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Abstract

Language Models (LMs) often must integrate
facts they memorized in pretraining with new
information that appears in a given context.
These two sources can disagree, causing com-
petition within the model, and it is unclear how
an LM will resolve the conflict. On a dataset
that queries for knowledge of world capitals,
we investigate both distributional and mech-
anistic determinants of LM behavior in such
situations. Specifically, we measure the pro-
portion of the time an LM will use a counter-
factual prefix (e.g., “The capital of Poland is
London”) to overwrite what it learned in pre-
training (“Warsaw”). On Pythia and GPT2, the
training frequency of both the query country
(”Poland”) and the in-context city (”London”)
highly affect the models’ likelihood of using
the counterfactual. We then use head attribu-
tion to identify individual attention heads that
either promote the memorized answer or the
in-context answer in the logits. By scaling up
or down the value vector of these heads, we can
control the likelihood of using the in-context
answer on new data. This method can increase
the rate of generating the in-context answer
to 88% of the time simply by scaling a single
head at runtime. Our work contributes to a
body of evidence showing that we can often lo-
calize model behaviors to specific components
and provides a proof of concept for how future
methods might control model behavior dynam-
ically at runtime.

1 Introduction

Large Transformer Language Models (Vaswani
et al., 2017) (LMs) store information from pre-
training which they can recall at inference time to
generate text. This is paired with the exceptional
ability of models to use provided context in order to
produce coherent text that incorporates new facts.
However, facts that are memorized in pretraining
and facts that are provided in-context can often
compete with each other; in some cases it might
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Figure 1: We find that individual attention heads can
play specific roles in using context information vs. re-
calling facts. By up or downweighting these heads, we
can often control whether LMs use information from
context which conflicts with its pretraining knowledge.
For example, downweighting the memory attention head
causes the model to prefer “London” above.

be desirable that the model ignores facts from pre-
training (e.g., updating outdated information with
a prompt), while in others we want the model to
prefer what it learned in pretraining (e.g., ignoring
false information in prompt injections). Currently,
little is understood about the factors and mecha-
nisms that control whether an LM will generate
text respecting either the in context or memorized
information.

Recent work in mechanistic interpretability aims
to deeply explain the internal processes in LMs,
allowing us to interpret the contributions of indi-
vidual model components to the final predicted text
(Olah et al., 2020; Wang et al., 2022; Nanda, 2022).
We can use tools from these studies to shed light on
the model components that are responsible for push-
ing the model more towards either memorized or
contextual information. We study this relationship
using a task that requires predicting a capital city in
the face of conflicting information (see Figure 1).
We measure how often a model will answer that the
capital city of a country is the in-context counter-
factual (e.g., London) vs. the memorized (ground



truth) city (Warsaw) it learned in pretraining. Our
study consists of two key sets of experiments.

First, in Section 5, we investigate how distri-
butional features of the pretraining data influence
behavior. We find that the frequency of a fact in the
pretraining corpus strongly correlates with model
behavior. This analysis reveals several key findings:
(1) The more frequently a country appears in pre-
training, the more likely the LM is to generate the
memorized capital city; (2) The more frequently
the in-context city (i.e., the one with which we want
to overwrite) appears, the less likely the model is
to use it, regardless of the frequency of the coun-
try; (3) Larger models (up to the scale tested: 2.8b
parameters) are less likely overall to use in-context
information and prefer the memorized answer, even
when the fact is less frequent.

Next, in Section 6, we use head attribution (El-
hage et al., 2021; Nostalgebraist, 2020; Nanda,
2022) to show that we can localize promotion of
the memorized or in-context answer to individual
attention heads. By either upweighting or down-
weighting the head by a scalar value, we can con-
trol which answer the model prefers. In the most
successful case, downweighting the memory head
allows us to increase the rate of the in-context city
to 88% while reducing the amount of memorized
predictions to 4% on the world capitals task. In
a qualitative analysis of the weights of this head
(Section 6.4), we show that it specifically promotes
geographic information. We find that forcing the
opposite behavior, i.e., promoting the memorized
answer, is more difficult, and that the mechanism
these heads use doesn’t necessarily generalize well
(§6.5). Still, the method we discover is surgical,
and only requires scaling a single head (0.00001%
of Pythia-1.4b’s parameters), suggesting that com-
ponents within an LM may specialize for specific
predictable functions, and providing a promising
avenue for understanding the internal workings of
LMs and further techniques for model editing.

2 Related Work

The impressive, but sometimes unpredictable suc-
cesses of LMs on performing tasks described in
context (Brown et al., 2020) has spurred intense
interest in the factors that allow models to solve
tasks this way. Studies on pretraining datasets have
found that higher pretraining term frequency is pos-
itively correlated with task performance on factual
association tasks (Kandpal et al., 2022) and numer-

ical reasoning (Razeghi et al., 2022), and relates
to work on memorization vs. generalization in
LMs (Hupkes et al., 2022). Haviv et al. (2023)
analyze mechanisms used to recall memorized in-
formation by studying idiom generation. Model
size is also shown to be a factor that affects ten-
dency to use memorized vs. in context information
(Wei et al., 2023). Previous work has also exam-
ined how deeply LMs interact with context during
in-context learning (Min et al., 2022; Xie et al.,
2022). Other work has focused on LMs’ abilities
to consider counterfactual or hypothetical contexts
(Li et al., 2023; Qin et al., 2019), with mixed results
in overwriting pretraining memory.

Our work is built heavily on previous work in
mechanistic interpretability, which aims to reverse
engineer model computations into human under-
standable components (Nanda et al., 2023; Elhage
et al., 2021; Wang et al., 2022). While knowl-
edge from pretraining has been found to be stored
in the feedforward (MLP) sublayers (Meng et al.,
2023; Geva et al., 2021; Kobayashi et al., 2023; Dai
et al., 2022), more recent work has also clarified the
role of attention in this same process: Geva et al.
(2023) find that attention heads extract facts from
an earlier mentioned subject token (e.g., Poland)
when required. This naturally sets up our study,
which also considers attention heads as the source
of the competing effect between copying the coun-
terfactual from earlier in context vs. extracting the
memorized fact from an earlier subject token. A
core technique in these works is projecting activa-
tions from model components into the vocabulary
space to make claims about their roles, which we
generically refer to here as logit attribution (Nos-
talgebraist, 2020; Wang et al., 2022; Merullo et al.,
2023; Belrose et al., 2023; Dar et al., 2022; Mil-
lidge and Black, 2022). We leverage this technique
to localize attention heads which tend to promote
either context or memorized information (§6).

3 Task Design

We study the mechanism that language models use
when given counterfactual information in context.
For our analysis, we focus on a simple zero-shot
task that requires producing the capital city for a
given country, which serves as a representative ex-
ample of the type of common facts that a language
model could learn in pretraining. It consists of 248
country capital pairs with 6 additional aliases and
their respective capitals. To create counterfactuals



Figure 2: Results from total 62,992 inputs of every country paired with every counterfactual capital 1. We break
down all the inputs into 10 percentile bins from the least to most frequent by four frequency criteria. Every percentile
contains around a total of 6300 examples. The first two graphs reflect frequency based on the country (e.g., Poland).
The upward trajectory of the red lines show the positive correlation between the proportion of memorized answer
predictions and frequency. The last two graphs reflect the frequency of the in-context capital (e.g., London). The
drop of the blue lines across all the four graphs show the negative correlation between proportion of in-context
answer predictions and term frequency.

in the dataset, we pair up every country with the rest
of the 247 capitals using the following format:

The capital of {country} is
{in-context city}.
Q: What is the capital of {country}?
A:

For example, we can fill in {country} with Poland
and {in-context city} with London. The model has
learned that the capital is Warsaw from pretraining,
but with the in-context prompt, the task becomes
ambiguous between whether it should output the
known answer Warsaw or overwrite it with London.
We query the model to generate a full sentence to
determine which of the above task interpretations
it preferred. We define Poland as the country and
London as the in-context answer. Correspondingly,
we define Warsaw, the capital of Poland, as the
memorized answer. If London is included in the
sentence, then we consider the model to have pro-
duced the in-context answer. If the model generates
Warsaw, then it is considered as the memorized an-
swer. In total, we have 62,992 such pairs of country
and capital.

