and waffles with maple syrup on them.

Ours DreamFusion

Michelangelo style statue of dog reading news on a cellphone.

DreamFusionOurs

Ours DreamFusion

A model of a house in Tudor style.

Ours

A chimpanzee dressed like Henry VIII king of England.

DreamFusion

A plate of fried chicken and waffles with maple syrup on them.

Ours DreamFusion

Michelangelo style statue of dog reading news on a cellphone.

DreamFusionOurs

Ours DreamFusion

A model of a house in Tudor style.

Ours

A chimpanzee dressed like Henry VIII king of England.

DreamFusion

A plate of fried chicken and waffles with maple syrup on them.

Ours DreamFusion

Michelangelo style statue of dog reading news on a cellphone.

DreamFusionOurs

Ours DreamFusion

A model of a house in Tudor style.

Ours

A chimpanzee dressed like Henry VIII king of England.

DreamFusion

A plate of fried chicken and waffles with maple syrup on them.

Ours DreamFusion

A chimpanzee dressed like Henry VIII king of England. An old vintage car.

A baby bunny sitting on top of a stack of pancakes.

A banana peeling itself.

A delicious croissant.

A blue jay standing on a large basket of rainbow macarons.

Ours DreamFusion

An old vintage car.

A baby bunny sitting on top of a stack of pancakes.

A banana peeling itself.

A delicious croissant.

A blue jay standing on a large basket of rainbow macarons.

Ours DreamFusion

A baby bunny sitting on top of a stack of pancakes.

Figure 3: Comparison with Baselines based on Stable Diffusion Rombach et al. (2022). Dive3D
exhibits higher quality, richer texture details, and superior alignment with human preferences, such as
accurate clothing styles, and vivid fur texture.

MVDream Shi et al. (2023) DreamReward Ye et al. (2024) Dive3D (Ours)

A guitar resting against an old oak tree.

Various hollow, asymmetrical, textured seashells, collected in a sand-filled, clear glass jar with a twine-tied neck, displayed on a windowsill.

A sequence of street lamps, casting pools of light on cobblestone paths as twilight descends.

Figure 4: Comparison with Baselines based on MVDiffusion Shi et al. (2023) and reward
model Ye et al. (2024). Dive3D exhibits more detailed and realistic 3D generation, capturing fine-
grained structures such as accurate guitar geometry and transparent glass materials.

4.2 From KL to Score-based Divergence

To mitigate these issues, in Dive3D we propose to replace the KL divergence with a score-based divergence,
named score implict matching (SIM) loss(Luo et al., 2024b), which has shown significant improvements in
generation diversity in one-step diffusion and flow models(Luo et al., 2024b; Zhou et al., 2024b; Huang et al.,
2024b). Specifically, the score-based divergence is defined between two distributions p and q as

D[0,T ](p, q) =
∫ T

0
w(t)Ext∼πt

[
d
(

sp(xt)− sq(xt)
)]

dt, (15)
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The blacksmith NPC in the game. A realistic Japanese building.

Figure 5: Score-based divergence vs. KL divergence in 2D space sampling. The proposed score-
based divergence significantly enhances the diversity of generated 2D samples, yielding more varied back-
grounds and clothing in “game character” generation, as well as a broader range of environments, lighting
conditions, and architectural features in “Japanese building” generation.

where the score functions of these two distributions are given by sp(xt) = ∇xt
log p(xt) and sq(xt) =

∇xt
log q(xt), d : Rd → R is a distance function, πt is a sampling distribution whose support exceeds that of

pt and qt, and w(t) is a weighting function. If we set p(·) = p(xt|yc), p(xt), pER(yc, xt) and q(·) = qθ(xt|c),
then the KL-based losses in Eqs. 13-14 can be updated to

LScore−CDP(θ) =
∫ T

0
w(t)Ext∼πt

[
d
(

sp(xt|yc)− sqθ
(xt|c)

)]
dt,

LScore−UDP(θ) =
∫ T

0
w(t)Ext∼πt

[
d
(

sp(xt)− sqθ
(xt|c)

)]
dt,

LScore−ER(θ) =
∫ T

0
w(t)Ext∼πt

[
d
(
∇xt

r
(
yc, x̂0(xt)

)
− sqθ

(xt|c)
)]

dt,

LDive3D = (1 + γ)LScore−CDP − γLScore−UDP + λLScore−ER

(16)

This formulation offers a more effective similarity metric between the generated content and diffusion- or
reward-based image distributions, yielding 3D outputs that are both more diverse and higher fidelity than
those produced using traditional KL divergence.

