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ABSTRACT

This paper introduces∞-Diff, a generative diffusion model defined in an infinite-
dimensional Hilbert space, which can model infinite resolution data. By training on
randomly sampled subsets of coordinates and denoising content only at those loca-
tions, we learn a continuous function for arbitrary resolution sampling. Unlike prior
neural field-based infinite-dimensional models, which use point-wise functions
requiring latent compression, our method employs non-local integral operators to
map between Hilbert spaces, allowing spatial context aggregation. This is achieved
with an efficient multi-scale function-space architecture that operates directly on
raw sparse coordinates, coupled with a mollified diffusion process that smooths
out irregularities. Through experiments on high-resolution datasets, we found that
even at an 8× subsampling rate, our model retains high-quality diffusion. This
leads to significant run-time and memory savings, delivers samples with lower FID
scores, and scales beyond the training resolution while retaining detail.

1 INTRODUCTION

Denoising diffusion models (Song and Ermon, 2019; Ho et al., 2020) have become a dominant
choice for data generation, offering stable training and the ability to generate diverse and high quality
samples. These methods function by defining a forward diffusion process which gradually destroys
information by adding Gaussian noise, with a neural network then trained to denoise the data, in turn
approximating the data distribution. Scaling diffusion models to higher resolutions has been the topic
of various recent research, with approaches including iteratively upsampling lower resolution images
(Ho et al., 2022a) and operating in a compressed latent space (Rombach et al., 2022).

Deep neural networks typically assume that data can be represented with a fixed uniform grid, however,
the underlying signal is often continuous. As such, these approaches scale poorly with resolution.
Neural fields (Xie et al., 2022; Sitzmann et al., 2020; Mildenhall et al., 2021) address this problem by
directly representing data as a mapping from coordinates to intensities (such as pixel values), making
the parameterisation and memory/run-time from resolution independent from resolution, thereby
allowing training on data that would not usually fit in memory. Neural field-based generative models
(Dupont et al., 2022a;b; Bond-Taylor and Willcocks, 2021; Du et al., 2021) have been developed
to take advantage of these properties. Being inherently independent between coordinates, these
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Figure 1: We define a diffusion process in an infinite dimensional image space by randomly sampling
coordinates and training a model parameterised by neural operators to denoise at those coordinates.

Source code is available at https://github.com/samb-t/infty-diff.
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Figure 2: Modelling data as functions allows sampling at arbitrary resolutions using the same model
with different sized noise. Left to right: 64×64, 128×128, 256×256 (original), 512×512, 1024×1024.

approaches condition networks on compressed latent vectors to provide global information. However,
the sample quality of these methods is significantly lower than finite-dimensional generative models.

In this work we develop an approach that substantially improves upon the quality and scaling of
existing infinite dimensional generative models, reducing the gap to finite-dimensional methods,
while retaining the benefits of infinite dimensional models: subsampling coordinates to decouple
memory/run-time from resolution, making scaling more computationally feasible, while also allowing
training and sampling at arbitrary resolutions. We achieve this by designing a Gaussian diffusion
model in an infinite dimensional state space1. We argue that compressed latent-based neural fields
cannot effectively be used to parameterise such diffusion models due to the reliance on compression,
going against standard diffusion architecture design, with it also being impractical to compress states
to latents at every step. Instead, we propose using non-local integral operators to model the denoising
function, aggregating both global and local information in order to effectively denoise the data.

Specifically, we propose∞-Diff, addressing these issues:

• We introduce a Gaussian diffusion model defined in an infinite-dimensional state space that
allows complex arbitrary resolution data to be generated (see Fig. 2)1.

• We design a powerful and scalable, function-space architecture that operates directly on raw
sparsely subsampled coordinates, enabling improvements in run-time and memory usage.

• We achieve state-of-the-art FID scores on multiple high-res image datasets, trained with up
to 8× subsampling, substantially outperforming prior infinite resolution generative models.

2 BACKGROUND

Here we review Gaussian diffusion models (Section 2.1) and generative neural fields (Section 2.2).

2.1 DIFFUSION MODELS

Gaussian diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020) are formed by defining a
forward process q(x1:T |x0) that gradually adds noise to the data, x0 ∼ q(x0), over T steps, resulting
in a sequence of latent variables x1, . . . ,xT such that q(xT ) ≈ N (xT ;0, I). The reverse of this
process can also be expressed as a Markov chain p(x0:T ). Choosing Gaussian transition densities
chosen to ensure these properties hold, the densities may be expressed as

q(x1:T |x0) =

T∏
t=1

q(xt|xt−1), q(xt|xt−1) = N (xt;
√

1− βtxt−1, βtI), (1)

p(x0:T ) = p(xT )

T∏
t=1

p(xt−1|xt), p(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)), (2)

where 0 < β1, . . . , βT < 1 is a pre-defined variance schedule and the covariance is typically of the
form Σθ(xt, t) = σ2

t I where often σ2
t = βt. Aiding training efficiency, q(xt|x0) can be expressed

in closed form as q(xt|x0) = N (xt;
√
ᾱtx0, (1 − ᾱt)I) where ᾱt =

∏t
s=1 αs for αs = 1 − βs.

