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Abstract

Understanding multimodal perception for embodied AI is an open question because
such inputs may contain highly complementary as well as redundant information
for the task. A relevant direction for multimodal policies is understanding the
global trends of each modality at the fusion layer. To this end, we disentangle
the attributions for visual, language, and previous action inputs across different
policies trained on the ALFRED dataset. Attribution analysis can be utilized to
rank and group the failure scenarios, investigate modeling and dataset biases, and
critically analyze multimodal EAI policies for robustness and user trust before
deployment. We present MAEA, a framework to compute global attributions per
modality of any differentiable policy. In addition, we show how attributions enable
lower-level behavior analysis in EAI policies for language and visual attributions.

1 Introduction

Figure 1: Attribution analysis of
multimodal EAI policy. (a) (left
to right) shows attribution for lan-
guage, previous action and visual
frame. (b) Words: red is positive
attribution, blue is negative, grey is
neutral; (c) Pixels: yellow is high
attribution, purple is low.

Embodied AI policies have achieved remarkable success in
simulated 3d environments [1, 2, 3, 4] and physical robots
[5, 6]. Analogous to the success of end-to-end learning for im-
age classification [7] and language modeling [8], recent works
on end-to-end embodied policies [9] attempt to solve complex
everyday tasks, like ‘making a cup of coffee’ or ‘throwing a
chilled tomato slice in trash’ (as shown in Fig. 1). Such policies
often fail for reasons that are poorly understood. Interpreting
the decision-making in end-to-end policies is important to en-
able trustworthy deployment and handle failure case scenarios.

Learning an embodied AI policy typically involves function f
mapping the observation/state Ot to action at. In many envi-
ronments [10, 11], the observation can just be the visual frame
at current timestep Ot = {Vt}. However, complex tasks can
hardly be solved with just a single type of observation. In Atari
[12], the policy operates on last 4 visual frames: Ot = {Vi}tt−3.
For long horizon tasks in a large sparse maze environment [13],
inputs may include the previous action: Ot = {Vt, at−1}, as
it will be likely that the following action is to ‘move forward’
if the previous action was the same. Real-world robotics nav-
igation relies on visual frame and proprioception [6] to success-
fully navigate undetected obstacles. In this work, we consider
a mobile robot that takes natural language instructions and in-
teracts with objects in simulated household environments [9].
Such a robot needs to predict the sequence of actions that would
complete the task, given the previous action at−1, natural language instructions L, and ego-centric
vision Vt, that is the observation Ot = {Vt, at−1, L}. While many attempts have been made to train
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Table 1: Policies trained on ALFRED Dataset and their architectures for each modality
Policies Visual Language Fusion

Baseline [9] Frozen ResNet-18 Learned Embedding, Bi-LSTM LSTM

MOCA [14] Frozen ResNet-18
+ Dynamic Filters Learned Embedding, Bi-LSTM LSTM with

residual connection
ET [15] Frozen ResNet-50 Learned Embedding, Transformer Transformer Encoder
HiTUT [31] Frozen MaskRCNN Learned Embedding, FC, LN Transformer Encoder

policies for this task [9, 14, 15, 16], the existing best performance is far below that of an average
human [9]. To this end, we investigate how multimodal a policy is, in terms of attribution given to
visual, language, and previous actions. Aggregated analysis per modality provides insights into the
effect of modeling choices, such as at what layer the fusion happens, what sub-network is used to
process each modality separately, and how the representation per modality affects the fusion process.
Further, attributions provide an introspection technique to rank the contributions from each modality
in a decision, as well as analyze modeling and dataset biases. Our main contribution is to propose
Multimodal Attribution for Embodied AI, MAEA, for (a) global analysis in terms of the percentage
of average attribution per modality, as well as (b) modality-specific local case studies. Our work does
not intend to comment on the kind of attributions useful for understanding multimodal policy but
only provides a tool to better understand the modality attributions in any model architecture setting.

2 Related Work

Interpretability and explainability Recent work in multimodal explainability in autonomous
vehicles [17] uses symbolic explanations to debug and process outputs out of sub-components. In
contrast, we address the challenge of post-hoc multimodal interpretability for any existing end-to-end
trained differentiable policies. GRAD ⊙ INPUT [18], a simple and modality-agnostic attribution that
works on par with recent methods [19]. We use this method to compute multimodal attribution at
inputs to the fusion layer to weigh how each modality contributes to the decision-making. While
GRAD ⊙ INPUT is a modality-agnostic starting point for attributions, it is not easy to understand,
especially for images. Among recent works to improve visual attribution [20, 21, 22, 23, 24, 25, 26],
we use XRAI [26] for vision-specific analysis as it produces visually intuitive attributions by relying
on regions, not individual pixels.

