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ABSTRACT

Disentangled representation learning allows data to be mapped to a latent space
where factors of variation can be individually manipulated. These factors define
a direct notion of similarity between observations that naturally groups them into
clusters with shared factors of variation. While this has been empirically shown to
be effective on simple datasets, it is unclear how or when complex real-world data
can be disentangled into representations that allow the same degree of manipula-
tion and clustering. To advance the field of disentangled representation learning
and clustering, we provide a new theoretical perspective by equating disentangle-
ment with clustering by using factors of variation as a measure of element-wise
similarity. This leads to a simple yet important observation: Instead of explicitly
clustering the elements of a dataset, we can implicitly cluster them by learning to
represent and generate the elements of each cluster. Furthermore, this observation
reveals that implicit clusters have a lower bound because (I) explicit clusters are a
subset of implicit clusters, and (II) implicit clusters can generate novel elements
not present in the finite dataset through combinatorial generalization. Building
on these insights, we derive an implicit neural clustering approach based on iden-
tifying factors of variation in the latent space. We validate our findings through
experiments on synthetic image data and empirical evidence from related state-
of-the-art works. This demonstrates the practical relevance of our approach and
promising potential for synthesizing complete datasets from limited data, address-
ing data distribution gaps, improving interpretability in cluster analysis, enhancing
SSL and classification tasks, and reducing data storage space.

1 INTRODUCTION

Understanding and controlling the underlying factors of variation in data is central to disentangled
representation learning (Wang et al., 2022). Disentangled latent spaces not only group similar el-
ements naturally into clusters (Ding et al., 2022) but also allow precise data manipulation when
combined with a generator (Higgins et al., 2017). Recent advances in deep generative clustering
have shown the potential both to learn disentangled representations and cluster data apoints simulta-
neously, enabling the generation of high-quality synthetic data (Chen et al., 2016; Mukherjee et al.,
2019; Lee et al., 2020; Yu & Welch, 2021; Ding et al., 2022). These approaches move away from
traditional clustering algorithms, which rely on explicit partitioning based on learned or handcrafted
features, towards generative models that leverage disentangled representations. In this context, gen-
erative models for controllable image synthesis, such as GANs (Karras et al., 2020; Brock et al.,
2019) and Diffusion models (Rombach et al., 2022; Croitoru et al., 2023), now produce synthetic
images realistic enough to improve downstream tasks like classification (Azizi et al., 2023; Fan
et al., 2023) and can help self-supervised learning (SSL) methods learn better general purpose em-
beddings (Chai et al., 2021; Jahanian et al., 2021; Tian et al., 2024). While prior work on deep
generative clustering has focused primarily on improving clustering in the traditional sense, a more
implicit approach has the potential to synthesize full datasets and in turn fill gaps in data distri-
butions, improve cluster interpretability, reduce storage needs, or enhance SSL embeddings and
classification tasks. This leads to our main research question: What if instead of explicitly clustering
the elements of a dataset, we could represent and generate these clusters implicitly?
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To answer this question, we put forward a simple sampling method from a disentangled latent
space, which we call Implicit Neural Clustering. Rather than explicitly assigning data points to
clusters, we implicitly represent and generate the clusters with controllable factors of variation.

Figure 1: Latent traversals of factors of
variation changes cluster memberships.

With Implicit Neural Clustering, we can theoretically
equate clustering and generative models with disentan-
glement, which leads to an implicit neural perspective of
clustering. Previous work by Zhao et al. (2020); Ding
et al. (2022) has already pointed out that using factors of
variation as a measure of similarity will naturally group
data into clusters. We move a step further and stress that
clusters emerge naturally from controlling factors of vari-
ation in the latent space, i.e., control over a disentangled
semantic latent space inherently dictates cluster member-
ship (see Figure 1). This shift in perspective provides two key theoretical insights: (I) explicit
clusters are a subset of implicit clusters, and (II) implicit clusters have a lower bound, which is
given by the ability of an encoder to disentangle factors of variation and by the realism as well as
combinatorial generalization of a controllable generator.

Implicit Neural Clustering samples and modifies encoded disentangled representations of elements
in a dataset with atomic group actions to implicitly generate clusters. On top of the group-based
definition of disentangled representations by Higgins et al. (2018), we define an atomic group ac-
tion as a partition of a latent traversal direction. After an atomic group action modifies a latent
representation, a generator produces a data point reflecting this change while keeping other factors
unchanged. Using disentangling variational autoencoder (VAEs), we show that atomic group ac-
tions exist and can be identified using Kernel Density Estimation (KDE) as a partitioning algorithm
on each dimension of the disentangled representations of dataset elements separately. Furthermore,
probing for atomic group actions leads us to an effective and simple qualitative measure for disen-
tanglement, which is more informative than the commonly-used disentanglement visualization with
Hinton Matrices (Eastwood & Williams, 2018; Montero et al., 2022).

We conduct experiments with different unsupervised and semi-supervised VAE-based disentangled
representation learning methods in the well-known dSprites (Higgins et al., 2017), 3DShapes (Kim
& Mnih, 2018), and MPI3D real (Gondal et al., 2019) datasets. Our experiments show the validity
of our findings by showing that atomic group actions can be identified in disentangled models and
used to implicitly cluster datasets. This demonstrates that the potential of synthesizing a full dataset,
even from a limited or incomplete dataset, seems promising, which also may help increase the
interpretability of cluster analysis and reduce storage space.

The main contributions of this paper are: (i) We introduce Implicit Neural Clustering, a simple
sampling procedure that allows to implicitly cluster a dataset. (ii) Based on Implicit Neural Cluster-
ing, we provide a theoretical analysis of what happens when we equate clustering with disentangled
representation learning, which leads to the discovery of a lower bound to clustering. (iii) We provide
a practical implementation of Implicit Neural Clustering for disentangling VAEs and validate our ap-
proach through experiments on multiple datasets. (iv) We show an effective qualitative measure for
disentanglement, which is more informative than the commonly-used disentanglement visualization
with Hinton Matrices Eastwood & Williams (2018); Montero et al. (2022).