Training is possible by optimising the evidence lower bound on the negative log-likelihood, expressed
as the KL-divergence between the forward process posteriors and backward transitions at each step

L =
∑
t≥1

Eq [DKL(q(xt−1|xt,x0)∥p(xt−1|xt))] =
∑
t≥1

Eq

[
1

2σ2
t

∥µ̃t(xt,x0)− µθ(xt, t)∥22
]
, (3)

1A number of parallel works including Kerrigan et al. (2023); Lim et al. (2023); and Franzese et al. (2023)
also developed infinite-dimensional diffusion models that use non-local integral operators, see Sec. 6 for more.
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for q(xt−1|xt,x0) = N (xt−1; µ̃t(xt,x0), β̃tI), where µ̃t and β̃t can be derived in closed form.
It is typical to reparameterise µθ to simplify the variational bound, one example of such found to
improve visual quality is µθ(xt, t) =

1
αt
(xt− βt√

1−ᾱt
ϵθ(xt, t)), where the denoising network instead

predicts the added noise. Diffusion models are closely connected with score-matching models; this
can be seen by making the approximation (De Bortoli et al., 2021),

p(xt−1|xt) = p(xt|xt−1) exp(log p(xt−1)− log p(xt)) (4)

≈ N (xt−1;
√

1− βtxt + βt∇xt
log p(xt), βtI), (5)

which holds for small values of βt. While∇xt
log p(xt) is not available, it can be approximated using

denoising score matching methods (Hyvärinen, 2005; Vincent, 2011). Given that ∇xt log p(xt) =
Ep(x0|xt)[∇xt log p(xt|x0)] we can learn an approximation to the score with a neural network
parameterised by θ, sθ(xt, t) ≈ ∇ log p(xt) (Song and Ermon, 2019), by minimising a reweighted
variant of the ELBO (Eq. 3). One problem with diffusion models is the slow sequential sampling;
to speed this up, denoising diffusion implicit models (DDIMs) transform diffusion models into
deterministic models allowing fewer steps to yield the same quality, replacing the sampling steps with

xt−1 =
√
αt−1

(
xt −

√
1− αtϵθ(xt, t)√

αt

)
+

√
1− αt−1 · ϵθ(xt, t). (6)

2.2 GENERATIVE NEURAL FIELDS

Neural fields (Xie et al., 2022; Mildenhall et al., 2021; Sitzmann et al., 2020) are an approach for
continuous data representation that map from coordinates c to values v (such as RGB intensities),
fθ(c) = v. This decouples the memory needed to represent data from its resolution. The mapping
function, fθ, typically an MLP network, is optimised by minimising a reconstruction loss with
ground truth values at each coordinate. The local nature of fθ allows the loss to be Monte-Carlo
approximated by evaluating fθ on subsets of coordinates, allowing higher resolution data than would
fit in memory to be trained on. Since fθ is independent per coordinate, being unable to transform
over multiple points like convolutions/transformers, to represent spaces of functions approaches
generally also condition on compressed latent vectors z used to describe single data points, fθ(c, z).
Dupont et al. (2022a) first uses meta-learning to compress the dataset into latent conditional neural
fields, then approximates the distribution of latents with a DDPM (Ho et al., 2020) or Normalizing
Flow (Rezende and Mohamed, 2015). Bond-Taylor and Willcocks (2021) form a VAE-like model
with a single gradient step to obtain latents. Zhuang et al. (2023) design a diffusion model with a
small subset of coordinates used to provide context. Finally, some approaches use hypernetworks to
output the weight of neural fields: Dupont et al. (2022b) define the hypernetwork as a generator in an
adversarial framework, and Du et al. (2021) use manifold learning to represent the latent space.

3 INFINITE DIMENSIONAL DIFFUSION MODELS

In this section we extend diffusion models to infinite dimensions in order to allow higher-resolution
data to be trained on by subsampling coordinates during training and permit training/sampling at
arbitrary resolutions. We argue that application of conditional neural fields to diffusion models is
problematic due to the need to compress to a latent vector, adding complexity and opportunity for
error, instead, the denoising function should be a non-local integral operator with no compression. A
number of parallel works also developed diffusion models in infinite dimensions, including Kerrigan
et al. (2023); Lim et al. (2023); and Franzese et al. (2023); we recommend also reading these works,
which go further in the theoretical treatment, while ours focuses more on design and practical scaling.

To achieve this, we restrict the diffusion state space to a Hilbert spaceH, elements of which, x ∈ H,
are functions, e.g. x : Rn → Rd. Hilbert spaces are equipped with an inner product ⟨·, ·⟩ and
corresponding norm ∥ · ∥H. For simplicity we consider the case whereH is the space of L2 functions
from [0, 1]n to Rd although the following sections can be applied to other spaces. As such, a point
in H could represent an image, audio signal, video, 3D model, etc. A Gaussian measure µ can be
defined inH in terms of its characteristic function µ̂ (Da Prato and Zabczyk, 2014),

µ̂(x) = exp
(
i⟨x,m⟩+ 1

2 ⟨Cx, x⟩
)
, (7)

where the mean m lies in H, m ∈ H and the covariance operator (C : H → H) is self-adjoint
(denoted C = C∗), non-negative (i.e. C ≥ 0), and trace-class (

∫
H ∥x∥Hdµ(x) = tr(C) < ∞)
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Figure 3: Example diffusion processes. Mollified diffusion smooths diffusion states allowing the
space to be more effectively modelled with continuous operators.

(Kukush, 2020). For a Gaussian random element x with distribution µ, x ∼ N (m,C). The Radon-
Nikodym theorem states the existence of a density for a measure v absolutely continuous with respect
to a base measure µ: for example, the density between two Gaussians is given by Minh (2021); see
Lim et al. (2023); Kerrigan et al. (2023) for more detail in the context of functional diffusion models.