Although this divergence may initially seem intractable, recent work (Luo et al., 2025) shows that the
gradient of this divergence with respect to θ can be efficiently computed without directly differentiating the
score functions by introducing a separate approximation network. For a full derivation and implementation
details, please refer to Appendix.

4.3 Analysis of Score-based Divergence

Our methodology, which leverages Score-based divergence (SIM), offers significant advantages over conven-
tional generative objectives based on KL-divergence, such as those used in SDS. The primary limitation
of KL-divergence-based methods is their inherent “mode-seeking” nature, which frequently leads to mode
collapse. This results in generated samples that, while often high in quality, lack diversity.
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This phenomenon can be intuitively understood by analogizing the target data distribution to a complex
mountain range with multiple peaks, where each peak represents a data mode. A KL-based objective function
akin to a GPS system that identifies the most efficient path to the single highest peak, consequently ignoring
all other valid destinations. In contrast, our SIM-based approach constructs a complete topographical map of
the entire landscape. By matching the score function—the gradient of the log-probability density—at every
point, our model illuminates the complete topology of the data distribution. This enables the generation of
truly diverse results that cover all modes of the distribution.

From a theoretical standpoint, the mode collapse issue in the KL-divergence stems from its mathematical
formulation, which seeks to minimize the following objective:

DKL(P ||Q) = Ex∼P log P (x)
Q(x) (17)

The objective’s reliance on the likelihood ratio P (x)/Q(x) renders it ill-defined and unstable, particularly
when the support of the generated distribution (P ) and the target distribution (Q) are misaligned. This
instability compels the model to converge onto a single, “safe” mode of Q where the ratio is well-behaved,
thereby discarding other modes.

Our SIM-based approach circumvents this fundamental flaw by minimizing a score-based divergence instead:

DSIM (P ||Q) = Ex∼Qd[∇x log P (x)−∇x log Q(x)] (18)

Rather than comparing an unstable ratio of densities, this objective directly aligns the vector fields of the
score functions (∇x log P (x) and ∇x log Q(x)). This score-matching process is inherently robust to mis-
aligned support between distributions. Consequently, our model is empowered to learn the entire topological
landscape of the target distribution, thereby preserving all of its modes and fostering superior generative
diversity.

5 Experiment

In this section, we evaluate how our proposed score-based divergence optimization enhances both quality and
diversity in text-to-3D synthesis. We perform comprehensive experiments on the GPTEval3D benchmark Wu
et al. (2024a), supplemented by additional 2D and 3D assessments that demonstrate the effectiveness and
diversity of the method.

5.1 Evaluation on the GPTEval3D Benchmark

Setup. We first evaluate Dive3D on 110 creative and complex prompts from the GPTEval3D benchmark Wu
et al. (2024a), comparing against 9 state-of-the-art methods, including DreamFusion Poole et al. (2022),
DreamGaussian Tang et al. (2023b), Instant3D Li et al. (2023), Fantasia3D Chen et al. (2023), Latent-
NeRF Metzer et al. (2022), Magic3D Lin et al. (2023), ProlificDreamer Wang et al. (2023c), MVDream Shi
et al. (2023), and DreamReward Ye et al. (2024). All experiments use PyTorch and the ThreeStudio frame-
work Guo et al. (2023), testing both MVDream Shi et al. (2023) and Stable Diffusion Rombach et al. (2022)
as diffusion backbones, and PickScore Kirstain et al. (2023) as the reward model. Optimization takes about
one hour per object on a single NVIDIA A100 GPU.

Quantitative Results. Table 1 reports performance of our method across six metrics, including text-asset
alignment (+53.5), 3D plausibility (+49), text-geometry alignment (+68.2), texture details (+67.5), geom-
etry details (+35.3), and overall performance (+50.0), where “+” indicates improvement and “–” indicates
degradation relative to the state of the art. Dive3D achieves the top rank on every metric, demonstrating
that score-based divergence guidance—especially when combined with reward models—yields substantial
gains over both diffusion-only and reward-augmented baselines.

Qualative Results. Figure 3 compares Dive3D against methods built on Stable Diffusion (e.g., Dream-
Fusion, Fantasia3D, ProlificDreamer), which often struggle with fine details or prompt adherence. By op-
timizing a score-based divergence that unifies text-conditioned diffusion priors with a differentiable reward
model, Dive3D consistently produces high-fidelity, semantically precise 3D assets.
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Table 1: Quantitative Results on 110 Prompts from the GPTEval3D Benchmark Wu et al.
(2024a). We compute all six GPTEval3D metrics—text alignment, 3D plausibility, texture–geometry co-
herence, geometry details, texture details, and overall score—to comprehensively evaluate 3D generation
quality. Dive3D achieves the highest score on every metric, demonstrating its superior performance.

