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Abstract
Whereas machine learning models typically learn
language by directly training on language tasks
(e.g., next-word prediction), language emerges in
human children as a byproduct of solving non-
language tasks (e.g., acquiring food). Motivated
by this observation, we ask: can embodied re-
inforcement learning (RL) agents also indirectly
learn language from non-language tasks? Learn-
ing to associate language with its meaning re-
quires a dynamic environment with varied lan-
guage. Therefore, we investigate this question
in a multi-task environment with language that
varies across the different tasks. Specifically, we
design an office navigation environment, where
the agent’s goal is to find a particular office, and
office locations differ in different buildings (i.e.,
tasks). Each building includes a floor plan with a
simple language description of the goal office’s
location, which can be visually read as an RGB
image when visited. We find RL agents indeed are
able to indirectly learn language. Agents trained
with current meta-RL algorithms successfully gen-
eralize to reading floor plans with held-out layouts
and language phrases, and quickly navigate to the
correct office, despite receiving no direct language
supervision.

1. Introduction
The standard paradigm for learning language with machine
learning (ML) models is to train directly on language tasks,
such as next-word prediction (Devlin et al., 2019; Radford
et al., 2018; Brown et al., 2020). In contrast, humans in-
directly learn language as a byproduct of fulfilling non-
language objectives. For instance, children incrementally
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Figure 1. Machine learning models learn language by directly train-
ing on language tasks, whereas children learn language as a byprod-
uct of solving tasks that do not explicitly relate to language. We
ask if embodied reinforcement learning agents can learn language
in a similarly indirect manner.

learn words that alert parents to their needs (e.g., being
hungry or thirsty) from vocalizations (e.g., crying) to more
effective words and sentences (e.g., “I’m hungry”).

Indirectly learning language can be desirable as it is directly
tied to real-world observations, which yields language un-
derstanding that is grounded and consistent with reality. In
contrast, standard, directly-trained models can output lin-
guistically correct, but factually incorrect sentences (Lin
et al., 2021b). Motivated by this observation, we investigate
if embodied ML agents situated in simple 3D environments
can start to learn language via indirect mechanisms similar
to humans (Figure 1).

Our investigation builds on two directions of prior work.
First, numerous studies incorporate language into reinforce-
ment learning (RL) agents, e.g., by training them to as-
sociate language with objects (Hill et al., 2020b), follow
language instructions (Misra et al., 2017; Hill et al., 2020a),
and learn from language feedback (Ling & Fidler, 2017).
We similarly seek agents with language skills, but differ in
the learning mechanism: whereas the task objective either
provides language supervision or directly requires language
learning in the aforementioned line of work, we instead
investigate whether RL agents can learn language indirectly
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without explicit language supervision. Put another way, we
study if language learning can arise as a byproduct of learn-
ing tasks that do not necessarily require language skills, in
contrast to tasks that prescribe language learning, such as
language instruction following. Second, this mechanism of
indirectly learning behaviors that are not directly prescribed
by the objective of the training task, sometimes called emer-
gence, is also studied in other works (Bansal et al., 2017).
However, while these works study the emergence of tool
usage (Baker et al., 2019) and high-level economic poli-
cies (Zheng et al., 2020), we instead focus on the emergence
of language, specifically reading in embodied environments.

A primary challenge of our investigation is to design an
environment that enables and tests the emergence of lan-
guage. We identify four criteria for such an environment: (1)
The environment must include language. (2) The language
must benefit the agent in solving the task, so the agent is
incentivized to learn language. Note that this requires the
environment to vary and for some of these variations to be
captured in the language. Otherwise, the language would
always convey the same information, which would not en-
courage language understanding. (3) The task must be solv-
able without language understanding, as tasks that require
language skills prescribe the use of language, rather than
enable it to emerge as a byproduct. (4) Observations of the
language should be unprocessed to more accurately model
the real world, e.g., visual observations of a sign, rather than
tokenized strings. Since, to the best of our knowledge, no
existing environments meet these criteria, we design our
own (Section 4).

To satisfy the above criteria, we design an office naviga-
tion environment where the goal is to visit a specific office
as quickly as possible. To address (1), the office building
contains a floor plan that indicates the location of the goal
office, via language or pictorially. While the inclusion of a
floor plan partially satisfies (2), with a static environment,
the agent can simply memorize the location of the target
office. Thus, to address the variations entailed by (2), we
randomize the goal office location, updating the floor plan
accordingly, and encode each randomization as a different
task in a multi-task setting. In addition, to enable generaliza-
tion to new but related tasks and language, we give the agent
a few episodes to adapt to each new task, which yields the
few-shot meta-RL setting (Duan et al., 2016; Wang et al.,
2016; Finn et al., 2017). To address (3), we ensure that the
agent can find the target office even without the floor plan,
i.e., through exhaustive search. Finally, to address (4), we
represent the floor plan as an RGB image that the agent
must visually observe and learn to parse in order to read.