2 EQUATING CLUSTERING WITH DISENTANGLEMENT

Traditional explicit clustering is defined by a partition function Csim that partitions an input dataset
D, under an arbitrary notion of similarity sim, into k clusters. Csim either maps any x ∈ D to a
hard cluster assignment C : D → N (e.g., k-means) or soft cluster assignment C : D → Rk (e.g.,
maximum likelihood). Hard clustering can be defined as applying Csim on each x ∈ D, which
yields k disjoint subsets Dsim

k ⊆ D :

D =
⋃
k

Dsim
k =

⋃
k

{x | x ∈ D ∧ Csim(x) = k} (1)

with
⋃

k Dsim
k = D and

⋂
k Dsim

k = ∅. A different similarity sim′ ̸= sim formally defines any
arbitrary clustering different from sim overD, which is the basis for multi-partition clustering (Gal-
imberti & Soffritti, 2007). In the multi-partition clustering context, explicit clustering w.r.t. sim
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Figure 2: We visualize the difference between clustering in the traditional explicit sense and Implicit Neural
Clustering. Under different measures of similarity, explicit clustering can cluster the dataset correctly in three
different partitionings. However, since not all possible combinations between factors of variation are observed
in the data, certain combinations are not present in the final clusters because we only explicitly cluster the
real data. In contrast, Implicit Neural Clustering leads to implicit clusters that can also include novel cross-
combinations not observed in the dataset.

yields only one out of many possible clusterings of the data. For multi-partition clustering, sim can
be considered in two ways. One, where sim corresponds to clustering over different sub-dimensions
of the feature representation, leading to different clustering partitions (Zhang, 2004; Galimberti &
Soffritti, 2007; Vandewalle, 2020; Rodriguez-Sanchez et al., 2022; Falck et al., 2021; Willetts et al.,
2019; de Chaumaray & Vandewalle, 2023). Two, where based on representation learning, one could
train a different feature extractor for each possible sim.

2.1 DEFINITION OF DISENTANGLED REPRESENTATIONS

Implicit Neural Clustering builds on top of the established symmetry group-based definition for
disentangled representations by Higgins et al. (2018). We briefly introduce essential parts needed
from this definition. Let G be a symmetry group acting on a set of world states (ground truth factors
of variation) W , and let O be a set of observations (e.g., pixel space) and Z the internal agent
representation of W . A generative process b : W → O leads from world to observation states, and
an inference process h : O → Z leads from observation to an agent’s internal representation of W .
In this context, we have a dataset D = {o1, ..., oN} of observations oi ∈ O. We now define the
inference process h : O → Z, as a parameterized feature extractor 1 hφ : O → F with parameters
φ, which yields a disentangled representation F of any o ∈ D. Under the assumption that G can be
decomposed into a direct product G = G1 × ... × GM , the representation F is disentangled with
respect to G provided that the following conditions are satisfied. (i) There are group actions that act
on F , · : G×F → F , (ii) There is a mapping d : W → F , which is equivariant between the actions
of G on W and Z: g · d(w) = d(g ·w),∀g ∈ G,∀w ∈W , and (iii) F decomposes into its factors of
variation F = F1 × ...×FM so that any Fi is only affected by Gi and invariant to any Gj , ∀j ̸= i.
Finally, we assume to have access to a parameterized generator Gθ : F → O with parameters θ that
transforms samples from the disentangled representation space F to the observation space O.

2.2 FROM EXPLICIT TO IMPLICIT NEURAL CLUSTERING

In contrast to explicitly clustering a dataset D under various sim, Implicit Neural Clustering is de-
rived from a disentangled representationF ofD. As an initial intuition, if we assume that any o ∈ D
can be decomposed into its factors of variation, we can impose specific changes to any o ∈ D by
modifying the desired parts of the factor in the representation. Figure 2 provides an overview of
Implicit Neural Clustering with its main differences to explicit clustering. Following the definition
of implicit probabilistic models, Implicit Neural Clustering can be defined as a sampling procedure
from a disentangled latent space. Different from implicit models where a parameterized genera-
tor Gθ(·) (e.g., GAN) transforms samples from an analytic distribution (e.g., isotropic Gaussian)
to synthetic examples (Li & Malik, 2018), Implicit Neural Clustering transforms samples from a
disentangled distribution F into synthetic clusters.

More specifically, for each cluster Dsim
k , there exists an implicit cluster that can be obtained by

sampling from F while fixing one respective factor of variation Fi. Let G = G1 × ... × GM

1We change Z to F for notation and readability reasons.
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be the group actions that act on F , and let · : G × F → F be the action that changes F to the
respective factor Fi. Given that each factor of variation has of several atomic attributes Fik (e.g.,
the class labels of shape or color), we precisely define fixing a factor of variation as follows: Each Gi

consists of atomic partitions Gi = {Gi1, Gi2, ...} that can modify any z ∈ F and are parameterized
by a single value f ∈ R or a parameterized distribution P (f | Gik). We further define a function
Gik= that yields “true” if an atomic factor of variation Fik is present in z ∈ F .

When clustering with respect to a factor of variation Fi, let sim ≡ Fi, equating disentanglement
with clustering. Based on Equation 1 and the atomic partitions of a factor of variation, explicit
clustering CFi

splits D into |Gi| disjoint subsets. In the implicit case, together with the generator
Gθ and the feature extractor hφ, we can generate each cluster Dsim

k ≈ D′
if implicitly to generate a

synthetic version D′
i of the original dataset D.

D ≈ D′
i =

⋃
f∈Gi

D′
if =

⋃
f∈Gi

{Gθ(hφ(o)) | o ∈ D ∧
f
= (hφ(o))} (2)

We have thatD′
i implicitly modelsD with respect to a clustering under a factor of variationFi, under

the assumption that the encoder hφ is capable of disentangling and Gθ is capable of realistically
reconstructing the encoded elements. More specifically, hφ must disentangle any o ∈ D w.r.t. Fi,
so that sim ≡ Fi, and Gθ must recover an o′ from this representation so that o′ ≈ Gθ(hφ(o)).
To move beyond explicit clusters, we further assume the disentangled representation space F to be
composable, i.e., we can modify any z ∈ F by acting with the atomic group action Gif , which
changes cluster membership under factor Fi from any previous D′

il to D′
if , l ̸= f , or produce

a variation of any o ∈ D by acting with the atomic group action Gif of the same cluster on z.
Together with the compositionality assumption, Equation 2, the disentanglement assumption on hφ,
and the reconstruction assumption on Gθ, we derive Implicit Neural Clustering.

D <≈ D′
i =

⋃
f∈Gi

{Gθ(z) | z ∈ {·(f, z1), ..., ·(f, zK)} ∼ F} (3)

where (·) ∼ F denotes a sampling procedure for each factor of variation Fi and K denotes the
number of elements to be sampled. For Implicit Neural Clustering we fix a factor of variation Fi,
sample latent representations z ∈ F using the sampling procedure (·) ∼ F , take/sample a respective
group action2 f of an atomic factor of variation Fi, and modify each z accordingly with ·(f, z). Up
to the capabilities of the encoder hφ and generator Gθ, D <≈ D′

i emphasizes that the set D′
i,

obtainable from the outlined procedure, can at least implicitly represent the original dataset D as
a lower bound. The lower bound3 to Equation 3 is given by the reconstruction of the dataset in
Equation 2. Therefore, up to the capabilities of the encoder hφ and generator Gθ, Implicit Neural
Clustering is able to (a) generate a variety of realistic data by sampling arbitrary data compositions
and (b) synthesize novel examples in each cluster not observed in the dataset when Gθ is capable
of combinatorial generalization. Under the respective definition of disentangled representations in
Section 2.1 and Equations 1, 2, and 3, the resulting synthetic dataset D′

i is partitioned into disjoint
subsets w.r.t. a fixed factor of variation Fi ≡ sim. In this way, we define an implicit clustering
of D, where clustering is equated with disentanglement, and clusters are generated implicitly by a
generative model controllable by disentangled factors of variation.

