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Abstract

There is a growing interest on large-width asymptotic and non-asymptotic properties of deep Gaus-
sian neural networks (NNs), namely NNs with weights initialized as Gaussian distributions. For a
Gaussian NN of depth L ≥ 1 and width n ≥ 1, a well-established result is that, as n → +∞,
the NN’s output converges in distribution to a Gaussian process. Recently, quantitative versions of
this CLT have been obtained by exploiting the recursive structure of the NN and its infinitely wide
Gaussian limit, showing that the NN’s output converges to its Gaussian limit at the rate n−1/2, in
the 2-Wasserstein distance, as well as in some convex distances. In this paper, we investigate the
use of second-order Gaussian Poincaré inequalities to obtain quantitive CLTs for the NN’s output,
showing their pros and cons in such a new field of application. For shallow Gaussian NNs, i.e.
L = 1, we show how second-order Poincaré inequalities provide a powerful tool, reducing the prob-
lem of establishing quantitative CLTs to the algebraic problem of computing the gradient and the
Hessian of the NN’s output, and lead to the rate of convergence n−1/2 in the 1-Wasserstein distance.
Instead, for deep Gaussian NNs, i.e. L ≥ 2, the use of second-order Poincaré inequalities turns
out to be more problematic. By relying on exact computations of the gradient and the Hessian of
the NN’s output, which is a non-trivial task due to its (algebraic) complexity that increases with L,
we show that for L = 2 second-order Poincaré inequalities still lead to a quantitative CLT in the
1-Wasserstein distance, though with the rate of convergence n−1/4, and we conjecture the same rate
for any depth L ≥ 2. Such a worsening in the rate is a peculiar feature of the use of second-order
Poincaré inequalities, which are designed to be applied directly to the NN’s output as a function of
all the previous layers, hence not exploiting the recursive structure of the NN and/or its infinitely
wide Gaussian limit. While this is a negative result over the state-of-the-art, it does not diminish the
effectiveness of second-order Poincaré inequalities, which we prove to maintain their effectiveness
in establishing a quantitative CLT for a complicated functional of Gaussian processes such as the
deep Gaussian NN.

1 Introduction

To define a deep Gaussian neural networks (NN), let τ : R → R be an activation function or nonlinearity, let X be a
d × p input matrix, for any d ≥ 1 and p ≥ 1, with xj being the j-th input row and xu being the u-th input column,
and for any L ≥ 1 and n ≥ 1 consider the following random variables: i) (W(0), . . . ,W(L−1),w) independent
random weights such that W(l) = (w(l)

i,jl
) with the w(l)

i,jl
’s being i.i.d. as Gaussian N (0, σ2

w) for l = 0, . . . , L − 1,
1 ≤ i ≤ n, 1 ≤ j0 ≤ d, 1 ≤ jl ≤ n for l ≥ 1, and w = (w1, . . . , wn) with the wi’s being i.i.d as Gaussian N (0, σ2

w)
for i = 1, . . . , n; ii) (b(0), . . . ,b(L−1), b) independent random biases such that b(l) = (b(l)

1 , . . . , b
(l)
n ) with the b(l)

i ’s
being i.i.d. as N

(
0, σ2

b

)
for i = 1, . . . , n and l = 0, . . . , L− 1, and with b being N

(
0, σ2

b

)
. A (fully connected feed-

forward) deep Gaussian NN of depth L and width n is the sequence (f (l)
i (X, n))1≤i≤n,1≤l≤L+1 defined recursively
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as 

f
(1)
i (X) =

∑d
j=1 w

(0)
i,j xj + b

(0)
i 1T

f
(l)
i (X, n) = 1√

n

∑n
j=1 w

(l−1)
i,j (τ ◦ f (l−1)

j (X, n)) + b
(l−1)
i 1T l = 2, . . . , L

f (L+1)(X, n) = b+ 1√
n

∑n
i=1 wiτ(f (L)

i (X, n)),

(1)

where 1 is a p dimensional column vector of 1’s and ◦ denotes element-wise application. Let (f (l)
i (X, n))i≥1 be

the sequence obtained by extending (W(0), . . . ,W(L−1)) and (b(0), . . . ,b(L−1)) to infinite independent arrays, for
l = 0, . . . , L− 1. Under the assumption that the activation function τ is continuous and satisfies |τ(s)| ≤ α+β|s| for
every s ∈ R and some α, β ≥ 0, Matthews et al. (2018, Theorem 4) showed that as n → +∞ jointly over the first l
NN’s layers

(f (l)
i (X, n))i≥1

w−→ (f (l)
i (X))i≥1,

where (f (l)
i (X))i≥1, as a stochastic process indexed by X, is distributed according to the product measure of p-

dimensional Gaussian measures, namely ⊗i≥1Np(0,Σ(l)), with the covariance matrix Σ(l) having the (u, v)-th entry
defined recursively as follows: Σ(1)

u,v = σ2
b +σ2

w 〈xu,xv〉 and Σ(l)
u,v = σ2

b +σ2
wE[τ(f)τ(g)], where (f, g) is a centered

bivariate Gaussian vector with the covariance matrix given by Σ(l−1)
u,u e1e

T
1 +Σ(l−1)

u,v (e1e
T
2 +e2e

T
1 )+Σ(l−1)

v,u e2e
T
2 , with

(e1, e2) being the canonical basis of R2. The infinitely wide Gaussian limit of the output f (L+1)(X, n) follows as a
corollary.

The work of Matthews et al. (2018) generalizes previous results of Neal (1996), characterizing the large-width asymp-
totic behaviour of a single-layer or shallow Gaussian NN, and of Lee et al. (2018b), which also investigate the large-
width asymptotic behaviour of a deep Gaussian NN, though assuming a “sequential growth” of the width over the
NN’s layers. For generalizations and refinements of Matthews et al. (2018) we refer, among others, to the works
of Garriga-Alonso et al. (2018); Lee et al. (2018a); Novak et al. (2018); Antognini (2019); Du et al. (2019); Yang
(2019b); Aitken & Gur-Ari (2020); Andreassen & Dyer (2020); Bracale et al. (2021); Favaro et al. (2022); Lee et al.
(2022); Hanin (2023); Mei & Montanari (2022). The large-width asymptotic behaviour of deep Gaussian NNs has
been exploited in many directions: i) Bayesian inference for Gaussian processes arising from infinitely wide Gaussian
NNs (Damianou & Lawrence, 2013; Garriga-Alonso et al., 2018; Lee et al., 2018a; Yaida, 2020; Hanin & Zlokapa,
2023); ii) kernel regression for infinitely wide Gaussian NNs trained with gradient descent through the neural tangent
kernel (Hanin, 2018; Jacot et al., 2018; Du et al., 2019; Arora et al., 2019; Lee et al., 2019; Yang, 2019a; Yaida, 2020;
Yang, 2020; Yang & Littwin, 2021; Roberts et al., 2022); iii) statistical analysis of infinitely wide Gaussian NNs as
functions of the depth via information propagation (Poole et al., 2016; Schoenholz et al., 2017; Hayou et al., 2019;
Hanin & Rolnick, 2018; Yaida, 2020; Roberts et al., 2022; Hanin, 2022). We also mention a line of research inves-
tigating properties of deep Gaussian NNs at finite width, which includes the works of Hanin & Nica (2019); Noci
et al. (2021); Zavatone-Veth & Pehlevan (2021); Hanin & Zlokapa (2023); Roberts et al. (2022); Yaida (2020); Hanin
(2018).

There has been a recent interest in establishing quantitative CLTs for the output of a deep Gaussian NN, with respect
to suitable distances, providing the rate of convergence of f (L+1)(X, n) to its infinitely wide limit. This problem was
first investigated by Eldan et al. (2021) in the setting of shallow NNs, i.e. L = 1. They considered a shallow NN
on the (d − 1)-sphere with Gaussian distributed wi,j’s and Rademacher distributed wi’s, and assuming a polynomial
activation function they established a functional quantitative CLT in the 2-Wasserstein distance dW2 for the NN’s
output. Still for shallow NNs on the (d−1)-sphere, the result of Eldan et al. (2021) has been generalized (and refined)
in Klukowski (2022), assuming that the wi,j’s are Uniformly distributed and the wi’s have general distribution with
finite fourth moment, and in Cammarota et al. (2023) assuming Gaussian weights. In the more general setting of
Gaussian NNs, i.e. L ≥ 2, Basteri & Trevisan (2022) first established a quantitative CLT in dW2 for the NN’s output
f (L+1)(X, n). Their approach relies on: i) a preliminary estimate of the distance dW2 between f (L+1)(X, n) and its
infinitely wide Gaussian limit, through a triangular inequality that exploits the infinitely wide Gaussian limit of the
NN; ii) the estimation of the terms in the inequality by an inductive approach that exploits the recursive structure of
the NN in combination with properties of dW2 . In particular, if N ∼ N (0,Σ(L+1)) is the infinitely wide limit of the
NN’s output f (L+1)(X, n), then, assuming a Lipschitz activation function τ , Basteri & Trevisan (2022, Theorem 1.1)
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shows that

dW2(f (L+1)(X, n), N) ≤ CL
√
p

n
, (2)

where C ∈ (0,+∞) is a constant depending only on τ , X and L. Apollonio et al. (2023) and Favaro et al. (2023)
generalized the result of Basteri & Trevisan (2022) to general convex distances and weaker hypotheses on τ , providing
upper bounds with the same rate of convergence n−1/2, and (presumably) better constants. See also Balasubramanian
et al. (2023) for further generalizations to NNs with non-Gaussian weights. As in Basteri & Trevisan (2022), the results
of Apollonio et al. (2023) and Favaro et al. (2023) rely on triangular inequalities that exploit the recursive structure
of the NN and its infinitely wide Gaussian limit, whose terms are estimated by different techniques, depending on the
distance.

1.1 Our contributions

In this paper, we investigate the use of second-order Poincaré inequalities to establish quantitative CLTs for the NN’s
output f (L+1)(X, n), showing their pros and cons in such a new field of application. Second-order Poincaré inequali-
ties were first introduced in Chatterjee (2009) and Nourdin et al. (2009) as a general tool to obtain quantitative CLTs
for functionals of Gaussian process, by estimating suitable distances or approximation errors between the functional of
interest and a Gaussian process. This is precisely the setting of deep Gaussian NNs. In particular, we consider the use
of some recent refinements of second-order Poincaré inequalities, which provide tight estimates of the approximation
error, with (presumably) optimal rates (Vidotto, 2020). To introduce our results, it is useful to consider the setting
of shallow NNs. In particular, let dW1 be the 1-Wasserstein distance and consider a shallow Gaussian NN with a
1-dimensional unitary input, i.e. d = 1 and x = 1, unit variance’s weight, i.e. σ2

w = 1, and no biases, i.e. b(0)
i = b = 0

for any i ≥ 1. If N ∼ N (0, σ2) is the infinitely wide limit of the NN’s output f (2)(1, n), then assuming the activation
function τ ∈ C2(R) such τ and its first and second derivatives are bounded above by α + β|x|γ , for α, β, γ ≥ 0, we
show that

dW1(f (2)(1, n), N) ≤ C 1√
n
, (3)

where C is a constant depending only on τ , which is computed explicitly. We show that a result analogous to (3)
holds true for a shallow Gaussian NN with bias, with the approximation error being in the 1-Wasserstein distance, the
total variation distance and the Kolmogorov-Smirnov distance, and then we generalize (3) to the setting of shallow
Gaussian NNs with p > 1 inputs. For shallow NNs, our results show how second-order Poincaré inequalities provide
a powerful tool to estimate the distance between the NN’s output and its infinitely wide Gaussian limit. They reduce
the problem to algebraic calculations for the gradient and the Hessian of the NN’s output, which are straightforward
for shallow NNs, leading to the same rate n−1/2 as in Basteri & Trevisan (2022), Apollonio et al. (2023) and Favaro
et al. (2023)