In this environment, we find that the DREAM meta-RL al-
gorithm (Liu et al., 2021) learns an agent that navigates to
and reads the floor plan from raw RGB observations during

the few adaptation episodes in each new building, starting
from no language knowledge a priori, and while receiving
no special reward bonuses for reading the floor plan. The
agent then uses the information from the floor plan to im-
mediately navigate to the goal office. We also find that the
learned agent exhibits a degree of compositional generaliza-
tion to new language phrases in the floor plan, indicating
the emergence of simple language skills (Section 5).

Overall, our main contribution is raising and providing an af-
firmative answer to the question can simple language skills
emerge in meta-RL agents without direct language supervi-
sion? Additionally, we vary the meta-RL learning algorithm
and parameters of our open-source office environment to
determine factors that affect whether language arises. We
find that language skills arise proportionally to the benefit
they provide to the agent: When there are only a few build-
ings, which require visiting only a small number of offices
to disambiguate, agents are more likely to visit those offices
rather than develop language skills. In contrast, when there
are many buildings, which require visiting many offices to
disambiguate, agents more often develop language skills.

2. Related Work
Machine learning models for language are typically trained
on tasks with explicit language supervision, in the form
of text examples with labels (Zhang et al., 2018; Li et al.,
2020; Devlin et al., 2019; Brown et al., 2020; Vaswani et al.,
2017). We instead ask if language can be learned indirectly
in the process of solving RL tasks that do not provide such
supervision. This question combines elements from two
groups of prior work:

Language in reinforcement learning. A rich literature
incorporates language into RL agents situated in the world.
These works include language in ways that span text-based
games (Narasimhan et al., 2015; Yuan et al., 2018; Küttler
et al., 2020), grounding tasks that require associating words
with objects in the world (Hermann et al., 2017; Hill et al.,
2020b; Yan et al., 2022; Ahn et al., 2022), language in-
struction following (Shah et al., 2018; Hill et al., 2020a;
Vaezipoor et al., 2021), language feedback (Ling & Fidler,
2017; Kreutzer et al., 2020), inducing rewards from a lan-
guage goal (Fu et al., 2019; Sumers et al., 2021), and leverag-
ing language as an abstraction for hierarchical RL (Andreas
et al., 2017; Jiang et al., 2019). For a complete survey,
see Luketina et al. (2019). We similarly study language in
RL, but rather than rely on explicit language supervision like
these studies or tasks requiring language skills, we study
language learning in tasks without direct language supervi-
sion, which can be solved without any language. In other
words, language learning is a direct consequence of the task
in these works (e.g., instruction following prescribes lan-
guage learning), while our tasks do not necessarily require
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evaluation episodeexploration episodes

Trial on task 

Obtain exploration trajectory Run to
maximize returns

Figure 2. Illustration of a meta-RL trial. A trial consists of two
parts: (i) running an exploration policy πexp on the exploration
episodes (i.e., the few shots); (ii) running a task policy πtask on the
evaluation episode, conditioned on what was discovered during the
exploration episodes. The agent is evaluated based on the returns
achieved during the evaluation episode, while the returns achieved
during the exploration episodes do not matter.

language to solve, and hence allow for language to arise as
a byproduct.

Emergent behaviors and capabilities. A long line of work
studies the emergence of behaviors that are not directly
specified by the objective of the task. This phenomenon has
primarily been observed in the multi-agent setting (Bansal
et al., 2017; Baker et al., 2019; Jaderberg et al., 2019; Zheng
et al., 2020; Team et al., 2021; 2023), where behaviors
that are not directly rewarded by the task (e.g., using tools,
developing economic specializations, and communicating)
arise due to pressures from cooperation and competition.
We also focus on indirectly learning behaviors not specified
by the task, but differ as prior work has not studied the
emergence of language. Notably, Brown et al. (2020); Wei
et al. (2022) also study emergent generalization to new
language tasks within large language models, though these
models are still trained with explicit language supervision.

3. Preliminaries
3.1. Meta-Reinforcement Learning Setting

To create a dynamic environment with varied language, we
consider the few-shot meta-RL setting. At a high level, the
goal in this setting is to learn an agent that can solve new
tasks in only a few shots (i.e., episodes), after training on
related tasks.

