
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SHAKE-GNN: SCALABLE HIERARCHICAL
KIRCHHOFF-FOREST GRAPH NEURAL NETWORK

Anonymous authors
Paper under double-blind review

ABSTRACT

Graph Neural Networks (GNNs) have achieved remarkable success across a range
of learning tasks. However, scaling GNNs to large graphs remains a significant
challenge, especially for graph-level tasks. In this work, we introduce SHAKE-
GNN, a novel scalable graph-level GNN framework based on a hierarchy of Kirch-
hoff Forests, a class of random spanning forests used to construct stochastic multi-
resolution decompositions of graphs. SHAKE-GNN produces multi-scale repre-
sentations, enabling flexible trade-offs between efficiency and performance. We
introduce an improved, data-driven strategy for selecting the trade-off parameter
and analyse the time-complexity of SHAKE-GNN. Experimental results on mul-
tiple large-scale graph classification benchmarks demonstrate that SHAKE-GNN
achieves competitive performance while offering improved scalability.

1 INTRODUCTION

Graph classification is a fundamental task in graph machine learning, in which one aims to determine
the class of an entire graph based on its structure and attributes. This task is widely applicable across
domains such as molecular property prediction, e.g., identifying active versus inactive compounds
(Wu et al., 2021), social network analysis, e.g., bot detection (Zhou et al., 2020), and communication
system diagnostics, e.g., faulty topology detection (Zhang et al., 2022). With the rapid advancement
of Graph Neural Networks (GNNs), many approaches have achieved impressive results by leverag-
ing local neighbourhood information through message passing (Gilmer et al., 2017). Despite their
success, significant challenges remain in terms of scalability and global structure modelling, es-
pecially when dealing with large and complex graphs, such as protein graphs and social networks
among others.

Early GNNs such as Graph Convolutional Networks (GCNs) (Kipf & Welling, 2017), Graph Atten-
tion Networks (GATs) (Veličković et al., 2018), and Graph Isomorphism Networks (GINs) (Xu et al.,
2019) rely on iterative message passing between neighbouring nodes. While these models exhibit
linear time complexity in the number of edges and are effective for small to moderately sized graphs,
their scalability can be further enhanced. In particular, repeated aggregation steps across multiple
layers may incur redundant computations and memory overhead when deployed on large-scale or
densely connected graphs. Furthermore, their design typically emphasises fine-grained, local fea-
ture interactions at the node level, which often leads to over-fragmented representations that fail to
capture long-range dependencies and global semantic structure, which are critical components in
tasks requiring global graph understanding.

To address these limitations, we propose a new model called Scalable Hierarchical Kirchhoff-Forest
Graph Neural Network (SHAKE-GNN), a novel hierarchical graph neural architecture that constructs
multi-resolution representations via a Kirchhoff Forest-based coarse-graining method. A spanning
forest is a collection of spanning trees, each covering a connected component of a graph without
forming cycles. Building on this, Kirchhoff Forests (KFs) are probabilistic ensembles of spanning
forests, where the probability of each forest is determined by the graph Laplacian. This formula-
tion provides a principled way to capture structural dependencies and connectivity patterns within
graphs. Instead of relying on random or flat clustering schemes, we introduce a principled, layer-
wise node merging strategy guided by Kirchhoff Forests (KFs), which generates a hierarchy of
coarsened graphs. Each coarse node aggregates a substructure from the previous layer, using mean
or sum pooling for node and edge features depending on the dataset.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Our main contributions are summarised as follows:

• We define a hierarchical graph decomposition pipeline based on KFs and integrate it with
the model architecture SHAKE-GNN, which effectively leverages multi-resolution struc-
tural information for graph classification tasks. This framework is applicable across diverse
graph domains and scales efficiently to large datasets.

• We introduce an improved strategy for selecting the resolution parameter q, balancing com-
putational complexity and information loss, and provide a theoretical time complexity anal-
ysis that demonstrates the scalability advantages of our architecture over conventional GNN
frameworks in multi-resolution settings.

• We empirically validate our approach through extensive experiments, showing that it
achieves scalability compared to state-of-the-art GNN models.

2 RELATED WORK

Graph Neural Networks (GNNs). Graph Neural Networks (GNNs) have emerged as a powerful
paradigm for representation learning on graph-structured data. GNNs function by recursively aggre-
gating information from local neighbourhoods. The seminal Graph Convolutional Network (GCN)
(Kipf & Welling, 2017) combines a node’s features with those of its neighbours and calculates a
weighted average over neighbourhoods. Subsequent extensions such as Graph Attention Networks
(GAT) (Veličković et al., 2018) introduce adaptive weighting via an attention mechanism, while
Graph Isomorphism Networks (GIN) (Xu et al., 2019) employ injective aggregation functions to en-
hance expressive capacity. These models have been successfully applied to a range of tasks. Typical
examples include molecular property prediction (Hu et al., 2020), citation graph classification (Sen
et al., 2008; Yang et al., 2016), and social network modeling (Hamilton et al., 2017; Li et al., 2020).