We also consider the use of second-order Poincaré inequalities to establish quantitative CLTs in the more general
setting of deep Gaussian NNs. In principle, for L ≥ 2 second-order Poincaré inequalities may be applied to the NN’s
output f (L+1)(X, n) along the same lines as for L = 1. However, for L ≥ 2 such a direct application of second-order
Poincaré inequalities turns out to be more problematic, leading to a worst rate of convergence than n−1/2, which is
expected from Basteri & Trevisan (2022), Apollonio et al. (2023) and Favaro et al. (2023). As for shallow NNs, our
results rely on the computation of the gradient and the Hessian of the NN’s output, which is a non-trivial task for
L ≥ 2, due to an (algebraic) complexity that increases with the depth L. We make this computation exactly, and apply
the resulting expressions of the gradient and the Hessian to obtain an (implicit) estimate of the distance dW1 between
f (L+1)(X, n) and its infinitely wide Gaussian limit. As an example, we obtain an explicit estimate for L = 2. In
particular, if N ∼ N (0,Σ(3)) is the infinitely wide limit of the NN’s output f (3)(X, n), then assuming the activation
function τ ∈ C2(R) such τ and its first and second derivatives are bounded above by α + β|x|γ , for α, β, γ ≥ 0, we
show that

dW1(f (3)(X, n), N) ≤ CL
√

p√
n
, (4)

where C ∈ (0,+∞) is a constant that depends only on τ , X and L. In general, we conjecture that the same rate
of convergence n−1/4 holds true for any depth L ≥ 2. Differently from Basteri & Trevisan (2022), Apollonio et al.
(2023) and Favaro et al. (2023), our approach does not rely on the use of triangular inequalities that exploit the recursive
structure of the NN and/or its infinitely wide Gaussian limit, since second-order Poincaré inequalities are designed to
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be applied directly to f (L+1)(X, n), as a function of all the NN’s weights. This is arguably what determines the
worsening in the rate of convergence with respect to (4). While this is a negative result over the state-of-the-art in the
field, it does not diminish the effectiveness of second-order Poincaré inequalities, which we prove to maintain their
effectiveness in establishing a quantitative CLT for a complicated functional of Gaussian processes such as the deep
Gaussian NN.

1.2 Organization of the paper

The paper is structured as follows. In Section 2 we present a brief overview on second-order Poincaré inequalities,
recalling some results of Vidotto (2020) that are critical to provide quantitative CLTs for deep Gaussian NNs. Section
3 contains our results in the setting of shallow Gaussian NNs, whereas in Section 4 we extend these results to the
setting of deep Gaussian NNs. In Section 5 we present some numerical illustrations of our results for shallow NNs,
and Section 6 we discuss our results and present some directions of future research. Proofs of our results are deferred
to the Appendix.

2 Preliminaries on second-order Poincaré inequalities

Through the paper, we denote by (Ω,F ,P) the (standard) probability space on which random variables are assumed to
be defined. Moreover, we make use of the notation ‖X‖Lq := (E[Xq])1/q for the Lq norm of the random variable X .
In this work, we consider some popular distances between (probability) distributions of real-valued random variables.
In particular, let X and Y be two random variables in Rd, for some d ≥ 1. We denote by dW1 the 1-Wasserstein
distance, that is,

dW1(X,Y ) = sup
h∈H

|E[h(X)]− E[h(Y )]|,

where H is the class of all functions h : Rd → R such that it holds true that ‖h‖Lip ≤ 1, with ‖h‖Lip =
supx,y∈Rd,x 6=y |h(x)−h(y)|/‖x−y‖Rd . Furthermore, we denote by dTV the total variation distance, which is defined
as

dTV (X,Y ) = sup
B∈B(Rm)

|P(X ∈ B)− P(Y ∈ B)|,

where B
(
Rd
)

is the Borel σ-field of Rd. Finally, we denote by dKS the Kolmogorov-Smirnov distance, which is
defined as

dKS(X,Y ) = sup
z1,...,zd∈R

|P
(
X ∈ ×di=1 (−∞, zi]

)
− P

(
Y ∈ ×di=1 (−∞, zi]

)
|.

We recall the following (well-known) interplays between some of the above distances: i) dKS(·, ·) ≤ dTV (·, ·); ii) if
X is a real-valued random variable and N ∼ N (0, 1) is the standard Gaussian random variable then dKS(X,N) ≤
2
√
dW1(X,N).

Second-order Poincaré inequalities provide a tool for Gaussian approximation of functionals of Gaussian fields (Chat-
terjee, 2009; Nourdin et al., 2009). See also Nourdin & Peccati (2012) and references therein for a detailed account on
second-order Poincaré inequalities. For our work, it is useful to recall some results developed in Vidotto (2020), which
provide improved versions of the second-order Poincaré inequality first introduced in Chatterjee (2009) for random
variables and then extended in Nourdin et al. (2009) to general infinite-dimensional Gaussian fields. LetN ∼ N (0, 1).
Second-order Poincaré inequalities can be seen as an iteration of the so-called Gaussian Poincaré inequality, which
states that

Var[f(N)] ≤ E[f ′(N)2] (5)

for every differentiable function f : R → R, a result that was first discovered in the seminal work of Nash (1956),
and then reproved by Chernoff (1981). The inequality (5) implies that if the L2 norm of the random variable f ′(N)
is small, then so are the fluctuations of the random variable f(N). The first version of a second-order Poincaré
inequality was obtained in Chatterjee (2009), where it is proved that one can iterate (5) in order to assess the total
variation distance between the distribution of f(N) and the distribution of a Gaussian random variable with matching
mean and variance.
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Theorem 2.1 (Chatterjee (2009) - second-order Poincaré inequality). Let X ∼ N (0, Id×d). Take any f ∈ C2(Rd),
and ∇f and ∇2f denote the gradient of f and Hessian of f , respectively. Suppose that f(X) has a finite fourth
moment, and let µ = E[f(X)] and σ2 = Var[f(X)]. Let N ∼ N (µ, σ2) then

dTV (f(X), N) ≤ 2
√

5
σ2

{
E
[
‖∇f(X)‖4

Rd
]}1/4 {E [‖∇2f(X)‖4

op

]}1/4
, (6)

where ‖·‖op stands for the operator norm of the Hessian∇2f(X) regarded as a random d× d matrix.

Nourdin et al. (2009) pointed out that the Stein-type inequalities that lead to (6) are special instances of a more general
class of inequalities, which can be obtained by combining Stein’s method and Malliavin calculus on an infinite-
dimensional Gaussian space. In particular, Nourdin et al. (2009) obtained a more general version of (6), involving
functionals of arbitrary infinite-dimensional Gaussian fields. Both (6) and its generalization in Nourdin et al. (2009)
are known to give suboptimal rates of convergence. This is because, in general, it is not possible to obtain an explicit
computation of the expectation of the operator norm involved in the estimate of total variation distance, which leads
to move further away from the distance in distribution and use bounds on the operator norm instead of computing
it directly. To overcome this drawback, the work of Vidotto (2020) adapted to the Gaussian setting an approach
recently developed in Last et al. (2016) to obtain second-order Poincaré inequalities for Gaussian approximation of
Poisson functionals, yielding estimates of the approximation error that are (presumably) optimal. The next theorem
states Vidotto (2020, Theorem 2.1) for the special case of a function f(X), with f ∈ C2 (Rd) such that its partial
derivatives have sub-exponential growth, and X ∼ N (0, Id×d). See Appendix A for an overview of Vidotto (2020,
Theorem 2.1).

Theorem 2.2 (Vidotto (2020) - 1-dimensional second-order Poincaré inequality). Let F = f(X), for some f ∈
C2 (Rd), and X ∼ N (0, Id×d) such that E[F ] = 0 and E

[
F 2] = σ2. Let N ∼ N

(
0, σ2), then

dM (F,N) ≤ cM

√√√√ d∑
l,m=1

{
E
[(
〈∇2

l,·F,∇2
m,·F 〉

)2
]}1/2 {

E
[
(∇lF∇mF )2

]}1/2
, (7)

where 〈·, ·〉 is the scalar product, M ∈ {TV,KS,W1}, cTV = 4
σ2 , cKS = 2

σ2 , cW1 =
√

8
σ2π and ∇2

i,·F is the i-th
row of the Hessian matrix of F = f(X) while ∇iF is the i-th element of the gradient of F .

The next theorem generalizes Theorem 2.2 to multidimensional functionals. For p > 1, the next theorem states Vidotto
(2020, Theorem 2.3) for the special case of a function (f1(X), . . . , fp(X)), with f1, . . . , fp ∈ C2 (Rd) such that its
partial derivatives have sub-exponential growth, and X ∼ N (0, Id×d). See Appendix A for an overview of Vidotto
(2020, Theorem 2.3).

Theorem 2.3 (Vidotto (2020) - p-dimensional second-order Poincaré inequality). For any p > 1 let [F1 . . . Fp] =
[f1(X) . . . fp(X)], for some f1, . . . , fp ∈ C2(Rd), and X ∼ N (0, Id×d) such that E [Fi] = 0 for i = 1, . . . , p
and E [FiFj ] = cij for i, j = 1, . . . , p, with C = {cij}i,j=1,...,p being a symmetric and positive definite matrix, i.e. a
variance-covariance matrix. Let N ∼ N (0, C), then

dW1(F,N) ≤ 2√p
∥∥C−1∥∥

2 ‖C‖2

√√√√ p∑
i,k=1

d∑
l,m=1

{
E
[(
〈∇2

l,·Fi,∇2
m,·Fi〉

)2
]}1/2 {

E
[
(∇lFk∇mFk)2

]}1/2
(8)

where ‖·‖2 is the spectral norm of a matrix.

3 Results for shallow Gaussian NNs

We make use of the second-order Poincaré inequalities of Section 2 to obtain quantitative CLTs for the NN’s output
F := fL+1(X,n), with fL+1(X,n) defined in (1), with L = 1. In particular, we provide a quantification of the
approximation error between F and its Gaussian limit, with respect to the 1-Wasserstein distance, the total variation
distance and the Kolmogorov-Smirnov distance. We start with a NN with a 1-dimensional unitary input, i.e. d = 1
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and x = 1, unit variance’s weight, i.e. σ2
w = 1, and no biases, i.e. b(0)

i = b = 0 for any i ≥ 1. That is, we consider the
NN

F := 1
n1/2

n∑
j=1

wjτ(w(0)
j ). (9)

By means of a straightforward calculation, it follows that E[F ] = 0 and Var[F ] = EZ∼N (0,1)[τ2(Z)]. As the
NN F defined in (9) is a function of independent standard Gaussian random variables, Theorem 2.2 can be applied to
approximate F with a Gaussian random variable with the same mean and variance as F , quantifying the approximation
error.

Theorem 3.1. Let F be the NN (9) with τ ∈ C2(R) such that |τ(x)| ≤ α + β|x|γ and
∣∣∣ dl

dxl τ(x)
∣∣∣ ≤ α + β|x|γ for

l = 1, 2 and some α, β, γ ≥ 0. If N ∼ N (0, σ2) with σ2 = EZ∼N (0,1)[τ2(Z)], then for any n ≥ 1

dM (F,N) ≤ cM√
n

√
3(1 +

√
2) · ‖α+ β|Z|γ‖2

L4
, (10)

where Z ∼ N (0, 1), M ∈ {TV,KS,W1}, with corresponding constants cTV = 4/σ2, cKS = 2/σ2, and cW1 =√
8/σ2π.

See Appendix B for the proof of Theorem 3.1. The proof follows by a direct application of Theorem 2.2, reducing
the problem to (algebraic) calculations for the gradient and the Hessian of the NN, which are straightforward in the
setting of shallow NNs. In particular, the estimate (10) has the expected convergence rate n−1/2 with respect to
the 1-Wasserstein distance, the total variation distance and the Kolmogorov-Smirnov distance. As for the constant
appearing in (10), it depends on the variance EZ∼N (0,1)[τ2(Z)] of F . Once the activation function τ is specified,
EZ∼N (0,1)[τ2(Z)] can be evaluated by an exact or approximate computation, as well as by providing suitable lower
bounds for it.