More formally, the meta-RL setting consists of a distribution
over tasks p(µ), where each task µ is a Markov decision pro-
cess ⟨S,A,Rµ, Tµ⟩ with states S, actions A, reward func-
tion Rµ and dynamics Tµ. We formalize learning from a
few shots on each task as a trial (Duan et al., 2016; Liu et al.,
2021), as in Figure 2. A trial consists of sampling a new
task µ ∼ p(µ), running a policy πexp for a few exploration
episodes, which yields a trajectory τ exp = (s0, a0, r0, . . .),
and running a policy πtask on a final evaluation episode con-
ditioned on the exploration trajectory τ exp. Note that πexp

and πtask can be the same policy. The goal of the meta-RL

setting is to learn policies πexp and πtask that maximize the
expected returns achieved by πtask over trials:

Eµ∼p(µ),τ exp∼πexp(µ)

[
V task
π (τ exp)

]
, (1)

where V task
π (τ exp) denotes the expected returns of πtask con-

ditioned on τ exp on a single episode, and πexp(µ) represents
the distribution over trajectories from running πexp on µ.

Additionally, several algorithms we use assume that the
tasks sampled during meta-training (but not meta-testing)
are identifiable (i.e., each meta-training task is assigned a
unique one-hot ID). We slightly overload notation and also
let µ denote this unique one-hot ID.

3.2. Meta-Reinforcement Algorithms

End-to-end approaches. A canonical approach for the
meta-RL setting is to learn a single policy πexp = πtask = π
trained end-to-end to directly maximize the meta-RL ob-
jective (Equation 1). This can be achieved by grouping the
exploration episodes and evaluation episodes together as a
single long episode and training with standard RL, where
the policy π is made recurrent to condition on τ exp during
the evaluation episode portion. The most basic version of
this approach is known as RL2 (Duan et al., 2016; Wang
et al., 2016), though several approaches propose adding
auxiliary objectives to improve learning.

For example, VariBAD (Zintgraf et al., 2019) trains the
recurrent hidden state to be predictive of the dynamics and
rewards, which helps the hidden state approximate the belief
state, a sufficient statistic of the history (Kaelbling et al.,
1998), though gradients are not propagated fully end-to-
end through the policy network. IMPORT (Kamienny et al.,
2020) regularizes the recurrent hidden state to be close to a
learned embedding of the meta-training tasks IDs.

DREAM. While end-to-end approaches can learn the opti-
mal policy in theory, they can run into optimization issues
that make it difficult to learn sophisticated behaviors for the
exploration episodes (Liu et al., 2021). Specifically, from
a high level, the exploration policy πexp is not incentivized
to gather useful information, unless the task policy πtask

already can use that information. However, πtask cannot
learn to use that information, unless πexp already gathers
it. DREAM (Liu et al., 2021) sidesteps this issue by train-
ing πexp on a separate objective, and we therefore primarily
focus on DREAM in our experiments (Section 5).

From a high level, DREAM aims to create an objective for
πexp to uncover exactly the information needed by the task
policy πtask to solve the task. Doing this requires two key
pieces: (1) determining what information is needed by πtask;
and (2) creating an objective to recover this information.

DREAM achieves (1) by training πtask(a | s, z) to solve each
task conditional on an encoding z of the ID of the task µ.
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The idea is that if πtask can solve each task conditioned on z,
then z contains all the information that it needs. However, z
could also potentially contain extraneous information, which
DREAM attempts to remove by placing an information bot-
tleneck (Alemi et al., 2016) on it. Once z has been learned
for all the meta-training tasks, DREAM accomplishes (2) by
proposing to maximize the mutual information I(τ exp; z) be-
tween episodes τ exp from the exploration policy πexp and z.
In other words, this objective trains πexp to recover exactly
the information z needed by πtask.

4. Designing an Environment for Evaluating
Language Emergence

In this section, we detail our environment design for testing
if RL agents can learn language as a byproduct of solving
non-language tasks. At a high level, answering this requires
an environment meeting the previously mentioned criteria:

(1) The environment must include language.

(2) Learning language must benefit the agent.

(3) Tasks must be solvable without language understanding.
Otherwise, any language learning is prescribed by the
task, rather than emerging as a byproduct.

(4) Language should be observed in an unprocessed form,
such as visually, rather than receiving string tokens.

Note that simply adding static language into the environ-
ment, such as a sign with fixed text, is insufficient to encour-
age language learning to satisfy the second criteria. Even
if the sign contains useful information, an agent with no a
priori language understanding cannot learn what the sign
means without observing its corresponding meaning in the
world. Further, once the agent has observed the meaning in
the world, reading the sign now contains no useful new infor-
mation. Instead, language learning requires varied language
whose meanings are reflected in the environment.