Despite their empirical success, conventional GNNs encounter significant limitations when scaled to
large or densely connected graphs. Their reliance on multi-hop message passing increases computa-
tional overhead, particularly in deep architectures (Dwivedi et al., 2022). Moreover, their inherently
local aggregation mechanisms often struggle to capture long-range dependencies and global seman-
tics, resulting in representations that are focused on neighborhood-level patterns.

Graph Pooling and Coarsening. To mitigate the locality and scalability issues inherent in GNNs,
various graph pooling and coarsening techniques have been developed to enable hierarchical rep-
resentation learning. Differentiable Pooling (DiffPool) (Ying et al., 2018) introduces differentiable
assignment matrices to softly cluster nodes into coarse representations, facilitating end-to-end hi-
erarchical learning. Graph clustering using weighted cuts (Graclus) (Dhillon et al., 2007) adopts a
greedy coarsening strategy based on graph cuts, while minimum-cut-based pooling (minCUT pool-
ing) (Bianchi et al., 2020) imposes spectral regularisation to enforce partition quality.

Traditional graph partitioning algorithms, such as METIS (Karypis & Kumar, 1998), employ mul-
tilevel coarsening and refinement heuristics to minimize edge cuts while maintaining balanced par-
tition sizes. This has enabled GNNs to scale to graphs with billions of nodes. A recent extension,
LPMetis (Zeng et al., 2023), integrates label propagation into the coarsening phase to improve scal-
ability and partition quality, particularly for distributed GNN training. Nevertheless, METIS and its
variants are inherently non-stochastic.

Personalised PageRank for Node-Level Scalability. To mitigate the computational inefficiencies
associated with recursive message passing in Graph Neural Networks (GNNs), recent research has
proposed decoupling feature propagation from transformation via Personalised PageRank (PPR)
scores. An illustrative instance of this approach is PPRGO (Bojchevski et al., 2020), which utilises
a precomputed and sparsified approximation to facilitate efficient feature aggregation.

Despite their efficiency, PPR-based models such as PPRGO are node-centric in design. Each node’s
prediction is computed conditioned solely on its personalised neighbourhood. This localised per-
spective, while computationally advantageous, limits their applicability to graph-level tasks, such
as molecular property prediction or program classification, where coarse-grained, hierarchical, or
long-range interactions are significant.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

3 PRELIMINARY

In this section, we introduce the fundamental concepts required for our framework. We begin by re-
calling classical notions of spanning trees and spanning forests, which serve as the basis of Kirchhoff
Forests.

Definition 3.1 (Spanning Tree). A spanning tree of G is a subgraph T = (VT , ET) such that:

1. T includes all vertices of G, i.e., VT = V;

2. T is acyclic, i.e., it contains no cycles;

3. T is connected, i.e., there exists a path between any two vertices in T .

Definition 3.2 (Spanning Forest). A spanning forest is a subgraph F = (V, EF) such that:

1. Each connected component of F is a spanning tree of a connected component of G;

2. F is acyclic and covers all vertices V .

Kirchhoff Forest-Based Graph Decomposition. (Bressan & Vigna, 2023; Barthelmé et al.,
2025) Kirchhoff Forests (KFs) offer a principled and probabilistically grounded framework for hi-
erarchical graph decomposition. Rooted in spectral graph theory, KFs generate structured, multi-
scale partitions of nodes by sampling random spanning forests from a distribution derived from the
graph Laplacian (Bressan & Vigna, 2023). The resolution of the decomposition is modulated by a
temperature-like parameter q > 0, which controls the probabilistic distribution over forest structures
and emulates fine-to-coarse abstraction.

Formally, let G = (V, E) be an undirected graph. Kirchhoff Forests define a distribution over rooted
spanning forests F ⊆ E with root set R ⊆ V , governed by the parameter q. The probability of
sampling a particular forest F is given by,

Pq(F) ∝
∏
v∈V

(
q

q + dv

)δv(F) ∏
(i,j)∈F

1

q + di
,

where dv denotes the degree of node v, and δv(F) is an indicator function equal to 1 if v is a root
in F , and 0 otherwise. This formulation induces a trade-off between the number and size of trees in
the forest, allowing the parameter q to control the expected number of connected components and
the granularity of the resulting partition.

Sampling from this distribution is typically performed using Wilson’s algorithm (Wilson, 1996),
adapted with priority-based root selection to incorporate the influence of q. Priority-based root
selection refers to a biasing mechanism whereby nodes are assigned selection priorities proportional
to their restart probabilities. At each step in Wilson’s algorithm, a node initiates a loop-erased
random walk with stochastic restarts: it either terminates at a new root with probability q

q+dv
, or

continues to a randomly chosen neighbour with probability dv

q+dv
. The resulting collection of walks

yields a spanning forest rooted at a dynamically constructed set of nodes.