Language-driven task benchmarks There are many benchmarks to study an agent’s ability to
follow natural language instructions [9, 27, 28, 29]. ALFRED [9] serves as a suitable testbed for
this analysis as these tasks require both high reasoning for navigation and manipulation. ALFRED
dataset provides visual demonstrations collected through PDDL planning in 3D Unity household
environments and natural language description of the high-level goal and low-level instructions
annotated by MTurkers. The benchmarks provide evaluation metrics for the overall task goal
completion success rate (SR) and those weighted by the expert’s path length (PLWSR) and have
reported a huge gap in the performance of learning algorithms and humans at these tasks.

End-to-end Learned Policies We investigate the end-to-end learned policies for the task, such
that, the gradient can be attributed at a task level. While we do not discuss modular yet differentiable
policies like [16] [30], tying the gradient across multiple modular learned components is a direction
for future work. In our work, we consider the checkpoints of policies trained on the ALFRED
dataset. Broadly, these policies are of two types: (a) sequence-to-sequence models, that are, the one
proposed with ALFRED dataset (Baseline) [9] and Modular Object-Centric Approach (MOCA) [14],
(b) transformer-based models, that are Episodic Transformers (ET) [15], and Hierarchical Tasks via
Unified Transformers (HiTUT) [31]. Refer Table 1 to compare architectural details 1.

3 Approach

Gradients are the general way of discussing the coefficient of the importance of a particular feature in
deciding the output. Using only weights or gradients as an attribution assumes that the values of x1

1Previous action is modeled with learned embedding look-up in all these policies.
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Figure 2: % Multimodal Attribution for policies randomly initialized and trained on ALFRED dataset.
The performance of the policies improves from left to right. Trained checkpoints are evaluated with
100 trajectories sampled from validation-seen trajectories. Policies are randomly initialized for 5
seeds each and evaluated over 10 validation-seen trajectories. Note that, in this case, performance
improves as the skewness in the attributions prior to training decreases.

and x2 are of the same order, like image pixels. However, this doesn’t hold in the case of multimodal
policies when x1 is an image embedding and x2 is a language embedding. Element-wise product of
gradient into input, also known as GRAD ⊙ INPUT [18], provides global importance about the input
feature in the dimensionality of the input feature itself. We compute the attributions per modality with
respect to the predicted action label output. The differentiable policy f : (Vt, at−1, L) → at takes
input as current visual frame Vt, previous action label embedding at−1, and the language instruction
L. At the penultimate fusion layer, an intermediate representation is typically a vector or matrix. The
attribution for each modality can be computed by GRAD ⊙ INPUT, where input is the feed-forward
features computed at the penultimate fusion layer. Let the policy neural network be f that outputs a
softmax distribution over the action to be taken. The input feature attribution αi for ith dimension
of vector x for the most likely predicted action is computed as αi = ∂(max f(x))

∂xi
⊙ xi. For each

modality represented as a vector, we need to pool the attribution per dimension to compute a scalar
value attribution. Here are the implications of different pooling approaches:

L∞ gives the maximum magnitude value, independent of the dim d (same as L∞/d).
L1 provides the sum of all attribution magnitudes.
L1/d is same as L1, but invariant of the dim d.
L2 diminishes the majority insignificant but non-zero attributions.
L2/d has same impact of L2 but with undesirable scaling by dim d.

To compute modality-specific attribution for latent vectors, L2 is suitable to include the attributions
from every dimension in the vector (unlike L∞) and reduce the impact of insignificant close to zero
attributions (unlike L1). We do not consider L1/d or L2/d as the attribution of modality should
depend on the number of latent features allocated to highlight modeling biases. Note that for global
attribution, we treat the feature extraction in each modality as a black box as we capture attributions
at the penultimate fusion layer.

4 Global Attribution Analysis

To understand how the multimodal attribution at the fusion layer is, we analyze the GRAD ⊙ INPUT
with L2 norm as pooling to compute attributions. In Fig. 2, we show the percentage of attribution
given to language, vision, and previous action before and after training by different policies on
ALFRED dataset. The attributions before training represent the implicit bias in the architecture of
the model since it has not seen any data yet. The attributions after training, given the ones before
training, represent the bias that is introduced by the data. This decoupling of interpretability of the
biases introduced by model architecture and training data provide better equips the user to associate
the bias between the two aspects. See Appendix C.