We therefore opt for a multi-task setting, where both the
environment and the language within it change across tasks.
To enable the agent to adapt to new, but related tasks, we
allow the agent a single “free” episode to explore, yielding
the few-shot meta-RL setting in Section 3.2. We next detail
our office environment and the language within it.

4.1. The Office Environment

To meet the above criteria in the few-shot meta-RL setting,
we design an office environment. The environment consists
of several office rooms in a building, each of which is iden-
tified by one of six colors. In each task, the office locations
are randomized, and the agent must enter the blue office
room, but does not know where it is a priori. We incorpo-
rate language into the environment with a floor plan that
describes the location of the blue office as either a written

sign or a pictorial map, which can be visually observed as
an RGB array. However, to ensure that language learning
remains indirect, the agent receives no direct reward to in-
centivize viewing the floor plan. We further describe these
floor plans below.

This environment meets our criteria as follows. The pres-
ence of visually perceived language floor plans satisfy crite-
ria (1) and (4). Crucially, it is possible to achieve optimal
returns without learning language by exhaustively checking
each room during the exploration episode to locate the blue
goal office, satisfying criteria (3). Recall that the objective
(Equation 1) only depends on the returns achieved during
the evaluation episode. Hence, even though exhaustively
visiting each room takes more timesteps during the explo-
ration episode than visiting and reading the floor plan, it is
an equally optimal strategy, as only the timesteps during
the evaluation episode affect the objective. Additionally,
learning to read the floor plans, though unnecessary, im-
mediately reveals the blue office’s location, allowing it to
consistently navigate there as quickly as possible to maxi-
mize its returns, satisfying criteria (2). Finally to robustly
test reading comprehension, we design train / test splits in
the environment that test generalization to held out language
phrases, pictorial maps, and building layouts.

Two-dimensional variant. We build two variants of this
office environment: 2D and 3D. The 2D environment con-
tains low-dimensional observations to isolate the challenge
of language learning, though the floor plans are still per-
ceived as high-dimensional RGB images. In contrast, the
3D environment tests scaling to purely high-dimensional
pixel observations, and more closely resembles the real
world. We implement the 2D variant in Minigrid (Chevalier-
Boisvert et al., 2018) and visualize it in Figure 3. There
are two hallways in this variant, each with six rooms. In
different tasks, the color identifiers of the 12 rooms are ran-
domized. Additionally, the agent can view the visual floor
plan when located at the bottom center cell.

Three-dimensional variant. The 3D variant is imple-
mented in MiniWorld (Chevalier-Boisvert, 2018) and is
visualized in Figure 4. In this variant, there are four office
rooms identified by a colored block inside, and a floor plan
opposite the office rooms that can be visually read by open-
ing a door and walking to it. The colors of the blocks are
randomized in different tasks and the goal is to enter the
office with the blue block.

In both versions, the environment defines a family of
Markov decision processes with:

• State space. The state s is an egocentric observation. In
the 3D variant, this is a single 80 × 60 × 3 RGB-array,
whereas the state in the 2D variant s = (o, f) consists of
two components: First, a 7×7×3 egocentric observation
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Figure 3. The 2D variant. The agent (red triangle) observes the
highlighted cells in front of it and must visit the blue office. Read-
ing the floor plan in the bottom center gives the agent an RGB
image like those on the right, which can help identify the location
of the blue office.

o, corresponding to the 7× 7 grid cells in the agent’s line
of sight (the highlighted region in Figure 3). Each grid
cell is encoded as a 3-dimensional vector based on what
object is present in the cell, and is represented as zeros if
the cell is occluded to the agent. Second, a 84× 84× 3
RGB image floor plan observation f . This observation is
an image representation of the floor plan when the agent
is at the floor plan and otherwise is a blank image (all
zeros). We detail the floor plan f in the next section.

• Action space and dynamics. The agent’s actions are to
turn left or right and move forward. Additionally, the
agent can open or close a door.

• Reward function. The agent receives +1 reward for vis-
iting the blue office, which ends the episode. Otherwise,
it receives −0.1 reward per timestep, to encourage it to
visit the blue office as quickly as possible. The reward
function does not directly incentivize learning language:
there is no reward associated with visiting the floor plan.

4.2. Floor Plans

In this section, we detail the floor plans that agents can
read to determine the office locations. These floor plans are
readable by the agent via the observation f in the 2D variant
(Figure 3 right), and as a sign on the wall in the 3D variant
(Figure 4 bottom).