Method
Prompts from GPTEval3D Wu et al. (2024a)

Alignment Plausibility T-G Coherency. Geo Details Tex Details Overall
DreamFusionPoole et al. (2022) 1000.0 1000.0 1000.0 1000.0 1000.0 1000.0

DreamGaussianTang et al. (2023b) 1100.6 953.6 1158.6 1126.2 1130.8 951.4
Fantasia3DChen et al. (2023) 1067.9 891.9 1006.0 1109.3 1027.5 933.5

Instant3DLi et al. (2023) 1200.0 1087.6 1152.7 1152.0 1181.3 1097.8
Latent-NeRFMetzer et al. (2022) 1222.3 1144.8 1156.7 1180.5 1160.8 1178.7

Magic3DLin et al. (2023) 1152.3 1000.8 1084.4 1178.1 1084.6 961.7
ProlificDreamerWang et al. (2023c) 1261.8 1058.7 1152.0 1246.4 1180.6 1012.5

SyncDreamerLiu et al. (2024) 1041.2 968.8 1083.1 1064.2 1045.7 963.5
MVDreamShi et al. (2023) 1270.5 1147.5 1250.6 1324.9 1255.5 1097.7

DreamReward1Ye et al. (2024) 1287.5 1195.0 1254.4 1295.5 1261.6 1193.3
DIVE3D (Ours) 1341.0 1249.0 1322.6 1360.2 1329.1 1243.3

1 Our metrics differ from those reported in the original DreamReward paper because GPT-4V has been deprecated in
GPTEval3D, so we instead use GPT-4o-mini.

Additional examples in Figures 4 and 10 compare Dive3D with MVDream and DreamReward. While MV-
Dream preserves geometric consistency, it sometimes deviates from the prompt content (missing keywords
highlighted in red). DreamReward improves alignment but remains constrained by its KL-based formulation
and associated mode collapse. In contrast, Dive3D faithfully follows the prompt, delivers rich detail and
appealing aesthetics, and maintains strong visual coherence.

Table 2: Quantitative comparison of diversity and quality. Arrows indicate whether higher (↑) or lower (↓)
values are better.

Method CLIP-D ↑ LPIPS-D ↑ Chamfer-D ↑ FID ↓
Prolific Dreamer (KL-based) 0.3908 0.485 0.072 207.34
Dive3D (Ours, Score-based) 0.4483 0.551 0.115 168.59

5.2 Analysis on Generation Diversity

Setup. We then show that score-based divergences produce more diverse, information-rich outputs than
traditional KL-based losses. To evaluate this, we test our method in both 2D and 3D settings—using Stable
Diffusion Rombach et al. (2022) as the backbone. In 2D, we represent scenes with 2D Neural Radiance
Fields; in 3D, we use full 3D NeRFs. We primarily compare against ProlificDreamer Wang et al. (2023c),
the leading KL-divergence–based method that leverages variational score distillation (VSD) to maximize
diversity in text-to-3D generation. On a single NVIDIA A100 GPU, our 2D experiments complete in roughly
30 minutes, while the 3D evaluations take about 9 hours.

2D Results. We begin by evaluating 2D generation, where we distill a 2D neural field from a text-to-image
diffusion model. This task shares the same mathematical formulation as our text-to-3D problem but is
computationally less demanding because it does not involve camera poses. As shown in Fig. 5, for both
game character and realistic architecture generation tasks, the score-based divergence consistently produces
more diverse samples than KL divergence. For instance, when generating “a realistic Japanese building,”
the KL-based method consistently generates towers with standard color schemes (predominantly red and
blue), uniform backgrounds (lush green trees), and similar weather and time conditions (sunny daytime). In
contrast, the score-based approach generates outputs with varied lighting (e.g., night scenes, snowy settings)
and diverse architectural features (e.g., towers, pavilions, and residential houses). A similar trend is observed
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in the game character generation task: while the KL-based SDS loss tends to produce similar archetypes,
the score-based loss reveals a wider range of characters, clothing styles, and backgrounds.

3D Results. These diversity gains naturally and effectively generalize to 3D synthesis. Figure 1(a) compares
the output for “a pirate ship in the sky” under the KL-based VSD loss versus our score-based divergence.
As expected, our approach produces a far wider range of geometric shapes, surface textures, and background
scenes—from bright sunny skies to dark thunderous clouds. Figure 11 offers additional examples across
diverse prompts to reinforce this finding, illustrating how score-based divergence yields richer variation in
colors, object styles, material properties, and environmental details.