Baseline and HiTUT have a balanced attribution after training over all three modalities, with a
preference for visual features. While MOCA prefers language slightly over visual and previous
action, ET strongly prefers visual features over previous action and language. At initialization,
Baseline and MOCA have the majority of the % attribution on the previous action. ET model starts
with the majority of the attribution over previous action and visual frame, and very little focus on
the language. HiTUT has a balanced attribution before training, which does not inherently induce
modality bias. More details in Appendix B.
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5 Modality-specific Attribution Analysis

Figure 3: Focus center of Language
attributions per episode length: Base-
line [9] (yellow), MOCA [14] (pur-
ple) and ET [15] (green) on validation
seen dataset.

Does language attribution change depending on the steps
taken in the episode? For language attribution, we com-
pute the gradient of the predicted output with respect to
embeddings of the word tokens in the language instruction,
M := Embedding(Tokenize(L)), where M ∈ Rn×d.
We compute the attribution for the matrix M by αM :=
∂f
∂M ⊙ M . As word embedding is a d-dimensional vector,
the gradient is also computed with respect to each feature
dimension. For pooling, we use the maximum absolute
value as the attribution as αw := max abs(αM [i]),∀i ∈ n.
To see how the focus center of the attribution for language
instructions shifts in terms of the percentage of episode com-
pletion (Fig. 32), we compute the word-index weighted attri-
bution over all the word tokens in instruction per trajectory craw = [(i+ 1) ∗ abs(αw)]∀i ∈ n. To
compare across variable length trajectories, we normalize it as cscaled =

∑
craw/(

∑
abs(αw) ∗ n).

In the ideal case, the focus center of attribution on instruction should increase as the episode nears
completion. MOCA (blue) follows a linearly increasing trend in Fig. 3 and has high language
attribution in Fig. 2. Baseline and ET do not show such a trend, which aligns with their low attribution
to language in Fig. 2.

Figure 4: Visual attributions for an in-
teractive action with an object can in-
dicate the focus of the baseline pol-
icy. Top-Left: Expert’s interaction mask,
Top-Right: Predicted interaction mask,
Bottom-Left: visual observation in RGB,
Bottom-Right: XRAI attributions.

Does visual attribution align with the predicted inter-
action mask? We analyze how visual attributions for
interact action (PickObject) can indicate the focus of the
interaction mask. We calculate the visual attribution with
XRAI [26] as shown in Fig. 4 for Baseline policy. While
the action label is predicted correctly by the policy, the
intersection over the union of the mask is small. The
simple visualization of the interaction mask reveals that a
lot of objects (microwave, mug, and tomato) are selected.
With XRAI attribution, we can qualitatively analyze the
regions in terms of high (eg. parts of the microwave) and
low (eg. tomato) attribution. Visual attribution can be
used to analyze failure cases where the policy predicts the
correct interact action but the wrong action mask. While
the action mask is a heatmap on the visual image to de-
termine the IOU with the groundtruth object mask, XRAI
attribution provides some insight based on the regions,
and not just pixels, about which parts the policy is focus-
ing on while predicting the action label. Note that this
is an interpretability and analysis tool to debug failure
cases, and not a complete solution for mitigating errors in
predicting interaction action masks.

6 Conclusion

In this work, we draw the community’s attention to attribution analysis for interpreting multimodal
policies. We provide the framework MAEA for attribution analysis to gain insights into multimodal
embodied AI policies. We compare seq2seq (baseline, MOCA) and transformer-based (ET, HiTUT)
policies trained on the ALFRED dataset and highlight the modality biases in these models. We also
analyze how the focus center in language instructions moves as the episode progresses, and discuss
how visual attributions can be used for analyzing successful/unsuccessful action predictions. Note
while we use this gradient-based attribution, the ideas of multimodal attribution can be generally
applicable to other kinds of attributions. This technique could also be used to better understand
the correlation between certain types of biases and failure cases in certain in-distribution as well as
out-of-distribution scenarios.

2HiTUT is not shown in Fig. 3 because it doesn’t consider the previous language instructions to make the
current prediction which is different from how the other papers do it.
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A More Multimodal Attribution Analysis

We compare the multimodal attribution in terms of interact vs non-interact action (Fig. 5), and
how they may change with respect to % episode completion (Fig. 6). We also compare the biases
in attributions to the modalities because of choices in model architecture and the way training is
performed, i.e., dataset and learning techniques.

A.1 Interact vs non-interact action attributions

(a) Baseline

(b) MOCA (c) E.T.

Figure 5: L2 norm of the attribution by grad ⊙ input for interact and non-interact actions.