Language floor plan. We primarily focus on language floor
plans, which provide text descriptions of where the goal
room is. Note that in both the 2D and 3D variants, this
floor plan is still represented as a RGB image that the agent
has to learn to parse—not text tokens. The details below
use examples for the 2D variant, though the descriptions in
the 3D variant are analogous, but modified for the 4 office

layout. The descriptions can either be direct (e.g., “the
second office in the third row” or “the top left corner”) or
relative (e.g., “right of the office right of the first office in
the second row”). Relative references can be chained one
or more times, which we refer to as the relative step count
(e.g, “above the office left of the {OFFICE LOCATION}”
has a relative step count of 2). In all of our experiments,
unless otherwise noted, we restrict ourselves to relative step
counts of 2 or fewer. Formally, descriptions S are generated
according to the following context-free grammar production
rules:

S → (top | bottom) (left | right) corner,
S → N office in the N row,

S → REL the S,

REL → LR | AB | LR and AB,

LR → left of | right of,
AB → above | below,

N → first | second | third | fourth.

Pictorial floor plan. To test multiple modalities of reading,
we additionally add a pictorial floor plan type, only to the
2D variant. This type is a stylized RGB image of a fully
observed top-down view of the building, which indicates
the color identifier of each office room, and can be used to
find the goal blue office. We generate these by applying a
style transfer model (Gatys et al., 2016), where the content
image is the unstylized top-down view of the environment,
and the style image is a randomly sampled image from a
book covers dataset (Anicin, 2020). Since the style transfer
can recolor the offices, we also include a legend of the six
possible colors in a fixed order to the bottom left of the
content image. The agent then can locate the blue office by
finding offices that match the color with the first element in
the legend.

Demonstrations. To accelerate policy learning, without
affecting the language learning, we pretrain only the task
policy πtask with demonstrations from a scripted policy that
computes the shortest path between the agent and the goal
blue office. Critically, the exploration policy πexp does not
receive any demonstrations to ensure that any language
skills it acquires arise as a byproduct of meta-RL, rather
than from imitating demonstrations. We pretrain the task
policy by including the demonstrations in its replay buffer.

5. Experiments
In our experiments, we aim to answer four questions:

(1) Our main question: Can agents learn language without
explicit language supervision (Section 5.1)?

(2) Can agents learn to read other modalities beyond lan-
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Figure 4. The 3D office environment. There are four offices and
the agent must enter the correct one (above). The agent can open
a door to visually read a sign that states which office is correct
(below), though it can also exhaustively check the four offices.

guage, such as a pictorial map (Section 5.2)?

(3) What factors impact language emergence (Section 5.3)?

(4) Do these results scale to 3D environments with high-
dimensional pixel observations (Section 5.4)?

5.1. Language Emergence

To determine if language can emerge, we train DREAM
on the 2D office with language floor plans. We begin in
a simple setting where all language descriptions are seen
during meta-training, and none are held out for meta-testing.

We find that DREAM learns an exploration policy that navi-
gates to and reads the floor plan. Then, the task policy uses
this information to directly walk to the goal office room,
achieving near-optimal returns (Figure 6 left). This result in-
dicates that the agent has learned a form of simple language.
To understand any remaining failure modes, we qualitatively
analyzed the trajectories where the agent did not achieve
exactly optimal returns. On these trajectories, the agent
navigates to the floor plan during the exploration episode
and correctly interprets the floor plan’s description to go to
the correct office during the evaluation episodes. However,
during the evaluation episode, the agent takes a slightly cir-
cuitous route, such as using the “open door” action before
reaching the office door. Since this takes more timesteps,
the agent achieves slightly suboptimal returns. Overall, the
slight amount of suboptimality appears to only come from
slight mistakes from the task policy, rather than any issues
with reading and understanding the sign.

Next, to further understand the limits of the agent’s learned
language, we perform three tests of compositional general-
ization.

Generalization to unseen descriptions. First, we test if the
agent can generalize to new descriptions S unseen during
meta-training. To achieve this, we hold out all language
floor plans where “3rd office in the 2nd row” is a substring
during meta-training and re-train DREAM. Note that we also
hold out relative references, such as “left of and above the
3rd office in the 2nd row.” This tests both if the agent can
generalize to the held out direct reference “3rd office in the
2nd row,” as well as if it can correctly apply the prepositions
(LR, AB) to it. We find that the agent still reads the floor
plan during exploration and successfully interprets the floor
plans containing these held out descriptions during meta-
testing to enter the correct office (Figure 5, top).