The World Capital dataset is able to provide a
clean analysis giving a unique memorized and in-
context answer. Language models perform well on
this task producing one of the two expected cities at
least 80% of the time (varying depending on model
size). The lack of noise in the responses makes the

task a good choice for cleanly diagnosing model
preference for memorized vs. in-context answers.

4 Models

We analyze the overwriting behavior primarily on
the Pythia (Biderman et al., 2023) models as well
as GPT2 series (Radford et al., 2019). The Pythia
models are trained on the Pile (Gao et al., 2020)
which we have full access to, allowing us to relate
model behavior to frequency effects in the data.
While we don’t have access to the pretraining data
of GPT2, we still report results, using the Pile fre-
quencies as an approximation of what GPT2 might
have seen.

5 Effect of Term Frequency on Model
Tendency to Use Memorized Facts

5.1 Experimental Setup

We hypothesize that the model will be less likely
to overwrite information about more frequently ap-
pearing country/capital names. The number of in-
context predictions will increase when the term fre-
quency descreases. The number of memorized pre-
dictions will increase when the term frequency in-
creases. To test this hypothesis, we search through
the the pretraining corpus of the Pythia model (i.e.,
the Pile (Gao et al., 2020), which contains 210 mil-
lion text documents) in order to compute the term
frequency of country and city names.



Figure 3: The proportion of in-context and memorized answers decomposed by the frequency of country(Poland)
across all Pythia models of different sizes (the 2nd graph in figure 2). The upward trend of the red lines shows as the
model size increases, the model predicts more memorized answers. Blue and red shading indicates that the amount
of in-context or memorized answers is higher, respectively. We find that as models get bigger, they first memorize
more frequent capitals before the lower frequency ones.

We search both for the frequencies of the in-
dividual country and city names, as well as their
co-occurrences in the dataset. Co-occurrence is
measured by whether a country and a city appear
together in the same document. We split the oc-
currences and co-occurrences into 10 percentile
bins, with the 0th bin containing the least fre-
quent 10%, and the 9th bin containing the top 10%
most frequent terms. Every bin includes around
25 countries and capitals. We mix every country
with all the other 248 capitals to form prompts.
We have in total around 6200 instances per bin
(given 63k prompts). To give some qualitative
examples, capitals like Beijing are in the top per-
centile bin as measured by occurrence, while capi-
tals like Akrotiri and Dhekelia are in the bottom.
For the co-occurrences between country and capi-
tal, ⟨China, Beijing⟩ is in the top percentile and
⟨Guinea-bissau, Bissau⟩ is in the bottom per-
centile.

We run the counterfactual world capital data
through both the Pythia models as well as the GPT2
series of models. We generate the a full sentence by
decoding the output. We count the number of times
the in-context and memorized answers appear in
the decoded sentences and plot these counts as a
function of the percentile bins described above.

5.2 Results

As the frequency for the country increases, there is
more knowledge stored about the country during
pertaining. Therefore, we intuitively expect to see
that models are more inclined to predict the memo-
rized answers as the frequency goes up. Figure 2
supports this intuition. We can see a clear upward
trend in the pink line, reflecting the increasing pro-

portion of the memorized answers as a function of
the increase in term frequency. When the country
is more prevalent in the training data, the model has
a greater tendency to predict memorized answers.

We also observe a relationship between the fre-
quency of the in-context capital and the model’s
predictions. As the frequency for either the coun-
try or the in-context capital increases, the number
of in-context answer predictions decreases. This
is demonstrated by the drop of the blue lines in
Figure 2. When the given in-context capital is
more prevalent in the training data, for example
Beijing, the model tends to predict the memorized
answer. However, when the given in-context cap-
ital is less prevalent, such as Palikir, the model
is more likely to predict the in-context answer. We
ran the same experiments across all the Pythia and
GPT2 models of different sizes (see Appendix A)
and see the same frequency effect, especially in
larger models.

Figure 3 shows the increase in sensitivity to fre-
quency with respect to model size. We find that as
models increase in size, they become more likely
overall to produce the memorized answers rather
than in-context answers, and that this occurs with
the most frequent countries. That is, as larger
models become more likely to produce the memo-
rized answer, the changes are not evenly distributed
across frequency bins. Rather, a strong memoriza-
tion bias is observed first for more frequent terms,
and then as models get larger, this extends to in-
creasingly lower frequency terms. This can be
observed in transition from blue shading (more in-
context answers) to red shading (more memorized
answers). See Appendix B.1 for results showing
this effect with respect to the frequency of cities



Figure 4: The head attribution method showing the logit difference calculation for layer 15, head 7 in Pythia-1.4b
on the example from Figure 1. Pythia-1.4b has 24 layers and 16 heads for each layer, totaling 384 heads to check.
We obtain the memory head and in-context head in the following way: We divide the output weight matrix from an
attention layer (WH

O ) into 16 components (one for each head) (Elhage et al., 2021) Then, we take the dot product
between each head i of the and the ith component of the weight matrix. Afterward, we extract the corresponding
vectors in the unembedding matrix for the memorized answer (e.g., Warsaw) and in-context answer (e.g., London).
We dot product the projected head vector with the two vectors respectively, giving us a scalar value representing the
logit for each of those words represented by the head. Subtracting these two scalars give us the logit difference of
two answers from one specific head. Blue in the heatmap indicates that the head is promoting in-context answer and
red indicates the head is promoting memorized answer.

and co-occurrences, where we observe the same
trend.

6 Identifying and Manipulating
Mechanisms for Recall

So far we have shown that (larger) models tend to
have a preference to use the answer they have mem-
orized. In this section we ask if there is a specific
mechanism within the model that controls whether
the memorized or in-context answer is generated,
and whether that can be isolated from more gen-
eral language generating abilities. Because the task
boils down to whether the model copies informa-
tion that was provided in context or not, we focus
on analyzing the roles of specific attention heads.
Prior work has demonstrated the importance of at-
tention heads for performing copying tasks (Wang
et al., 2022; Elhage et al., 2021) as well as recall
from memory (Geva et al., 2023), which motivates
our analysis of attention heads. We perform this
analysis on only the largest models Pythia-1.4b,
Pythia-2.8b, as well as GPT2-xl (see Appendix D).

6.1 Head Attribution

The idea behind logit attribution techniques (Nos-
talgebraist, 2020; Wang et al., 2022; Nanda, 2022)
is to interpret activations or weights in a language

model in terms of the vocabulary space. These
methods work by using the unembedding matrix
(i.e., language modeling head) in order to under-
stand the role of a given component for a given task.
This is built on the premise that the final hidden
state of the model is the summation of the outputs
of all of the components before it (Elhage et al.,
2021). That is, every layer of output can be traced
back and decomposed as the contribution of each
sublayer up to that point. We use head attribution
to test whether individual heads tend to promote
either the in-context capital or the memorized capi-
tal. Using this method, we are able to find a single
head in each model that primarily controls the use
of memorized information1.