To quantitatively validate that our method enhances diversity, we have also conducted a large-scale evalua-
tion. We generated 12,800 images from 50 diverse prompts and assessed them using three standard metrics:
Pairwise CLIP-Distance (CLIP-D) for inter-sample diversity, average pairwise LPIPS for perceptual diversity,
and Fréchet Inception Distance (FID) to evaluate overall set quality. As summarized in Table 2, our method
significantly outperforms the KL-based baseline (ProlificDreamer) on all three metrics. These improvements
are statistically significant, as all p < 0.01 with paired t-tests (tCLIP (49) = 5.21 and tF ID(49) = −8.83),
providing strong quantitative evidence that our method effectively mitigates mode collapse.

5.3 Computational Cost

We analyze the runtime and memory overhead of Dive3D in Table 3. The cost depends on the diffu-
sion backbone. When using MVDiffusion, our method is comparable to other reward-guided methods like
DreamReward. When using Stable Diffusion, our method is slightly slower than ProlificDreamer (NeRF)
and requires more memory due to the reward guidance. In both scenarios, the computational cost is justified
by the significant gains in generation quality and diversity. All experiments were run on a single NVIDIA
A100 GPU.

Table 3: Computational cost and performance comparison, broken down by diffusion backbone.

Diffusion Backbone Method Generation Time Peak Memory (GB)

MVDiffusion
MVDream 0.7 hours ∼14
DreamReward 1.0 hours ∼22
Dive3D (Ours) 1.0 hours ∼22

Stable Diffusion ProlificDreamer 7.9 hours ∼27
Dive3D (Ours) 9.0 hours ∼35

6 Conclusion

In this paper, we present Dive3D, a novel framework that boosts both diffusion-based distillation and reward-
guided optimization by substituting their asymmetric KL-divergence objectives with a powerful score-based
divergence. Evaluated on the GPTEval3D and other benchmarks, Dive3D effectively alleviates mode collapse,
yielding substantially greater diversity while simultaneously improving text alignment, geometric plausibility,
and visual fidelity.

Limitations and Future Work. Although Dive3D delivers compelling results, its runtime remains slower
than recent LRM-based methods. In future work, we plan to integrate our score-based divergence with latent
reconstruction models by first distilling diverse, text-driven multi-view generators and then combining them
with LRM techniques to achieve rapid, high-fidelity, and diverse 3D synthesis.
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A Derivation of the Score-based Loss Function

The derivation is based on the so-called score-projection identity which was first found in Vincent (2011) to
bridge denoising score matching and denoising auto-encoders. Later, the identity is applied by Zhou et al.
(2024b); Luo et al. (2025) for deriving distillation methods for image generation. We appreciate the efforts
of Zhou et al. (2024b) and introduce the conditional score-projection identity for inverse problems here:
Theorem A.1. (Conditional score-projection identity). Let u(ů, θ) be a vector-valued function, under mild
conditions, the identity holds:

E x0∼pθ(x0|y)
xt|x0∼qt(xt|x0)

u(xt, y, θ)T
{

spθ,t
(xt|y)−∇xt

log qt(xt|x0)
}

= 0, ∀θ. (19)

Next, we turn to derive the loss function.

Proof. We prove a more general result. Let u(ů) be a vector-valued function, the so-called score-projection
identity Vincent (2011) holds,

E x0∼pθ(x0|y)
xt|x0∼qt(xt|x0)

u(xt, y, θ)T
{

spθ,t
(xt|y)−∇xt

log qt(xt|x0)
}

= 0, ∀θ. (20)

Taking θ gradient on both sides of identity 20, we have:

0 = E x0∼pθ(x0|y)
xt|x0∼qt(xt|x0)

∂
∂xt

{
u (xt, y, θ)T {

spθ,t
(xt|y)−∇xt

log qt (xt | x0)
}}

∂xt

∂θ

+E x0∼pθ(x0|y)
xt|x0∼qt(xt|x0)

∂
∂x0

{
u (xt, y, θ)T {−∇xt

log qt (xt | x0)}
}

∂x0
∂θ

+E x0∼pθ(x0|y)
xt|x0∼qt(xt|x0)

u (xt, y, θ)T ∂
∂θ

{
spθ,t

(xt|y)
}

+ ∂
∂θ u (xt, y, θ)T

spθ,t
(xt|y)

= E x0∼pθ(x0|y)
xt|x0∼qt(xt|x0)

u (xt, y, θ)T ∂
∂θ

{
spθ,t

(xt|y)
}

+E x0∼pθ(x0|y)
xt|x0∼qt(xt|x0)