Now, we present an extension of Theorem 3.1 to a Gaussian NN with one input x, showing that the problem still
reduces to a direct application of Theorem 2.2. In particular, it is convenient to write the output of the NN in (1) as
follows:

F := 1
n1/2σw

n∑
j=1

wjτ(σw〈w(0)
j ,x〉+ σbb

(0)
j ) + σbb, (11)

with w(0)
j = [w(0)

j,1 , . . . , w
(0)
j,d ]T and wj

d= w
(0)
j,i

iid∼ N (0, 1). In particular, we set Γ2 = σ2
w‖x‖

2 + σ2
b , and for n ≥ 1

we consider a collection (Y1, . . . , Yn) of independent standard Gaussian random variables. Then, from (11) we can
write

F
d= 1
n1/2σw

n∑
j=1

wjτ (ΓYj) + σbb.

As before, some straightforward calculations leads to E[F ] = 0 and Var[F ] = σ2
wEZ∼N (0,1)

[
τ2 (ΓZ)

]
+ σ2

b . Since
F in (11) is a function of independent standard Gaussian random variables, Theorem 2.2 can be directly applied to
approximate F with a Gaussian random variable with the same mean and variance as F , quantifying the approximation
error.

Theorem 3.2. Let F be the output of the NN (11) with τ ∈ C2(R) such that |τ(x)| ≤ α + β|x|γ and
∣∣∣ dl

dxl τ(x)
∣∣∣ ≤

α + β|x|γ for l = 1, 2 and some α, β, γ ≥ 0. If N ∼ N (0, σ2) with σ2 = σ2
wEZ∼N (0,1)

[
τ2 (ΓZ)

]
+ σ2

b and
Γ = (σ2

w‖x‖
2 + σ2

b )1/2, then for any n ≥ 1

dM (F,N) ≤
cM

√
Γ2 + Γ4(2 +

√
3(1 + 2Γ2 + 3Γ4))‖α+ β|ΓZ|γ‖2

L4
√
n

, (12)

where Z ∼ N (0, 1), M ∈ {TV,KS,W1}, with corresponding constants cTV = 4/σ2, cKS = 2/σ2, cW1 =√
8/σ2π.
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See Appendix C for the proof of Theorem 3.2. As for Theorem 3.1, the estimate (12) of the approximation error
dM (F,N) has the expected convergence rate n−1/2 with respect to the 1-Wasserstein distance, the total variation dis-
tance and the Kolmogorov-Smirnov distance, with the constant depending on the variance σ2

wEZ∼N (0,1)
[
τ2 (ΓZ)

]
+

σ2
b of F . Within the setting of Theorem 3.2, the same rate of convergence n−1/2 is obtained through different tech-

niques in Basteri & Trevisan (2022, Theorem 1.1), Apollonio et al. (2023, Theorem 4.1) and Favaro et al. (2023,
Theorem 3.3), possibly leading to different constants. Because of the definition of the NN F , analogous result follow
from the classical Berry-Eseen theorem in the Kolmogorov-Smirnov distance, as well as the CLT in the Wasserstein
distance (Rio, 2009).

We conclude our analysis of shallow NNs, by presenting an extension of Theorem 3.2 to a Gaussian NN output with
p > 1 inputs (x1, . . . ,xp), where xi ∈ Rd for i = 1, . . . , p. In particular, we consider F := [F1 . . . Fp], where

Fi := 1
n1/2σw

n∑
j=1

wjτ(σw〈w(0)
j ,xi〉+ σbb

(0)
j ) + σbb, (13)

with w(0)
j = [w(0)

j,1 , . . . , w
(0)
j,d ]T and wj

d= w
(0)
j,i

d= b
(0)
j

d= b
iid∼ N (0, 1). Under this setting of multivariate Gaussian

distributions, Theorem 2.3 can be applied to obtain an approximation of F with a Gaussian random vector whose
mean and covariance are the same as F . The resulting estimate of the approximation error depends on the maximum
and the minimum eigenvalues, i.e. λ1(C) and λp(C) respectively, of the covariance matrix C, whose (i, k)-th entry is
given by

E[FiFk] = σ2
wE[τ(Yi)τ(Yk)] + σ2

b , (14)

where Y ∼ N (0, σ2
wXTX + σ2

b11T ), with 1 being the all-one vector of dimension p and X being the n × p matrix
of the inputs {xi}i∈[p].
Theorem 3.3. Let F = [F1 . . . Fp] with Fi being the NN output in (13), for i = 1, . . . , p, with τ ∈ C2(R) such that

|τ(x)| ≤ α+β|x|γ and
∣∣∣ dl

dxl τ(x)
∣∣∣ ≤ α+β|x|γ for l = 1, 2 and some α, β, γ ≥ 0. Furthermore, letC be the covariance

matrix of F , whose entries are given in (14), and define Γ2
i = σ2

w||xi||2 + σ2
b and Γik = σ2

w

∑d
j=1 |xijxkj | + σ2

b . If
N = [N1 · · · Np] ∼ N (0, C), then for any n ≥ 1

dW1 (F,N) ≤ 2σ2
wK̃

λ1(C)
λp(C)

√
p

n
, (15)

where λ1(C) and λp(C) are the maximum and the minimum eigenvalues of C, respectively, and where

K̃ =
{ p∑
i,k=1

(Γ2
i +

√
3(1 + 2Γ2

i + 3Γ4
i )Γ

2
ik + 2Γ2

iΓik)‖α+ β|ΓiZ|γ‖2
L4‖α+ β|ΓkZ|γ‖2

L4

}1/2
,

with Z ∼ N (0, 1).

See Appendix D for the proof of Theorem 3.3. Along the same lines of the proofs of Theorem 3.1 and Theorem
3.2, Theorem 3.3 follows by a direct application of Theorem 2.3, which boils down to straightforward (algebraic)
calculations for the gradient and the Hessian of the NN. The estimate (19) of the approximation error dW1 (F,N)
has the expected convergence rate n−1/2 with respect to the 1-Wasserstein distance, with a constant depending on the
spectral norms of the covariance matrix C and the precision matrix C−1. In particular, such spectral norms must be
computed explicitly for the specific activation τ in use, or at least bounded from above, in order to apply Theorem 3.3.
This boils down to finding the greatest eigenvalue λ1 and the smallest eigenvalue λp of the matrix C, which can be
done for a broad class of activations with classical optimization techniques, or at least bounding λ1 from above and
λp from below (Diaconis & Stroock, 1991; Guattery et al., 1999). Within the setting of Theorem 3.3, the same rate
of convergence n−1/2 is obtained through different techniques in Basteri & Trevisan (2022, Theorem 1.1), Apollonio
et al. (2023, Theorem 6.1 and Theorem 6.2) and Favaro et al. (2023, Theorem 3.5), possibly leading to different
constants.

4 Results for deep Gaussian NNs

Now, we consider the use of the second-order Poincaré inequalities of Section 2 to obtain quantitative CLTs for the
output of a deep Gaussian NN, thus generalizing Theorem 3.2 and Theorem 3.3. In principle, for L ≥ 2 second-order
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Poincaré inequalities may be applied to the NN’s output f (L+1)(X, n) along the same lines as for L = 1, though
at the cost of more involved algebraic calculations. However, we show that for L ≥ 2 such a direct application of
second-order Poincaré inequalities is more problematic, leading to a worst rate of convergence than n−1/2, which is
expected from Basteri & Trevisan (2022), Apollonio et al. (2023) and Favaro et al. (2023). As for shallow NNs, the
use of second-order Poincaré inequalities rely on the computation of the gradient and the Hessian of the NN’s output,
which for L ≥ 2 is a non-trivial task due to its (algebraic) complexity that increases with the depth L. In particular,
let F := f (L+1)(X, n), with f (L+1)(X, n) as in (1). Since F is a function of i.i.d. Gaussian random weights, then
Theorem 2.3 can be applied to give an upper bound for the 1-Wasserstein distance between F and a Gaussian random
vector with the same covariance matrix. See Appendix E for explicit expressions of the gradient and the Hessian of
the NN output.
Theorem 4.1 (Multi-layer NN bound). Let F = [F1 . . . Fp] := f (L+1)(X, n) with f (L+1)(X, n) being the output of
the NN defined in (1), and let C be the covariance matrix of F . If N = [N1 · · · Np] ∼ N (0, C), then for any n ≥ 1
and L > 1

dW1 (F,N) ≤ 2√pλ1(C)
λp(C)

×


p∑

i,k=1

L−1∑
l,m=0

n∑
i1,i2,i3,i4=1

E

[(〈
∇2
w

(l)
i1,i2

,·
Fi,∇2

w
(m)
i3,i4

,·
Fk

〉)2
]
E

( ∂Fi

∂w
(l)
i1,i2

∂Fk

∂w
(m)
i3,i4

)2


1/2

+ 2
p∑

i,k=1

L−1∑
l=0

n∑
i1,i3,i4=1

E

[(〈
∇2
wi1 ,·

Fi,∇2
w

(l)
i3,i4

,·
Fk

〉)2
]
E

( ∂Fi
∂wi1

∂Fk

∂w
(l)
i3,i4

)2


1/2

+
p∑

i,k=1

n∑
i1,i3=1

{
E
[(〈
∇2
wi1 ,·

Fi,∇2
wi3 ,·

Fk

〉)2
]
E

[(
∂Fi
∂wi1

∂Fk
∂wi3

)2
]}1/2


1/2

.

The estimate of dW1 (F,N) in Theorem 4.1 is implicit in nature, because controlling the expectations involving the
gradient and the Hessian of the NN is a non-trivial task for a general depth L ≥ 2. This is a computational issue
arising from the use of second-order Poincaré inequalities for L ≥ 2. For example, in the case p = 1, with X = x,

E

[(
∂F

∂wi

∂F

∂wj

)2
]

=
(
σw√
n

)4
E
[
τ
(
f

(L)
i (x, n)

)2
τ
(
f

(L)
j (x, n)

)2
]
. (16)

As the random variables on the right-hand side of (16) are dependent, to deal with the expectation one may consider
to condition with respect to the output of the previous layer, in this case the vector f (L−1)

. (x, n) := (f (L−1)
j (x, n) :

j ∈ [n]), and then use the fact that f (L)
i (x, n) and f (L)

j (x, n) are conditionally i.i.d. given f (L−1)
. (x, n). Then, (16)

factorizes as

E

[(
∂F

∂wi

∂F

∂wj

)2
]

=
(
σw√
n

)4
E
[
τ
(
f

(L)
i (x, n)

)2
τ
(
f

(L)
j (x, n)

)2
]

=
(
σw√
n

)4
E
[
E
[
τ
(
f

(L)
i (x, n)

)2
τ
(
f

(L)
j (x, n)

)2
∣∣∣∣ f (L−1)
. (x, n)

]]
cond. i.i.d.=

(
σw√
n

)4
E

[
E
[
τ
(
f

(L)
i (x, n)

)2
∣∣∣∣ f (L−1)
. (x, n)

]2
]
,

which, however, is not helpful, since the distribution of the random variable f (L−1)
. (x, n) is not Gaussian. The only

exception is in the case of a NN with two hidden layers, i.e. L = 2, where the conditioning argument provides an
effective way to bound the expectations, being the random variable f (L−1)

. (x, n) = f (1)
. (x) distributed as a Gaussian

distribution.
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We conclude by applying the conditioning argument to make more explicit the estimate of dW1 (F,N) of Theorem 4.1
for L = 2. For simplicity, we assume a NN without bias. Given an input x ∈ Rd, the output F takes the functional
form

F = σwn
−1/2

n∑
i=1

wiτ

σwn−1/2
n∑
j=1

w
(1)
i,j τ(σw〈w(0)

j ,x〉Rd)

 . (17)

As before, F d= F̃ , where

F̃ := σwn
−1/2

n∑
i=1

wiτ

σwn−1/2
n∑
j=1

w
(1)
i,j τ(ΓYj)

 ,

with Γ2 = σ2
w‖x‖

2
2 and Yj

d= w
(1)
j,i

d= wj ∼ N (0, 1) for all i, j ∈ [n]. The next theorem applies Theorem 4.1 to
establish the rate of convergence for the output of the Gaussian NN with one input of dimension d and two hidden
layers.