In Figure 4, we illustrate the method. The addi-
tive update made by the attention layer is composed
of the individual updates of each attention head
after it is passed through the WH

O output matrix
within the attention layer. We can project the ith

head into the space of the residual stream by multi-
plying with the ith (dhead, dmodel) slice of this ma-
trix (see Appendix C) and then multiplying with the
unembedding matrix to get the logit values for the
memorized and in-context city tokens. We subtract

1This is not to say that this is the only job of this head in
general, or that these are the only heads that play this role.



Figure 5: With the chosen memory head (15.7) and in-context head (19.14), we apply a multiplicative factor (α) to
measure the effect on producing either memorized or in-context answers. This was performed on two 100 example
tuning sets (§6.1). The first graph demonstrates the most successful case of intervention. By tuning the memory
head (15.7) value by α = −0.7, can flip 86% of the examples from originally predicting memorized answers to
predicting in-context answers. The dotted line shows no intervention (α = 1). The gray dot shows the value of α
that produces the best results according to our criteria.

these two scalar values to get the logit difference
(see Wang et al. (2022)).

Intuitively, this logit difference captures the ef-
fect the head has in promoting one word (relative
to another) to be output as the final prediction. This
provides us a practical way to calculate the the role
of each head, and find heads that consistently push
the model towards the memorized or in-context
answer.

Data: To identify specific heads, we randomly
sample 10 examples from each percentile for which
each model predicts the in-context answers and an-
other 10 examples for which each model predicts
the memorized answers. Thus, in total, we obtain
100 examples on which the original model predicts
in-context cities and 100 examples on which it pre-
dicts memorized cities. We run these 200 examples
through the model in batches of 5 and use head
attribution to extract the logit difference between
each head in every layer. We observe that there is
a variation in the roles of every head throughout
the batches, but we identify a series of heads that
consistently push the model towards one answer or
the other.

6.2 Effect of Tuning Individual Attention
Heads

Using head attribution, we identify two different
types of heads: memory heads and in-context
heads. The memory heads promote the predic-
tion towards the memorized answer and the in-
context heads promote the predictions towards the
in-context answer. These heads are shown on the

righthand side of Figure 4, which plots the relative
effect of each head at each layer for promoting the
in-context vs. memorized answers.

Since these heads heavily contribute to the logit
increase for one of the two answers, we hypothe-
size that multiplying the value vectors by a scalar
will enable us to increase or decrease the effect
of each head. Let this multiplicative value be α.
We hypothesize that tuning up the memory head
will increase the number of answers that contain
the ground truth answer, while tuning it down will
increase the number that contain the in-context an-
swer. The opposite should hold for the in-context
head.

With this assumption, we apply the scaling in-
tervention on the series of potential memory heads
and in-context heads on the 200 sampled examples.
From the series of potential heads, we pick the head
that has the strongest effect in the intended direc-
tion. See Appendix F for results using an alterna-
tive memory head. For example, for the in-context
head, this effect is measured by the proportion of
times the head changes the original memorized an-
swers into in-context answers at it’s optimal α. The
analogous process is used to find and tune the mem-
ory head. Therefore, we identify one memory head
and one in-context head (see Figure 5, Appendix
C.3), each with their optimal α, as determined via
tuning on the development set.

Figure 5 shows the effect of the α parameter
on the proportion of in-context vs. memorized an-
swers for both the memory and in-context heads
on Pythia-1.4b. Tuning the memory down has a



Figure 6: We apply the chosen memory head (15.7) and
in-context head (19.14) and the chosen respective scale
from Figure 5, we apply the scaling intervention on all
of the 62,992 examples. Negatively tuning the memory
head produced the most successful result.

strong effect on the generated text, flipping more
than 80% of the predictions to the given in-context
answers, and preventing the model from ever pro-
ducing the memorized answer. The other interven-
tions show positive but weaker results. In general,
the in-context head is less effective at flipping pre-
dictions, and promoting the memorized answer is
more difficult than promoting the in-context an-
swer.

6.3 Results of Interventions on the World
Capital Dataset

Figure 6 shows the intervention results on the full
world capital dataset with selected memory and
in-context heads and their respective α. The result
aligns with our expectations. Negatively tuning
the memory head drastically increases proportion
of the in-context answers. Specifically, whereas
the model originally predicted in-context answers
26% of the time and memorized answers 43% of
the time, after our intervention, the model predicts
in-context answers 86.2% of the time and memo-
rized answers only 4% of the time. Note that, on
Pythia 1.4b, scaling a single head is analagous to
modifying 0.00001% of model parameters. This
suggests that this head plays a specific role in using
the memorized answer in this task. Positively tun-
ing the memory head also increases the memorized
answer prediction to 50%. Positively tuning the
in-context head pushes the model in the expected

direction but has a more muted effect: increasing
the amount of in-context answers by 12% but drop-
ping the amount of memorized answers by about
20%. We observe that changing in-context predic-
tions to memorized predictions is more difficult. In
the fourth and fifth column, when positively tun-
ing the memory head and negatively tuning the
in-context head, we hope to increase the propor-
tion of memorized answers. While there is some
increase, it is less profound, only increasing 6%.
Given the connection between facts learned in pre-
training and the MLP layers (Geva et al., 2021;
Meng et al., 2023; Merullo et al., 2023), it’s possi-
ble that tuning attention alone is not enough to see
higher performance in this setting.

We break down the intervention results from
Figure 7 into term frequency percentile bins as in
Section 5. We focus on the occurrence count of the
country and the occurrence count of the in-context
capital (London). We select two interventions–
negatively tuning memory head and positively tun-
ing in-context head in Pythia-1.4b–both of which
should increase the in-context answers and de-
crease the memorized answers. We find that the
intervention on the memory head overcomes the
previously-described frequency effects. Specifi-
cally, the dashed blue and pink lines are flat across
percentiles. When positively tuning the in-context
head, we observe that the frequency effects remain,
and thus the intervention is not fully successful.
In particular, even after intervention, the memo-
rized answers are still positively correlated with
term frequency, and the in-context answer is nega-
tively correlated with frequency. Most prominently,
tuning the in-context head does not substantially
increase the number of in-context answers when
the in-context city is high frequency (no mitigation
of the city frequency effect) as shown by the blue
lines in the 4th graph.

6.4 Head Analysis

Tuning the memory head down inhibits the models’
abilities to promote the memorized capital city as
we have shown in the previous section. In this sec-
tion, we explore why this is the case by analyzing
the memory head weights. We find the selected
memory head (15.7) promotes geography related
tokens in the output space, suggesting that this head
is responsible for this information as opposed to a
more abstract ‘truthfulness’ direction.



Figure 7: The frequency effect referred to in Section 5 disappears when we tune down the memory head, showing
the success of this strategy. Positively tuning the in-context head shows decent success on lower frequency
countries/capitals, but actually causes performance to fall apart in the higher frequency bins. The solid lines show
the original predictions and the dotted lines show predictions after the intervention.

Singular Vector Decomposition The product of
the Value and Output weight matrices in an atten-
tion head form the OV matrix (Elhage et al., 2021),
which controls how attending to some token affects
the residual stream. Following Millidge and Black
(2022); Belrose et al. (2023), we can decompose the
OV matrix into SVD(OV) = USVh where Vh

is the unitary matrix of the right singular vectors
representing the subspaces the given head writes
into the residual stream (as opposed to the Value
weight matrix in OV). See Millidge and Black
(2022); Belrose et al. (2023) for more information.