{
∂

∂xt

{
u (xt, y, θ)T {

spθ,t
(xt|y)−∇xt

log qt (xt|x0)
}}

∂xt

∂θ

+ ∂
∂x0

{
u (xt, y, θ)T {−∇xt log qt (xt|x0)}

}
∂x0
∂θ + ∂

∂θ u (xt, y, θ)T
spθ,t

(xt|y)
}

= Ext∼pθ,t
u (xt, y, θ)T ∂

∂θ

{
spθ,t

(xt|y)
}

+ ∂
∂θEx0∼pθ,tu (xt, y, θ)T {

spsg[θ],t
(xt|y)−∇xt

log qt (xt|x0)
}
(21)

Therefore, we have the following identity:

Ext∼pθ,t
u (xt, y, θ)T ∂

∂θ

{
spθ,t

(xt|y)
}

= − ∂

∂θ
Ex0∼pθ,tu (xt, y, θ)T {

spsg[θ],t
(xt|y)−∇xt

log qt (xt|x0)
}
(22)

which holds for arbitrary function u(ů, θ) and parameter θ. If we set

u(xt, y, θ) = d′(kt)
kt = spsg[θ],t

(xt|y)− sqt
(xt)− sqt

(y|xt)
(23)

Then we formally have the loss function as:

loss = Ext∼pθ,t
{−d′ (kt)}T {

spsg[θ],t
(xt|y)−∇xt log qt (xt|x0)

}
(24)
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B Theoretical Proof of SIM’s Robustness Against Mode Collapse

This section provides a formal mathematical proof that the score-based loss (SIM) function is theoretically
more robust against mode collapse than the KL divergence-based loss function. The proof is structured by
first formally defining a mode-seeking loss function, then proving that KL-divergence satisfies this definition
while SIM does not. This culminates in the main theorem establishing SIM’s theoretical advantage.

B.1 Definitions

Definition B.1 (Mode Collapse). Let Q(x) be a target probability distribution on a space X ⊆ Rd, pos-
sessing a set of distinct modes (high-density regions) {Mi}k

i=1. Let Pθ(x) be the distribution generated by
a model with parameters θ. The model is said to suffer from mode collapse if the support of its distribution,
supp(Pθ), fails to cover the union of the significant modes of Q, i.e.,

supp(Pθ) ⊊
k⋃

i=1
Mi. (25)

Definition B.2 (Mode-Seeking Loss Function). A loss function L(Pθ, Q) is defined as mode-seeking if it
satisfies the following property: For any region R ⊂ X of extremely low target density (i.e., supx∈R Q(x) < ϵ
for some ϵ → 0), if the generated distribution assigns a non-vanishing probability mass to this region (i.e.,∫

R Pθ(x)dx > c for some constant c > 0), then the loss must diverge,

L(Pθ, Q)→∞. (26)

Intuitively, a mode-seeking loss function infinitely penalizes the generator for exploring low-density regions
of the target distribution.

B.2 Lemmas

Lemma B.1. The Kullback-Leibler (KL) divergence, DKL(Pθ∥Q), is a mode-seeking loss function.

Proof. The KL-divergence is defined as:

LKL(Pθ) = DKL(Pθ∥Q) =
∫

X
Pθ(x) log Pθ(x)

Q(x) dx (27)

=
∫

X
Pθ(x) log Pθ(x)dx−

∫
X

Pθ(x) log Q(x)dx. (28)

Let us analyze the second term, the negative cross-entropy T = −
∫

X Pθ(x) log Q(x)dx.

Consider a region R that satisfies the condition in Definition 2, such that ∀x ∈ R, Q(x) < ϵ with ϵ→ 0. As
a consequence, log Q(x)→ −∞ and thus − log Q(x)→ +∞ for all x ∈ R.

Now, assume the generator assigns a non-vanishing probability mass to this region,
∫

R Pθ(x)dx > c > 0.
The contribution to the loss from this region is:

TR = −
∫

R
Pθ(x) log Q(x)dx. (29)

Since Pθ(x) is a probability density function and its integral over R is a positive constant, while − log Q(x)
diverges to +∞ over this entire region, the value of the integral must also diverge:

TR →∞. (30)

As the total loss LKL(Pθ) is the sum of terms including TR, it follows that LKL(Pθ)→∞. Thus, DKL(Pθ∥Q)
satisfies the property of a mode-seeking loss function as per Definition 2.
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Lemma B.2. The SIM loss function, LSIM , is not a mode-seeking loss function, under the mild assumption
that Q(x) is continuously differentiable.