3.1 MOLLIFICATION

When defining diffusion in infinite dimensions, it may seem natural to use white noise in the forwards
process, where each coordinate is an independent and identically distributed Gaussian random
variable; that is, N (0, CI) where CI(z(s), z(s

′)) = δ(s − s′), using the Dirac delta function δ.
However, this noise does not lie inH (Da Prato and Zabczyk, 2014) with it not satisfying the trace-
class requirement. Instead, obtain Gaussian noise inH by convolving white noise with a mollifier
kernel k(s) > 0 corresponding to a linear operator T , giving N (0, TT ∗), smoothing the white noise
to lie in H (Higdon, 2002). To ensure one-to-one correspondence between kernel and noise, k
must satisfy

∫
Rd k(s)ds < ∞ and

∫
Rd k

2(s)ds < ∞, making TT ∗ self-adjoint and non-negative.
Considering k to be a Gaussian kernel with smoothing parameter l > 0, h = Tx is given by

h(c) =

∫
Rn

K(c− y, l)x(y) dy, where K(y, l) =
1

(4πl)
n
2
e−

|y|2
4l . (8)

3.2 INFINITE DIMENSIONAL MOLLIFIED DIFFUSION

To formulate a diffusion model inH, we must specify the transition distributions. However, irregu-
larity in data points x can impact stability, leading to the model being unable to generalise across
different subsampling rates/resolutions. This can be mitigated by careful hyperparameter tuning or,
in our case, by also mollifying x (as with the previous noise mollification). While the necessity of
this depends on the nature of x, we have included it for completeness. First, we define the marginals

q(xt|x0) = N (xt;
√
ᾱtTx0, (1− ᾱt)TT

∗), (9)

where coefficients are the same as in Section 2.1. From this we are able to derive a closed form
representation of the posterior (proof in Appendix B.1),

q(xt−1|xt, x0) = N (xt−1; µ̃t(xt, x0), β̃tTT
∗),

where µ̃t(xt, x0) =

√
ᾱt−1βt

1− ᾱt
Tx0 +

√
αt(1− ᾱt−1)

1− ᾱt
xt and β̃t =

1− ᾱt−1

1− ᾱt
βt.

(10)

Defining the reverse transitions as pθ(xt−1|xt) = N (xt−1;µθ(xt, t), σ
2
t TT

∗), then we can parame-
terise µθ :H×R→H to directly predict x0. The loss in Eq. (3) can be extended to infinite dimensions
(Pinski et al., 2015). However, since Ho et al. (2020) find that predicting the noise yields higher
image quality, we parameterise µθ to predict ξ ∼ N (0, TT ∗), motivated by the rewriting the loss as

Lt−1 = Eq

[
1

2σ2
t

∥∥∥∥T−1

(
1
√
αt

(
xt(x0, ξ)−

βt√
1− ᾱt

ξ

)
− µθ(xt, t)

)∥∥∥∥2
H

]
, (11)

µθ(xt, t) =
1
√
αt

[
xt −

βt√
1− ᾱt

fθ(xt, t)

]
, (12)

where xt(x0, ξ)=
√
ᾱtx0+

√
1− ᾱtξ. Since T−1 does not affect the minima, we follow Ho et al.

(2020) and use a simplified loss, Lsimple
t−1 = Eq[∥fθ(xt, t)− ξ∥2H]. The concurrent work by Kerrigan
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et al. (2023) showed that in the infinite-dimensional limit, the loss will be finite only for specific
choices of β̃t, while Lim et al. (2023) found similar only for specific parameterisations of µθ; however,
since the loss is Monte-Carlo approximated, this is not problematic in practice.

Data Mollification By mollifying the training data x0 to ensure regularity, resulting samples
are similarly regular; directly predicting x0 would give an estimate of the original data, but by
predicting ξ we are only able to sample Tx0. However, in the case of the Gaussian mollifier
kernel with adequate boundary conditions, the existence of the inverse T−1 is clear if we consider
the Fourier transform of x(c), denoted x̂(ω), then the Gaussian convolution can be defined by
ĥ(ω) = e−ω2tx̂(ω). And so Tx is one-to-one on any class of Fourier transformable functions, with
Tx being bounded ensuring uniqueness and therefore invertibility (John, 1955). Explicitly, the inverse
is given by x̂(ω) = eω

2tĥ(ω) (Hummel et al., 1987). However, inverting is ill-conditioned, with
arbitrarily small changes (for instance by floating point error) destroying smoothness (Hummel et al.,
1987). In this case, the Wiener filter can for instance be used as an approximate inverse, defined as

x̃(ω) = e−ω2t

e−2(ω2t)+ϵ2
ĥ(ω), where ϵ is an estimate of the inverse SNR (Biemond et al., 1990).

4 PARAMETERISING THE DIFFUSION PROCESS

In order to model the denoising function in Hilbert space, there are certain properties that is essential
for the class of learnable functions to satisfy so as to allow training on infinite resolution data:

1. Can take as input points positioned at arbitrary coordinates.
2. Generalises to different numbers of input points than trained on, sampled on a regular grid.
3. Able to capture both global and local information.
4. Scales to very large numbers of input points, i.e. efficient in terms of runtime and memory.

Recent diffusion models often use a U-Net (Ronneberger et al., 2015) consisting of a convolutional
encoder and decoder with skip-connections between resolutions allowing both global and local
information to be efficiently captured. Unfortunately, U-Nets function on a fixed grid making them
unsuitable. However, we can take inspiration to build an architecture satisfying the desired properties.

4.1 NEURAL OPERATORS

Neural Operators (Li et al., 2020; Kovachki et al., 2021) are a framework designed for efficiently
solving partial differential equations by learning to directly map the PDE parameters to the solution in
a single step. However, more generally they are able to learn a map between two infinite dimensional
function spaces making them suitable for parameterising an infinite dimensional diffusion model.