To construct a hierarchical, multi-resolution decomposition, a strictly decreasing sequence of reso-
lution parameters q1 > q2 > · · · > qNq

is applied recursively. Each level produces increasingly
fine-grained structural abstractions. To maintain consistency and reduce redundant computation
across levels, the Reboot (Wilson, 1996) algorithm incrementally adjusts previously sampled forests
by locally reassigning root nodes in response to a smaller resolution parameter q′ < q. This ap-
proach preserves the probabilistic semantics of the distribution while avoiding full re-sampling at
each stage of the hierarchy.

Graph Hierarchy Construction. We input a graph. Each node v ∈ V is associated with a feature
vector in the node feature matrix Xv ∈ Rn×fv , where fv is the dimensionality of node attributes
and n is the number of nodes. Similarly, each edge e ∈ E is associated with a feature vector in the
edge feature matrix Xe ∈ Rm×fe , where fe denotes the dimensionality of edge attributes and m is
the number of edges. The graph connectivity is represented by the adjacency matrix A ∈ Rn×n,
and the corresponding graph-level target label is denoted as y ∈ Y .

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

To construct hierarchical representations suitable for multi-resolution graph classification, we pre-
process each input graph using a coupled KF decomposition pipeline. Given a graph G, we begin by
extracting its structural and feature information, including node features, edge features, and connec-
tivity. We then apply the Wilson algorithm to generate a collection of randomised spanning forests,
each governed by a resolution parameter q drawn from a strictly decreasing sequence q1, q2, . . . , qNq

.
Each value of q controls the distribution over forest structures, where larger values yield coarser par-
titions with fewer components, and smaller values induce finer-grained decompositions.

At each level of this hierarchy, nodes in the original graph are assigned to disjoint subsets, referred
to as forest components, which form the basis for coarse nodes in the coarsened graph. Importantly,
the features of each coarse node are obtained by directly averaging or summing the feature vectors
of its constituent nodes from the original input graph, rather than from features from previously
coarsened levels. Similarly, the edge attributes between coarse nodes are computed by averaging the
features of all edges in the original graph that connect nodes across the corresponding components.
By recursively applying this decomposition procedure across the sequence of q-values, we obtain a
hierarchy of coarsened graphs, each capturing progressively higher-order structural abstractions.

For each pair of consecutive levels, we define a partition matrix P(ℓd−1,ℓd) to specify and realize the
coarse-graining operation between level ℓd−1 and level ℓd, where ℓd ∈ {1, . . . , Nq}. We extract the
following components:

• The coarsened graph structure constructed by grouping nodes within each forest component
into a supernode;

• Node features for each super-node computed by averaging or summing the feature vectors
of constituent nodes in the original input graph;

• Edge features derived by averaging or summing the attributes of all original edges that
connect nodes across corresponding forest components;

• Partition matrices P(ℓd−1,ℓd) ∈ Rnℓd−1
×nℓd , where nℓd−1

and nℓd denote the number of
nodes at level ℓd−1 and ℓd.

It is important to note that the partition matrices P(ℓd−1,ℓd) are not computed with respect to the
original graph, but are instead derived recursively based on the coarsened structure from the pre-
ceding level. For example, if P(0,i) and P(0,j) denote mappings from the original graph to levels
i and j respectively, then their product satisfies P(i,j) = P(0,j)

(
P(0,i)

)−1

R
, illustrating the compo-

sitional consistency of the hierarchy. A detailed proof is presented in Appendix A. This recursive
construction ensures consistent hierarchical alignment while accommodating the stochastic devia-
tions introduced during random forest generation. Since nodes from different components in the
finer level may be grouped into the same supernode at the coarser level, the resulting partition ma-
trix naturally encodes soft associations as continuous values in [0, 1], representing the proportion of
contribution from each fine-level node.

This preprocessing yields a hierarchy of graphs {G(0), . . . ,G(Nq)} per graph, where G(0) = G de-
notes the original graph. The resulting hierarchical dataset is used to train our SHAKE-GNN model.

4 METHODOLOGY

In industry, graph classification in domains such as molecular property prediction and social network
analysis requires models to be scalable. Conventional message-passing GNNs are limited by their
local aggregation schemes and insufficient scalability, while pooling-based methods often rely on
rigid heuristics. To address these issues, we propose SHAKE-GNN, a hierarchical architecture that
employs Kirchhoff Forests for probabilistically grounded multi-resolution decomposition.