Proof. The SIM loss is defined by matching the score functions of the two distributions, sP (x) = ∇x log P (x)
and sQ(x) = ∇x log Q(x):

LSIM (Pθ) = Ex∼π(x)
[
∥∇x log Pθ(x)−∇x log Q(x)∥2]

, (31)

where π(x) is a sampling distribution. We assume that the target distribution Q(x) is continuously dif-
ferentiable (C1 smooth), which is a standard assumption for distributions defined by stochastic differential
equations in diffusion models.

Consider again the regionR where supx∈R Q(x)→ 0. The critical term to analyze is the target score function,
sQ(x) = ∇x log Q(x). By the chain rule, this is sQ(x) = ∇xQ(x)

Q(x) . Although the denominator Q(x) → 0, the
numerator ∇xQ(x) also approaches zero if x is in a region of a local minimum of the probability density. For
smooth distributions like Gaussian mixtures, the score function is well-defined and bounded across the entire
space. Even in low-density regions between modes, the score vector ∇x log Q(x) is a finite vector pointing
towards the nearest mode; it does not diverge to infinity.

Therefore, on any compact subset of X , the score function sQ(x) is bounded, i.e., there exists a constant K
such that ∥sQ(x)∥ < K. Consequently, the loss contribution from any point x ∈ R is:

∥∇x log Pθ(x)− sQ(x)∥2, (32)

which remains a finite value. The loss LSIM does not diverge to infinity merely because the generator
samples from a low-density region of the target. Thus, LSIM does not satisfy the property of a mode-seeking
loss function as per Definition 2.

B.3 Main Theorem

Theorem B.3. An optimization process guided by a mode-seeking loss function is theoretically susceptible
to mode collapse. Conversely, a process guided by a loss function that is not mode-seeking is theoretically
more robust against mode collapse.

Proof. From Lemma 1, we have proven that the KL-divergence is a mode-seeking loss function. Any opti-
mization algorithm (e.g., gradient descent) attempting to minimize LKL will receive an unbounded penalty
for placing probability mass outside the modes of Q. The optimizer is therefore strongly incentivized to
adjust θ such that the support of Pθ becomes a strict subset of the high-density regions of Q. This directly
leads to the condition of mode collapse as defined in Definition 1.

From Lemma 2, we have proven that the SIM loss is not mode-seeking. An optimizer minimizing LSIM

receives finite and meaningful gradient information across the entire data space, including low-density regions.
There is no infinite penalty that forces the optimizer to "escape" these regions. Instead, it is guided to match
the vector field of score functions globally. This allows the learned distribution Pθ to capture the full topology
of the target distribution Q, making the optimization process inherently more robust to mode collapse.

Therefore, the SIM framework provides a stronger theoretical foundation for generating diverse samples
compared to frameworks based on KL-divergence.

C Implementation Details

Pseudo-code for Dive3D A detailed pseudo-code for Dive3D is presented in algorithm 1.

In this paper, we conduct experiments primarily using a NVIDIA A100 Tensor Core GPU, with the former
mainly employed for NeRF and 3D Gaussian Splatting generation. For our quantitative evaluations, we
maintain consistent experimental setups across all methods, employing similar pipelines that include 3D
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Algorithm 1 Pseudo-code for Dive3D
1: Input: Text-to-image diffusion score network sϕ(·, ·, ·) and its LoRA parameters φ, Reward function

R(·, ·)
2: Input: Text prompt y, Differentiable 3D renderer g(θ, v)
3: Input: Learning rate η for 3D parameters θ, Timestep weighting function w(t)
4: Input: Hyperparameters: γ (guidance scale coefficient), λ (reward weight)
5: Input: Noise schedule parameters αt, σt

6:
7: Initialization: Randomly initialize 3D representation parameters θ0
8:
9: while not converged do

10: Sample camera viewpoint v
11: Render 2D image from current 3D model: x0 = g(θ, v)
12: Sample timestep t ∼ Uniform(0, T ) and noise ϵ ∼ N (0, I)
13: Compute noisy image: xt = αtx0 + σtϵ
14: Compute score of the current rendered data distribution: srendered = −ϵ/σt

15:
16: Score-based Conditional Diffusion Prior (S-CDP) Gradient
17: Estimate conditional target score: scond_target = sϕ(xt, y, t)
18: Compute S-CDP gradient: ∇θLS−CDP ≈ w(t)dscore(scond_target, sφ(xt, y, t))
19:
20: Score-based Unconditional Diffusion Prior (S-UDP) Gradient
21: Estimate unconditional target score: suncond_target = sϕ(xt, ∅, t) (using null text ∅)
22: Compute S-UDP gradient: ∇θLS−UDP ≈ w(t)dscore(suncond_target, sφ(xt, y, t))
23:
24: Score-based Explicit Reward (S-ER) Gradient
25: Estimate denoised image x̂0(xt) (e.g., using xt, sϕ, αt, σt)
26: Estimate target reward score: sreward_target = ∇xt