Theorem 4.2 (2-hidden-layers NN bound). Let F be the NN output (17) with τ ∈ C2(R) such that |τ(x)| ≤ α+β|x|γ

and
∣∣∣ dl

dxl τ(x)
∣∣∣ ≤ α + β|x|γ for l = 1, 2 and some α, β, γ ≥ 0. If N ∼ N (0, σ2) with σ2 = Var[F ], then for any

n ≥ 1
dM (F,N) ≤ cM

K1
4
√
n
, (18)

whereK1 is a constant independent of n and d which depends on some expectations of the standard Gaussian law and
can be computed explicitly, and cM is as in Theorem 3.1.

Theorem 4.2 can be adapted to a NN with p inputs, in analogy to Theorem 3.3. The next theorem applies Theorem 4.1
to establish the rate of convergence for the output of the Gaussian NN with p inputs of dimension d and two hidden
layers.

Theorem 4.3. Let F = [F1 . . . Fp] with Fi being the NN output (17), for i = 1, . . . , p, with τ ∈ C2(R) such that

|τ(x)| ≤ α + β|x|γ and
∣∣∣ dl

dxl τ(x)
∣∣∣ ≤ α + β|x|γ for l = 1, 2 and some α, β, γ ≥ 0. Furthermore, let C be the

covariance matrix of F . If N = [N1 . . . Np] ∼ N (0, C), then for any n ≥ 1

dW1 (F,N) ≤ 2Kp
λ1(C)
λp(C)

√
p√
n

(19)

where λ1(C) and λp(C) are the maximum and the minimum eigenvalues ofC, respectively, and whereKp is a constant
independent of n and d which depends on some expectations of the standard Gaussian law and can be computed
explicitly.

See Appendix F for the proof of Theorem 4.2 and Theorem 4.3. These results show how the use of second-order
Poincaré inequalities leads to a worse rate of convergence than the rate n−1/2 established in Basteri & Trevisan (2022,
Theorem 1.1), Apollonio et al. (2023, Theorem 6.1 and Theorem 6.2) and Favaro et al. (2023, Theorem 3.3. and
Theorem 3.5). Differently from the works of Basteri & Trevisan (2022), Apollonio et al. (2023) and Favaro et al.
(2023), our approach does not rely on the use of triangular inequalities that exploit the recursive structure of the NN
and/or its infinitely wide Gaussian limit, since second-order Poincaré inequalities are designed to be applied directly
to f (L+1)(X, n), as a function of all the NN’s layers. This is arguably what determines the worsening in the rate of
convergence. For linearly-bounded activation functions, the direct use of second-order Gaussian Poincaré leads to the
rate

O
(√

p√
n

)
,

and such a rate can not be improved, since assuming τ = id leads to the same rate. See Appendix F for details. Based
on these observations, for a deep Gaussian NN of depth L ≥ 1, we conjecture that Theorem 4.1 leads to the rate of
convergence

O
(
L

√
p√
n

)
,
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which is worse than the rate of convergence established, for instance, in Basteri & Trevisan (2022, Theorem 1.1), that
is

O
(
L

√
p

n

)
.

As we proved for the activation function τ = id, there are no chances to avoid this worsening in the rate of convergence
when second order Poincaré inequalities are applied directly to the NN’s output in order to establish a quantitative CLT
for it.

5 Numerical illustrations

We present a simulation study with respect to two choices of the activation function τ : i) τ(x) = tanh x, which
is polynomially bounded with parameters α = 1 and β = 0; ii) τ(x) = x3, which is polynomially bounded with
parameters α = 6, β = 1 and γ = 3. Each of the plots below is obtained as follows: for a fixed width of n = k3, with
k ∈ {1, · · · , 16}, we simulate 5000 points from a single-layer NN as in Theorem 3.1 to produce an estimate of the
distance between the NN and a Gaussian random variable with mean 0 and variance σ2, which is estimated by means of
a Monte-Carlo approach. Estimates of the KS and TV distance are produced by means of the functions KolmogorovDist
and TotVarDist from the package distrEx by Ruckdeschel et al. (2006) while those of the 1-Wasserstein distance using
the function wasserstein1d from the package transport by Schuhmacher et al. (2022). We repeat this procedure 2000
times for every fixed n ∈ {3, 6, · · · , 51}, compute the sample mean (blue dots), and compare these estimates with the
theoretical explicit bound given by Theorem 3.1 (green dots), and with the implicit bound given by Theorem 4.1 (red
dots).

Figure 1: Estimates of the Kolmogorov-Smirnov distance for a Shallow NN of varying width n ∈ {3, 6, · · · , 51}, with
τ(x) = tanh x (left) and τ(x) = x3 (right).

All the figures confirm that the distance between a shallow NN and an arbitrary Gaussian random variable, with the
same mean and variance, is . n−1/2, with approximation errors improving as the width n → ∞. The evaluation of
the implicit bound of Theorem 4.1 results in much tighter estimate of the distance than what provided by the explicit
bound, which highlight the rate n−1/2 at the cost of having a looser constant. This is clear in the case τ(x) = x3,
where the polynomial envelope assumption leads to a much rougher bound to the one you may get computing the
derivatives explicitly.

6 Discussion

We applied second-order Poincaré inequalities to establish quantitative CLTs for the NN’s output f (L+1)(X, n), show-
ing their pros and cons in such a new field of application. For shallow Gaussian NNs, i.e. L = 1, Theorem 3.1,
Theorem 3.2 and Theorem 3.3 show how second-order Poincaré inequalities provide a powerful tool: they reduce
the problem of establishing quantitive CLTs to the algebraic problem of computing the gradient and the Hessian of
the NN’s output, which is straightforward for shallow NNs, and they lead to the rate of convergence n−1/2 in the

10
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Figure 2: Estimates of the Total Variation distance for a Shallow NN of varying width n ∈ {3, 6, · · · , 51}, with
τ(x) = tanh x (left) and τ(x) = x3 (right).

Figure 3: Estimates of the 1-Wasserstein distance for a Shallow NN of varying width n ∈ {3, 6, · · · , 51}, with
τ(x) = tanh x (left) and τ(x) = x3 (right).

1-Wasserstein distance. This is the same rate of convergence obtained in Basteri & Trevisan (2022), Apollonio et al.
(2023) and Favaro et al. (2023) by means of different techniques. Instead, for deep Gaussian NNs, i.e. L ≥ 2, the use
of second-order Poincaré inequalities is more problematic, leading to a worse rate of convergence than the rate n−1/2

obtained in Basteri & Trevisan (2022), Apollonio et al. (2023) and Favaro et al. (2023). By relying on exact computa-
tions of the gradient and the Hessian of the NN’s output, which is a non-trivial task due to its (algebraic) complexity
that increases with L, Theorem 4.2 and Theorem 4.3 show that for L = 2 second-order Poincaré inequalities still lead
to a quantitive CLT in the 1-Wasserstein distance, though with the rate of convergence n−1/4. Differently from the
works of Basteri & Trevisan (2022), Apollonio et al. (2023) and Favaro et al. (2023), our approach does not rely on
the use of triangular inequalities that exploit the recursive structure of the NN and/or its infinitely wide Gaussian limit,
since second-order Poincaré inequalities are designed to be applied directly to f (L+1)(X, n), as a function of all the
NN’s weights.

Related to the choice of the activation function τ , one may consider the problem of relaxing the hypothesis of polyno-
mially boundedness and use a whatever τ ∈ C2(R). Theorem 2.2 and Theorem 2.3 would still apply, with the only
difference that the bound would be less explicit than the one we found here. Furthermore, one could also consider
the problem of relaxing the C2(R) hypothesis to include C1(R) or just continuous activations, like the famous ReLU
function (i.e. ReLU(x) = max{0, x}) which is excluded from our analysis. Some results in this direction can be found
in Eldan et al. (2021), though using Rademacher weights for the hidden layer. In this regard, we try to derive a specific
bound for the ReLU function applying Theorem 2.2 to a sequence of smooth approximating functions and then passing
to the limit. In particular, we approximated the ReLU function with G(m,x) := m−1 log(1 + emx) for m ≥ 1 and

11
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applied Theorem 2.2 to a generic G(m,x) using the 1-Wasserstein distance and obtained a bound dependent on m.
Then, the idea would have been to take the limit of this bound for m → ∞ and hopefully obtain a non-trivial bound,
but that was not the case as the limit exploded. The same outcome is found using the SAU approximating sequence,
i.e.

H(m,x) := 1
m
√

2π
e−

1
2m

2x2
+ x

2 + x

2 erf
(
mx√

2

)
,

where erf (·) denotes the error function. This fact indicates the impossibility to apply the results of Vidotto (2020) in
the context of continuous activation functions as the ReLU function, and the necessity to come up with new results
on second-order Poincaré inequalities to fill this gap. These results would not be trivial after all, since Theorem A.2
needs each F1, . . . , Fd to be in D2,4, and so two degrees of smoothness are required. This is not “the fault” of Vidotto
(2020), but it is due to the intrinsic character of the equation f ′′(x)− xf ′(x) = h(x)− Eh(Z) with Z ∼ N (0, 1) in
dimension p ≥ 2.
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A Second-order Poincaré inequality for functionals of Gaussian fields

We present a brief overview of the main results of Vidotto (2020), of which Theorem 2.2 and Theorem 2.3 are special
cases for random variables in Rd. The main results of Vidotto (2020) improve on previous results of Nourdin et al.
(2009), and such an improvement is obtained by using the Mehler representation of the Ornstein–Uhlenbeck semi-
group, which was exploited in Last et al. (2016) to obtain second-order Poincaré inequalities for Poisson functionals.
According to the Mehler formula, if F ∈ L1, X ′ is an independent copy of a random variable X , with X and X ′

being defined on the product probability space (Ω× Ω′,F ⊗F ′,P× P′), and Pt is the infinitesimal generator of the
Ornstein–Uhlenbeck process then

PtF = E
[
f
(
e−tX +

√
1− e−2tX ′

)
| X
]
, t ≥ 0.

Before stating Vidotto (2020, Theorem 2.1), it is useful to introduce some notation and definitions from Gaussian
analysis and Malliavin calculus. We recall that an isonormal Gaussian process X = {X(h) : h ∈ H} over H =
L2(A,B(A), µ), where (A,B(A)) is a Polish space endowed with its Borel σ-field and µ is a positive, σ-finite and
non-atomic measure, is a centered Gaussian family defined on (Ω,F ,P) such that E[X(h)X(g)] = 〈g, h〉H for every
h, g ∈ H . We denote by L2(Ω;H) the set of H-valued random variables Y satisfying E[||Y ||2H ] < ∞. Furthermore,
if S denotes the set of random variables of the form

F = f (X (φ1) , . . . , X (φm)) ,

where f : Rm → R is a C∞-function such that f and its partial derivatives have at most polynomial growth at infinity,
and φi ∈ H , for i = 1, . . . ,m, the Malliavin derivative of F is the element of L2(Ω;H) defined by

DF =
m∑
i=1

∂f

∂xi
(X (φ1) , . . . , X (φm))φi.

Moreover, in analogy with DF , the second Malliavin derivative of F is the element of L2 (Ω;H�) defined by

D2F =
m∑

i,j=1

∂2f

∂xi∂xj
(X (φ1) , . . . , X (φm))φiφj ,

where H�2 is the second symmetric tensor power of H , so that H�2 = L2
s

(
A2,B

(
A2) , µ2) is the subspace of

L2 (A2,B
(
A2) , µ2)whose elements are a.e. symmetric. Let us also define the Sobolev spaces Dα,p, p ≥ 1, α = 1, 2,

which are defined as the closure of S with respect to the norms

‖F‖Dα,p =
(
E [|F |p] + E

[
‖DF‖pH + E

[∥∥D2F
∥∥p
H⊗2

]
1{α=2}

)1/p
.