Let X and S be separable Banach spaces representing the spaces of noisy and denoised data re-
spectively; a neural operator is a map Fθ : X → S. Since x ∈ X and s ∈ S are both functions,
we only have access to pointwise evaluations. Let c ∈ (Dm) be an m-point discretisation of the
domain D=[0, 1]n (i.e. c is m coordinates), and assume we have observations x(c) ∈ Rm×d. To be
discretisation invariant, the neural operator may be evaluated at any c ∈ D, potentially c /∈ c, thereby
allowing a transfer of solutions between discretisations. Each layer is built using a non-local integral
kernel operator, K(x;ϕ), parameterised by neural network κϕ, aggregating information spatially,

(K(x;ϕ)vl)(c) =
∫
D

κϕ(c, b, x(c), x(b))vl(b) db, ∀c ∈ D. (13)

Deep networks can be built in a similar manner to conventional methods, by stacking layers of linear
operators with non-linear activation functions, v0 7→ v1 7→ · · · 7→ vL where vl 7→ vl+1 is defined as

vl+1(c) = σ(Wvl(c) + (K(x;ϕ)vl)(c)), ∀c ∈ D, (14)

for input v0 = x, activations vl, output vL = s, pointwise linear transformation W : Rd→Rd, and
activation function σ: R→R. One example is the Fourier Neural Operator (FNO) (Li et al., 2021),

(K(x;ϕ)vl)(c) = G−1 (Rϕ · (Gvt)) (c), ∀c ∈ D, (15)

where G is the Fourier transform, and Rϕ is learned transformation in Fourier space. When coordinates
lie on a regular grid, the fast Fourier transform can be used, making FNOs fast and scalable.
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Sparse Neural Operators∫
N(c)

κ(c− y)v(y)dy,∀c∈D

v(c)

W

+ σ

k-NN
lerp

k-NN
lerp

⊕

⊕

⊕

Figure 4: ∞-Diff uses a hierarchical architecture that operates on irregularly sampled functions at
the top level to efficiently capture fine details, and on fixed grids at the other levels to capture global
structure. This approach allows scaling to intricate high-resolution data.

4.2 MULTI-SCALE ARCHITECTURE

While neural operators which satisfy all required properties (1-4) exist, such as Galerkin attention
(Cao, 2021) (softmax-free linear attention) and MLP-Mixers (Tolstikhin et al., 2021), scaling beyond
small numbers of coordinates is still challenging due to the high memory costs. Instead we design a
U-Net inspired multi-scale architecture (Fig. 4) that separately aggregates local/global information.

In a continuous setting, there are two main approaches to downsampling: (1) selecting a subset of
coordinates (Wang and Golland, 2022) and (2) interpolating points to a regularly spaced grid (Rahman
et al., 2022). We found that with repeated application of (1), approximating integral operators on
non-uniformly spaced grids with very few points did not perform nor generalise well, likely due to the
high variance. On the other hand, while working with a regular grid removes some sparsity properties,
issues with variance are much lower. As such, we use a hybrid approach with sparse operators applied
on the raw irregularly sampled data to local regions; after this points are interpolated to a regular grid
and a grid-based architecture is applied in order to aggregate global information; if the regular grid is
of sufficiently high dimension, this combination should be sufficient. While an FNO (Li et al., 2021;
Rahman et al., 2022) architecture could be used, we achieved better results with dense convolutions
(Nichol and Dhariwal, 2021), with sparse operators used for resolution changes.

4.3 EFFICIENT SPARSE OPERATORS

At the sparse level we use convolution operators (Kovachki et al., 2021), finding them to be more
performant than Galerkin attention, with global context provided by the multiscale architecture. This
is defined using a translation invariant kernel restricted to the local region of each coordinate, N(c),

x(c) =

∫
N(c)

κ(c− y)v(y) dy, ∀c ∈ D. (16)

We restrict κ to be a depthwise kernel due to the greater parameter efficiency for large kernels
(particularly for continuously parameterised kernels) and finding that they are more able to generalise
when trained with fewer sampled coordinates; although the sparsity ratio is the same for regular
and depthwise convolutions, because there are substantially more values in a regular kernel, there is
more spatial correlation between values. When a very large number of sampled coordinates are used,
fully continuous convolutions are extremely impractical in terms of memory usage and run-time. In
practice, however, images are obtained and stored on a discrete grid. As such, by treating images as
high dimensional, but discrete entities, we can take advantage of efficient sparse convolution libraries
(Choy et al., 2019; Contributors, 2022), making memory usage and run-times much more reasonable.
Specifically, we use TorchSparse (Tang et al., 2022), modified to allow depthwise convolutions.
Wang and Golland (2022) proposed using low discrepancy coordinate sequences to approximate the
integrals due to their better convergence rates. However, we found uniformly sampled points to be
more effective, likely because high frequency details are able to be more easily captured.
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Figure 5: Samples from∞-Diff models trained on sets of randomly subsampled coordinates.

Method CelebAHQ-64 CelebAHQ-128 FFHQ-256 Church-256

Finite-Dimensional

CIPS (Anokhin et al., 2021) - - 5.29 10.80
StyleSwin (Zhang et al., 2022) - 3.39 3.25 8.28
UT (Bond-Taylor et al., 2022) - - 3.05 5.52
StyleGAN2 (Karras et al., 2020) - 2.20 2.35 6.21

Infinite-Dimensional

D2F (Dupont et al., 2022a) 40.4∗ - - -
DPF (Zhuang et al., 2023) 13.21∗ - - -
GEM (Du et al., 2021) 14.65 23.73 35.62 87.57
GASP (Dupont et al., 2022b) 9.29 27.31 24.37 37.46
∞-Diff (Ours) 4.57 3.02 3.87 10.36

Table 1: FIDCLIP (Kynkäänniemi et al., 2023) evaluation against finite-dimensional methods as well
as other infinite-dimensional approaches which are trained on coordinate subsets. ∗=Inception FID.

5 EXPERIMENTS

In this section we demonstrate that the proposed mollified diffusion process modelled with neural
operator based networks and trained on coordinate subsets are able to generate high quality, high
resolution samples. We explore the properties of this approach including discretisation invariance, the
impact of the number of coordinates during training, and compare the sample quality of our approach
with other infinite dimensional generative models. We train models on 256×256 datasets, FFHQ
(Karras et al., 2019) and LSUN Church (Yu et al., 2015), as well as CelebA-HQ (Karras et al., 2018);
unless otherwise specified models are trained on 1/4 of pixels (to fit in memory), randomly selected.