We analyze the L2 norm of the attribution over all the possible input-output pairs in valid seen and
unseen trajectories and bin them in terms of interact (like pick, place, open, close, etc.) and non-
interact (like move ahead, turn left, turn right, etc) actions in Fig. 5. This is helpful to visualize how
the attributions differ with (i) different types of actions taken and (ii) correct and incorrect predictions.
We observe that the attribution patterns do not differ significantly in interact vs non-interact action.

A.2 Attribution with respect to % episode completion

To compare the overall attribution over modality with respect to where the action is taken in terms
of % episode length, we plot the attributions for the models trained on ALFRED task in Fig 6a,
6b, 6c and 6d to visualize how the attributions change during the episode for baseline, MOCA, ET
and HiTUT respectively. In an ideal case, we would expect more attribution on visual and previous
action features in the exploration phase when starting in a new environment, and more on language
instruction towards the later part of the episode completion phase. But in current models, we observe
that the attribution pattern remains consistent over the episode – indicating a possible need for
improvement in modeling choices and training procedures.

The baseline has high attribution for visual features, especially initially and toward the end of the
episode. Attribution for previous action and language also increases near episode completion steps.
MOCA has high attributions over the language instructions as compared to the visual frame embedding
and previous actions. Previous action attribution closely overlaps with language attribution. Visual
attribution increase towards the episode completion. ET shows significantly high visual attributions
that increase and then plateau towards episode completion. Previous action and language seem to
have very low attribution compared to visual features. HiTUT, which is the best-performing model of
all, shows sufficiently balanced attribution among all three modalities, with occasional high peaks.
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(a) Baseline [9]: Previous action attribution is higher
than vision. Language is the lowest.

(b) MOCA [14]: Language attribution is the highest,
especially towards the end of the trajectory.

(c) E.T. [15]: Visual attributions are the highest, fol-
lowed by those for the previous action taken.

(d) HiTUT [31]: Overall attributions are low. Vision is
higher, more towards the end.

Figure 6: Multimodal attributions in ALFRED policies over % episode completion for seen validation.

B What is the ideal target to estimate multimodal attribution?

We compute the attribution of each modality/modality-specific feature with respect to the action
predicted by the agent, that is f is a scalar value for the most likely action. Other values for function
f can be other scalar values such as the loss used during training or the action taken by the expert at
that particular timestep, or tensors, like the entire action space (since a policy would return logits
for all actions in most cases) or the predicted interaction masks. Taking attributions with respect
to the loss tells us what the agent should be looking at to better imitate the expert. But in terms
of what features the agent is using to select an action gets conflated with the gradient of the loss
with respect to that action. Taking attributions with respect to the expert action would result in an
interpretation that would convey the attributions that would have led to the agent taking the expert
action. Considering all the logits corresponding to the action choices makes sense for our purposes
but there is a concern that not all model architectures allow us to backpropagate to inputs from all
the possible discrete actions. Predicted interaction masks are a good indication of what the model is
looking at while making an interact action. But this is a vision-biased attribution and also assumes
that the model computes an interaction mask in the first place. Therefore, gradient with respect to
the action taken is a better choice to interpret the policy decisions and it intuitively translates to the
objective of filtering for inputs that gave rise to a certain decision.

C Global Attribution Experiment Setup

The attributions prior to training are used to analyze modeling biases. To get the attributions before
training, we use randomly initialized policies over 5 seeds. For the trained model’s attributions, we
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use pretrained checkpoints. Both attributions are evaluated by a sample of 100 trajectories from 820
in validation-seen data.

We compute these attributions based on the expert trajectories to keep the analysis on the more
relevant input states within the training distribution. We do not analyze the rollout trajectories because
most policies have poor success rates (SR) and are often stuck in irrelevant out-of-distribution states,
such as facing a wall. We take the gradients with respect to the most likely action predicted by the
policy, and not the expert’s chosen action.

D Limitations of the attribution methods

Attribution methods might be sensitive to the choice of pooling used. Here we defend our formulation,
why L2 norm - because we want to compare policies that may use different dimension embeddings to
represent an input. For example, policy 1 uses d1 = 128 dim to represent word token embedding,
policy 2 uses d2 = 768 dim to represent the same. There are two factors here: first, in higher
dimensions, the L1 norm gives a better distance estimate than the L2 norm. But, by the virtue of
how the neural networks are initialized for stable training, the higher dimension will have a lower
value per dimension. This means that the absolute attribution value in policy 1 should be scaled by its
embedding size for a fair comparison to policy 2.
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