Obtaining atomic group actions in disentangling VAEs. We provide a simple procedure to iden-
tify atomic group actions in the latent space of disentangling VAEs, which often encode factors of
variation in only one dimension l of the representation z = (z1, z2, ..., zd) ∈ Rd, d > M . To
obtain the atomic group actions, we first encode the full dataset and then partition each dimension
using kernel density estimation (KDE) at local minima of the resulting density estimates4. This
leads to density-based partitions, which naturally arise in the latent space of disentangling VAEs
and each partition is a parameterized probability distribution P (f |Gik) (e.g., uniform or normal),

2In practice, we would parameterize f with a probability distribution and sample the respective modification
for more variety, but a single value, like the mean over all possible values, would also work.

3Extending on this proof sketch, we provide a proof in Appendix A1
4Any partition algorithm could be used. KDE has the advantage over, e.g., k-means that we do not specify

the number of partitions in advance.
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which resembles a probability distribution over atomic group actions for Fik that we can sample
from. However, it is important to point out that these simple partitions are only meaningful when a
factor of variation is properly disentangled.

Sampling Procedure for Implicit Neural Clustering.

Given atomic group actions, the specific sampling procedure Implicit Neural Cluster-
ing is defined in lines 5-8 in Algorithm 1. First, we sample a random value from
the partition distribution f ∼ P (f |Gik). Next, we sample a random latent z ∈ F .

Input: Group actions Gi for factor of variation Fi,
Generator Gθ, number of samples K
Output: Implicit clustering D′ with respect to Fi

1 D′
i ← ∅

2 for k in 1..|Gi| do
3 Dik ← ∅
4 for 1..K do
5 f ∼ P (f |Gik)
6 z ∼ AS(F) or ¬AS(F)
7 z′ = ·(f, z) or MDA(f, z)
8 D′

ik ← D′
ik ∪ {Gθ(z

′)}
9 end

10 D′
i ← D′

i ∪D′
ik

11 end
Algorithm 1: Our sampling procedure

This process can be done in two
ways. (1) Sample only from the
found partitions (AS) or (2) sample
z from the set of all encoded data-
points hφ(D) (¬AS). Afterward, we
act with f on z, i.e., ·(f, z), which
modifies z accordingly. Acting can
also occur with multiple actions at the
same time (e.g., when a factor is dis-
entangled across two dimensions). In
the latter case, we denote ·() as Multi-
Dimensional Action (MDA). Finally,
the process in lines 5-8 is repeated
K times for each cluster Dik. Note
that it is straightforward to achieve an
implicit multi-partition clustering by
simply repeating Algorithm 1 with different Fi.

Identifying meaningful atomic group actions in disentangling VAEs. When ground truth factors
of variation are available, we can identify meaningful disentangled atomic group actions by com-
puting if they “uniquely” co-occur with known ground truth atomic factors of variation Fij . To this
end, we count the frequency of co-occurences between all extracted KDE partitions pta, a ∈ N
and atomic ground truth factors of variation Fij of each o ∈ D. This leads to matrix with the
factors of variation as rows and the partitions as columns. For each cell [(i, j), a] in row (i, j), we
divide the frequency freq(Fij , pta) by the sum over all frequencies of the row (i, j), which leads

to: [(i, j), a] =
freq(Fij , pta)∑
b freq(Fib, ptb)

. Using this method, we can visualize disentanglement in a qual-

itative manner as shown in Figure 3, where unique co-occurences between a partition and a factor
of variation show meaningful disentanglement.

To identify meaningful atomic group actions in the unsupervised case, where no information about
ground truth factors of variation is available, one can fall back (i) to a general-purpose zero-shot
classifier like CLIP (Radford et al., 2021) to predict if a factor of variation is consistently present
in batch of randomly modified images with the same KDE partition, or (ii) use general-purpose
embeddings from, e.g., DINOv2 (Oquab et al., 2023) to find a significant image similarity increase
when a batch of random images is modified with the same KDE partition.

3 EXPERIMENTAL EVALUATION

In this evaluation, we systematically increase the number of assumptions made on the encoder hφ

and generator Gφ that must be fulfilled for Implicit Neural Clustering to be valid. In the first set of
experiments, we evaluate Implicit Neural Clustering with the assumption A.H that an encoder hφ

disentangles the factors of variation in atomic partitions. In this setting, we propose an interpretable
procedure to quantify and assess qualitatively when A.H is satisfied. Furthermore, for cases where
A.H is satisfied, we quantitatively and qualitatively evaluate the quality of the generated implicit
clusters, showing that the assumptions made on the generator Gφ regarding realistic sample gener-
ation (A.G1) and compositionality of atomic partitions for controllable synthesis (A.G2) are valid.
Afterward, we evaluate the partition performance using KDE and compare it against traditional
clustering algorithms, empirically validating the lower bound to Implicit Neural Clustering. Fur-
thermore, we perform an ablation study on the sampling procedure regarding sampling type AS and
acting type MDA to show the impact of disentanglement on the overall performance. Finally, our

5
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Figure 4: Co-occurence plot between atomic factors of variation and the dimension-wise partitions
obtained with KDE.

last experiment discusses the validity, strengths, and limitations of Implicit Neural Clustering under
combinatorial generalization (assumption A.G3) of Gθ(·) in light of the results of existing works.

Experimental Setup. To show the validity and limitations of our concept, we consider
3DShapes (Kim & Mnih, 2018), MPI3D Real (Gondal et al., 2019), and dSprites (Higgins et al.,
2017), which are widely adopted datasets for disentangled representation learning. Specifically,
we evaluate learning disentangled representations in an unsupervised setting with β-TCVAE (Chen
et al., 2018), and in a weakly-supervised setting with ADA-GVAE (Locatello et al., 2020) and the
architecture of (Montero et al., 2020; 2022), which we refer to by Comp-WAE. We use these models
as a means to show the validity of our concept due their strong disentanglement performance w.r.t.
the DCI disentanglement metric (Eastwood & Williams, 2018) and their shown compositionality ca-
pabilities. The DCI disentanglement metric measures the degree of capturing at most one generative
factor for each latent variable. In all experiments5, all models are trained from scratch on a single
46GB RTX A6000.