Very large batch sizes are necessary to train diffusion models due the high variance (Hoogeboom
et al., 2023), making training on high resolution data on a single GPU impractical. To address this,
we use diffusion autoencoders (Preechakul et al., 2022) to reduce stochasticity: during training,
sparsely sampled data are encoded to small latent vectors and used to condition our pixel-level
infinite-dimensional diffusion model, allowing better estimation of the denoised data at high time
steps. Subsequently, a small diffusion model is quickly trained to model these latents. Our encoder
is the downsampling part of our architecture (left half of Fig. 4). When sampling, we use the
deterministic DDIM interpretation with 100 steps. Additional details are in Appendix A. Source code
is available at https://github.com/samb-t/infty-diff.

Sample Quality Samples from our approach can be found in Fig. 5 which are high quality, diverse,
and capture fine details. In Table 1 we quantitatively compare with other approaches that treat inputs
as infinite dimensional data, as well as more traditional approaches that assume data lies on a fixed
grid. As proposed by Kynkäänniemi et al. (2023), we calculate FID (Heusel et al., 2017) using
CLIP features (Radford et al., 2021) which is better correlated with human perception of image
quality. Our approach scales to high resolutions much more effectively than the other function-based
approaches as evidenced by the substantially lower scores. Visual comparison between samples from
our approach and other function-based approaches can be found in Fig. 6 where samples from our
approach can be seen to be higher quality and display more details without blurring or adversarial
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∞-Diff (Ours)

GASP (Dupont et al., 2022b) GEM (Du et al., 2021)

DPF (Zhuang et al., 2023) D2F (Dupont et al., 2022a)

Figure 6: Qualitative comparison with other infinite dimensional approaches.
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Figure 7: FIDCLIP at var-
ious steps & resolutions.

Architecture FIDCLIP

Sparse Downsample 85.99
Nonlinear Kernel 24.49
Quasi Monte Carlo 7.63
Regular Convs 5.63
∞-Diff (Ours) 4.75

Table 2: Architectural component
ablations in terms of FIDCLIP.

Rate FIDCLIP Speedup

1× 3.15 1.0×
2× 4.12 1.0×
4× 4.75 1.3×
8× 6.48 1.6×

Table 3: Impact of subsampling rate on
quality for FFHQ 128. FIDCLIP calcu-
lated with 10k samples.

artefacts. All of these approaches are based on neural fields (Xie et al., 2022) where coordinates are
treated independently; in contrast, our approach uses neural operators to transform functions using
spatial context thereby allowing more details to be captured. Both GASP (Dupont et al., 2022b) and
GEM (Du et al., 2021) rely on compressed latent-conditional hypernetworks which makes efficiently
scaling difficult. D2F (Dupont et al., 2022a) relies on a deterministic compression stage which loses
detail due to the finite vector size. DPF (Zhuang et al., 2023) uses small fixed sized coordinate subsets
as global context with other coordinates modelled implicitly, thereby causing blur.

Discretisation Invariance In Fig. 2 we demonstrate the discretisation invariance properties of our
approach. After training on random coordinate subsets from 256×256 images, we can sample from
this model at arbitrary resolutions which we show at resolutions from 64×64 to 1024×1024 by
initialising the diffusion with different sized noise. We experimented with (alias-free) continuously
parameterised kernels (Romero et al., 2022) but found bi-linearly interpolating kernels to be more
effective. At each resolution, even exceeding the training data, samples are consistent and diverse. In
Fig. 7 we analyse how the number of sampling steps affects quality at different sampling resolutions.

Coordinate Sparsity One factor influencing the quality of samples is the number of coordinates
sampled during training; fewer coordinates means fewer points from which to approximate each
integral. We analyse the impact of this in Table 3, finding that as expected, performance decreases
with fewer coordinates, however, this effect is fairly minimal. With fewer coordinates also comes
substantial speedup and memory savings; at 256×256 with 4× subsampling the speedup is 1.4×.

Architecture Analysis In Table 2 we ablate the impact of various architecture choices against the
architecture described in Section 4.2, matching the architecture as closely as possible. In particular,
sparse downsampling (performed by randomly subsampling coordinates; we observed similar with
equidistant subsampling, Qi et al., 2017) fails to capture the distribution. Similarly using a spatially
nonlinear kernel (Eq. 13), implemented as conv, activation, conv, does not generalise well unlike
linear kernels (we observed similar for softmax transformers, Kovachki et al., 2021).

Figure 8: Super-resolution

Super-resolution The discretisation invariance properties of the
proposed approach makes superresolution a natural application.
We evaluate this in a simple way, passing a low resolution image
through the encoder, then sampling at a higher resolution; see
Fig. 8 where it is clear that more details have been added. A
downside of this specific approach is that information is lost in
the encoding process, however, this could potentially by improved
by incorporating DDIM encodings (Song et al., 2021).
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Figure 9: Inpainting.

Inpainting Inpainting is possible with mollified diffusion
(Fig. 9), using reconstruction guidance (Ho et al., 2022b), xt−1 ←
xt−1 − λ∇xt

∥m ⊙ (µ̃0(xt, t) − T x̄)∥22 for inpainting mask m,
learned estimate of Tx0, µ̃0, and image to be inpainted x̄. The dif-
fusion autoencoder framework gives an additional level of control
when inpainting since the reverse diffusion process can be applied
to encodings from a chosen time step ts, allowing control over
how different the inpainted region is from the original image.

6 DISCUSSION

There are a number of interesting directions to improve our approach including more power-
ful/efficient neural operators, more efficient sparse methods, better integral approximations, and
improved UNet design (Williams et al., 2023). Having demonstrated that diffusion models can be
trained with 8× subsampling rates, we believe there is substantial room for further performance
gains. Also of interest are recent works which speed up diffusion sampling by iteratively upsampling
throughout the backwards process, requiring a separate model for each resolution (Jing et al., 2022;
Zhang et al., 2023); the resolution invariance of our approach permits this with a single model.