In particular, the Sobolev space Dα,p is typically referred to as the domain of Dα in Lp(Ω). Finally, for every
1 ≤ m ≤ n, every r = 1, . . . ,m, every f ∈ L2 (Am,B (Am) , µm) and every g ∈ L2 (An,B (An) , µn), the r-th
contraction f ⊗r g : An+m−2r → R is defined to be the following function:

f ⊗r g (y1, . . . , yn+m−2r) =
∫
Ar
f (x1, . . . , xr, y1, . . . , ym−r)

× g (x1, . . . , xr, ym−r+1, . . . , ym+n−2r) dµ (x1) · · · dµ (xr) .

Now, we can state Vidotto (2020, Theorem 2.1), which provides a second-order Poincaré inequality for a suitable class
of functionals of Gaussian fields. For random variables in Rd, the next theorem reduces to Theorem 2.2.
Theorem A.1 (Vidotto (2020), Theorem 2.1). Let F ∈ D2,4 be such that E[F ] = 0 and E

[
F 2] = σ2, and let N ∼

N
(
0, σ2); then,

dM (F,N) ≤cM
(∫

A×A

{
E
[((

D2F ⊗1 D
2F
)

(x, y)
)2
]}1/2

×
{
E
[
(DF (x)DF (y))2]}1/2 dµ(x)dµ(y)

)1/2

where M ∈ {TV,KS,W1} and cTV = 4
σ2 , cKS = 2

σ2 , cW1 =
√

8
σ2π .
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The novelty of Theorem A.1 lies in the fact that the upper bound is directly computable, making the approach of
Vidotto (2020) very appealing for concrete applications of the Gaussian approximation. In particular, Theorem A.1
improves over previous results of Chatterjee (2009) and Nourdin et al. (2009). Now, we can state Vidotto (2020,
Theorem 2.3), which provides a generalization of Theorem A.1 to multidimensional functionals. For random variables
in Rd, the next theorem reduces to Theorem 2.3.

Theorem A.2 (Vidotto (2020), Theorem 2.3). Let F = [F1 . . . Fp], where, for each i = 1, . . . , p, Fi ∈ D2,4 is
such that E [Fi] = 0 and E [FiFj ] = cij , with C = {cij}i,j=1,...,p a symmetric and positive definite matrix. Let
N ∼ N (0, C), then we have that dW1(F,N) ≤ 2√p

∥∥C−1
∥∥
op
‖C‖op×√√√√ p∑

i,k=1

∫
A×A

{
E
[
((D2Fi ⊗1 D2Fi) (x, y))2

]}1/2 {
E
[
(DFk(x)DFk(y))2

]}1/2
dµ(x)dµ(y).

B Proof of Theorem 3.1

To apply Theorem 2.2, we start by computing some first and second order partial derivatives. That is,

∂F
∂wj

= n−1/2τ(w(0)
j )

∂F

∂w
(0)
j

= n−1/2wjτ
′(w(0)

j )

∇2
wj ,wiF = 0

∇2
wj ,w

(0)
i

F = n−1/2τ ′(w(0)
j )δij

∇2
w

(0)
j
,w

(0)
i

F = n−1/2wjτ
′′(w(0)

j )δij

with i, j = 1 . . . n. Then, by a direct application of Theorem 2.2, we obtain the following preliminary estimate

dM (F,N) ≤ cM

{
n∑
j=1

2

E

[(
〈∇2

wj ,·F,∇
2
w

(0)
j
,·
F 〉
)2
]
E

( ∂F

∂wj

∂F

∂w
(0)
j

)2


1/2

+
{
E
[(
〈∇2

wj ,·F,∇
2
wj ,·F 〉

)2
]
E

[(
∂F

∂wj

∂F

∂wj

)2
]}1/2

+

E

[(
〈∇2

w
(0)
j
,·
F,∇2

w
(0)
j
,·
F 〉
)2
]
E

( ∂F

∂w
(0)
j

∂F

∂w
(0)
j

)2


1/2}1/2

,

which can be further developed. In particular, we can write the right-hand side of the previous estimate as

cM

{ n∑
j=1

2
{
E

[(
1
n
wjτ

′
(
w

(0)
j

)
τ ′′
(
w

(0)
j

))2
]
E

[(
1
n
wjτ

(
w

(0)
j

)
τ ′
(
w

(0)
j

))2
]}1/2

+
{
E

[(
1√
n
τ ′
(
w

(0)
j

))4
]
E

[(
1√
n
τ
(
w

(0)
j

))4
]}1/2

+
{
E

[(
1
n

{
τ ′
(
w

(0)
j

)}2
+ 1
n
w2
j

{
τ ′′
(
w

(0)
j

)}2
)2
]
E

[(
1√
n
wjτ

′
(
w

(0)
j

))4
]}1/2}1/2
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(E[w2
j ]=1)
= cM

n

{ n∑
j=1

2
{
E
[(
τ ′
(
w

(0)
j

)
τ ′′
(
w

(0)
j

))2
]
E
[(
τ
(
w

(0)
j

)
τ ′
(
w

(0)
j

))2
]}1/2

+
{
E
[(
τ ′
(
w

(0)
j

))4
]
E
[(
τ
(
w

(0)
j

))4
]}1/2

+
{
E

[({
τ ′
(
w

(0)
j

)}2
+ w2

j

{
τ ′′
(
w

(0)
j

)}2
)2
]
E
[(
wjτ

′
(
w

(0)
j

))4
]}1/2}1/2

(iid)= cM√
n

{
2
{
E
[
(τ ′ (Z) τ ′′ (Z))2

]
E
[
(τ (Z) τ ′ (Z))2

]}1/2

+
{
E
[
(τ ′ (Z))4

]
E
[
(τ (Z))4

]}1/2

+
{
E
[(
{τ ′ (Z)}2 + w2

j {τ ′′ (Z)}2
)2
]
E
[
(wjτ ′ (Z))4

]}1/2}1/2

(iid)= cM√
n

{
2
{
E
[
(τ ′ (Z) τ ′′ (Z))2

]
E
[
(τ (Z) τ ′ (Z))2

]}1/2

+
{
E
[
(τ ′ (Z))4

]
E
[
(τ (Z))4

]}1/2

+
{
E
[(
{τ ′ (Z)}2 + w2

j {τ ′′ (Z)}2
)2
]
E
[
(wjτ ′ (Z))4

]}1/2}1/2

= cM√
n

{
2
{
E
[
(τ ′ (Z) τ ′′ (Z))2

]
E
[
(τ (Z) τ ′ (Z))2

]}1/2

+
{
E
[
(τ ′ (Z))4

]
E
[
(τ (Z))4

]}1/2

+
{(

E
[
{τ ′ (Z)}4

]
+ 2E

[
{τ ′ (Z)}2 {τ ′′ (Z)}2

]
+ 3E

[
{τ ′′ (Z)}4

])
3E
[
{τ ′ (Z)}4

]}1/2}1/2

= cM√
n

{
2
{
E
[
|τ ′ (Z) |2|τ ′′ (Z) |2

]
E
[
|τ (Z) |2|τ ′ (Z) |2

]}1/2

+
{
E
[
|τ ′ (Z) |4

]
E
[
|τ (Z) |4

]}1/2

+
{ (

E
[
|τ ′ (Z) |4

]
+ 2E

[
|τ ′ (Z) |2|τ ′′ (Z) |2

]
+ 3E

[
|τ ′′ (Z) |4

])
3E
[
|τ ′ (Z) |4

] }1/2
}1/2

,

where Z ∼ N (0, 1). Now, since τ is polynomially bounded and the square root is an increasing function,

dM (F,N) ≤ cM√
n

{
2
{
E
[
(α+ β|Z|γ)4]E [(α+ β|Z|γ)4]}1/2

+
{
E
[
(α+ β|Z|γ)4]E [(α+ β|Z|γ)4]}1/2

+
{

18E
[
(α+ β|Z|γ)4]E [(α+ β|Z|γ)4]}1/2

}1/2

= cM√
n

√
3
√

2 + 3
{
E
[
(α+ β|Z|γ)4]}1/2

= cM√
n

√
3(1 +

√
2)‖α+ β|Z|γ‖2

L4
,

where Z ∼ N (0, 1).
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C Proof of Theorem 3.2

As stated in the main body, we will make use of the fact that

F
d= F̃ := n−1/2σw

n∑
j=1

wjτ (Γ · Yj) + σb · b,

where Γ = σ2
w‖x‖

2 + σ2
b . First, it is easy to see that E[F ] = 0 and that

σ2 = Var[F ] = Var[F̃ ] = σ2
wEZ∼N (0,1)

[
τ2 (ΓZ)

]
+ σ2

b .

Then we have that dM (F,N) = dM (F̃ , N), where N ∼ N (0, σ2), hence it is enough to apply Theorem 2.2 to F̃ . To
this aim, we compute again the gradient and the Hessian of F̃ , noticing that the only difference with the Shallow case
lies in the presence of an extra factor σw in front of the sum, an extra factor of Γ inside the activation and the bias term
σ2
b b: 

∂F̃
∂b = σb

∂F̃
∂wj

= n−1/2σw · τ (ΓYj)

∂F̃
∂Yj

= n−1/2σwΓ · wj · τ ′ (ΓYj)

∇2
b,·F̃ = 0

∇2
wj ,wi F̃ = 0

∇2
wj ,Yi

F̃ = n−1/2σwΓ · τ ′ (ΓYj) δij

∇2
Yj ,Yi

F̃ = n−1/2σwΓ2 · wj · τ ′′ (ΓYj) δij
It is interesting to notice that since the row of the Hessian corresponding to the bias term b contains all zeros, then the
bound given by Theorem 2.2 is exactly the same as the one at the beginning of the proof of Theorem 3.1, with the only
difference that now the expectations depend also on Γ and σw. More precisely, we have that

dM (F,N) = dM
(
F̃ , N

)
≤

≤ cM

{
n∑
j=1

2
{
E
[(
〈∇2

wj ,·F̃ ,∇
2
Yj ,·F̃ 〉

)2
]
· E

[(
∂F̃

∂wj
· ∂F̃
∂Yj

)2]}1/2

+
{
E
[(
〈∇2

wj ,·F̃ ,∇
2
wj ,·F̃ 〉

)2
]
· E

[(
∂F̃

∂wj
· ∂F̃
∂wj

)2]}1/2

+
{
E
[(
〈∇2

Yj ,·F̃ ,∇
2
Yj ,·F̃ 〉

)2
]
· E

[(
∂F̃

∂Yj
· ∂F̃
∂Yj

)2]}1/2}1/2

= cM

{ n∑
j=1

2
{
E

[(
1
n
σ2
wΓ3wjτ

′ (ΓYj) τ ′′ (ΓYj)
)2
]
· E

[(
1
n
σ2
wΓwjτ (ΓYj) τ ′ (ΓYj)

)2
]}1/2

+
{
E

[(
1√
n
σwΓτ ′ (ΓYj)

)4
]
· E

[(
1√
n
σwτ (ΓYj)

)4
]}1/2

+
{
E

[(
1
n
σ2
wΓ2 {τ ′ (ΓYj)}

2 + 1
n
σ2
wΓ4w2

j {τ ′′ (ΓYj)}
2
)2
]
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× E

[(
1√
n
σwΓwjτ ′ (ΓYj)

)4
]}1/2}1/2

Ew2
j=1
= cM

n
σ2
w

{ n∑
j=1

2Γ4
{
E
[
(τ ′ (ΓYj) τ ′′ (ΓYj))

2
]
· E
[
(τ (ΓYj) τ ′ (ΓYj))

2
]}1/2

+Γ2
{
E
[
(τ ′ (ΓYj))