E0 w/ A.H: Qualitatively probing the applicability of Implicit Neural Clustering.

Figure 3: Comparing a Hinton Matrix against atomic
group actions. Atomic group actions in VAEs are well
disentangled and can be used to control the generation.

We propose a simple but effective qualitative
evaluation procedure for our very strict disen-
tanglement requirement into atomic partitions.
As presented in Figure 3, we propose a visu-
alization scheme that is more informative than
Hinton Matrices eastwood2018framework,
montero2022lost). Compared to a Hinton
Matrix (left), our method provides much more
details on disentanglement without the need for
a classifier, which makes it a complementary
visualization tool to Hinton Matrices and
DCI (proposed in (Eastwood & Williams,
2018)) for assessing disentanglement. Figure 4
compares several unsupervised models with
weakly-supervised approaches under DCI and shows the corresponding qualitative co-occurrence
plot between found atomic partitions and ground truth factors of variation. We find overall that we
are always able to consistently generate the implicit clusters based on factors of variation that can
be seen in Figure 4 as clean and unique partitions. Furthermore, a lower DCI score indicates worse
disentanglement that correlates with our qualitative measure.

5Code, models, and all details to reproduce our experiments will be publicly available upon acceptance.
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Table 1: Quality of generated samples in different datasets with different models.

F1 Macro (↑)
Dataset Approach DCI F1 F2 F3 F4 F5 F6 F7

dSprites CompWAE 0.999 0.422 0.945 0.118 0.619 0.698 - -
Oracle - 0.99 0.99 0.92 0.65 0.70 - -

3DShapes ADA-GVAE 0.99 0.73 0.64 0.46 0.95 0.96 0.98 -
Oracle - 1.0 1.0 1.0 1.0 1.0 1.0 -

MPI3D CompWAE 0.99 1.0 0.49 0.98 1.0 1.0 0.28 0.85
Oracle - 1.0 0.98 0.99 1.0 1.0 0.90 0.99

Figure 5: Exemplary Implicit Neural Clustering of 3DShapes. Each row represents random samples
for some atomic factor of variation. Each row is the result of applying atomic group actions we
extracted from the disentangled representation space to random samples.

From experiment E0, we find that unsupervised methods do not satisfy the necessary disentangle-
ment requirement for our theoretical assumptions. For this reason, the remaining experiments of
this section are performed only with weakly-supervised approaches, showing the validity of our
theoretical findings.

E1 w/ A.H , A.G1, A.G2: Quantifying Realism of the Generated Samples. To evaluate the
quality of the generated samples, we train a CNN as an oracle on the images of the real dataset to
predict which factor of variation is present in each image. For each Fi, we (1) split the dataset into
training and test sets (random 0.8/0.2), (2) train on the training split of the real data for 15 epochs
to predict Fi, (3) generate an Implicit Neural Clustering of the dataset w.r.t. a factor of variation
Fi with 10,000 samples for each atomic factor, and (4) evaluate the classifier on the real test split
as well as on the synthetically generated dataset. In step (3), we run the sampling procedure from
Algorithm 1 with MDA and ¬AS as components. We found this combination to perform the
best (see ablation study in Experiment E4). The results are shown in Table 1, where we report the
macro F1 score over all atomic factors of eachFi. For very low scores, some implicit clusters can be
generated well while others fail (full confusion matrices are provided in the supplementary material).
We notice that MPI3D and Shapes3D can be implicitly clustered much better than dSprites. To
summarize, most of the generated samples can be predicted accurately compared to the real data,
showing that the generated samples are (1) realistic because there is only small drop in performance
on the oracle performance, and (2) can be synthesized by acting with the atomic partitions, showing
the assumption of compositionality is fulfilled. The quantitative results relate to the qualitative
evaluation procedure in Figure 4, in which the factors of variation that are “atomically” disentangled
provide the highest F1 scores. Analogously, the factors that do not have unique co-occurences with
atomic partitions or that span multiple dimensions exhibit lower quality in the generated samples.

E2 w/ A.H , A.G1, A.G2: Qualitative Evaluation of Implicit Neural Clustering. Figure 5 shows
three coherent synthetic multi-partition clusters of 3DShapes with respect to shape, color, and size
that we have implicitly clustered with our concept. We obtained these results by applying to random
samples the atomic group actions that we were able to extract from the disentangled representations
of the underlying dataset. In Figure 6 we present the modifications of arbitrary samples based on
the atomic group actions, which demonstrates that randomly generated samples can be modified
to the desired atomic factor the variation. It is relevant to note that although we are able to find
atomic group actions for all ground truth labels, not all of them are invariant to the other factors
of variation, which demonstrates a limitation in the disentanglement for some factors of variation.
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Figure 6: For random generated samples, atomic group actions specifically modify a certain factor
of variation, e.g., change the object shape, color, or size. Exemplary demonstration in 3DShapes.

Table 2: Comparing partitioning performance of KDE against k-Means and GMM.

ACC,NMI (↑) F4 F5 F6

k-means (requires number of partitions) 0.87 0.92 0.75 0.80 1.0 1.0
GMM (requires number of partitions) 0.87 0.92 0.75 0.82 0.99 0.99

KDE (non-parametric) 0.99 0.97 1.0 1.0 0.99 0.99

In the supplementary material, we provide the full implicit clusters for all three datasets and latent
traversals with atomic group actions for MPI3D and 3DShapes.

E3: On Clustering Performance and the Lower Bound. Using the 3DShapes and the best-
performing factors from Table 1, we compare KDE against k-means and a Gaussian Mixture Model
(GMM) to show its effectiveness in partitioning atomic group actions in each dimension. At the
same time, this experiment allows to evaluate the clustering performance and empirically validate
the lower bound to clustering given by Equation 2. When a factor of variation is used as the measure
of similarity, then under a high degree of disentanglement, implicit clusters are equivalent to explicit
clustering. We set the number of clusters in k-means and GMM to the ground truth number of atomic
factors corresponding to each dimension, which we identify with our qualitative co-occurrence dis-
entanglement measure. KDE does not require any number of clusters as a parameter. We use the
commonly used Purity (ACC) and Normalized Mutual Information (NMI) as metrics. The results
are shown in Table 2, where we can see that using KDE to partition a dimension outperforms both
k-Means and GMM in all factors. In addition, another advantage of using our KDE approach is
that it is non-paramatric, i.e., does not require specifying the number of clusters in advance. To-
gether with the realism of generated samples in Table 1, the implicit clusters in Figure 5, and the
partitioning performance in Table 2, it becomes evident that we can implicitly cluster a dataset by
controllable atomic factors of variation. That is, because (i) implicit clusters in 2 are equivalent to
explicit clustering due to reconstruction (Equation 2), and (ii) randomly generated samples for each
cluster always include the factor of variation (Equation 3). These results empirically show the lower
bound for clustering.