Recent diffusion advances are also complementary to our approach, these include consistency models
(Song et al., 2023), stochastic interpolants (Albergo et al., 2023), Schrödinger bridges (De Bortoli
et al., 2021), critically-damped diffusion (Dockhorn et al., 2022), architecture improvements (Hooge-
boom et al., 2023), and faster solvers (Lu et al., 2022). Similar to our mollified diffusion, blurring has
been used to improve diffusion (Rissanen et al., 2023; Hoogeboom and Salimans, 2023). Similar to
GASP (Dupont et al., 2022b), other neural field GAN approaches exist such as CIPS (Anokhin et al.,
2021) and Poly-INR (Singh et al., 2023), however, these approaches use convolutional discriminators
requiring all coordinates on a fixed grid, preventing scaling to infinite resolutions. Also of relevance
are Neural Processes (Garnelo et al., 2018; Dutordoir et al., 2022) which learn distributions over
functions similar to Gaussian Processes, however, these approaches address conditional inference,
whereas we construct an unconditional generative model for substantially more complex data.

Concurrent with this work, other papers independently proposed diffusion models in infinite dimen-
sions (Lim et al., 2023; Franzese et al., 2023; Hagemann et al., 2023; Zhuang et al., 2023; Kerrigan
et al., 2023; Baldassari et al., 2023; Pidstrigach et al., 2023), these approaches are complementary
to ours and distinct in a number of ways. While our work focuses on the practical development
necessary to efficiently model complex high-dimensional data, these papers instead focus more on
theoretical foundations, typically being only applied to simple data (e.g. Gaussian mixtures and
MNIST). Of particular interest, Kerrigan et al. (2023) also develop diffusion models in Hilbert space,
going further than our work in foundational theory, including more on the requirements to obtain
well-posed models, as well as considering different function spaces; (Lim et al., 2023) develop
infinite-dimensional diffusion defined as SDEs; and Franzese et al. (2023) prove the existence of the
backwards SDE. Unlike our work, these approaches make use of conditional neural fields or operate
on uniform grids of coordinates, whereas our approach operates on raw sparse data, enabling better
scaling. The closest to this work in terms of scaling is Diffusion Probabilistic Fields (Zhuang et al.,
2023) which denoises coordinates independently using small coordinate subsets for context; this is
much more restrictive than our approach and resolutions are much smaller than ours (up to 64×64).

7 CONCLUSION

In conclusion, we found that our infinite-dimensional Hilbert space diffusion model with transi-
tion densities represented by non-local integral operators is able to generate high-quality arbitrary
resolution samples. Despite only observing small subsets of pixels during training, sample quality
significantly surpasses prior infinite-dimensional generative models, and is competitive with state-
of-the-art finite-dimensional models trained on all pixels at once. While prior infinite-dimensional
approaches use latent conditional neural fields, our findings demonstrate that sparse neural operators
which operate directly on raw data are a capable alternative, offering significant advantages by
removing the point-wise constraint and thus the need for latent compression. Future work would
benefit from improved neural operators that can effectively operate at greater levels of sparsity to
improve the efficiency of our approach and enable even further scaling.
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A IMPLEMENTATION DETAILS

All 256×256 models are trained on a single NVIDIA A100 80GB GPU using automatic mixed
precision. Optimisation is performed using the Adam optimiser (Kingma and Ba, 2015) with a batch
size of 32 and learning rate of 5×10−5; each model being trained to optimise validation loss. Each
model is trained as a diffusion autoencoder to reduce training variance, allowing much smaller batch
sizes thereby permitting training on a single GPU. A latent size of 1024 is used and the latent model
architecture and diffusion hyperparameters are the same as used by Preechakul et al. (2022). In image
space, the diffusion model uses a cosine noise schedule (Nichol and Dhariwal, 2021) with 1000 steps.
Mollifying is performed with Gaussian blur with a variance of 1.0.

For the image-space architecture, 3 sparse residual convolution operator blocks are used on the sparse
data. Each of these consist of a single depthwise sparse convolution layer with kernel size 7 and 64
channels with the output normalised by the total number of coordinates in each local region, followed
by a three layer MLP; modulated layer normalisation (Ba et al., 2016; Nichol and Dhariwal, 2021)
is used to normalise and condition on the diffusion time step. These blocks use larger convolution
kernels than typically used in diffusion model architectures to increase the number of coordinates
present in the kernel when a small number of coordinates are sampled. Using large kernel sizes paired
with MLPs has found success in recent classification models such as ConvNeXt (Liu et al., 2022).

As mentioned in Section 4.2, for the grid-based component of our architecture we experimented with
a variety of U-Net shaped fourier neural operator (Li et al., 2021; Rahman et al., 2022) architectures;
although these more naturally allow resolution changes at those levels, we found this came with a
substantial drop in performance. This was even the case when operating at different resolutions. As
such, we use the architecture used by Nichol and Dhariwal (2021) fixed at a resolution of 128×128;
the highest resolution uses 128 channels which is doubled at each successive resolution up to a
maximum factor of 8; attention is applied at resolutions 16 and 8, as is dropout, as suggested by
Hoogeboom et al. (2023). Although this places more emphasis on the sparse operators for changes in
sampling resolution, we found this approach to yield better sample quality across the board.

A.1 TABLE 1 EXPERIMENT DETAILS

In Table 1 we compare against a number of other approaches in terms of FIDCLIP. In each case scores
are calculated by comparing samples against full datasets, with 30k samples used for CelebA-HQ and
50k samples used for FFHQ and LSUN Church. For the finite-dimensional approaches we use the
official code and released models in all cases to generate samples for calculating FIDCLIP scores. To
provide additional context for CelebA-HQ 128×128 we provide scores for StyleGAN2 and StyleSwin
where samples are downsampled from 256×256.
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For GASP (Dupont et al., 2022b) we use the official code and pretrained models for CelebA-HQ
at resolutions 64×64 and 128×128; for FFHQ and LSUN Church we train models using the same
generator hyperparameters as used for all experiments in that work and for the discriminator we scale
the model used for CelebA-HQ 128×128 by adding an additional block to account for the resolution
change. These models were trained by randomly sampling 1/4 of coordinates at each training step to
match what was used to train our models.