The ith singular vector has the same size as the
residual stream; if we decode this vector into the
vocab space of the model with the unembedding
matrix (the LM head) we can observe the semantic
clusters that a given head most strongly promotes.
Since the singular vectors are ordered, we know
that the first singular vectors are the most important
for the head. We qualitatively define the semantic
clusters promoted by each head by looking at the
top k tokens decoded from each singular vector.

We compare the memory head 15.7 with the con-
text head 19.4. If the memory head specifically
promotes geographical information, we should
see clear emphasis on this information that is not
present in the context head. In Table 1, we de-
code the top 10 tokens from the first five singular
vectors in each head and find that many of the mem-
ory head tokens are geographically focused. The
trend becomes even more clear when comparing
all singular vectors (see Appendix G). It should
be noted that the alternate memory head studied

in Appendix F is not as interpretable in the vocab
space, despite giving similar intervention results.
Understanding the contribution of such heads is an
interesting direction to future work.

6.5 Generalizing to New Data
We further explore the domain specificity of the
memory (and context) head by applying the method
to the COUNTERFACT dataset (Meng et al.,
2023), which queries factual knowledge from mul-
tiple domains. We apply the same scale interven-
tion to the heads in the discovered mechanism. We
focus on the paraphrase task of the dataset in the
zero-shot setting. For example,

Apple A5 is developed by Google.
Apple A5 is created by

The dataset replaces the memorized answer
(Google) with a counterfactual (Apple). We fil-
ter the dataset down to examples where the model
predicts the ground truth answer when the coun-
terfactual prompts are not injected. We apply the
same memory head, in-context head and their re-
spective intervention scale on the counterfactual
dataset. That is, we do no additional data-set spe-
cific analysis or tuning. We find that, despite the
memory head’s high impact on the world capital
dataset (increasing the proportion of in-context an-
swers by 60%) it doesn’t generalize to the COUN-
TERFACT dataset. In both cases of interventions,
both the proportion of memorized answers and in-
context answers decrease. The model produces a
higher proportion of invalid answers compared to
the intervention on the world capital dataset. This



Memory Head (15.7)
’ LW’, ’ Wade’, ’ WI’, ’liche’, ’ienne’, ’ ell’, ’owe’, ’iale’, ’uelle’, ’ете’
’ Italian’, ’Italian’, ’ Italy’, ’ Ital’, ’ Io’, ’ Giovanni’, ’ pasta’, ’Io’, ’ Giul’, ’ Naples’
’WA’, ’WS’, ’ WA’, ’owa’, ’ws’, ’wa’, ’Ws’, ’ Wa’, ’pora’, ’ WI’
’ WM’, ’WM’, ’wm’, ’mw’, ’w’, ’nw’, ’ w’, ’ MW’, ’ Minnesota’, ’WN’
’ Guatemala’, ’ Guatem’, ’usta’, ’osta’, ’ Tampa’, ’ Brazil’, ’ativa’, ’ Bah’, ’ Tamil’, ’Brazil’

In Context Head (19.4)
’.,’, ’.;’, ’.\u200b’, ’.*,’, ’.:’, ’.-’, ’.),’, ’.?’, ’.);’, ’.).’
’ilogy’, ’vex’, ’必’, ’xspace’, ’verages’, ’loat’, ’?’, ’ゃ’, ’ cres’, ’HPP’
’tron’, ’.%’, ’. ’, ’———’, ’ Salem’, ’ Telesc’, ’bsy’, ”.’,”, ’olean’, ’inn’
’ometown’, ’LLY’, ’suit’, ’00000000’, ’ Caption’, ’ lib’, ’ETHERTYPE’, ’velt’, ’ESULT’, ’oxic’
’..’, ’ ..’, ’..\’, ’hers’, ’ DSL’, ’GHz’, ’ VALUES’, ’..”’, ’mic’, ’ Experiment’

Table 1: When comparing the decoded top 5 right singular vectors in the memory head vs. the context head, we
notice a clear trend in which the memory head especially encodes geography related information.

could be a result of the need for a more extended la-
bel field. The COUNTERFACT dataset includes
broad label fields beyond geographical information
such as names, dates and etc. The specific head
we selected (15.7) is shown to encode memory in a
specific field, therefore, this could lead to the poor
performance in COUNTERFACT.

7 Discussion & Future Work

This paper investigates factors that influence a
model’s propensity to favor in-context vs. mem-
orized factual associations, when the two compete
with one another. Our results demonstrate that the
frequency of information in the pretraining corpus
can affect the model’s tendency to use new, con-
flicting information provided in context. Building
on this, we provide a proof of concept that this
tendency can be controlled by a mechanism in the
attention heads which allows us to manipulate LMs’
tendency to prefer new in-context information with-
out modifying any model parameters directly. By
building off insights from mechanistic interpretabil-
ity, we can localize single attention heads that con-
tribute to this mechanism. This provides evidence
that decomposing complex neural networks into un-
derstandable components is possible, even in mod-
els with billions of parameters. Still, we observe
that the selected heads promote domain specific
knowledge rather than a more abstract concept of
truthfulness. This brittleness is characteristic of
mechanistic analyses of larger models, and should
be a priority for future work. Nonetheless, given
the early stage of research on this level of analy-
sis of large language models, findings of this type
even in an isolated setting are exciting and can lay

the groundwork for subsequently discovering more
general mechanisms.

The exploratory methods described here suggest
avenues via which future work might develop more
sophisticated techniques for controlling and audit-
ing deployed language models. Adapting LMs post-
hoc for applications that require domain-specific
information is a growing problem. For example,
there are simultaneously reasons we might want to
suppress the use of in-context information at run
time (e.g., to combat prompt-injection attacks) as
well as reasons we might want to encourage it (e.g.,
to enable users to provide new, personalized, or
hypothetical information to the model). The inter-
vention we describe in this work is intriguing in
that it can be used without changing the model and
can be turned on and off dynamically within the
forward pass. It thus offers a promising direction
for further work on model editing.

8 Conclusion

In the problem setting of predicting world capitals,
our results show that the ability of language models
(LMs) to overwrite information that it memorized
in pretraining depends both on the frequency of the
subject of the new fact (the country, e.g., Poland),
as well as the frequency of the overwriting informa-
tion (the counterfactual city, e.g., London). We can
intervene on attention heads that we find tend to
push the prediction one way or another. By simply
rescaling the value vectors of important heads, we
can control which city the model predicts without
updating any model parameters. We hope these
results encourage future work in understanding the
internal structure of neural networks in general.



Limitations

Our work aims to show that individual components
in LMs can play predictable roles in certain model
behaviors; in this case, whether or not to overwrite
memorized information about world capitals. Fur-
ther work is required to understand how to control
the use of context or memorized information in
generated text for this to be successfully applied
in the most general cases. The dataset we use is
templated and applied to the limited domain of
country-capital relationships, meaning that we can
not make general statements about the role of in-
dividual attention heads in arbitrary context. It is
likely, given the flexibility of LMs, that many dif-
ferent components can play this role depending on
the nature of the task. This work contributes to
the growing body of evidence that individual com-
ponents (e.g., attention heads) can specialize for
certain roles across contexts. We can not yet show
how to control this behavior in arbitrary settings,
but we provide a promising avenue for how this
might be done in the future.
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Figure 8: Frequency Effect on GPT2

Figure 9: Frequency Effect on GPT2-medium

Figure 10: Frequency Effect on GPT2-large



Figure 11: Frequency Effect on GPT2-xl

Figure 12: Frequency Effect on Pythia-70m

Figure 13: Frequency Effect on Pythia-160m



Figure 14: Frequency Effect on Pythia-410m

Figure 15: Frequency Effect on Pythia-1bm

Figure 16: Frequency Effect on Pythia-2.8b



B Effect of Model Size

Here, we show the effect of model size in relation
to all of the measures of term frequency including
those which we did not include in the main paper.
This includes frequency with respect to the mem-
orized country, in-context capital, co-occurrences
of the memorized country and capital, and the co-
occurrences of the in-context capital and its corre-
sponding country.