E4: Ablation Study, Sampling Procedure. We test two different kinds of sampling strategies using
the 3DShapes dataset. First, sampling only from the atomic partitions (AS) or using random samples
from the encoded dataset (¬AS). Second, acting with multi-dimensional group actions (MDA) or
only acting with a single group action (¬ MDA). Table 3 shows the results for each combination.
We can see that ¬AS together with MDA lead to the best results. It is expected for AS to exhibit
low performance, since not all factors factors of variation are perfectly disentangled. Given the
qualitative disentanglement results, it is also expected that MDA should perform better, since some
factors are disentangled across multiple dimensions while still being unique combinations. This
result highlights that compositionality can even apply to the tested models when atomic actions
span multiple dimensions at the same time.

Note on our Results and Combinatorial Generalization (w/ A.H , A.G1, A.G2, A.G3). Among
other works, Montero et al. (Montero et al., 2022) have shown that combinatorial generalization
can be achieved in some special cases with learned disentangled representations. Despite these
special cases, there is no theoretical guarantee that proper disentanglement leads to combinatorial
generalization or that these special cases will transfer across different kinds of models. Dividing
the problem in two, i.e., disentangling first, and training a separate generator on the disentangled
representations afterwards potentially leads to better results. Building on the theory of our concept
and the empirical results of our experiments, we can straightforwardly apply our concept in a setting
where Gθ has learned combinatorial generalization (A.G3). In this setting, our experiments close
the loop in the conceptual illustration of our concept in Figure 2, where Gθ will “fill-in-the-blanks”
by synthesizing cross-combinations between factors of variation not seen in the dataset. In the same
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Table 3: Ablation study regarding the impact of sampling procedure on the performance of the
generated implicit clusters. We evaluate predicting the factor of variation using classifiers trained on
the real data in all generated implicit clusters.

F1 Macro (↑)
w/ AS w/ MDA F1 F2 F3 F4 F5 F6

0.43 0.39 0.52 0.88 0.98 0.98√
0.73 0.64 0.46 0.95 0.96 0.98√
0.36 0.44 0.20 0.74 0.91 0.81√ √
0.68 0.56 0.38 0.74 0.95 0.79

Ground Truth D 1.0 1.0 1.0 1.0 1.0 1.0

context, our concept can be applied to any kind of models trained on ground truth factors of varia-
tion that have learned combinatorial generalization (e.g., with conditional or composable diffusion
models (Okawa et al., 2024; Liu et al., 2022)) to implicitly cluster the data. Further experiments to
validate the aforementioned claims are provided in Appendix C and Appendix D. However, even in
this relaxed setting, where the ground truth factors of variation are known in advance (which resem-
bles an optimal encoder h∗), there is still no theoretical guarantee for combinatorial generalization
in Gθ, when trained on the factors of variation obtained by an optimal encoder h∗. Therefore, in line
with many previous works (e.g., (Montero et al., 2020; 2022; Okawa et al., 2024; Wiedemer et al.,
2024b), it is important to emphasize that disentanglement and compositionality does not imply com-
binatorial generalization. We stress that our concept is constrained by the current limitations faced
by the field in relation to combinatorial generalization.

4 DISCUSSION

Our experiments show that Implicit Neural Clustering has a lower bound and is particularly lim-
ited by the assumptions on hφ regarding disentanglement (A.H), and Gθ(·) regarding realism of
synthetic samples (A.G1), compositionality (A.G2), and combinatorial generalization (A.G3). Es-
pecially for disentanglement, we notice a huge gap between unsupervised and weakly-supervised
approaches. While combinatorial generalization is feasible in relaxed synthetic settings and to some
extent in real-world data (Wiedemer et al., 2024a; Montero et al., 2022; Okawa et al., 2024), effec-
tive methods for learning disentangled representations and achieving combinatorial generalization
from complex real-world data remain elusive. In real-world tasks, general-purpose embeddings
learned through SSL methods like SimCLR (Chen et al., 2020) or DINOv2 (Caron et al., 2021;
Oquab et al., 2023) can learn effective representations that disentangle real-world data to limited
extent. Empirical evidence of disentanglement in SSL representations, as shown by Bordes et al.
(2022), demonstrates that training a generator on SSL features allows for concept swapping in rep-
resentations, producing samples that reflect these changes. While our approach naturally extends
to SSL representations and would make it applicable to datasets like CIFAR-10 (Krizhevsky et al.,
2009) or ImageNet (Deng et al., 2009), atomic group actions do not exist in the simple form as in
disentangling VAEs. New methods to identify potential subspaces in these representations may lead
to new insights. A different way to apply our method on real-world data would be through finding
a way that effectively partitions the interpretable directions learned by latent navigators from GANs
(e.g., (Voynov & Babenko, 2020; Georgopoulos et al., 2022)), or Diffusion Models (e.g., (Yang
et al., 2023)). Finally, it is easy to see that our sampling procedure can be easily applied to gen-
erative models trained on ground truth factors of variation to synthesize datasets. We point to an
important closely related work by (Okawa et al., 2024), where a conditional diffusion model is
trained on ground truth factors of variation and combinatorial generalization is achieved. In this
context, our work provides valuable insights on a research question by Jahanian et al. (2021): “If we
have good enough generative models, do we still need datasets?” With Implicit Neural Clustering,
we can potentially generate any realistic synthetic variations of a dataset with a corresponding class
label, fill gaps in its distribution, and it can be a basis to replace datasets in order to save valuable cost
for storage and acquisition of data. Applications of Implicit Neural Clustering are not only limited
to datasets of images but can also be applied to completely different kinds of data, such as natural
language, videos, or time series. Negative societal impact can occur when a model can achieve com-
binatorial generalization under “full” disentanglement for, e.g, DeepFakes in the imaging or video
domain.
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5 RELATED WORK