Generalization to unseen relative step count. Next, we
test if the agent can generalize to unseen relative step counts
by training on floor plans with relative step counts of 0,
1 or 3, and evaluating on floor plans with a relative step
count of 2. Recall from Section 4 that the relative step
count refers to the number of times relative references are
chained. For instance, “left of the {OFFICE LOCATION}”
has a relative step count of 1, while “above the office left of
the {OFFICE LOCATION}” has a step count of 2. When
presented with an unseen relative step count, we find that the
agent successfully navigates to the correct office only around
37% of the time. However, the agent still displays some
level of generalization. Rather than randomly randomly
visiting offices, the agent tends to navigate to an office
nearby the correct office, suggesting that is successfully
resolving some, but not all of the chained relative references.
Specifically, we find that the agent navigates to the correct
office or a neighboring office 80% of the time. Furthermore,
it gets much closer to the correct office on average than
selecting an office at random (Figure 5 middle).

Generalizing to new layouts. Finally, we test if the agent’s
understanding of language can generalize to a new layout.
This helps us understand if the agent learns reusable con-
cepts that can be applied in different situations, as opposed
to memorizing an exact goal location for each description.
To achieve this, we create a new stretched layout that dou-
bles the distances between contiguous offices. We allow
the agent to familiarize itself with this stretched layout by
training it with pictorial floor plans on the stretched layout,
while still also training on the standard layout with language
floor plans. However, the agent never sees the stretched
layout with a language floor plan during training. Then, we
test if the agent can generalize to language floor plans on
the stretched layout at meta-test time.

Figure 5 shows the results on the bottom. At test time,
we find that the agent still reads the language floor plan
in the stretched layout, and further successfully interprets
the result to go to the correct office nearly 100% of the
time. This indicates that the agent has learned generalizable
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Meta-Training Examples Meta-Testing Example OutcomeGeneralizing to

New Utterances
  Hold out all descriptions 
  that contain the phrase: 
  3rd office in the 2nd row

Above the 1st office 
in the 2nd row

Right of and  below 
the office in the top 
left corner

Left of and above 
3rd office in the 
2nd row

New Relative Steps
  Train: 0, 1, 3 relative steps 
  Test:    2 relative steps

New Layouts
  Test if learned language
  concepts generalize to a 
  layout only previously seen 
  with a pictorial floor plan

0 Relative Steps 3 Relative Steps 2 Relative Steps

Standard Layout,
Language Floor Plan

Stretched Layout,
Pictorial Floor Plan

Stretched Layout,
Language Floor Plan

1st office in the 3rd 
row

Right of the office 
right of and above 
the 1st office in the 
2nd row

bottom
right
corner

Left of the office 
right of and above 
the office above 
the 2st office in the 
3rd row

bottom
left
corner

Figure 5. Compositional generalization evaluations. Top: The agent generalizes to unseen descriptions, achieving similar returns on both
training and held-out descriptions. Middle: The agent also can partially generalize to unseen relative steps, where it almost always gets
close to the correct office. The right side plots the distribution of distances that the agent achieves from the correct office, as well as the
distribution from randomly sampling an office. The agent gets much closer to the correct office on average than sampling an office at
random. Bottom: The agent also can apply language concepts learned in one layout to a new layout, continuing to achieve near-optimal
returns when evaluated on the stretched layout with language floor plans, which was not seen during training.

language concepts that it can apply to simple layout changes.

Probing the learned representation of the floor plan.
Beyond testing the agent’s ability to compositionally gen-
eralize, we probe the the agent’s learned representation of
the language floor plan to test if it understands the floor
plan by reading individual words, as opposed to leveraging
spurious correlations (e.g., the length of the description).
We consider a probing task of extracting the tokens from
the floor plan, i.e., extracting the string of the floor plan
description from the image. Specifically, we first freeze the
agent’s learned representation of the floor plan after we train
it to solve the office environment. We then train a single
layer LSTM (Hochreiter & Schmidhuber, 1997) on top of
this frozen representation.

We train this probing layer on 80% of the language floor
plans, and evaluate it on a held out 20% with the standard
perplexity metric (i.e., the negative log likelihood of the
correct tokens under the probing layer, where lower is bet-
ter). We compare the agent’s frozen learned representation
to a representation extracted from a randomly initialized
network of the same architecture, and find that the agent’s
frozen representation achieves significantly lower perplex-

ity. Specifically, learning with the frozen representation
achieves a perplexity of 1.1, while the random representa-
tion achieves a perplexity of 4.65. This suggests that the
agent indeed reads individual words of the floor plan, and
can generally extract words from images.

5.2. Learning to Read Other Modalities

Given that the DREAM-based agent successfully learns to
read language in the above experiments, we ask if the agent
can also read other modalities. To test this, we train DREAM
on the 2D variant of the office with pictorial floor plans,
instead of language floor plans. We generate 100 floor plan
types with a pre-trained style transfer model (Section 4.2),
split into 90 training and 10 held out for testing.