R(y, x̂0(xt))
27: Compute S-ER gradient: ∇θLS−ER ≈ w(t)dscore(sreward_target, sφ(xt, y, t))
28:
29: Total Loss Gradient and Parameter Update
30: Compute total Dive3D loss gradient (based on Eq. 16):
31: ∇θLDive3D = (1 + γ)∇θLS−CDP − γ∇θLS−UDP + λ∇θLS−ER

32: Update parameters: θ ← θ − η∇θLDive3D

33: Update parameters: φ← DenoisingScoreMatching(xt, t)
34: end while

representation selection, training procedures, shape initialization, and the use of a teacher diffusion model.
We uniformly apply identical negative prompts during the assessments. The primary distinction between
the methods lies in their respective loss functions. In our experiments, we use a CFG scale of 7.5 for
mesh generation and 20 for Gaussian Splatting generation. We observed that a high CFG scale tends to
oversaturate colors, while a low CFG scale hinders object convergence. With algorithmic improvements, we
found that a smaller CFG scale can produce high-quality 3D objects with smooth colors.

For text-to-3D generation, we utilize Stable Diffusion v2.1 and the MVDream model sd-v2.1-base-4view.
To produce diverse 3D representations, we adapt our algorithm to generate NeRF outputs and follow the
geometry and mesh refinement stages as outlined in ProlificDreamerWang et al. (2024). Additionally, we
employ the Gaussian Splatting generation pipeline from GaussianDreamerYi et al. (2024), resulting in 3D
NeRF, mesh, and Gaussian Splatting outputs. To align the generated 3D content with human preferences,
we integrate two human RLHF models: ImageRewardXu et al. (2023) and PickScoreKirstain et al. (2023).

For PickScore, we use a scale of 100 for mesh generation and 10,000 for Gaussian Splatting generation.
Empirically, we found that a high PickScore scale enhances visual richness but may lead to color oversatura-
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tion. The optimal PickScore scale ranges between 50–200 for mesh generation and 5,000–10,000 for Gaussian
Splatting generation.

Score-based Divergence Implementation For the score-based loss in Equation 15, we use the squared
l2 norm as the distance function d, where d(sp, sq) = ∥sp − sq∥2

2. The sampling distribution πt is simply the
marginal distribution p(xt|x0) from the forward diffusion process applied to the current rendered image x0 =
g(θ, c). This ensures that the score matching occurs in the data-relevant regions of the diffusion trajectory.
It is important to note that our method does not require training a separate score approximation
network. Instead, it comprises the frozen weights of the original score network sϕ with trainable LoRA layers
injected into its attention blocks, which is exactly the same as ProlificDreamer Wang et al. (2023c). The
LoRA parameters φ are trained concurrently with the 3D representation parameters θ at each optimization
step. The objective function for training φ is the standard denoising score matching (DSM) loss. At each
step, using the rendered image x0 = g(θ, c), we compute the noisy image xt = αtx0 + σtϵ. The DSM loss
then minimizes the difference between the network’s score prediction and the true score of the noisy data
distribution, which is known to be −ϵ/σt. This training step corresponds to Line 33 in our pseudo-code
(Algorithm 1) and ensures that sφ provides an accurate, up-to-date estimate of the score of the generator’s
current output distribution, which is essential for the SIM loss calculation.

DreamGaussian Tang et al. (2023b) GaussianDreamer Yi et al. (2024) Dive3D (Ours), Particle 1 Dive3D (Ours), Particle 2

Flamethrower, with fire, scifi, cyberpunk...

A cute Shiba Inu is sitting on the ground.

Figure 6: Comparison with baselines on Gaussian Splatting. Dive3D can generate diverse and human-
preferred 3D Gaussian splattings.

D Ablation Study

D.1 SIM vs. Reward Guidance

To disentangle the contributions of our score-based divergence (SIM) and reward guidance, we conduct an
ablation study. As shown in Table 4, the results demonstrate that switching from a KL-based objective to
SIM is the primary driver for increased diversity (CLIP-D). Subsequently, adding the reward term is key
to achieving state-of-the-art quality and text-alignment (ImageReward score), clarifying the distinct role of
each component.

Table 4: Ablation study on the components of Dive3D.