4.1 DATA-DRIVEN q-CHOICE VIA INFORMATION LOSS–COMPLEXITY TRADE-OFF

A central component of SHAKE-GNN is the selection of the smoothing parameter q, which governs
the resolution of the Kirchhoff Forest decomposition. To determine an appropriate value of q, we
adopt a data-driven strategy that balances information preservation against model complexity.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Building on the work of Tremblay et al. (2023), we introduce an improved framework. Specifically,
we define Tikhonov smoothing operators on both nodes and edges, yielding smoothed features X̂v =

K(q)Xv and X̂e = Ke(q)Xe, where K(q) = q(L+ qI)−1 and Ke(q) = q(Le + qI)−1 are defined
on the unnormalised graph Laplacian L and line-graph Laplacian Le, respectively. We measure
information loss as the average of feature reconstruction error

Lrec(q) =
∥Xv − X̂v∥2F

limq→0+ ∥Xv − X̂v∥2F
,

and Dirichlet energy loss

Ldir(q) =
tr((Xv − X̂v)

⊤L(Xv − X̂v))

tr(X⊤
v LXv)

.

This optimisation problem admits a more efficient spectral formulation. Instead of repeatedly com-
puting matrix inverses for different values of q, one can perform a single eigendecomposition of L
and Le, after which the quantities for all q are obtained by simple per-eigenvalue evaluations. A
detailed proof is presented in Appendix B.

Let L = UΛU⊤ be the eigendecomposition of the Laplacian, with eigenvalues {µi} and eigen-
vectors {ui}. In this basis, the Tikhonov gain is hi(q) = q

µi+q , and all quantities decompose into
per-eigenmode contributions.

The node-side reconstruction error reduces to

∥Xv − X̂v∥2F =

n∑
i=1

(1− hi(q))
2 ∥U⊤

i Xv∥22,

while the Dirichlet energy loss becomes

tr
(
(Xv − X̂v)

⊤L(Xv − X̂v)
)
=

n∑
i=1

µi(1− hi(q))
2 ∥U⊤

i Xv∥22.

Analogously, on the edge side we have

∥Xe − X̂e∥2F =

m∑
i=1

(1− he
i (q))

2 ∥Ue⊤
i Xe∥22,

and

tr
(
(Xe − X̂e)

⊤Le(Xe − X̂e)
)
=

m∑
i=1

µe
i (1− he

i (q))
2 ∥Ue⊤

i Xe∥22,

where Le = UeΛeU
⊤
e is the eigendecomposition of the line-graph Laplacian, and he

i (q) =
q

µe
i+q .

To quantify model complexity, we compute the effective degrees of freedom on both the node and
edge sides. For the graph Laplacian L with eigenvalues {µi}ni=1 and the line-graph Laplacian Le

with eigenvalues {µe
i}mi=1, we define

dfnode(q) =
1

n

∑
µi>0

q

µi + q
=

1

n

∑
µi>0

hi(q),

dfedge(q) =
1

m

∑
µe
i>0

q

µe
i + q

=
1

m

∑
µe
i>0

he
i (q),

where hi(q) =
q

µi+q with eigenvalues {µi} of L, and he
i (q) =

q
µe
i+q with eigenvalues {µe

i} of the
line-graph Laplacian Le. These spectral formulas enable efficient evaluation of J (q) and highlight
its interpretation as a frequency-selective trade-off, where q acts as a spectral filter modulating the
contribution of each eigenmode.

The final objective combines node and edge information losses with a complexity penalty,

J (q) = Linfo,node(q) + Linfo,edge(q) + ϕ
(
dfnode(q) + dfedge(q)

)
,

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

where ϕ > 0 controls the trade-off. The optimal resolution parameter is then selected as
q⋆ = argmin

q>0
J (q). (1)

This formulation yields an interpretable criterion: small q values preserve fine-grained information
at the expense of complexity, while large q reduce complexity but risk excessive information loss.
The proposed trade-off identifies the resolution that best balances these effects for a given dataset.

4.2 SEQUENTIAL SHAKE-GNN ARCHITECTURE

The Sequential SHAKE-GNN architecture is designed to exploit the hierarchical inductive bias of
multi-resolution graph decompositions by processing coarse-to-fine structural abstractions in a level-
wise sequential fashion. Given an input graph G, where each node and edge is endowed with a
feature vector, the model propagates information through a progressive refinement pipeline that
traverses a hierarchy of coarsened graphs.

Let Xv ∈ Rn×fv and Xe ∈ Rm×fe denote the initial node and edge feature matrices, respectively.
These features are first embedded into a shared latent space Ro via dedicated encoders,

H(0)
v = NodeEncoder(Xv), H(0)

e = EdgeEncoder(Xe).

Depending on the dataset, the encoders are instantiated either as embedding layers for categorical
attributes or as multilayer perceptrons (MLPs) for continuous feature vectors.

The model iteratively processes the coarsened graphs corresponding to the resolution levels
q1, . . . , qNq . At each resolution level qi, a stack of Li message passing layers is applied, with
updates at each layer ℓ ∈ {1, . . . , Li} defined as,

h
(ℓ)
i = ϕmsg

(
h
(ℓ−1)
i ,h

(ℓ−1)
j , e

(ℓ−1)
ij

)
,

where ϕmsg denotes a message passing function involving trainable parameters, h(ℓ)
i ∈ Ro denotes

the hidden representation of node i from the neural layer ℓ, e(ℓ)ij ∈ Ro represents the edge feature
associated with edge (i, j), j indexes the neighbors of node i in the coarsened graph.