4
]
· E
[
(τ (ΓYj))4

]}1/2

+
{
E
[(

Γ2 {τ ′ (ΓYj)}
2 + Γ4w2

j {τ ′′ (ΓYj)}
2
)2
]
· E
[
(Γwjτ ′ (ΓYj))

4
]}1/2}1/2

iid= cM√
n
σ2
w

{
2Γ4

{
E
[
(τ ′ (ΓZ) τ ′′ (ΓZ))2

]
· E
[
(τ (ΓZ) τ ′ (ΓZ))2

]}1/2

+Γ2
{
E
[
(τ ′ (ΓZ))4

]
· E
[
(τ (ΓZ))4

]}1/2

+
{
E
[(

Γ2 {τ ′ (ΓZ)}2 + Γ4w2
j {τ ′′ (ΓZ)}2

)2
]
· E
[
(Γwjτ ′ (ΓZ))4

]}1/2}1/2

= cM√
n
σ2
w

{
2Γ4

{
E
[
(τ ′ (ΓZ) τ ′′ (ΓZ))2

]
· E
[
(τ (ΓZ) τ ′ (ΓZ))2

]}1/2

+Γ2
{
E
[
(τ ′ (ΓZ))4

]
· E
[
(τ (ΓZ))4

]}1/2

+
{(

Γ4E
[
{τ ′ (ΓZ)}4

]
+ 2Γ6E

[
{τ ′ (ΓZ)}2 {τ ′′ (ΓZ)}2

]
+ 3Γ8E

[
{τ ′′ (ΓZ)}4

])
×3Γ4 · E

[
{τ ′ (ΓZ)}4

]}1/2}1/2

= cM√
n
σ2
w

{
2Γ4 {E [|τ ′ (ΓZ) |2|τ ′′ (ΓZ) |2

]
· E
[
|τ (ΓZ) |2|τ ′ (ΓZ) |2

]}1/2

+Γ2 {E [|τ ′ (ΓZ) |4
]
· E
[
|τ (ΓZ) |4

]}1/2

+
{ (

Γ4E
[
|τ ′ (ΓZ) |4

]
+ 2Γ6 · E

[
|τ ′ (ΓZ) |2|τ ′′ (ΓZ) |2

]
+ 3Γ8 · E

[
|τ ′′ (ΓZ) |4

])
× 3Γ4 · E

[
|τ ′ (ΓZ) |4

] }1/2
}1/2

where Z ∼ N (0, 1). But since τ is polynomially bounded and the square root is an increasing function, we can bound
this expression by

cM√
n
σ2
w

{
2Γ4 {E [(α+ β|ΓZ|γ)4] · E [(α+ β|ΓZ|γ)4]}1/2

+Γ2 {E [(α+ β|ΓZ|γ)4] · E [(α+ β|ΓZ|γ)4]}1/2

+Γ4
{√

3(1 + 2Γ2 + 3Γ4) · E
[
(α+ β|ΓZ|γ)4] · E [(α+ β|ΓZ|γ)4]}1/2

}1/2

= cM√
n
σ2
w

√
Γ2 + Γ4(2 +

√
3(1 + 2Γ2 + 3Γ4)

{
E
[
(α+ β|ΓZ|γ)4]}1/2
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= cM√
n
σ2
w

√
Γ2 + Γ4(2 +

√
3(1 + 2Γ2 + 3Γ4) · ‖α+ β|ΓZ|γ‖2

L4 ,

where Z ∼ N (0, 1).

D Proof of Theorem 3.3

The proof is based on Theorem 2.3. Recall that

Fi := 1
n1/2σw

n∑
j=1

wjτ(σw〈w(0)
j ,xi〉+ σbb

(0)
j ) + σbb.

Since F1, . . . , Fp are functions of the iid standard normal random variables {wj , w(0)
jl , b

(0)
j , b : j = 1, . . . , n, l =

1, . . . , d}, then we can apply Theorem 2.3 to the random vector F = [F1 · · · Fp]. The upper bound in (8) depends
on the first and second derivatives of the Fi’s with respect to all their arguments. However, the derivatives with
respect to b give no contributions, since, for every i = 1, . . . , p, ∇2

b,·Fi is the zero vector. Moreover, the terms

wjτ(σw〈w(0)
j ,xi〉+ σbb

(0)
j ) are iid, across j, and give the same contribution to the upper bound. Hence, we can write

that

dW1(F,N) ≤ 2σ2
w

√
p

n

∥∥C−1∥∥
2‖C‖2

√√√√ p∑
i,k=1

Dik,

where

Dik =
∑
l,m

{
E
[(
〈∇2

l,·F̃i,∇2
m,·F̃i〉

)2]}1/2 {
E
[(
∇lF̃k∇mF̃k

)2]}1/2
,

where
[F̃1 . . . F̃p]

d= [wjτ(σw〈w(0)
j ,x1〉+ σbb

(0)
j ) . . . wjτ(σw〈w(0)

j ,xp〉+ σbb
(0)
j )],

and ∇l,∇m, ∇2
l,· and ∇2

m,· denote the derivatives with respect to all the arguments. We can represent F̃i as

F̃i = w · τ(Yi),

where Yi := 〈w̃(0), x̃i〉 =
∑d
s=1 w̃

(0)
s x̃is, with x̃i := [σwxTi , σb]T , w̃(0) := [w(0)T , b(0)]T , and

w, w̃
(0)
1 , . . . , w̃

(0)
d , b(0) iid standard normal random variables. The gradient and the Hessian of F̃ with respect to

the parameters w and w̃(0)
s are 

∂F̃i
∂w = τ(Yi)

∂F̃i
∂w

(0)
s

= wτ ′(Yi)x̃is

∇2
w,wF̃i = 0

∇2
w,w̃

(0)
s

F̃i = τ ′(Yi)x̃is

∇2
w̃

(0)
s ,w̃

(0)
t

F̃i = wτ
′′(Yi)x̃isx̃it.

This implies that

Dik =
{
E
[( d∑

s=1
∇2
w,w̃

(0)
s
F̃i · ∇2

w,w̃
(0)
s
F̃i

)2 ]}1/2{
E

[(
∂F̃k
∂w
· ∂F̃k
∂w

)2]}1/2
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+
d∑

j,j′=1

{
E
[(
∇2
w,w̃

(0)
j

F̃i · ∇2
w,w̃

(0)
j′
F̃i +

d∑
s=1
∇2
w̃

(0)
j
,w̃

(0)
s
F̃i · ∇2

w̃
(0)
j′
,w̃

(0)
s
F̃i

)2 ]}1/2

×

{
E

( ∂F̃k

∂w̃
(0)
j

· ∂F̃k
∂w̃

(0)
j′

)2
}1/2

+ 2
d∑
j=1

{
E
[( d∑

s=1
∇2
w,w̃

(0)
s
F̃i · ∇2

w̃
(0)
j
,w̃

(0)
s
F̃i

)2 ]}1/2{
E

(∂F̃k
∂w
· ∂F̃k
∂w̃

(0)
j

)2
}1/2

=
{
E
[( d∑

s=1
τ ′(Yi)2x̃2

is

)2 ]}1/2{
E
[
(τ(Yk))4

]}1/2

+
d∑

j,j′=1

{
E
[(

τ ′(Yi)2x̃ij x̃ij′ +
d∑
s=1

w2τ
′′
(Yi)2x̃ij x̃ij′ x̃

2
is

)2 ]}1/2{
E
[(
w2τ ′(Yk)2x̃kj x̃kj′

)2
]}1/2

+ 2
d∑
j=1

{
E
[( d∑

s=1
τ ′(Yi)x̃iswτ

′′
(Yi)x̃ij x̃is

)2 ]}1/2{
E
[
(τ(Yk)wτ ′(Yk)x̃kj)

2
]}1/2

= ||x̃i||2‖τ ′(Yi)‖
2
L4
‖τ(Yk)‖2

L4

+
d∑

j,j′=1
|x̃ij x̃ij′ |

{
E
[(
τ ′(Yi)2 + w2τ

′′
(Yi)2||x̃i||2

)2
]}1/2√

3|x̃kj x̃kj′ |‖τ ′(Yk)‖2
L4

+ 2
d∑
j=1
|x̃ij ||x̃kj |‖x̃i‖2

{
E
[(
τ ′(Yi)τ

′′
(Yi)

)2
]}1/2{

E
[(
τ(Yk)τ

′
(Yk)

)2
]}1/2

= ||x̃i||2‖τ ′(Yi)‖
2
L4
‖τ(Yk)‖2

L4
+

d∑
j,j′=1

√
3|x̃kj x̃kj′ ||x̃ij x̃ij′ |‖τ ′(Yk)‖2

L4

×

{
‖τ ′(Yi)‖

4
L4

+ 3‖x̃i‖4
∥∥∥τ ′′(Yi)∥∥∥4

L4
+ 2‖x̃i‖2

∥∥∥τ ′(Yi)τ ′′(Yi)∥∥∥2

L2

}1/2

+ 2
d∑
j=1
|x̃ij ||x̃kj |‖x̃i‖2

∥∥∥τ ′(Yi)τ ′′(Yi)∥∥∥
L2

∥∥∥τ(Yk)τ
′
(Yk)

∥∥∥
L2

= ||x̃i||2‖τ ′(Yi)‖
2
L4
‖τ(Yk)‖2

L4
+
√

3‖τ ′(Yk)‖2
L4

 d∑
j=1
|x̃ij x̃kj |

2

×

{
‖τ ′(Yi)‖

4
L4

+ 3‖x̃i‖4
∥∥∥τ ′′(Yi)∥∥∥4

L4
+ 2‖x̃i‖2

∥∥∥τ ′(Yi)τ ′′(Yi)∥∥∥2

L2

}1/2

+ 2‖x̃i‖2
∥∥∥τ ′(Yi)τ ′′(Yi)∥∥∥

L2

∥∥∥τ(Yk)τ
′
(Yk)

∥∥∥
L2

 d∑
j=1
|x̃ij ||x̃kj |


Holder ineq.
≤ ||x̃i||2‖τ ′(Yi)‖

2
L4
‖τ(Yk)‖2

L4
+
√

3‖τ ′(Yk)‖2
L4

 d∑
j=1
|x̃ij x̃kj |

2

×

{
‖τ ′(Yi)‖

4
L4

+ 3‖x̃i‖4
∥∥∥τ ′′(Yi)∥∥∥4

L4
+ 2‖x̃i‖2

∥∥∥τ ′(Yi)∥∥∥2

L4

∥∥∥τ ′′(Yi)∥∥∥2

L4

}1/2

21



Under review as submission to TMLR

+ 2‖x̃i‖2
∥∥∥τ ′(Yi)∥∥∥

L4

∥∥∥τ ′′(Yi)∥∥∥
L4
‖τ(Yk)‖L4

∥∥∥τ ′(Yk)
∥∥∥
L4

 d∑
j=1
|x̃ij ||x̃kj |


polynom. bounded

≤ ||x̃i||2‖α+ β|Yi|γ‖2
L4
‖α+ β|Yk|γ‖2

L4

+
√

3
{

(1 + 2‖x̃i‖2 + 3‖x̃i‖4)‖α+ β|Yi|γ‖4
L4

}1/2

‖α+ β|Yk|γ‖2
L4

 d∑
j=1
|x̃ij x̃kj |

2

+ 2‖x̃i‖2‖α+ β|Yi|γ‖2
L4
‖α+ β|Yk|γ‖2

L4

 d∑
j=1
|x̃ij x̃kj |


=
{
||x̃i||2 +

√
3(1 + 2‖x̃i‖2 + 3‖x̃i‖4)

 d∑
j=1
|x̃ij x̃kj |

2

+ 2‖x̃i‖2

 d∑
j=1
|x̃ij x̃kj |

}
× ‖α+ β|Yi|γ‖2

L4
‖α+ β|Yk|γ‖2

L4
.

Now, traducing everything back to the original variables {xi}i∈[d], we have that
∑d
j=1 |x̃ij ||x̃kj | = σ2

w

∑d
j=1 |xij ||xkj |+ σ2

b =: Γik

||x̃i||2 = σ2
w||xi||2 + σ2

b =: Γ2
i .