Method Loss Formulation Diversity (CLIP-D) ↑ Quality (ImageReward) ↑
Baseline (ProlificDreamer) LKL 0.3908 0.802
Dive3D (No Reward) LSIM 0.4412 0.839
Dive3D (Full) LSIM + Reward 0.4483 0.977

D.2 Impact of Divergence Loss Combinations

In this section, we investigate how different combinations of text-to-3D divergence losses affect generation
performance. Our framework involves three fundamental divergence losses: the CDP loss, the UDP loss,
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Figure 7: Dive3D can generate 3D objects across different 3D representations. We show the results
on Gaussian splitting, NeRF and Mesh. The prompts are A 3D model of an adorable cottage with a thatched roof and
A cauldron full of gold coins.

and the ER loss.

LDive3D = α1LCDP − α2LUDP + α3LER (33)

We systematically explore the effects of different loss weights by analyzing all possible paired combinations.

CDP and UDP As shown in Fig. 9(a), assigning a large weight to the CDP loss preserves generation
diversity but results in blurred outputs, while a large weight on the UDP loss introduces significant artifacts,
preventing the 3D generation from capturing basic image features. Empirically, the optimal performance is
achieved when the weights for CDP and UDP are balanced, i.e., when the ratio α1/α2 is approximately one.
This finding aligns with the observations for tuning the CFG loss(Wang et al., 2024), which typically attains
the best performance when the key component, a balanced linear combination of CDP and UDP losses, is
strongly emphasized.
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Magic gun, game asset, mystery. Jedi duck holding a lightsaber. Magic dagger, mystery, ancient. An airplane made out of wood.

Figure 8: Dive3D 3D Gaussian Splattings. Dive3D can generate anime-style and game-style 3D Gaussian
Splattings.

CDP and ER We employ two human-preference reward models, ImageReward (Xu et al., 2023) and
PickScore (Kirstain et al., 2023), in our experiments. As shown in Fig. 9(b), in both cases, higher ER scores
lead to improved 3D generation by enhancing text alignment and revealing finer textual details. Different
reward models can guide generation in distinct ways; for instance, in our test case, ImageReward and
PickScore exhibit different preferences for color combinations that evoke a sense of mystery in the generated
game assets.

UDP and ER We further explore the combination of UDP and ER losses—a configuration not previously
investigated in text-to-3D generation. As shown in Fig. 9(c), this novel combination also produces reasonable
3D objects, demonstrating that text-to-3D generation is possible without relying on a text-to-image model.
However, we observe that its performance is highly sensitive to the initialization of the 3D representation;
poor or biased initialization can trap the algorithm in local minima in the absence of text-to-image guidance.
Consequently, although the ER+UDP combination is promising, integrating all three basic losses yields the
best overall results.

D.3 Hyperparameter Design and Selection

The weights for the core divergence terms in Equation 33 (α1, α2, α3) were determined empirically on
a validation subset of 10 prompts. Our goal was to balance text-alignment, realism, and diversity. The
systematic exploration shown in Figure 9 of the main paper provides a detailed visualization of this process.
For the final model, we found that setting the ratio α1/α2 close to 1 (consistent with the (1 + γ) and −γ
formulation) and a reward weight λ (corresponding to α3) that enhances detail without causing oversaturation
yielded the best results. The final values used are consistent with the principles illustrated in that analysis.

E More Results

We provide more results in Figure 6, 7 and 8.
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α2/α1 = 0 α2/α1 = 2

(a) L = α1LCDP − α2LUDP. The prompt is: An amigurumi motorcycle.
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(b) L = α1LCDP + α3LER. The prompt is: Magic gun, game asset, mystery.

α3/α2 = 1e0 α3/α2 = 1e4
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(c) L = −α2LUDP + α3LER. The prompt is: An airplane made of metal.

Figure 9: Exploration of the design space of the unified divergence loss. We investigate their
influence of different text-to-3D divergence losses on generation performance by adjusting their weights. 3D
Gaussian splitting are used as representations in these experiments for computational efficiency.
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Orange monarch butterfly resting on a dandelion

A torn hat

Several large, solid, cube-shaped parcels, wrapped in brown paper and tied with string, each labeled with a different destination, 
awaiting dispatch in a post office

A cat pondering the mysteries of the universe

MVDream Ours

MVDream Ours

MVDream Ours

MVDream Ours

Figure 10: More comparison results of Dive3D, showing improved quality over prior methods. All results
are based on the MVDream pipeline Shi et al. (2023) using Multi-view Diffusion Shi et al. (2023).
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A refined vase with artistic patterns

A rubbery cactus

A lamp casting a warm glow

ProlificDreamer Ours

ProlificDreamer Ours

ProlificDreamer Ours

Figure 11: More comparison results of Dive3D, showing improved diversity over prior methods. All results
are based on Stage 1 of the ProlificDreamer pipeline Wang et al. (2023c) using Stable Diffusion Rombach
et al. (2022), without further refinement.
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