B.1 Pythia Series
See figures 17, 18, 19, 20

B.2 GPT2 Series
See figures 21, 22, 23, 24.



Figure 17: Pythia-Effect of model sizes on predictions based on the frequency of country

Figure 18: Pythia-Effect of model sizes on predictions based on the frequency of in-context capital

Figure 19: Pythia-Effect of model sizes on predictions based on the frequency of country and memorized capital

Figure 20: Pythia-Effect of model sizes on predictions based on the frequency of in-context capital and corresponding
country



Figure 21: GPT-2 Effect of model sizes on predictions based on the frequency of country

Figure 22: GPT-2 Effect of model sizes on predictions based on the frequency of in-context capital

Figure 23: GPT-2 Effect of model sizes on predictions based on the frequency of country and memorized capital



Figure 24: GPT-2 Effect of model sizes on predictions based on the frequency of in-context capital and corresponding
country



Model Memory Head In-Context Head
Pythia-1.4b 15.7 19.12
Pythia-2.8b 17.17 17.31

gpt2-xl 35.19 25.20

Table 2: Specific memory head and in-context head

C Head Attribution

Attention heads are vectors of size dhead =
dmodel/nh where nh is the number of heads in the
model. The standard way to compute the output
of attention layers is by concatenating all of the
heads to form one dmodel sized vector, and pass-
ing it through an output weight matrix WH

O of size
(dmodel, dmodel). This would initially seem to pre-
vent us from directly projecting an individual head
from dmodel space into the vocab space using the
unembedding matrix, since to get to dmodel space,
each head has to interact in the WH

O multiplication.
However, as observed by (Elhage et al., 2021), this
operation is equivalent to splitting the WH

O matrix
into nh (dhead, dmodel) sized chunks, projecting in-
dividual heads and adding the projections up. If we
consider the output of an attention layer by stack-
ing the attention result vector rh1 , rh2 , ... and mul-
tiply by an output matrix WH

O , we can split WH
O

into each size blocks for each heads [W h1
O ,W h2

O ...].
Therefore, we can get the contribution to the atten-
tion output for every head via W h1

O ṙh1 .

C.1 Memory Head & In-Context Head
C.2 Individual Heatmap
See Figure 25

C.3 Tuning Scale
In the main text, we show the tuning scale for
Pythia 1.4B. Here we present tuning curves for
other models on their corresponding memory and
in-context heads. See figures 26,27



Figure 25: We extract individual heatmaps of head attribution across 20 randomly selected examples. We locate the
maximum positive values (4) and the the minimum negative value (-10). The scale is set from -10 to 10 to ensure
the same domain of all the maps. We can observe that there are more prominent memory head (dark red) compared
to in-context head (dark blue). We can also see that the distribution of the memory heads and the in-context heads
vary across different examples.



Figure 26: Pythia-2.8b Tuning Scale

Figure 27: GPT2-xl Tuning Scale



Figure 28

D Interventions

Here, we provide the intervention experiments that
we could not include in the main text.

D.1 World Capital Dataset
See figures 28, 29, 30

D.2 COUNTERFACT Dataset
See figures 31, 32, 33

D.3 Frequency Effect from Intervention
See figures 34, 35, 36, 37, 38, 39, 40, 41,42, 43, 44,
45
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E Decoded Result Analysis

Here we look into specific decoded result before
and after analysis to see how does the intervention
change the decoding. We focus on Pythia-1.4b for
this analysis. In the following example,

The capital of Antigua and Barbuda is
Tirana.
Q: What is the capital of Antigua and
Barbuda?
A:

The original decoded text before intervention
is:

The capital of Antigua and Barbuda is
Tirana
Q: What is the capital of Antigua and
Barbuda?
A: Antigua and Barbuda is the capital
of Antigua and Barbuda

After the intervention by negatively tuning the
memory head,

The capital of Antigua and Barbuda is
Tirana
Q: What is the capital of Antigua and
Barbuda?
A: The capital of Antigua and Barbuda
is Tirana.

We observe that after the negative tuning the
memory head, one of the biggest change in the de-
coded text is that increase of decode text begin with
The capital of <country> is. In Pythia-1.4b,
before the negatively tuning the memory head, only
7961 decoded test begins with The capital of
<country> is. After the intervention, this number
raise to 57440. More than 90% of the predicted
answers begins with The capital of <country>
is. This change significantly prompt the increase
the in-context. 92% of the text beginning with The
capital of <country> is predicts in-context
answer. By copying the injected prompt, the model
are able to predict the in-context answer. We hy-
pothesize that tuning down the memory head will
help the model to pay more attention to the given
prompts and implement the copying task. More
experiments are required to test this hypothesis.

Moreover, we also observe that a common rea-
son for model to predict neither the in-context an-
swer nor the memorized answer that the model will

just repeat itself by outputting the given country
name. In the above example, the model output A:
Antigua and Barbuda is the capital of Antigua and
Barbuda before intervention. 77% of the decoded
answer that gets neither the in-context answer nor
the memorized answer simply just repeat the given
country name in context. 83% of these answer are
changed to predict the memorized answers after
negatively tuning the memory head. Negatively
tuning the memory head can be responsible for
shifting the copying mechanism from the country
name ahead to the in-context capital.



F Head 11.11 Analysis

In another set of sample, we find head 11.11 that
have the similar effect as the chosen head 15.7.
However, we didn’t include this head in the main
paper since this head offers less interpretable ex-
planation. See figures 46, 47, 48, 49, 50



Figure 46: Scale graph on intervention for head 11.11

Figure 47: Overwrite result with respective scale on Head 11.11 on the world-capital dataset

Figure 48: frequency effect on negatively tuning head 11.11



Figure 49: frequency effect on positively tuning head 11.1

Figure 50: Overwrite result with respective scale on Head 11.11 on the COUNTERFACT dataset



G Singular Value Decomposition

We included the top 10 decode for all 64 right
singular vectors in head 15.7 and head 19.4 in the
main paper to show that the memory head weights
specifically encourage geography related terms in
the next token prediction. 15.7 shows interpretable
decode clusters around the location information.
However, head 19.4 didn’t show any meaningful
clusters. We include the decodings for each of the
singular vectors in each head in this section, see
Tables 3 4.