Existing related works on disentangled representation learning, deep generative clustering, and con-
trollable image generation have shown the following points. (i) Factors of variation are embedded in
single (e.g., (Locatello et al., 2019; 2020; Wang et al., 2022)) or multiple dimensions (e.g., (Bordes
et al., 2022; Falck et al., 2021)) of a disentangled latent space, which can be learned with disen-
tangled representation learning approaches that are unsupervised (e.g., VAE-based (Higgins et al.,
2017; Kim & Mnih, 2018; Locatello et al., 2019; Falck et al., 2021), from pre-trained generative
models (Ren et al., 2022; Yang et al., 2023), deep-clustering (Mukherjee et al., 2019; Lee et al.,
2020; Yu & Welch, 2021; Ding et al., 2022; Zhao et al., 2020)), or (weakly) supervised (e.g., (Hris-
tov et al., 2018; Locatello et al., 2020; Montero et al., 2020; 2022; Wang et al., 2022)), (ii) Deep
generative clustering approaches (e.g., (Mukherjee et al., 2019; Lee et al., 2020; Yu & Welch, 2021;
Ding et al., 2022)) can simultaneously learn a disentangled latent space, cluster assignments, and
allows controllable generation of elements for each cluster with disentanglement. (iii) Learned dis-
entangled representations are often composable and can be used to control the factors of variation
in images using latent traversal or the recombination/swapping of different latent dimensions be-
tween images (e.g., (Bordes et al., 2022; Wang et al., 2022; Falck et al., 2021; Montero et al., 2020;
2022)). (iv) Both generative and disentangled representation learning models can learn combinato-
rial generalization in rare synthetic and real-word settings (e.g., (Okawa et al., 2024; Montero et al.,
2020; 2022; Wiedemer et al., 2024b)), which allows to synthesize novel cross-combinations be-
tween factors of variation not observed in the data. (v) Depending on the degree of disentanglement,
meaningful directions to traverse a disentangled latent space to control images can be straightfor-
ward one-dimensional and linear (e.g., (Higgins et al., 2017; 2018)), or non-linear multi-dimensional
traversals can be learned from disentangled latent spaces in VAEs (e.g., (Ren et al., 2022; Yang et al.,
2023)), GANs (e.g., (Voynov & Babenko, 2020; Georgopoulos et al., 2022)), or Diffusion Models
(e.g., (Yang et al., 2023)) in the form of a navigator.

Based on the points above, existing methods can already effectively control and sample data for
implicit cluster generation. However, they primarily focus on improving clustering performance,
disentanglement performance, controllable generation, realism, or combinatorial generalization in
isolation. Instead of treating these problems individually, with Implicit Neural Clustering, our work
takes a new unified perspective by equating disentanglement with clustering and generative models.
This reveals that existing methods are inherently limited by a clustering lower bound, given by
disentanglement capabilities, realism of generated samples, and combinatorial generalization.

6 CONCLUSION

In this paper, we present Implicit Neural Clustering, a sampling method for generating clusters im-
plicitly through disentangled representations. Through theoretical analysis and empirical validation,
we show that equating disentangled representation learning with clustering and generative mod-
els reveals that this method has lower bound, governed by the degree of disentanglement, realism
of generated samples, and combinatorial generalization in generative models. This lower bound
of Implicit Neural Clustering highlights strong potential for relevant future applications, such as
implicitly generating clusters driven by factors of variation in real datasets, synthesizing complete
datasets from limited data, improving interpretability in cluster analysis, enhancing SSL and clas-
sification tasks, and reducing data storage needs. At last, in line with many prior works, we also
underscore the importance of focusing on combinatorial generalization in future research.
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REPRODUCIBILITY STATEMENT

We commit to ensuring the reproducibility of our work as follows:

• All of our implementations, trained model checkpoints, hyperparameters, and all necessary
details to reproduce our empirical and qualitative results will be publicly available upon
acceptance.

• The source code of models by related work and the datasets used in this work are all pub-
licly available.

• The hardware setup used for our experiments (46GB NVIDIA RTX A6000 GPU) is de-
scribed.
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Thaddäus Wiedemer, Prasanna Mayilvahanan, Matthias Bethge, and Wieland Brendel. Composi-
tional generalization from first principles. Advances in Neural Information Processing Systems,
36, 2024b.

Matthew Willetts, Stephen Roberts, and Chris Holmes. Disentangling to cluster: Gaussian mixture
variational ladder autoencoders. arXiv preprint arXiv:1909.11501, 2019.

Tao Yang, Yuwang Wang, Yan Lu, and Nanning Zheng. Disdiff: Unsupervised disentanglement of
diffusion probabilistic models. In Thirty-seventh Conference on Neural Information Processing
Systems, 2023. URL https://openreview.net/forum?id=3ofe0lpwQP.

Hengshi Yu and Joshua D Welch. Michigan: sampling from disentangled representations of single-
cell data using generative adversarial networks. Genome biology, 22(1):158, 2021.

Nevin L Zhang. Hierarchical latent class models for cluster analysis. The Journal of Machine
Learning Research, 5:697–723, 2004.

Junjie Zhao, Donghuan Lu, Kai Ma, Yu Zhang, and Yefeng Zheng. Deep image clustering with
category-style representation. In Computer Vision–ECCV 2020: 16th European Conference,
Glasgow, UK, August 23–28, 2020, Proceedings, Part XIV 16, pp. 54–70. Springer, 2020.

Bolei Zhou, Xiaogang Wang, and Xiaoou Tang. Understanding collective crowd behaviors: Learn-
ing a mixture model of dynamic pedestrian-agents. In 2012 IEEE Conference on Computer Vision
and Pattern Recognition, pp. 2871–2878. IEEE, 2012.

14

https://openreview.net/forum?id=7VPTUWkiDQ
https://openreview.net/forum?id=7VPTUWkiDQ
https://openreview.net/forum?id=3ofe0lpwQP


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

APPENDICES

A PROOF FOR LOWER BOUND

We now provide a proof that Equation 2 is a lower bound for implicit clustering, which is given by
explicit clustering.

Proof. Suppose we cluster D by sim, then we obtain k disjoint subsets of D (Equation 1). When
sim ≡ Fi holds, Equation 2 formalizes the generation of any partitioning of the data. Under an
encoder that perfectly disentangles any datapoint into its factors of variation in single dimensions,
we can transform any o ∈ D to a latent representation that include its factors of variation z = hφ(o).
Given that the factors are perfectly disentangled, we can then group all o ∈ D by the respective
dimension representing the respective factor of variation Fi and obtain the same disjoint subsets as
with explicit clustering under Csim. If instead of explicitly grouping the elements o, we reconstruct
them using a generator Gθ(·), i.e., o∗ = Gθ(hφ(o)), we specifically end up with Equation 2:

D =
⋃
k

Dsim
k =

⋃
k

{x | x ∈ D ∧ Csim(x) = k} =
⋃

f∈Gi

{o | o ∈ D∧ f
= hφ(o)} (4)

≈
⋃

f∈Gi

{Gθ(hφ(o)) | o ∈ D∧
f
= hφ(o)} =

⋃
f∈Gi

D′
if = D′ ≈ D (5)

Up to the reconstruction capabilities of the generator Gθ, the reconstructed dataset D′ is a synthetic
version of D, which under a perfect generator would be equivalent, i.e., D ≡ D′. However, because
we can not assume a perfect reconstruction from the latent representation z, we write the synthetic
version of D′ is an appropriate realistic synthetic version of D, i.e., D ≈ D′.