Upon completing the processing of message passing at level qi, the resulting node embeddings
H

(Li)
v [qi] ∈ Ro are propagated to the next finer level qi+1. Specifically, a stochastic alignment

matrix P(i−1,i) ∈ Rni×ni−1 encodes the distribution correspondence between coarse and fine level
nodes,

H(0)
v [qi+1] = P(i−1,i)H(Li)

v [qi].

After the GNN layers, a global mean pooling operator aggregates the node-level embeddings into a
graph-level representation,

Hcomp = GlobalMeanPool(H
(LNq)
v [qNq

]).

To further refine the representation, an optional read-out MLP composed of LMLP fully connected
layers is applied,

ŷ = MLP(Hcomp) ∈ Roy ,

where oy denotes the output dimensionality corresponding to the number of classes.

4.3 TIME COMPLEXITY ANALYSIS

In this section, we provide a theoretical analysis of the computational complexity of SHAKE-GNN.
We first estimate the expected size of the coarsened graphs produced by the Kirchhoff Forest decom-
position, and then derive the overall time complexity of the model as a function of the resolution
parameter q and the number of resolution levels Nq .

4.3.1 EXPECTED COARSE GRAPH SIZE

To assess the computational efficiency of our model, it is essential to characterise how the graph size
evolves under coarsening. Given an input graph G, we estimate the expected size of the coarsened
graph generated by applying the Kirchhoff Forest (KF) decomposition with resolution parameter q.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Expected Number of Coarse Nodes. In the Wilson-based forest sampling procedure, each node
v ∈ V independently becomes the root of a tree with probability

pv =
q

q + dv
,

where dv is the degree of node v. The expected number of coarse nodes (roots) is thus

E[|Vq|] =
∑
v∈V

q

q + dv
.

In our complexity calculation, assuming approximate uniform degree dv ≈ d̄ = 2m
n , we obtain

E[|Vq|] ≈ n
q

q + d̄
.

Expected Number of Coarse Edges. An edge (i, j) ∈ E contributes to a coarse edge if it connects
nodes belonging to different forest components. The probability of being cut can be calculated by
(Bressan & Vigna, 2023; Barthelmé et al., 2025)

Pcut(i, j) =
2q

2q + di + dj
.

Hence,

E[|Eq|] =
∑

(i,j)∈E

2q

2q + di + dj
.

With di ≈ dj ≈ d̄, this simplifies to (Bressan & Vigna, 2023)

E[|Eq|] ≈ m
q

q + d̄
.

The estimates of nodes and edges numbers show that both shrink by a resolution-dependent factor

r(q) =
q

q + d̄
,

so that
|Vq| ≈ r(q)n, |Eq| ≈ r(q)m.

4.3.2 TIME COMPLEXITY

For one resolution level q, the computational cost consists of:

• Input Embedding. O
(
r(q)nfvo+ r(q)mfeo

)
;

• Message Passing and MLPs. O
(
T r(q)(mo+ nMo2)

)
;

• Graph-Level Pooling. O(r(q)no);

where M denotes the depth of the internal multilayer perceptron (MLP), i.e., the number of fully
connected layers within each message passing layer. Among these three components, the overall
complexity is dominated by the term Message Passing and MLPs.

If the model employs Nq distinct resolution levels, the total complexity is

O
(
Nq r(q)T

(
mo+ nMo2

))
.

This formulation shows explicitly how the reduction ratio r(q) controls the trade-off between effi-
ciency and representation capacity across multiple resolutions. Since r(q) < 1, the total complexity
of SHAKE-GNN is strictly lower than that of a standard GNN.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 1: The q-choice figure of MOLHIV and PPA dataset, respectively. The six curves correspond
to the node feature reconstruction loss, node structural loss, edge feature reconstruction loss, edge
structural loss, as well as the node and edge complexity terms. Other figures in Appendix C.

5 RESULT

To validate the proposed SHAKE-GNN framework, we conduct comprehensive experiments de-
signed to assess both predictive performance and computational efficiency. Our evaluation focuses
on whether the incorporation of multi-resolution structures and Kirchhoff Forest-based coarsening
can achieve competitive accuracy while significantly reducing training cost. In what follows, we first
detail the experimental setup, then analyse the effect of resolution parameter selection, and finally
present dataset-specific results with comparisons to standard baselines.

5.1 EXPERIMENTAL SETUP

To rigorously assess the effectiveness and generalizability of the proposed architecture, we conduct
a series of graph classification experiments across multiple benchmark datasets. These datasets
are drawn from diverse domains, including molecular chemistry and social network analysis. A
description of the datasets is presented in Appendix D.