’ LW’, ’ Wade’, ’ WI’, ’liche’, ’ienne’, ’ ell’, ’owe’, ’iale’, ’uelle’, ’\u0435 \u0442 \u0435’
’ Italian’, ’Italian’, ’ Italy’, ’ Ital’, ’ Io’, ’ Giovanni’, ’ pasta’, ’Io’, ’ Giul’, ’ Naples’
’WA’, ’WS’, ’ WA’, ’owa’, ’ws’, ’wa’, ’Ws’, ’ Wa’, ’pora’, ’ WI’
’ WM’, ’WM’, ’wm’, ’mw’, ’w’, ’nw’, ’ w’, ’ MW’, ’ Minnesota’, ’WN’
’ Guatemala’, ’ Guatem’, ’usta’, ’osta’, ’ Tampa’, ’ Brazil’, ’ativa’, ’ Bah’, ’ Tamil’, ’Brazil’
’Greek’, ’ Greek’, ’ Greece’, ’ Knox’, ’ Greeks’, ’kappa’, ’ Athens’, ’greek’, ’ Kim’, ’ Athen’
’ Ji’, ’ MN’, ’ NJ’, ’ Swiss’, ’ Jiang’, ’ Peng’, ’Italian’, ’ Italian’, ’azz’, ’elli’
’ Kansas’, ’ NH’, ’NH’, ’ Nebraska’, ’ Omaha’, ’ NZ’, ’maha’, ’nek’, ’ Nepal’, ’ Het’
’ Brazilian’, ’ Og’, ’Brazil’, ’ Brazil’, ’ Nigerian’, ’ Ethiop’, ’ Brasil’, ’ Nigeria’, ’ Danish’, ’ Ethiopia’
’KM’, ’ KL’, ’mM’, ’Kam’, ’KD’, ’ HK’, ’mw’, ’MW’, ’ LM’, ’KH’
’BN’, ’ BN’, ’ HK’, ’ ku’, ’ Uk’, ’Uk’, ’ RN’, ’ Yuk’, ’ Nak’, ’HK’
’ Kaz’, ’ mos’, ’ Raz’, ’ KL’, ’ Jed’, ’ Malaysian’, ’ Malay’, ’ Sultan’, ’ Kom’, ’ KK’
’MK’, ’ Panthers’, ’ Argentine’, ’ Spart’, ’ Carolina’, ’AZ’, ’ MK’, ’South’, ’zc’, ’ Chile’
’ Moz’, ’ OM’, ’ Miz’, ’ Sach’, ’ MG’, ’XM’, ’ O’, ’OWS’, ’OMN’, ’ Judaism’
’ NK’, ’ Kore’, ’ Milwaukee’, ’ ND’, ’ NL’, ’KN’, ’ Korea’, ’ Norway’, ’NL’, ’ Koh’
’gh’, ’ Henderson’, ’Gh’, ’nh’, ’vh’, ’ Dh’, ’GH’, ’dh’, ’ GH’, ’ Gh’
’ Rio’, ’ Trin’, ’ Mississippi’, ’AO’, ’ Munich’, ’Mb’, ’vor’, ’BV’, ’\u00F2’, ’Brazil’
’ Filip’, ’ Mexican’, ’ Philippines’, ’lv’, ’ Manila’, ’ VA’, ’NV’, ’ NV’, ’ Philippine’, ’ ANC’
’KP’, ’ KDE’, ’ Hung’, ’DK’, ’Hung’, ’KR’, ’Viet’, ’ Kai’, ’ KD’, ’asian’
’HT’, ’ Hos’, ’EH’, ’ HT’, ’ Texans’, ’ Haw’, ’HA’, ’ Texas’, ’UH’, ’ HI’
’w’, ’wi’, ’ Wu’, ’ w’, ’ Wa’, ’ Kai’, ’wu’, ’WA’, ’nw’, ’ WA’
’ Malta’, ’ Miami’, ’Dutch’, ’ Midd’, ’ Dutch’, ’ Amsterdam’, ’ Caribbean’, ’ Netherlands’, ’mf’,
’ Jamaica’
’ li’, ’ l’, ’ LI’, ’ Li’, ’ lis’, ’ LA’, ’LL’, ’lb’, ’ LN’, ’LB’
’ Kumar’, ’ Indianapolis’, ’ Krish’, ’ji’, ’ Mari’, ’ Birmingham’, ’ Kansas’, ’ MG’, ’IU’, ’ Indy’
’ Abdullah’, ’ Alger’, ’FN’, ’ FN’, ’bn’, ’ Saudi’, ’ Ahmed’, ’ BN’, ’ Niger’, ’ Belgium’
’ Ohio’, ’VT’, ’ OH’, ’Ohio’, ’ Wisconsin’, ’ Volkswagen’, ’ VT’, ’\u0442 \u0435’, ’vt’, ’ Hamilton’
’ Indones’, ’ Indonesian’, ’ Indonesia’, ’ Ramos’, ’ Lopez’, ’ Flores’, ’Dutch’, ’ Java’, ’ Luxem’,
’ Jorge’
’wc’, ’RPC’, ’ Va’, ’ Richmond’, ’WS’, ’ Dou’, ’ CR’, ’ Fran\u00E7ois’, ’qs’, ’ WS’
’ Trent’, ’ TT’, ’ Gomez’, ’ Scotia’, ’TT’, ’ Dalton’, ’ Thom’, ’Tg’, ’ammar’, ’ Iceland’
’ Montana’, ’ Alaska’, ’sdk’, ’ Plains’, ’ Norway’, ’ Sau’, ’ FX’, ’ Kashmir’, ’Pak’, ’ Mong’
’ Sanchez’, ’Mi’, ’ Fernando’, ’ Miami’, ’SI’, ’Indian’, ’ Si’, ’ Sar’, ’ S\u00E3o’, ’ IB’
’ Japan’, ’ Japanese’, ’ Singapore’, ’Japanese’, ’Japan’, ’ Taiwan’, ’jp’, ’jn’, ’ Tokyo’, ’ Lee’
’ Kurd’, ’ Iraqi’, ’ EF’, ’ Ion’, ’acci’, ’ Hond’, ’ Tex’, ’ Ecuador’, ’ Texas’, ’ Iraq’
’ AM’, ’ Abe’, ’AMD’, ’ Am’, ’MV’, ’ AMD’, ’AM’, ’amber’, ’VA’, ’ AMP’
’ BV’, ’BV’, ’ Eb’, ’ Kab’, ’kB’, ’BH’, ’bv’, ’ vess’, ’bbe’, ’VB’
’oux’, ’ Iowa’, ’ Sz’, ’ Shelby’, ’ Memphis’, ’ocy’, ’ Saskatchewan’, ’ Ottawa’, ’ Sask’, ’Sz’
’ Lah’, ’LF’, ’ Nass’, ’fel’, ’lf’, ’ Levy’, ’ Nottingham’, ’ LF’, ’ FN’, ’ TN’
’ Hamburg’, ’ Texans’, ’ Houston’, ’ Tex’, ’Houston’, ’WL’, ’ TEXAS’, ’gia’, ’GAL’, ’Gi’
’HF’, ’ Holl’, ’ Hockey’, ’hf’, ’ HF’, ’ Argent’, ’FH’, ’ Argentina’, ’ HG’, ’ HM’
’ ETH’, ’ Seth’, ’ SG’, ’ iodine’, ’ Eph’, ’ Belfast’, ’ETH’, ’GS’, ’ Ish’, ’IE’
’French’, ’ Bav’, ’ French’, ’ Gust’, ’ w’, ’ Bou’, ’ franc’, ’EG’, ’Ot’, ’ TG’
’OE’, ’ PF’, ’ PE’, ’ fp’, ’opf’, ’ PO’, ’EP’, ’ PDE’, ’ EP’, ’ Porter’
’ Rag’, ’ Maur’, ’ Dh’, ’ RCC’, ’ Karn’, ’Mah’, ’uid’, ’ Kal’, ’ Rodrig’, ’ Mah’
’Lau’, ’ l’, ’EC’, ’ Laurent’, ’ fro’, ’Au’, ’ Tigers’, ’Indian’, ’chen’, ’ Lac’
’Hay’, ’hay’, ’ Chang’, ’ Hay’, ’ Bulls’, ’hl’, ’Rh’, ’ Kosovo’, ’ epiderm’, ’ SCC’
’ UC’, ’UC’, ’ U’, ’uca’, ’ ud’, ’ u’, ’ Sacramento’, ’ UP’, ’ uc’, ’ UDP’
’QS’, ’HS’, ’ Ecuador’, ’qs’, ’Sb’, ’ HS’, ’WS’, ’ SES’, ’oS’, ’ns’