Similar to the language floor plan case, we find that DREAM
learns a policy that navigates to and reads the floor plan
during its exploration episodes, and then directly enters the
correct office in its evaluation episodes nearly 100% of the
time. Crucially, the agent successfully reads and interprets
unseen pictorial floor plan styles at test time (Figure 6 left).
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Figure 6. Results averaged over 3 seeds, with 1-stddev error bars. Left: DREAM learns to read both pictorial and language floor plans and
successfully uses information from the floor plan to achieve near-optimal returns. Middle: Effect of learning algorithm on language
learning. Only DREAM learns to read and achieves near-optimal returns. The other approaches check some, but not all of the offices, and
consequently achieve lower returns. Right: DREAM learns to read the floor plan and solves the task in the 3D environment as well.

5.3. What Factors Impact the Emergence of Reading?

In this section, we evaluate the factors that may influence
whether the agent learns to read. Specifically, we study the
impact varying parameters of the learning process and the
environment:

• Learning algorithm. We replace DREAM with other
state-of-the-art meta-RL algorithms.

• Amount of meta-training data. We vary both the num-
ber of tasks (i.e., office color randomizations) and
unique floor plans seen during meta-training.

• Size of the model. We vary the number of final fully
connected layers in DREAM’s policy network.

Learning algorithm. We compare DREAM with other state-
of-the-art meta-RL algorithms on our 2D office environment
with pictorial floor plans, namely RL2 (Duan et al., 2016;
Wang et al., 2016), VariBAD (Zintgraf et al., 2019), and
IMPORT (Kamienny et al., 2020). See Appendix A for
details and hyperparameters. Figure 6 shows the results in
the middle. We find that the choice of meta-RL algorithm
drastically affects whether the agent learns to read, and even
whether the agent solves the task. In contrast to DREAM,
the other algorithms do not learn language, and instead learn
to check some of the other offices during the exploration
episodes. However, as they do not learn to check all of the
offices, they often fail to enter the correct office, achieving
much lower returns than DREAM.

Amount of meta-training data. To study the effect of vary-
ing the amount of meta-training data, we train DREAM on
pictorial floor plans on the 2D variant of the office envi-
ronment. We vary the number of floor plans seen during
meta-training (30, 60, and 90), and vary the number of

meta-training tasks (5, 10, 50, 100, 200, and 500).

We find that the number of meta-training tasks has a sizeable
impact on whether the agent learns to read. The agent
continues to visit and read the floor plan when the number
of meta-training tasks exceeds 5, but instead switches to a
strategy of checking the offices when the number of meta-
training tasks falls to 5—since there are only a few meta-
training tasks, visiting only a few of the office rooms is
sufficient to disambiguate them, and determine the location
of the blue office. In contrast, when there are many meta-
training tasks, disambiguating the tasks requires visiting all
or nearly all of the office rooms. This result suggests that the
agent learns to read when the information value of reading
is high, and does not when there are easier means to obtain
the same information. Notably, the strategy of checking
only a few office rooms is sufficient to disambiguate the
meta-training tasks when there are only a few tasks, but it
fails to generalize to new unseen tasks.

We find that the agent still learns to visit and read the floor
plan regardless of the number of meta-training floor plans,
though, unsurprisingly, the agent’s ability to generalize to
new floor plans degrades as the number of floor plans de-
creases.

Size of the model. Motivated by the observation that in-
creasing model size can yield significant new capabilities
in language models (Wei et al., 2022), we study the effect
of the policy network’s model size. We add one, two, or
three additional fully connected layers with ReLU activa-
tions to DREAM’s policy network in the pictorial floor plan
version of the 2D office environment and tune over a grid of
3 layer widths (64, 128, and 256 hidden units). We find that
the agent continues to learn to read and solve the task, and
further that with appropriate tuning, adding any number of
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additional layers (one, two or three) improves sample com-
plexity by roughly 8%. However, we hypothesize that these
improvements likely arise simply from the additional tuning
over layer width, as the original results without added layers
use the default DREAM hyperparameters without tuning.

5.4. High-Dimensional 3D World

Our experiments thus far isolate the challenge of indirectly
learning to read by leveraging a 2D domain. In this section,
we test if indirect language learning still occurs when we
scale to a 3D domain with first-person pixel observations.
We find that training DREAM on our 3D domain still indi-
rectly learns to read. The agent navigates to and reads the
sign during its exploration episodes and then directly en-
ters the correct office room during most evaluation episodes
(Figure 6 right).