Similarly, for GEM (Du et al., 2021) we use the official code and train models on CelebA-HQ
128×128, FFHQ and LSUN Church, using the same hyperparameters as used for all experiments
in that work (which are independent of modality/resolution); we implement sampling as described
in Section 4.4 of that paper by randomly sampling a latent corresponding to a data point, linearly
interpolating to a neighbouring latent and adding a small amount of Gaussian noise (chosen with
standard deviation between 0 and 1 to optimise sample quality/diversity) and then projected onto the
local manifold. Because GEM is based on the autodecoder framework where latents are allocated
per datapoint and jointly optimised with the model parameters, training times are proportional to the
number of points in the dataset. As such, the FID scores for LSUN Church in particular are especially
poor due to the large scale of the dataset.

B MOLLIFIED DIFFUSION DERIVATION

In this section we derive the mollified diffusion process proposed in Section 3.2.

B.1 FORWARD PROCESS

We start by specifically choosing q(x0|xt) as defined by Section 2.1 where states are mollified by T ,
q(xt−1|x0) = N (xt−1;

√
ᾱt−1Tx0, (1− ᾱt−1)TT

∗), (17)

q(xt|x0) = N (xt;
√
ᾱtTx0, (1− ᾱt)TT

∗), (18)
from which we wish to find the corresponding representation of q(xt−1|xt, x0). The solution to this
is given by Bishop and Nasrabadi (2006, Equations 2.113 to 2.117), where we write

q(xt|x0) = N (xt;µ,Λ
−1), (19)

q(xt−1|x0) = N (xt−1;Aµ+ b, L−1 +AΛ−1A∗), (20)

q(xt−1|xt, x0) = N (xt−1;Axt + b, L−1). (21)

From this we can immediately see that µ =
√
ᾱtTx0 and Λ−1 = (1 − ᾱt)TT

∗. Additionally,
Aµ+ b = A

√
ᾱtTx0 + b =

√
ᾱt−1Tx0, therefore we can modify the approach by Ho et al. (2020),

including T where relevant and set A, b and L−1 as

A =

√
αt(1− ᾱt−1)

1− ᾱt
I, b =

√
ᾱt−1βt

1− ᾱt
Tx0, L−1 =

1− ᾱt−1

1− ᾱt
βtTT

∗ (22)

This can be shown to be correct by passing A, b, and L−1 into equations Eqs. (19) to (21), first:

Aµ+ b =

√
ᾱt
√
αt(1− ᾱt−1)

1− ᾱt
Tx0 + b (23)

=

√
ᾱt
√
αt(1− ᾱt−1) +

√
ᾱt−1(1− αt)

1− ᾱt
Tx0 (24)

=

√
ᾱt−1(αt − ᾱt + 1− αt)

1− ᾱt
Tx0 =

√
ᾱt−1Tx0, (25)

and secondly,

L−1 +AΛ−1A∗ =
(1− ᾱt−1)(1− αt)

1− ᾱt
TT ∗ +

αt(1− ᾱt−1)
2(1− ᾱt)

(1− ᾱt)2
TT ∗ (26)

=
1− ᾱt−1 − αt + ᾱt + αt − 2ᾱt + αtᾱ

2
t−1

1− ᾱt
= (1− ᾱt−1)TT

∗ (27)

=
(1− ᾱt)(1− ᾱt−1)

1− ᾱt
TT ∗ = (1− ᾱt−1)TT

∗, (28)

which together form q(xt−1|x0).
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B.2 REVERSE PROCESS

In this section we derive the loss for optimising the proposed mollified diffusion process and discuss
the options for parameterising the model. As stated in Section 3.2, we define the reverse transition
densities as

pθ(xt−1|xt) = N (xt−1;µθ(xt, t), σ
2
t TT

∗), (29)

where σ2
t = βt or σ2

t = β̃t. From this we can calculate the loss at time t − 1 in the same manner
as the finite-dimensional case (Eq. 3) by calculating the Kullback-Leibler divergence in infinite
dimensions (Pinski et al., 2015), for conciseness we ignore additive constants throughout since they
do not affect optimisation,

Lt−1 = Eq

[
1

2σ2
t

∥∥∥∥T−1(µ̃t(xt, x0)− µθ(xt, t))

∥∥∥∥2
H

]
. (30)

To find a good representation for µθ we expand out µ̃t as defined in Eq. (10) in the above loss giving

Lt−1 = Eq

[
1

2σ2
t

∥∥∥∥T−1

(√
ᾱt−1βt

1− ᾱt
Tx0 +

√
αt(1− ᾱt−1)

1− ᾱt
xt − µθ(xt, t)

)∥∥∥∥2
H

]
. (31)

From this we can see that one possible parameterisation is to directly predict x0, that is,

µθ(xt, t) =

√
ᾱt−1βt

1− ᾱt
Tfθ(xt, t) +

√
αt(1− ᾱt−1)

1− ᾱt
xt. (32)

This parameterisation is interesting because when sampling, we can use the output of fθ to directly
obtain an estimate of the unmollified data. Additionally, when calculating the loss Lt−1, all T
and T−1 terms cancel out meaning there are no concerns with reversing the mollification during
training, which can be numerically unstable. To see this, we can further expand out Eq. (31) using
the parameterisation of µθ defined in Eq. (32),

Lt−1 = Eq

[
1

2σ2
t

∥∥∥∥T−1

(√
ᾱt−1βt

1− ᾱt
Tx0 +

√
αt(1− ᾱt−1)

1− ᾱt
xt

−
√
ᾱt−1βt

1− ᾱt
Tfθ(xt, t)−

√
αt(1− ᾱt−1)

1− ᾱt
xt

)∥∥∥∥2
H

] (33)