’ Ig’, ’PQ’, ’ Slav’, ’ Iz’, ’CPP’, ’ Pav’, ’ Shapiro’, ’hens’, ’IQ’, ’RCC’
’OA’, ’ Ole’, ’ Ale’, ’ TL’, ’APE’, ’ Tol’, ’ Salvador’, ’Ale’, ’ Sul’, ’ SAL’
’BT’, ’ Damascus’, ’PID’, ’ISP’, ’BD’, ’ Wis’, ’IBLE’, ’BI’, ’ Brady’, ’ Illinois’
’India’, ’ India’, ’ IA’, ’ EL’, ’ Modi’, ’ JE’, ’ Indians’, ’ AE’, ’ Io’, ’ Wick’
’ Os’, ’OSS’, ’ei’, ’ees’, ’ Pirates’, ’EE’, ’e’, ’Os’, ’OS’, ’OG’
’vb’, ’ Bor’, ’VB’, ’pnt’, ’ BA’, ’ Bil’, ’BER’, ’ Bir’, ’Bir’, ’ Brun’
’yg’, ’yy’, ’YS’, ’YP’, ’yc’, ’isi’, ’wei’, ’ Feld’, ’Eh’, ’Y’
’PY’, ’ Zam’, ’ Tay’, ’Ay’, ’ Ky’, ’ y’, ’ Ay’, ’Ky’, ’ Theo’, ’Py’
’nj’, ’ Egg’, ’ Jets’, ’ eggs’, ’ Yuan’, ’ECD’, ’Io’, ’ egg’, ’ IJ’, ’ ERR’
’FER’, ’ Fran’, ’rf’, ’Fran’, ’IF’, ’ iT’, ’ Fang’, ’fi’, ’RF’, ’RL’
’AW’, ’ AW’, ’AQ’, ’QA’, ’aq’, ’alias’, ’ AA’, ’ AO’, ’ BA’, ’ Falk’
’ticos’, ’xB’, ’TES’, ’ IB’, ’ross’, ’IRST’, ’chos’, ’abis’, ’oracle’, ’robl’
’ Hogan’, ’INGTON’, ’ Hyde’, ’ GT’, ’anson’, ’ Duncan’, ’ISPR’, ’ Roland’, ’ GD’, ’ Dum’
’ember’, ’ Indians’, ’aste’, ’ Gem’, ’Ind’, ’stem’, ’ruby’, ’ Ghana’, ’estead’, ’ Rails’
’ORK’, ’agma’, ’pb’, ’iq’, ’mr’, ’illo’, ’MSO’, ’ork’, ’mq’, ’ Amend’
’ Rom’, ’ BB’, ’ rom’, ’Rom’, ’BR’, ’ Rams’, ’ Ramos’, ’ BR’, ’ Rangers’, ’BB’
’tics’, ’iast’, ’ n\u00FA’, ’gue’, ’ MN’, ’inx’, ’ilor’, ’ concess’, ’yc’, ’CTOR’

Table 3: The top 10 decoded tokens for each right singular vector from the memory head 15.7



’.,’, ’.;’, ’.\u200B’, ’.*,’, ’.:’, ’.-’, ’.\),’, ’.?’, ’.);’, ’.).’
’ilogy’, ’vex’, ’\u5FC5’, ’xspace’, ’verages’, ’loat’, ’\uFFFD’, ’\u3083’, ’ cres’, ’HPP’
’tron’, ’.%’, ’. ’, ’———’, ’ Salem’, ’ Telesc’, ’bsy’, ”.’,”, ’olean’, ’inn’
’ometown’, ’LLY’, ’suit’, ’00000000’, ’ Caption’, ’ lib’, ’ETHERTYPE’, ’velt’, ’ESULT’, ’oxic’
’..’, ’ ..’, ’..
’, ’hers’, ’ DSL’, ’GHz’, ’ VALUES’, ’..”’, ’mic’, ’ Experiment’
’ Integr’, ’Ob’, ’ Lands’, ’ harass’, ’whe’, ’ess’, ’ Land’, ’obenz’, ’acks’, ’ lord’
’hea’, ’omics’, ’olu’, ’xa’, ’imus’, ’Ui’, ’irement’, ’ilder’, ’uren’, ’coin’
’lor’, ’ Shot’, ’icult’, ’...’, ’java’, ’CUIT’, ’iento’, ’ Secondary’, ’Secondary’, ’iday’
’ITED’, ’odel’, ’oda’, ’bench’, ’bie’, ’ peninsula’, ’olan’, ’igr’, ’pres’, ’itable’
’ano’, ’boro’, ’Tg’, ’TN’, ’prises’, ’bil’, ’gen’, ’
!
!
!’, ’heimer’, ’ Gen’
’ ups’, ’skins’, ’dead’, ’ranging’, ’slant’, ’ JD’, ’posts’, ’PUBL’, ’thood’, ’arshal’
’quo’, ’ Sign’, ’ibi’, ’express’, ’sign’, ’corner’, ’itten’, ’furt’, ’alam’, ’\u53F7’
’ Karn’, ’ chains’, ’ delays’, ’ Sout’, ’ 549’, ’ delay’, ’hog’, ’JavaScript’, ’NAME’, ’ember’
’Transport’, ’Tra’, ’bus’, ’ Luc’, ’L’, ’ L’, ’cr’, ’ Del’, ’ Gl’, ’ask’
’ .’, ’(.’, ’ GB’, ’\u0101r’, ’GB’, ’opan’, ’azol’, ’r\u00E4’, ’SUM’, ’.&’
’rier’, ’extensions’, ’jh’, ’AUD’, ’oda’, ’ scler’, ’PLC’, ’pie’, ’ROW’, ’root’
’omin’, ’\uFFFD \uFFFD’, ’osin’, ’ys’, ’ Reuters’, ’yzed’, ’DLL’, ’ctive’, ’GV’, ’ content’
’rient’, ’olev’, ’gen’, ’urd’, ’LAY’, ’IENT’, ’inus’, ’heed’, ’ al’, ’ZH’
’rial’, ’ precision’, ’ret’, ’feet’, ’st’, ’ WM’, ’Execution’, ’MC’, ’\u00E2t’, ’oc’
’ Mars’, ’half’, ’ half’, ’in’, ’ Notes’, ’ privately’, ’URN’, ’ halves’, ’Execution’, ’ Spar’
’esan’, ’udson’, ’rese’, ’nar’, ’CHANT’, ’ hooked’, ’onium’, ’gus’, ’Orientation’, ’esium’
’azer’, ’cons’, ’orno’, ’ deput’, ’)\u2013’, ’gtr’, ’uffix’, ’iele’, ’ennas’, ’din’
’Kay’, ’FT’, ’itor’, ’oda’, ’izards’, ’xym’, ’raj’, ’ aster’, ’IRST’, ’gether’
’¡¿’, ’¿::’, ’erton’, ’cats’, ’spec’, ’bo’, ’cA’, ’hk’, ’h\u00E4’, ’ curv’
’teenth’, ’deal’, ’aughters’, ’xsl’, ’ check’, ’abin’, ’datab’, ’ Furn’, ’ots’, ’ride’
’Cur’, ’ sch’, ’A’, ’Gh’, ’inetics’, ’ possession’, ’ knob’, ’ thousands’, ’aler’, ’ favour’
’\u671F’, ’ DEAL’, ’otto’, ’uff’, ’ decks’, ’nolimits’, ’assign’, ’afen’, ’deal’, ’ reload’
’shots’, ’CRA’, ’rim’, ’ARS’, ’ bonds’, ’ $@’, ’ Buch’, ’ incumbent’, ’ contacts’, ’ars’
’-¿’, ’ango’, ’eti’, ’ Procedure’, ’k\u00E4’, ’beh’, ’-¿ ’, ’
,’, ’]-¿’, ’ Entry’
’J’, ’uppose’, ’ G’, ’ Coin’, ’ risk’, ’[[’, ’mathb’, ’coin’, ’ Jac’, ’ trail’
’ K’, ’ k’, ’kubernetes’, ’ocent’, ’ Mats’, ’rels’, ’aren’, ’nger’, ’intf’, ’izione’
’POSE’, ’obox’, ’7554’, ’ivers’, ’ai’, ’erral’, ’Ax’, ’AUX’, ’ahi’, ’lett’
’VERTIS’, ’pendicular’, ’OF’, ’new’, ’zel’, ’hores’, ’aser’, ’fills’, ’ establ’, ’del’
’ Rate’, ’unks’, ’rors’, ’RATE’, ’ITC’, ’acional’, ’IBLE’, ’Rate’, ’ Jen’, ’TL’
’api’, ’Vill’, ’pec’, ’inction’, ’iere’, ’raw’, ’ Wis’, ’ CTL’, ’ources’, ’ determin’
’ vacated’, ’ vacate’, ’cos’, ’ competitor’, ’rtl’, ’ather’, ’floor’, ’Cos’, ’below’, ’@’
’ende’, ’ilor’, ’velle’, ’ Licensed’, ’ ai’, ’ai’, ’ transition’, ’transition’, ’ surname’, ’ Wiley’
’leans’, ’zing’, ’eman’, ’agine’, ’anca’, ’adow’, ’ahan’, ’ Vu’, ’elta’, ’anic’
’ Eug’, ’\uFFFD’, ’ Thames’, ’Resolver’, ’ulic’, ’chro’, ’\u00F4’, ’gels’, ’oku’, ’EMENT’
’idden’, ’ugs’, ’Pix’, ’ pla’, ’ lid’, ’untu’, ’upe’, ’unds’, ’Uri’, ’omi’
’rite’, ’hem’, ’RR’, ’ONS’, ’hib’, ’ Hos’, ’\u307E \u305B’, ’nice’, ’ INS’, ’\uFFFD’
’@’, ’ERTYPE’, ’minimum’, ’\u308D’, ’ugu’, ’ Coy’, ’\u00F8re’, ’unde’, ’fff’, ’ Buffalo’
’ monot’, ’t’, ’ pace’, ’ione’, ’ denied’, ’ening’, ’ST’, ’ Rot’, ’ahan’, ’cons’
’front’, ’ries’, ’encial’, ’artifactId’, ’ Reader’, ’ Set’, ’osis’, ’container’, ’llo’, ’rg’