All experiments are conducted on a single NVIDIA RTX A6000 GPU equipped with 48GB of
memory. The computational environment also includes an Intel Xeon W5-3425 CPU and 256GB of
system RAM, providing sufficient resources for training efficient large-scale graph neural networks.
The operating system is Ubuntu 24.04. The software stack comprises Python 3.11 and PyTorch
2.4.0, with CUDA version 12.4 for GPU acceleration.

5.2 RESOLUTION PARAMETER SELECTION

All experiments share a common set of training hyperparameters: batch size of 256, learning rate
fixed at 0.005, weight decay set to 1.0 × 10−5, random seed 42, and a maximum of 100 training
epochs. A constant learning rate scheduler is used throughout. To prevent overfitting, we apply early
stopping with patience of 10 epochs and a minimum improvement threshold of 0.001.

For each dataset, we perform a spectral evaluation of J (q) on the training split and compute the
minimiser q⋆ defined in Equation 1. The resulting values are then applied throughout the training
and evaluation phases. The result is shown in Figure 1.

By traversing a range of q values, we obtain the combined objective J (q), whose minimum directly
identifies the optimal resolution parameter q⋆ defined in Equation 1. This procedure systemati-
cally balances information preservation with computational efficiency, and similar evaluations are
performed for all datasets.

In addition, each dataset uses specific architectural and optimization settings. These include the
number of GNN layers, the number of linear layers per GNN block, the number of MLP layers in the

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

post-processing module, the hidden dimension size, and the optimiser. The complete configuration
is summarised in Table 1. The grid search domain is presented in Appendix E.

Table 1: Dataset-specific hyperparameters used in experiments. INF indicates the original graph.

Dataset q Values Layers per q Value MLP Layers Linear per GNN Layer Hidden Dim Optimizer
MolHIV [INF, 1.9] [6, 4] 6 1 1024 PESG
MolPPA [INF, 207.0] [4, 2] 0 2 256 AdamW
COLLAB [INF, 17.8] [4, 4] 4 2 64 AdamW
DD [INF, 6.4] [6, 4] 4 1 64 AdamW
REDDIT-MULTI-12K [INF, 0.03] [4, 4] 0 2 128 AdamW

We compare the baseline GNN trained on the original graphs with our hierarchical variant using
KF-based coarsening. For each dataset, we report both the training time (in minutes) and evaluation
performance (ROC-AUC for molecular datasets, accuracy for social/protein datasets). Results are
given for the original graphs and for the coarsened graphs, enabling direct comparison of efficiency
and predictive power.

Table 2: Comparison of training time and evaluation performance between original and coarsened
graphs.

Dataset Training Time (mins) Evaluation
Original Coarsened Original Coarsened

MolHIV 6.83 2.63 (38.53%) 0.794 0.787 (99.11%)
MolPPA 151.740 73.48 (48.42%) 0.767 0.744 (97.00%)
COLLAB 9.41 2.57 (27.30%) 0.752 0.739 (98.27%)
DD 0.24 0.09 (37.43%) 0.749 0.740 (98.86%)
REDDIT-MULTI-12K 5.45 1.99 (36.46%) 0.492 0.481 (97.78%)

Across multiple benchmark datasets, our experimental results consistently validate the effectiveness
of incorporating multi-resolution structure and stochastic abstraction via the proposed Kirchhoff
Forest-based graph coarsening framework. The SHAKE-GNN architecture achieves competitive or
superior performance compared to standard GCN baselines, while at the same time significantly
reducing training time in several configurations. Across all datasets, we achieved at least 97% of the
baseline performance with the cost of at most 50% of the baseline.

These results further underscore the importance of architectural design choices. Allocating mod-
erate depth to the coarse levels and optionally incorporating lightweight read-out MLPs helps to
recover predictive capacity while preserving efficiency. In this way, SHAKE-GNN demonstrates
that carefully tuned multi-resolution decomposition can simultaneously reduce computational bur-
den in line with theoretical complexity estimates and maintain strong performance across diverse
graph domains, thereby establishing itself as a principled and practical solution for scalable graph
classification.

6 CONCLUSION

In this paper, we presented SHAKE-GNN, a scalable hierarchical graph neural network that couples
message passing with a Kirchhoff-Forest-based multi-resolution decomposition. By explicitly mod-
eling structure across resolutions and introducing a data-driven strategy for selecting the smoothing
parameter q via an information–complexity trade-off, SHAKE-GNN attains competitive accuracy
while improving computational efficiency. Our analysis quantified how KF coarsening contracts
graph size and, in turn, reduces the dominant computational terms, clarifying when multi-resolution
processing is provably cheaper than a vanilla GNN. Empirically, across molecular and social bench-
marks, SHAKE-GNN matched or surpassed strong baselines while yielding tangible training-time
savings. We believe KF-guided hierarchical modelling provides a principled path toward scalable
GNNs that preserve both local fidelity and global semantics.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Simon Barthelmé, Fabienne Castell, Alexandre Gaudillière, Clothilde Melot, Matteo Quattropani,
and Nicolas Tremblay. Estimating a graph’s spectrum via random kirchhoff forests. ArXiv
preprint, 2025. Preprint.