Hence,

Dik ≤ (Γ2
i +

√
3(1 + 2Γ2

i + 3Γ4
i )Γ

2
ik + 2Γ2

iΓik)‖α+ β|Yi|γ‖2
L4
‖α+ β|Yk|γ‖2

L4
,

with Y ∼ N (0, σ2
bXTX + σ2

b11T ). Summing over all possible i, k = 1, . . . , p and taking the square root leads to

dW1 (F,N) ≤ 2σ2
w

λ1(C)
λp(C)

√
p

n
K̃,

with

K̃ =
{ p∑
i,k=1

(Γ2
i +

√
3(1 + 2Γ2

i + 3Γ4
i )Γ

2
ik + 2Γ2

iΓik)‖α+ β|Yi|γ‖2
L4‖α+ β|Yk|γ‖2

L4

}1/2

=
{ p∑
i,k=1

(Γ2
i +

√
3(1 + 2Γ2

i + 3Γ4
i )Γ

2
ik + 2Γ2

iΓik)‖α+ β|ΓiZ|γ‖2
L4‖α+ β|ΓkZ|γ‖2

L4

}1/2
,

with Z ∼ N (0, 1), which concludes the proof.

E Gradient and Hessian for the output of a deep NN

The first step of the proofs of Theorem 4.2 and 4.3 is computing the gradient and the Hessian of F̃ .

E.1 L = 2

If L = 2, then

F̃ = σwn
−1/2

n∑
i=1

wiτ(f (2)
i (x, n)),
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where

f
(2)
i (x, n) = σwn

−1/2
n∑
j=1

w
(1)
i,j τ(f (1)

j (x)),

f
(1)
j (x) = ΓYj ,

with Γ2 = σ2
w||x||22. The partial derivatives are given by

∂F̃

∂wi
= σwn

−1/2τ
(
f

(2)
i (x, n)

)
∂F̃

∂w
(1)
i,j

=
(
σwn

−1/2
)2
wiτ

(
f

(1)
j (x)

)
τ
′
(
f

(2)
i (x, n)

)

∂F̃

∂Yj
= Γ

(
σwn

−1/2
)2
τ
′
(
f

(1)
j (x)

) n∑
a=1

waw
(1)
a,jτ

′
(
f (2)
a (x, n)

)


∇2
wi,wj F̃ = 0

∇2
wi,w

(1)
k,j

F̃ = δik
(
σwn

−1/2)2
τ
(
f

(1)
j (x)

)
τ
′
(
f

(2)
i (x, n)

)
∇2
wi,Yj

F̃ = Γ
(
σwn

−1/2)2
τ
′
(
f

(1)
j (x)

)
τ
′
(
f

(2)
i (x, n)

)
∇2
w

(1)
i,j
,w

(1)
k,h

F̃ = δik
(
σwn

−1/2)3
wiτ

(
f

(1)
j (x)

)
τ
(
f

(1)
h (x)

)
τ
′′
(
f

(2)
i (x, n)

)
∇2
w

(1)
i,j
,Yk
F̃ = Γ

(
σwn

−1/2)2
wiτ

′
(
f

(1)
k (x)

) [
Γσwn−1/2w

(1)
i,k τ

(
f

(1)
j (x)

)
τ
′′
(
f

(2)
i (x, n)

)
+ δjkτ

′
(
f

(2)
i (x, n)

)]
∇2
Yj ,Yk

F̃ =
(
Γσwn−1/2)2 [

σwn
−1/2τ

′
(
f

(1)
j (x)

)
τ
′
(
f

(1)
k (x)

)∑n
a=1 waw

(1)
a,jw

(1)
a,kτ

′′
(
f

(2)
a (x, n)

)
+

+δjkτ
′′
(
f

(1)
j (x)

)∑n
a=1 waw

(1)
a,jτ

′
(
f

(2)
a (x, n)

)]
,

and this for all i, j, k ∈ [n].

E.2 General L

In this section will compute the gradient and the hessian of the NN defined in (1) for a general L, not necessarily
L = 2 as in the previous one. Application of Theorem 4.1 requires computing the gradient and the hessian of
Fi = f (L+1)(xi), and it will be sufficient to use all the computations of this section with Fi in place of F , and xi in
place of x. To simplify the notation we write f (l)

i (x) := f
(l)
i (x, n) for every i and l.

It is useful to start by computing the following derivatives

∂F

∂f
(L)
iL

(x)
= σw√

n
wiLτ

′
(
f

(L)
iL

(x)
)

∂f
(l+1)
il+1

(x)

∂f
(l)
il

(x)
= σw√

n
w

(l)
il+1,il

τ
′
(
f

(l)
il

(x)
)
∀ l ∈ {1, . . . , L− 1}
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∂f
(l+1)
il+1

(x)

∂w
(l)
il,jl

= δil+1il

σw√
n
τ
(
f

(l)
jl

(x)
)
∀ l ∈ {1, . . . , L− 1}

∂f
(1)
i1

(x)
∂w

(0)
i0,j0

= δi1i0σwxj0 ,

which hold true for all iL, . . . , i0, jL, . . . , j1 = 1, . . . , n and j0 = 1, . . . , d.
Using the chain rule, it is easy but a little tedious to compute

∂F

∂wiL
= σw√

n
τ
(
f

(L)
iL

(x)
)

∂F

∂w
(L−1)
iL−1,jL−1

=
(
σw√
n

)2
wiL−1τ

′
(
f

(L)
iL−1

(x)
)
τ
(
f

(L−1)
jL−1

(x)
)

∂F

∂w
(L−2)
iL−2,jL−2

=
(
σw√
n

)3
τ
′
(
f

(L−1)
iL−2

(x)
)
τ
(
f

(L−2)
jL−2

(x)
) n∑
iL=1

wiLτ
′
(
f

(L)
iL

(x)
)
w

(L−1)
iL,iL−2

∂F

∂w
(l)
il,jl

=
(
σw√
n

)L−l+1
τ
′
(
f

(l+1)
il

(x)
)
τ
(
f

(l)
jl

(x)
)
×

×
n∑

iL,...,il+2=1
wiLτ

′
(
f

(L)
iL

(x)
)( L−1∏

s=l+2
w

(s)
is+1,is

τ
′
(
f

(s)
is

(x)
))

w
(l+1)
il+2,il

∂F

∂w
(0)
i0,j0

= σw

(
σw√
n

)L
τ
′
(
f

(1)
i0

(x)
)
xj0×

×
n∑

iL,...,i2=1
wiLτ

′
(
f

(L)
iL

(x)
)(L−1∏

s=2
w

(s)
is+1,is

τ
′
(
f

(s)
is

(x)
))

w
(1)
i2,i0

for all iL, . . . , i0, jL, . . . , j1 = 1, . . . , n, j0 = 1, . . . , d and l = 1, . . . , L− 3.

As for the Hessian, we have

∇2
wiL ,wjL

F = 0

∇2
wiL ,w

(L−1)
iL−1,jL−1

F = δiLiL−1

(
σw√
n

)2
τ
′
(
f

(L)
iL

(x)
)
τ
(
f

(L−1)
jL−1

(x)
)

∇2
wiL ,w

(L−2)
iL−2,jL−2

F =
(
σw√
n

)3
τ
′
(
f

(L)
iL

(x)
)
τ
′
(
f

(L−1)
iL−2

(x)
)
τ
(
f

(L−2)
jL−2

(x)
)
w

(L−1)
iL,iL−2

∇2
wiL ,w

(l)
il,jl

F =
(
σw√
n

)L−l+1
τ
′
(
f

(L)
iL

(x)
)
τ
′
(
f

(l+1)
il

(x)
)
τ
(
f

(l)
jl

(x)
)
×

×
n∑

iL−1,...,il+2=1

(
L−1∏
s=l+2

w
(s)
is+1,is

τ
′
(
f

(s)
is

(x)
))

w
(l+1)
il+2,il

∇2
wiL ,w

(0)
i0,j0

F = σw

(
σw√
n

)L
τ
′
(
f

(L)
iL

(x)
)
τ
′
(
f

(1)
i0

(x)
)
xj0×

×
n∑

iL−1,...,i2=1

(
L−1∏
s=2

w
(s)
is+1,is

τ
′
(
f

(s)
is

(x)
))

w
(1)
i2,i0
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As for two generic weights w(l)
il,jl

, w
(m)
jm,j̃m

for l ∈ {0, . . . , L− 1}, we have

∇2
w

(l)
il,jl

,w
(m)
jm,j̃m

F =
(
σw√
n

)L−l+1
∂

∂w
(m)
jm,j̃m

[
τ
′
(
f

(l+1)
il

(x)
)]
τ
(
f

(l)
jl

(x)
)
×

×
n∑

iL,...,il+2=1
wiLτ

′
(
f

(L)
iL

(x)
)( L−1∏

s=l+2
w

(s)
is+1,is

τ
′
(
f

(s)
is

(x)
))

w
(l+1)
il+2,il

+

+
(
σw√
n

)L−l+1
τ
′
(
f

(l+1)
il

(x)
) ∂

∂w
(m)
jm,j̃m

[
τ
(
f

(l)
jl

(x)
)]
×

×
n∑

iL,...,il+2=1
wiLτ

′
(
f

(L)
iL

(x)
)( L−1∏

s=l+2
w

(s)
is+1,is

τ
′
(
f

(s)
is

(x)
))

w
(l+1)
il+2,il

+

+
(
σw√
n

)L−l+1
τ
′
(
f

(l+1)
il

(x)
)
τ
(
f

(l)
jl

(x)
)
×

×

 n∑
iL,...,il+2=1

βiL,...,il+2

∂

∂w
(m)
jm,j̃m

αiL,...,il+2 + βiL,...,il+2

∂

∂w
(m)
jm,j̃m

αiL,...,il+2



where

αiL,...,il+2 :=
(
wiLw

(l+1)
il+2,il

L−1∏
s=l+2

w
(s)
is+1,is

)
and

βiL,...,il+2 :=
(
τ
′
(
f

(L)
iL

(x)
) L−1∏
s=l+2

τ
′
(
f

(s)
is

(x)
))

,

so that

∂

∂w
(m)
jm,j̃m

αiL,...,il+2 = δjm,im+1δj̃m,im1{m > l + 1}

wiLw(l+1)
il+2,il

w
(m)
jm,j̃m

L−1∏
s=l+2

w
(s)
is+1,is


+ δjm,il+2δj̃m,il1{m = l + 1}

(
wiL

L−1∏
s=l+2

w
(s)
is+1,is

)
,

∂

∂w
(m)
jm,j̃m

βiL,...,il+2 = βiL,...,il+2

L∑
s=l+2

1
τ ′
(
f

(s)
is

(x)
) ∂

∂w
(m)
jm,j̃m

τ
′
(
f

(s)
is

(x)
)
,

with

∂

∂w
(m)
im,jm

[
τ
′
(
f

(l+1)
il

(x)
)]

=



0 if m ≥ l + 1
σw√
n
δilimτ

′′
(
f

(l+1)
il

(x)
)
τ
(
f

(m)
jm

(x)
)

if m = l(
σw√
n

)2
τ
′′
(
f

(l+1)
il

(x)
)
τ
′
(
f

(m+1)
im

(x)
)
τ
(
f

(m)
jm

(x)
)
w

(m+1)
il,im

if m = l − 1(
σw√
n

)l−m+1
τ
′′
(
f

(l+1)
il

(x)
)
τ
′
(
f

(m+1)
im

(x)
)
τ
(
f

(m)
jm

(x)
)
×

×
n∑

kl,...,km+2=1
w

(l)
il,kl

τ
′
(
f

(l)
kl

(x)
)( l−1∏

s=m+2
w

(s)
ks+1,ks

τ
′
(
f

(s)
ks

(x)
))

w
(m+1)
km+2,im

if m < l − 1
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and

∂

∂w
(m)
im,jm

[
τ
(
f

(l)
jl

(x)
)]

=



0 if m ≥ l
σw√
n
δjlimτ

′
(
f

(l)
jl

(x)
)
τ
(
f

(m)
jm

(x)
)

if m = l − 1(
σw√
n

)2
τ
′
(
f

(l)
jl

(x)
)
τ
′
(
f

(m+1)
im

(x)
)
τ
(
f

(m)
jm

(x)
)
w

(m+1)
jl,im

if m = l − 2(
σw√
n

)l−m
τ
′
(
f

(l)
jl

(x)
)
τ
′
(
f

(m+1)
im

(x)
)
τ
(
f

(m)
jm

(x)
)
×

×
n∑

kl−1,...,km+2=1
w

(l−1)
jl,kl−1

τ
′
(
f

(l)
kl−1

(x)
)( l−2∏

s=m+2
w

(s)
ks+1,ks

τ
′
(
f

(s)
ks

(x)
))

w
(m+1)
km+2,im

if m < l − 2.