’ Meet’, ’Category’, ’seek’, ’MIX’, ’ambers’, ’Meet’, ’category’, ’ Articles’, ’onitrile’, ’umns’
’qrt’, ’album’, ’ipart’, ’ERE’, ’ MAC’, ’msgstr’, ’Winter’, ’ENS’, ’letal’, ’eville’
’enda’, ’ Za’, ’ipro’, ’NOS’, ’ Va’, ’ ectopic’, ’ Accept’, ’decor’, ’”
}](#’, ’\uFFFD’
’\u043B \u044E’, ’opyright’, ’nex’, ’cept’, ’\u043E \u0431 \u044B’, ’itel’,
’olecule’, ’YY’, ’azol’, ’omic’
’yset’, ’isan’, ’APS’, ’ Fly’, ’REC’, ’apolis’, ’ Pont’, ’anos’, ’hov’, ’Face’
’DEV’, ’owa’, ’...
’, ’uy’, ’swe’, ’ fd’, ’micromachines’, ’dev’, ’ NG’, ’rud’
’k\u00E9’, ’gle’, ’ieri’, ’inki’, ’attach’, ’ requ’, ’state’, ’mak’, ’Text’, ’State’
’XT’, ’roc’, ’ ============================================
====================’,
’letal’, ’rican’, ’xt’, ’ =&’, ’elled’, ’rapper’, ’ Sci’
’aptop’, ’com’, ’\uB2C8 \uB2E4’, ’npmjs’, ’target’, ’commit’, ’ Ct’, ’ lust’, ’\u017Ce’, ’compact’
’uin’, ’printStackTrace’, ’ozo’, ’ Jay’, ’uously’, ’ford’, ’decode’, ’ondon’, ’iance’, ’nbsp’
’ilon’, ’yard’, ’WARD’, ’ovember’, ’ moonlight’, ’yc’, ’rud’, ’ seller’, ’IPT’, ’ immature’
’ beyond’, ’ Rivers’, ’your’, ’[ ’, ’beyond’, ’ Tut’, ’prob’, ’#:’, ’ Claus’, ’ Gore’
’\uFFFD’, ’ transitions’, ’\uFFFD’, ’orf’, ’ECT’, ’ Mu’, ’isu’, ’¡’, ’eng’, ’embedded’
’ieg’, ’ally’, ’IE’, ’icus’, ’vphantom’, ’OC’, ’ais’, ’.”).’, ’ilus’, ’amin’
’CRO’, ’ ly’, ’\u00A0 \u00A0 \u00A0 \u00A0 \u00A0
\u00A0 \u00A0 \u00A0 \u00A0 \u00A0 \u00A0
\u00A0 \u00A0 \u00A0 \u00A0 \u00A0 \u00A0
\u00A0 \u00A0 \u00A0 \u00A0 \u00A0 \u00A0
\u00A0 \u00A0 \u00A0 \u00A0 \u00A0 \u00A0 \u00A0 \u00A0 \u00A0’,
’eston’, ’INVAL’, ’fr’, ’ bead’, ’aden’, ’ICK’, ’slant’
’-¿’, ’ pitch’, ’arent’, ’pitch’, ’pher’, ’ pitches’, ”[’”, ’iop’, ’kowski’, ’Vers’
’ucid’, ’tty’, ’uve’, ’\u0163’, ’Testing’, ’getText’, ’ Carey’, ’mys’, ’RESULTS’, ’precision’
’ cure’, ’ curative’, ’\u00E4 \u00E4n’, ’mathchoice’, ’ARR’, ’aires’, ’ super’, ’Super’, ’Bits’, ’ sex’
’NAM’, ’PR’, ’ batt’, ’asti’, ’Names’, ’ DPP’, ’ pd’, ’NAP’, ’ illustrated’, ’NAME’
’cho’, ’code’, ’gang’, ’chal’, ’TF’, ’activ’, ’rip’, ’\uFFFD’, ’\u00F1o’, ’och’

Table 4: The top 10 decoded tokens for each right singular vector from the context head 19.4
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