Suppose that we can modify the factors of variation of an object o in its disentangled representation
z = hφ(o) with a function mod, and the generator Gθ creates realistic synthetic elements o′ =
Gθ(mod(hφ(o))). In this case, any minor modification yields a new object o′ different from o,
effectively extending the cardinality and variety of samples in D′, which makes Equation 2 a lower
bound to Implicit Neural Clustering, given by explicit clustering. More specifically:

D =
⋃
k

Dsim
k <≈

⋃
f∈Gi

D′
if = D′ (6)

=
⋃

f∈Gi

{Gθ(hφ(o)) | o ∈ D∧
f
= hφ(o)} ∪ {Gθ(mod(hφ(o))) | o ∈ D∧

f
= mod(hφ(o)} (7)

Assuming the factors of variation F for any x ∈ D can be obtained with an encoder h, derived ana-
lytically, or are given by annotations, we can train Gθ(·) to synthesize samples from the underlying
distribution that we can group naturally by a factor of variation. A more general formulation that
encompasses compositional and combinatorial generalization is given in Equation 3. When we can
partition or factorize the underlying generative factors into respective atomic partitions and compo-
sitionality emerges in Gθ(·), synthesis of known cross combinations between factors of variation
is possible, which results in (a) dataset reconstruction (Equation 2) and (b) controllable synthesis,
i.e., we can now move beyond only reconstructing the dataset, but can also specifically control the
synthesis of new examples. Finally, when Gθ(·) also learns to generalize to combinations that are
not in the data distribution, we move beyond the lower bound given by Equation 2 with Equation 3,
where arbitrary novel cross-combinations between factors of variation can be synthesized.

B ADDITIONAL DETAILS FOR EXPERIMENTAL SETUP AND DESIGN

We will provide additional training details on hyperparameters, code, and further setups upon ac-
ceptance of this publication.

The abbreviations for each factor of variation Fi in each dataset as used in our experiments is based
on the specification of the datasets.
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(a) Ground Truth (b) Relaxed Implicit Neural Clustering

Figure 7: Relaxed implicit neural clustering of crowd trajectory data (right) effectively approximates
the underlying trajectory distribution (left)

C APPLICATION OF IMPLICIT NEURAL CLUSTERING TO OTHER DOMAINS

Multi-partition clusters exist in many different domains. Different from the hard challenge of learn-
ing the factors of variation with an encoder hφ, they are often provided in ground truth or can be
obtained analytically. In such contexts, where factors of variation might be already available, can
be obtained analytically, or with a zero-shot classifier like CLIP, Implicit Neural Clustering is also
applicable when we relax the assumption on having an encoder hφ. To show this, in the following
experiment, we relax the assumption that there exists an encoder hφ that extracts factors of variation
from a given dataset D to show that the compositionality and combinatorial generalization require-
ments for our approach can be fulfilled in different applications. More specifically, we assume that
factors of variation have been obtained by, e.g., applying an “optimal” encoder h∗ (e.g., a human,
an analytical relaxation, or a zero-shot classifier Radford et al. (2021)) on D. In such cases, Implicit
Neural Clustering is applicable to generate implicit clusters resembling the conceptual overview of
our approach in Figure 2. While this relaxation might seem trivial, we can effectively show a novel
application of disentangled representations, while also providing a new perspective on clustering.

Experimental Setup and Models. To show different applications of Implicit Neural Clustering
with analytical or provided ground truth factors of variation and different domains, we evaluate our
approach with the following datasets. (i) the Grand Central Station (GC) Zhou et al. (2012) dataset
that consists of time series that resemble trajectories of pedestrians traversing a public train station.
In GC, we can vary the start and goal position of the agent to traverse the underlying environment,
which passed to a generator as continuous inputs. In this dataset, we train a goal-conditioned policy
with behavior cloning as the generator Gθ Kreutz et al. (2024). (ii) the CLEVR Relations Johnson
et al. (2017) dataset, which allows us to vary three ground truth factors of variation, the number
of objects, as well as their respective X and Y coordinates. We use a pre-trained compositional
diffusion model Liu et al. (2022) provided by the authors6 that is conditioned on natural language
prompts. In this way, we show an application to text-to-image generative models. (iii) a synthetic
dataset of simple shapes provided by Okawa et al. (2024) (in the remainder referred to as Simple-
Shapes). SimpleShapes has shape, color, and size as factors of variation, which are used as continu-
ous input to the generator. We train a conditional diffusion model 7 based on Okawa et al. (2024) in
SimpleShapes on the provided ground truth factors of variation. All models are trained from scratch
with a single 46GB RTX A6000. We will provide additional training details on hyperparameters,
code, and further setups upon acceptance of this publication.

C.1 ANALYTICAL FACTORS OF VARIATION — SEQUENTIAL DECISION MAKING.

Sequential decision making tasks, such as motion planning or navigation, can be relaxed analytically
into several factors of variation. For instance, start and goal positions influence the outcome of a
trajectory. When varying these two positions as factors of variation, a policy trained on a dataset
of expert demonstrations will then “fill-in-the-blanks” and generate a trajectory that follows the

6https://energy-based-model.github.io/Compositional-Visual-Generation-with-Composable-Diffusion-
Models/

7public github repository https://github.com/phys-ai/concept_graphs/$
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(a) Implicit clusters for atomic Y coordinate partitions

(b) Implicit clusters for each atomic X coordinate partitions

Figure 8: Relaxed implicit neural clustering of object compositions, where one can implicitly cluster
the data based on the relaxed representation of the factors of variation, i.e., discretized x and y
coordinates

ground truth distribution. In this setting, we can apply Implicit Neural Clustering where start and
goal positions can be considered factors of variation.

We evaluate Implicit Neural Clustering on the grand central station dataset (GC) Zhou et al. (2012),
where we train a goal-conditioned policy with behavior cloning as the generator Gθ. Analogous
to images, we partition the factors of variation in each dimension separately, i.e., start and goal
positions using DBSCAN as a partition algorithm, and only keep the top k number of (start, goal)
pairs from the real dataset as factors of variation. Given the respective positions at each start and
goal, we compute the parameters of a normal distribution for each of these sets, which serve as the
parameters to sample from atomic start and goal partitions for Implicit Neural Clustering.

Figure 7 visualizes an implicit clustering into clusters of (start,goal) combinations and shows the
results of the clusters of ground truth trajectories (a) and their corresponding implicit clusters (b).
In this experiment, start and goal positions are considered factors of variation that are varied and
the motion planner learns to generate samples that approximate the original dataset. We control the
generation by varying the respective factors of variation and generate paths according to Equation 3.
The atomic partitions in this context correspond to pairs of (start,goal) partitions in an euclidean
space. In comparison to the ground truth clusters, variations of the paths are generated that mimic the
ground truth distribution of expert demonstrations. In the same context, completely new scenarios
can be synthesized by algorithms that would allow the model to learn react to the environment, such
as GAIL Ho & Ermon (2016).