Filippo Maria Bianchi, Daniele Grattarola, and Cesare Alippi. Spectral clustering with graph neural
networks for graph pooling. In International Conference on Machine Learning (ICML), pp. 874–
883, 2020.

Aleksandar Bojchevski, Johannes Gasteiger, Bryan Perozzi, Amol Kapoor, Martin Blais, Benedek
Rózemberczki, Michal Lukasik, and Stephan Günnemann. Scaling graph neural networks with
approximate pagerank. In 26th ACM SIGKDD Conference on Knowledge Discovery and Data
Mining, pp. 133–142, 2020.

Marco Bressan and Sebastiano Vigna. Estimating a graph’s spectrum via random kirchhoff forests.
Journal of Complex Networks, 11(3):1–26, 2023.

Inderjit S. Dhillon, Yuqiang Guan, and Brian Kulis. Weighted graph cuts without eigenvectors: A
multilevel approach. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(11):
1944–1957, 2007.

Vijay Prakash Dwivedi, Soham Kaba, Guy Wolf, and Xavier Bresson. Long range graph benchmark.
In International Conference on Learning Representations (ICLR), 2022.

Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl. Neural
message passing for quantum chemistry. In Doina Precup and Yee Whye Teh (eds.), Proceedings
of the 34th International Conference on Machine Learning, volume 70 of Proceedings of Machine
Learning Research, pp. 1263–1272. PMLR, 2017.

William L Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large
graphs. In NeurIPS, 2017.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. In Ad-
vances in Neural Information Processing Systems (NeurIPS), volume 33, pp. 22118–22133, 2020.

George Karypis and Vipin Kumar. A fast and high quality multilevel scheme for partitioning irregu-
lar graphs. In Proceedings of the 1998 ACM/IEEE conference on Supercomputing (SC), pp. 1–13.
IEEE, 1998. doi: 10.1109/SC.1998.10003.

Thomas Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In International Conference on Learning Representations (ICLR), 2017.

Jiawei Li, Peng Wang, Hongwei Wang, Yongfeng Zhang, and Xing Xie. Graph neural networks for
social recommendation. WWW, 2020.

Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-Rad.
Collective classification in network data. AI magazine, 29(3):93–93, 2008.

Nicolas Tremblay, Yusuf Yigit Pilavci, Simon Barthelmé, and Pierre-Olivier Amblard. What can
we compute with kirchhoff forests? In 6th Graph Signal Processing Workshop (GSP), Oxford,
United Kingdom, 2023. URL https://hal.science/hal-04104124v1.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In International Conference on Learning Representations
(ICLR), 2018.

David Bruce Wilson. Generating random spanning trees more quickly than the cover time. In
Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, STOC ’96,
pp. 296–303. ACM, 1996. doi: 10.1145/237814.237880.

Zhenqin Wu, Bharath Ramsundar, Evan N Feinberg, Joseph Gomes, Caleb Geniesse, Ajay S Pappu,
Karl Leswing, and Vijay Pande. Moleculenet: a benchmark for molecular machine learning.
Chemical science, 9(2):513–530, 2018.

10

https://hal.science/hal-04104124v1

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and Philip S. Yu. A
comprehensive survey on graph neural networks. IEEE Transactions on Neural Networks and
Learning Systems, 32(1):4–24, 2021.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations (ICLR), 2019.

Zhilin Yang, William W Cohen, and Ruslan Salakhutdinov. Revisiting semi-supervised learning
with graph embeddings. In ICML, 2016.

Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren, William Hamilton, and Jure Leskovec.
Hierarchical graph representation learning with differentiable pooling. In Advances in Neural
Information Processing Systems (NeurIPS), pp. 4800–4810, 2018.

Yuchen Zeng, Fanjin Chen, Yan Sun, Zhanhong Chen, Yizhou Zhang, Ling Lyu, Jian Chen, Zonghan
Xu, Zhewei Wang, Zhen Zhang, and Junchi Tang. Lps-gnn: Scalable graph neural networks via
label propagation-based subgraph sampling. In Proceedings of the 40th International Conference
on Machine Learning (ICML), 2023.

Ziwei Zhang, Peng Cui, and Wenwu Zhu. Deep learning on graphs: A survey. IEEE Transactions
on Knowledge and Data Engineering, 34(1):249–270, 2022.

Jie Zhou, Ganqu Cui, Zhengyan Hu, Zhen Zhang, Cheng Yang, Zhiyuan Liu, Lifeng Wang,
Changcheng Li, and Maosong Sun. Graph neural networks: A review of methods and appli-
cations. AI Open, 1:57–81, 2020.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

A PROOF OF HIERARCHICAL PARTITION CONSISTENCY

Proposition A.1. For any hierarchy levels i < j, the partition matrices satisfy

P(i,j) = P(0,j)
(
P(0,i)

)−1

R
.