6. Conclusion
In this work, we found that basic language can emerge
as a byproduct of solving non-language tasks in meta-RL
agents. This previously unexplored paradigm for language
learning offers potential, but not yet realized, benefits over
standard language learning. Specifically, one insidious and
pervasive failure mode of standard large language models
trained on datasets mined from the Internet is that they fre-
quently output convincing and fluent, yet wildly incorrect
statements (Lin et al., 2021a). Indirectly learned language
might avoid this failure mode, as the learned language is
directly tied to observations and experiences in the world.
Additionally, language understanding indirectly gained from
embodied experience can potentially be deeper and yield
greater physical intuitions. For example, no amount of read-
ing about sourness on the Internet can give as rich an under-
standing as actually experiencing the sensation of biting a
lemon.

However, we emphasize that such benefits are far from being
realized. Our work focused on relatively simple language on
only a single domain of office navigation to illustrate a proof
of concept. To even begin to compare to the capabilities of
standard language learning, the emergent learning paradigm
requires significant future work with more sophisticated en-
vironments and language. Furthermore, betting against data
has been a losing proposition in machine learning (Sutton,
2019). Even so, considering alternatives to even power-
ful existing approaches is a key piece to driving scientific
progress—and perhaps the best way forward is to combine
the approaches by augmenting emergent language learning
with direct language supervision.
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Hyperparameter Value

Discount Factor γ 0.99
Test-time ϵ 0

Learning Rate 0.0001
Replay buffer batch size 32

Target parameters syncing frequency 5000 updates
Update frequency 4 steps

Grad norm clipping 10

Table 1. Hyperparameters shared across DREAM, RL2, IMPORT, and VariBAD.

A. Experimental Details
We build upon the PyTorch (Paszke et al., 2019) DREAM, IMPORT, RL2and VariBAD implementations released by Liu et al.
(2021).

A.1. Model Architecture

For all methods, we use the default architectures detailed in Appendix B.3 of Liu et al. (2021) with custom state embedders
e(s).

Two-dimensional office variant. Recall that the state s = (o, f) in the 2D variant consists of two components, the egocentric
observation o and the map observation f . We compute embeddings of the state e(s) by first computing embeddings e(o) and
e(f) of the two components, and then applying two final fully-connected layers of output size 64 with a ReLU activation.
We use the architecture released by Chevalier-Boisvert et al. (2018) to compute the observation embedding e(o). Specifically,
this consists of a three 2D convolutional layers with ReLU activations and (input channels, output channels, kernel size)
equal to (3, 16, (2, 2)), (16, 32, (2, 2)), and (32, 64, (2, 2)) respectively. After the first convolutional layer is also a max
pooling layer with kernel size (2, 2). The output of the final convolutional layer is flattened and further passed through two
fully connected layers with ReLU activations and output dimension 64. We embed the 84× 84× 3 map observation f with
an architecture derived from the standard DQN architecture from Mnih et al. (2015), modified to take RGB images, rather
than grayscale ones. Specifically, this is computed as three convolutional layers with ReLU activations and (input channels,
output channels, kernel size, stride) equal to (3, 32, (8, 8), 4), (32, 64, (4, 4), 2), and (64, 64, (3, 3), 1) respectively. The
output of the final convolutional layer is flattened and passed through a single fully connected layer of output dimension 64.

Three-dimensional office variant. To compute embeddings e(s) of states s in the 3D office variant, we use the architecture
released by Chevalier-Boisvert (2018). Specifically, this consists of three convolutional layers with ReLU activations and
(input channels, output channels, kernel size, stride) equal to (3, 32, (5, 5), 2), (32, 32, (5, 5), 2), and (32, 32, (4, 4), 2)
respectively. The output of these layers is flattened and passed through a single fully connected layer with output dimension
128.

Probing experiment. In our probing experiment to test the agent’s learned representation of the language floor plan, we
begin by taking the agent’s learned representation of an image of the language floor plan e(s). Then, we decode this learned
representation into the tokens with a single LSTM layer with output dimension 100, followed by a final linear prediction
layer with output dimension 64, equal to the vocab size.

A.2. Hyperparameters

We use the default hyperparameters for all methods reported in Liu et al. (2021) without further tuning. Specifically, the
values used across all methods are given in Table 1. Additionally, all methods use lineary decaying ϵ-greedy exploration,
where the value of ϵ decays from 1 to 0.01 over 500000 steps for RL2, IMPORT and VariBAD, and for DREAM, the schedule
is split into decaying from 1 to 0.01 in 250000 steps for both the exploration and task policies.

For the 2D office, we set the DREAM penalty hyperparameter to c = −0.1, and use c = 0 in the 3D version, consistent
with the MiniWorld experiments in Liu et al. (2021). We set the encoder and decoder variances ρ2 = 0.1 and information
bottleneck weight λ = 1.
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