= Eq

[
1

2σ2
t

∥∥∥∥√ᾱt−1βt

1− ᾱt
x0 −

√
ᾱt−1βt

1− ᾱt
fθ(xt, t)

∥∥∥∥2
H

]
(34)

= Eq

[ √
ᾱt−1βt

2σ2
t (1− ᾱt)

∥x0 − fθ(xt, t)∥2H

]
. (35)

Using this parameterisation, we can sample from pθ(xt−1|xt) as

xt−1 =

√
αt(1− ᾱt−1)

1− ᾱt
xt + T

(√
ᾱt−1βt

1− ᾱt
fθ(xt, t) + σtξ

)
where ξ ∼ N (0, CI). (36)

Alternatively, we can parameterise µ̃ to predict the noise ξ rather than x0, which was found by
Ho et al. (2020) to yield higher sample quality. To see this, we can write Eq. (9) as xt(x0, ξ) =√
ᾱtTx0 +

√
1− ᾱtTξ. Expanding out Eq. (30) with this gives the following loss,

Lt−1 = Eq

[
1

2σ2
t

∥∥∥∥T−1

(
µ̃(xt, x0)− µθ(xt, t)

)∥∥∥∥2
H

]
(37)

= Eq

[
1

2σ2
t

∥∥∥∥T−1

(
µ̃(xt(x0, ξ),

1√
ᾱt

T−1(xt(x0, ξ)−
√
1− ᾱtTξ))− µθ(xt, t)

)∥∥∥∥2
H

]
(38)

= Eq

[
1

2σ2
t

∥∥∥∥T−1

(
1
√
αt

(
xt(x0, ξ)−

βt√
1− ᾱt

Tξ

)
− µθ(xt, t)

)∥∥∥∥2
H

]
. (39)
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Since directly predicting ξ would require predicting a non-continuous function, we instead propose
predicting Tξ which is a continuous function, giving the following parameterisation and loss,

µθ(xt, t) =
1
√
αt

[
xt −

βt√
1− ᾱt

fθ(xt, t)

]
, (40)

Lt−1 = Eq

[
1

2σ2
t

∥∥∥∥ 1
√
αt

T−1

(
βt√
1− ᾱt

fθ(xt, t)−
βt√
1− ᾱt

Tξ

)∥∥∥∥2
H

]
. (41)

In this case T−1 is a linear transformation that does not affect the minima. In addition to this, we can
remove the weights as suggested by Ho et al. (2020), giving the following proxy loss,

Lsimple
t−1 = Eq

[
∥fθ(xt, t)− Tξ∥2H

]
. (42)

An alternative parameterisation which can train more reliably is v-prediction (Salimans and Ho, 2022;
Hoogeboom et al., 2023); we experimented with this parameterisation but found mollified noise
prediction to yield higher quality samples.

C ADDITIONAL RESULTS

In this section, we provide additional details on the training speedup and memory reductions possible
using our multi-scale architecture, from sparse coordinate sampling at different rates, and with
different fixed resolutions of the inner U-Net. In Table 4 we calculate the training speedup for a
fixed memory budget of 10GB, while in Table 5 we calculate the memory reduction for a fixed batch
size of 16. Additionally, we add here an extra quantitative result to assess sample quality at when
sampling from the FFHQ model trained only on 256×256 images at a resolution of 1024×1024:
calculating FIDCLIP on 5000 samples using 50 sampling steps, the model achieves a score of 15.84.
We also provide additional samples from our models to visually assess quality. Detecting overfitting is
crucial when training generative models. Scores such as FID are unable to detect overfitting, making
identifying overfitting difficult in approaches such as GANs. Because diffusion models are trained to
optimise a bound on the likelihood, training can be stopped to minimise validation loss. As further
evidence we provide nearest neighbour images from the training data to samples from our model,
measured using LPIPS (Zhang et al., 2018).

Data Resolution 128 256 512

Inner Resolution 32 64 64 128 128 256

R
at

e

2× 1.00× 1.00× 1.00× 1.00× 1.00× ∞×
4× 1.64× 1.53× 1.97× 2.08× 3.61× ∞×
8× 2.65× 2.17× 3.51× 3.18× 7.98× ∞×
16× 2.89× 2.49× 4.57× 3.83× 11.78× ∞×

Table 4: Training speedup for a fixed memory budget. Larger is better. Calculated for different
subsampling rates, training data resolutions, and resolutions of the grid within the multi-scale
architecture.

Data Resolution 128 256 512

Inner Resolution 32 64 64 128 128 256

R
at

e

2× 1.56× 1.44× 1.42× 1.52× 1.43× 1.32×
4× 2.44× 2.02× 1.99× 1.66× 2.00× 1.67×
8× 3.27× 2.46× 2.44× 1.88× 2.44× 1.90×
16× 3.90× 2.75× 2.73× 2.01× 2.73× 2.03×

Table 5: Memory reduction during training for a fixed batch size. Larger is better. Calculated for
different subsampling rates, training data resolutions, and resolutions of the grid within the multi-scale
architecture.
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Figure 10: Non-cherry picked, CelebA-HQ 256×256 samples.
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Figure 11: Non-cherry picked, LSUN Church 256×256 samples.
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Figure 12: Non-cherry picked, FFHQ 256×256 samples.
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Figure 13: Nearest neighbours for a model trained on CelebA-HQ based on LPIPS distance. The left
column contains samples from our model and the right column contains the nearest neighbours in the
training set (increasing in distance from left to right)

Figure 14: Nearest neighbours for a model trained on LSUN Church based on LPIPS distance. The
left column contains samples from our model and the right column contains the nearest neighbours in
the training set (increasing in distance from left to right)
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Figure 15: Nearest neighbours for a model trained on FFHQ based on LPIPS distance. The left
column contains samples from our model and the right column contains the nearest neighbours in the
training set (increasing in distance from left to right)
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