Analytical Factors of Variation — Compositional Image Synthesis. Similar to relaxing start
and goal positions for motion planning as factors of variation, placement of objects in an image is
also a straightforward relaxation in the euclidean space. In this experiment, we show an applica-
tion of our approach to compositional generation of images by relaxing several factors of variation
required for object composition. More specifically, we relax the placement (x,y) placement coordi-
nates and the number of objects, which gives three analytical factors of variation.

Figure 8a and Figure 8b show exemplary implicit clusters on the CLEVR Relations dataset. We
can control the generation by varying the respective factors of variation and generating images ac-
cording to Equation 3. We emphasize that the underlying model fails to generate coherent clusters
near the distribution boundaries, highlight the need for better OOD generalization even in “simple”
placement tasks. However, we want to highlight that this kind of task can as well be expressed under
Equation 3 as an Implicit Neural Clustering.

D ADDITIONAL COMMENTS AND EXPERIMENTS ON COMBINATORIAL
GENERALIZATION

In the relaxed setting with h∗, an application to diffusion models with known factors of variation
that shows combinatorial generalization under Equation 3 can be given based on the work by Okawa
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Figure 9: Partitions on x and y with all cross combinations.

et al. (2024). In this experiment, the factors of variation can be naturally partitioned into atomic
partitions due to their discrete nature. We reproduce their experiments on combinatorial generaliza-
tion by training a conditional diffusion model to generate images conditioned on restricted factors
of variation. We show the explicit clusters compared to the implicit clusters that can be generated in
Figure 10. We can see that the model learns combinatorial generalization to generate small spheres,
big blue rectangles, and small red and blue rectangles. Note how this experiment mimics our con-
ceptual illustration of Implicit Neural Clustering in Figure 2, showing strong empirical evidence for
the correctness of our definition. Finally, we want to highlight that Okawa et al. have rigorously
tested when diffusion models achieved combinatorial generalization in this synthetic dataset Okawa
et al. (2024). Their overall experiments provide empirical evidence for the validity and practicality
of our approach while satisfying all of our conditions (A.H , A.G1, A.G2, A.G3) in the special case
of relaxation to h∗.

E ADDITIONAL RESULTS FOR DSPRITES

We provide the full implicit multi-partition clustering of dSprites.
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Figure 10: Relaxed implicit neural clustering of shapes (right) effectively approximates and general-
izes to novel cross combinations of the underlying ground truth distribution (left). This experiment
provides empirical evidence that diffusion models trained on synthetic data can satisfy the most dif-
ficult part of moving beyond the data distribution with Implicit Neural Clustering. In this example,
the generative model generalizes to being able to synthesize elements not seen in the training dataset,
hence filling in the gaps in the data distribution as previously illustrated in Figure 2.

(a) Random Samples

(b) w/ Atomic Group Actions

Figure 11: dSprites: Implicit clusters for object shape
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(a) Random Samples

(b) w/ Atomic Group Actions

Figure 12: dSprites: Implicit clusters for object size
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(a) Random Samples

(b) w/ Atomic Group Actions

Figure 13: dSprites: Implicit clusters for object orientation
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(a) Random Samples

(b) w/ Atomic Group Actions

Figure 14: dSprites: Implicit clusters for object X coordinate22
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(a) Random Samples

(b) w/ Atomic Group Actions

Figure 15: dSprites: Implicit clusters for object Y coordinate23
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(a) Random Samples (b) w/ Atomic Group Actions

Figure 16: 3DShapes: Implicit clusters for floor color

F ADDITIONAL RESULTS FOR 3DSHAPES

We provide the full implicit multi-partition clustering of 3DShapes.

F.1 IMPLICIT NEURAL CLUSTERINGS
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(a) Random Samples (b) w/ Atomic Group Actions

Figure 17: 3DShapes: Implicit clusters for wall color
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(a) Random Samples (b) w/ Atomic Group Actions

Figure 18: 3DShapes: Implicit clusters for object color
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(a) Random Samples (b) w/ Atomic Group Actions

Figure 19: 3DShapes: Implicit clusters for object size
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(a) Random Samples (b) w/ Atomic Group Actions

Figure 20: 3DShapes: Implicit clusters for object type
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(a) Random Samples (b) w/ Atomic Group Actions

Figure 21: 3DShapes: Implicit clusters for camera angle
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Figure 22: 3DShapes: Latent traversal with atomic group actions, floor color

F.2 LATENT TRAVERSALS WITH ATOMIC GROUP ACTIONS
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Figure 23: 3DShapes: Latent traversal with atomic group actions, wall color
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Figure 24: 3DShapes: Latent traversal with atomic group actions, object color
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Figure 25: 3DShapes: Latent traversal with atomic group actions, object size
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Figure 26: 3DShapes: Latent traversal with atomic group actions, object shape
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Figure 27: 3DShapes: Latent traversal with atomic group actions, viewing angle
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(a) Random Samples (b) w/ Atomic Group Actions

Figure 28: MPI3D: Implicit clusters for object color

G ADDITIONAL RESULTS ON MPI3D

We provide the full implicit multi-partition clustering of MPI3D.

G.1 IMPLICIT NEURAL CLUSTERINGS
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(a) Random Samples (b) w/ Atomic Group Actions

Figure 29: MPI3D: Implicit clusters for object shape

37



1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

(a) Random Samples (b) w/ Atomic Group Actions

Figure 30: MPI3D: Implicit clusters for object size
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(a) Random Samples (b) w/ Atomic Group Actions

Figure 31: MPI3D: Implicit clusters for camera height
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(a) Random Samples (b) w/ Atomic Group Actions

Figure 32: MPI3D: Implicit clusters for background color
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(a) Random Samples (b) w/ Atomic Group Actions

Figure 33: MPI3D: Implicit clusters for horizontal axis
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(a) Random Samples (b) w/ Atomic Group Actions

Figure 34: MPI3D: Implicit clusters for vertical axis
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Figure 35: MPI3D: Latent traversal with atomic group actions, object color

G.2 LATENT TRAVERSALS WITH ATOMIC GROUP ACTIONS
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Figure 36: MPI3D: Latent traversal with atomic group actions, object shape
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Figure 37: MPI3D: Latent traversal with atomic group actions, object size
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Figure 38: MPI3D: Latent traversal with atomic group actions, camera height
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Figure 39: MPI3D: Latent traversal with atomic group actions, background color

47



2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Under review as a conference paper at ICLR 2025

Figure 40: MPI3D: Latent traversal with atomic group actions, horizontal axis
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Figure 41: MPI3D: Latent traversal with atomic group actions, vertical axis
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