F Proof of Theorems 4.2 and Theorem 4.3

We will write a . b if there exists a universal constant C such that a ≤ Cb, and a � b if both a . b and b . a. Both
the proofs are essentially based on Theorem 4.1, adapted to the case L = 2, and p = 1 and p ≥ 2 respectively. As
outlined in the main body, after stating Theorem 4.1, the biggest problem one has to face lies in the fact that there is
not a straightforward way of controlling the expectations in the bound, since each node depends on the nodes of all
the previous layers in a very convoluted manner. Nonetheless, it is still possible to overcome this problem in this case
by conditioning on the previous hidden layer, since f (1)

· (x) is normally distributed. We will show how to do this for a
specific term in the bound, as for the others the same methodology can be applied. To simplify the notation, we will
write f (2)

i (x) := f
(2)
i (x, n).

Without loss of generality, we can assume γ > 1.

We will make use several times of the following generalized Bahr-Esseen inequalities (Dharmadhikari & Jogdeo,
1969): if X1, . . . , Xn are independent, zero mean random variables with finite r-th moment, for some r > 2, then

E

[∣∣∣∣∣
n∑
k=1

Xk

∣∣∣∣∣
r]
≤ cnr/2−1

n∑
k=1

E[|Xk|r]

where c > 0 is a constant that depends only on r.

First, notice that, for every r > 2, E[|f (1)
i (x)|r] is bounded by a constant that only depends on r and x. Moreover, for

every r > 0,

E
[
|τ(f (2)

i (x)|r | Y.
]
≤ E

[
(α+ β|f (2)

i (x)|)r | Y.
]

≤ 2r
(
αr + βrE[|f (2)

i (x)|r | Y.]
)

≤ 2rαr + 2rβrσrwn−r/2E

| n∑
j=1

w
(1)
i,j τ(f (1)

j (x))|r | Y.


≤ 2rαr + 2rβrσrwn−1

n∑
j=1

E
[
|w(1)
i,j τ(f (1)

j (x))|r | Y.
]

≤ 2rαr + 2rβrσrwE[|Z|r]n−1
n∑
j=1
|τ(f (1)

j (x))|r,

where Z ∼ N (0, 1) and we have used the generalized Bahr-Esseen inequality and the fact that the random variables
w

(1)
i,j τ(f (1)

j (x)) are conditionally independent, given Y., with zero conditional expectations. The same equations apply

to |τ ′(f (2)
i (x))|. It follows that, for every r > 0 there exists a cr not depending on n such that

max
(
E
[
|τ(f (2)

i (x)|r
]
,E
[
|τ ′(f (2)

i (x)|r
])
≤ cr.
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We will now show how to bound
∑n
i,j=1

{
E

[(
∂F

∂wi

∂F

∂wj

)2
]
E
[〈
∇2
wi,·F,∇

2
wj ,·F

〉2
]}1/2

from above. If i 6= j,

then

E

[(
∂F

∂wi

∂F

∂wj

)2
]

= (σwn−1/2)4E
[
E
[
τ2(f (2)

i (x))|Y.
]2
]
≤ σ4

wn
−2E

[
τ4(f (2)

i (x))
]
. n−2.

For i = j, we can write that

E

[(
∂F

∂wi

)4
]
≤ σ4

wn
−2E

[
τ4(f (2)

i (x))
]
. n−2.

Let us now turn to the expectation involving the Hessian. We have that〈
∇2
wi,·F,∇

2
wj ,·F

〉
=
(
σw√
n

)4
τ
′
(
f

(2)
i (x)

)
τ
′
(
f

(2)
j (x)

)(
δij

n∑
b=1

τ
(
f

(1)
b (x)

)2
+ Γ2

n∑
b=1

w
(1)
i,b w

(1)
j,b τ

′
(
f

(1)
b (x)

)2
)
,

so that 〈
∇2
wi,·F,∇

2
wj ,·F

〉2
≤
(
σw√
n

)8
τ
′
(
f

(2)
i (x)

)2
τ
′
(
f

(2)
j (x)

)2
×

×

2δij

(
n∑
b=1

τ
(
f

(1)
b (x)

)2
)2

+ 2Γ4

(
n∑
b=1

w
(1)
i,b w

(1)
j,b τ

′
(
f

(1)
b (x)

)2
)2


. n−4δijτ
′
(
f

(2)
i (x)

)2
τ
′
(
f

(2)
j (x)

)2
(

n∑
b=1

τ
(
f

(1)
b (x)

)2
)2

+ n−4τ
′
(
f

(2)
i (x)

)2
τ
′
(
f

(2)
j (x)

)2
(

n∑
b=1

w
(1)
i,b w

(1)
j,b τ

′
(
f

(1)
b (x)

)2
)2

.

We will bound the expectations of the two terms of the sum separately. For the first term we have

E

n−4δijτ
′
(
f

(2)
i (x)

)2
τ
′
(
f

(2)
j (x)

)2
(

n∑
b=1

τ
(
f

(1)
b (x)

)2
)2


≤ n−4δijE

( n∑
b=1

τ
(
f

(1)
b (x)

)2
)2

E
[
τ
′
(
f

(2)
i (x)

)2
|Y.
]2


≤ n−4δijE

( n∑
b=1

τ
(
f

(1)
b (x)

)2
)2

E
[
τ
′
(
f

(2)
i (x)

)4
|Y.
]

≤ n−4δij

E

( n∑
b=1

τ
(
f

(1)
b (x)

)2
)4
1/2(

E
[
τ
′
(
f

(2)
i (x)

)8
])1/2

. n−2δij ,

For the second term, we consider the cases i = j and i 6= j separately. For i = j we can write that

E

n−4δijτ
′
(
f

(2)
i (x)

)4
(

n∑
b=1

(w(1)
i,b )2τ

′
(
f

(1)
b (x)

)2
)2


≤ n−4δijc
1/2
8

E

( n∑
b=1

(w(1)
i,b )2τ

′
(
f

(1)
b (x)

)2
)4
1/2
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. δijn
−2.

On the other hand, for i 6= j we can write that

E

n−4τ
′
(
f

(2)
i (x)

)2
τ
′
(
f

(2)
j (x)

)2
(

n∑
b=1

w
(1)
i,b w

(1)
j,b τ

′
(
f

(1)
b (x)

)2
)2


≤ n−4
(
E
[
τ
′
(
f

(2)
i (x)

)4
τ
′
(
f

(2)
j (x)

)4
])1/2

E

( n∑
b=1

w
(1)
i,b w

(1)
j,b τ

′
(
f

(1)
b (x)

)2
)4
1/2

≤ n−4c
1/2
8

E

E
( n∑

b=1
w

(1)
i,b w

(1)
j,b τ

′
(
f

(1)
b (x)

)2
)4

| Y.

1/2

≤ n−4c
1/2
8

(
E

[
n

n∑
b=1

E
[
|w(1)
i,b w

(1)
j,b |

4|τ
′
(
f

(1)
b (x)

)
|8 | Y.

]])1/2

≤ n−4c
1/2
8

(
E

[
n

n∑
b=1
|τ
′
(
f

(1)
b (x)

)
|8E
[
|w(1)
i,b w

(1)
j,b |

4 | Y.
]])1/2

≤ n−4c
1/2
8 E

[
|Z|4

](
nE

[
n∑
b=1
|τ
′
(
f

(1)
b (x)

)
|8
])1/2

. n−3

Summarizing, we can write that

n∑
i,j=1

{
E

[(
∂F

∂wi

∂F

∂wj

)2
]
E
[〈
∇2
wi,·F,∇

2
wj ,·F

〉2
]}1/2

.
n∑

i,j=1
{n−2(δijn−2 + n−3)}1/2 . n−1/2.

The same rate can be found with analogous steps for all the other terms in the sum given by Theorem 4.1, and taking
the square root one more time gives the rate of n−1/4. The proof in the case of p output is essentially the same, apart
from the fact that we have an extra sum over p index, which leads to the rate O(

√
p/
√
n).

As stated in the main body, this rate is worse than the one in Basteri & Trevisan (2022), but in order to show that this
in not “our fault”, but it is due to the intrinsic behaviour of these Poincaré inequality in this setting, we will now show
that the same rate n−1/4 is obtained in the case τ = id, the identity function, which is arguably the nicest setting
possible. Indeed, if we consider the NN

F := n−1
n∑
i=1

n∑
j=1

wiw
(1)
i,j Yj ,

we can compute explicitly

E

[(
∂F

∂wi

∂F

∂wj

)2
]

and E
[〈
∇2
wi,·F,∇

2
wj ,·F

〉2
]
,

and see that they lead to the same suboptimal rate of n−1/4. As for the first term, we have

E

[(
∂F

∂wi

∂F

∂wj

)2
]

= n−2E
[
E
[
(f (2)
i (x))2|Y.

]2
]
,

28



Under review as submission to TMLR

and

E
[
(f (2)
i (x))2|Y.

]
= n−1E


 n∑
j=1

w
(1)
i,j Yj

2 ∣∣∣∣Y.
 = n−1E

 n∑
j,k=1

w
(1)
i,j w

(1)
i,kYjYk

∣∣∣∣Y.
 = n−1

n∑
j=1

Y 2
j ,

so that

E

[(
∂F

∂wi

∂F

∂wj

)2
]

= n−4E


 n∑
j=1

Y 2
j

2
 = n−4

n∑
j,k=1

E
[
Y 2
j Y

2
k

]
� n−2.

As for the second term,

E
[〈
∇2
wi,·F,∇

2
wj ,·F

〉]
� n−4δijE

( n∑
b=1

Y 2
b

)2
+ n−4E

( n∑
b=1

w
(1)
i,b w

(1)
j,b

)2


= n−4δij(2n+ n2) + n−4E

( n∑
b=1

w
(1)
i,b w

(1)
j,b

)2
 ,

since
∑n
b=1 Y

2
b ∼ χ2

n, and E[χ2
n] = n and Var[χ2

n] = 2n. Also,

E

( n∑
b=1

w
(1)
i,b w

(1)
j,b

)2
 = E

 n∑
a,b=1

w
(1)
i,b w

(1)
j,bw

(1)
i,aw

(1)
j,a

 =
n∑

a,b=1
E
[
w

(1)
i,b w

(1)
j,bw

(1)
i,aw

(1)
j,a

]

.
n∑

a,b=1
[δij + (1− δij)δab)] = n2δij + n(1− δij),

hence

E
[〈
∇2
wi,·F,∇

2
wj ,·F

〉2
]
. n−4 [δij(2n+ n2) + n2δij + n(1− δij)

]
. n−2δij + (1− δij)n−3.

Combining the two terms we get something of the order n−4δij + (1 − δij)n−5, and after taking the square root,
something like

√
n−4δij + (1− δij)n−5 . n−2δij + (1− δij)n−5/2. The same is true for all the others terms which

appear in the bound of Theorem 4.1, hence, summing over all i, j ∈ [n], gives a rate whose leading term is again of
the order n−1/4.
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