Proof. By definition, the partition matrix P(0,i) maps the original feature matrix F(0) at level 0 to
its coarsened representation F(i) at level i, i.e.,

P(0,i)F(0) = F(i), P(0,j)F(0) = F(j).

Similarly, the partition P(i,j) maps between consecutive coarse levels,

P(i,j)F(i) = F(j).

Combining these relations, we obtain

P(i,j)P(0,i)F(0) = P(0,j)F(0).

Since this holds for arbitrary F(0), it follows that

P(i,j)P(0,i) = P(0,j).

Since P(0,i) is generally a non-square partition matrix, its transpose is not a true inverse. Instead,
we consider its right inverse, defined as(

P(0,i)
)−1

R
= P(0,i)⊤(P(0,i)P(0,i)⊤)−1

,

which satisfies P(0,i)
(
P(0,i)

)−1

R
= I. Substituting this into the relation yields

P(i,j) = P(0,j)
(
P(0,i)

)−1

R
.

B FROM THE INVERSE FORMULATION TO THE SPECTRAL FORMULATION

B.1 NOTATION AND ASSUMPTIONS

Let L ∈ Rn×n be an unnormalised graph Laplacian, which is symmetric positive semidefi-
nite. Let L = UΛU⊤ be an eigen-decomposition, where U ∈ Rn×n is orthogonal, and
Λ = diag(µ1, . . . , µn) with 0 = µ1 ≤ · · · ≤ µn. Given node features Xv ∈ Rn×fv and a
regularisation parameter q > 0, define the Tikhonov smoothing operator

K(q) = q(L+ qI)−1.

We write the smoothed signal as X̂v = K(q)Xv , and the residual as R = Xv − X̂v . For any matrix
M, ∥M∥F denotes the Frobenius norm and tr(M) the trace.

B.2 SMOOTHING OPERATOR IN THE SPECTRAL BASIS

Lemma B.1 (Spectral form of the resolvent). For any q > 0,

(L+ qI)−1 = U(Λ+ qI)−1U⊤.

Proof. Since L = UΛU⊤ with U orthogonal,

L+ qI = U(Λ+ qI)U⊤.

Taking the inverse on both sides and using U−1 = U⊤ yields the claim.

Lemma B.2 (Spectral form of the smoother). Let hi(q) :=
q

µi+q . Then

K(q) = U diag
(
hi(q)

)
U⊤.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Proof. By Lemma B.1,

K(q) = q(L+ qI)−1 = qU(Λ+ qI)−1U⊤ = Udiag
(

q
µi+q

)
U⊤.

Let X̃v := U⊤Xv be the spectral coefficients and define per-mode energies for i = 1, . . . , n,

Si := ∥X̃v,i:∥22 =

fv∑
j=1

X̃2
v,ij .

By Lemma B.2,

X̂v = K(q)Xv = Udiag(hi(q))U
⊤Xv ⇒ ̂̃

Xv = U⊤X̂v = diag(hi(q)) X̃v.

Therefore, the spectral residual is

R̃ = X̃v −
̂̃
Xv = diag(1− hi(q)) X̃v.

B.3 FEATURE RECONSTRUCTION LOSS: EQUIVALENCE

Proposition B.3. Let L ∈ Rn×n be the graph Laplacian with eigendecomposition L = UΛU⊤,
where U is orthogonal and Λ = diag(µ1, . . . , µn). For node features Xv ∈ Rn×fv and smoothing
parameter q > 0, define the Tikhonov smoothing operator

K(q) = q(L+ qI)−1, X̂v = K(q)Xv.

Let X̃v = U⊤Xv be the spectral coefficients and Si = ∥X̃v,i:∥22 =
∑fv

j=1 X̃
2
v,ij the per-mode

energies. With the spectral gain hi(q) = q
µi+q , the feature reconstruction loss admits the exact

spectral form

∥Xv − X̂v∥2F =

n∑
i=1

(1− hi(q))
2 Si, ∥Xv∥2F =

n∑
i=1

Si. (2)

B.4 DIRICHLET LOSS: EQUIVALENCE

Proposition B.4. Let L ∈ Rn×n be the graph Laplacian with eigendecomposition L = UΛU⊤,
where U is orthogonal and Λ = diag(µ1, . . . , µn). For node features Xv ∈ Rn×fv and smoothing
parameter q > 0, define the Tikhonov smoothing operator

K(q) = q(L+ qI)−1, X̂v = K(q)Xv.

Let X̃v = U⊤Xv be the spectral coefficients and Si = ∥X̃v,i:∥22 =
∑fv

j=1 X̃
2
v,ij the per-mode

energies. With the spectral gain hi(q) = q
µi+q and residual R = Xv − X̂v , the Dirichlet energy

loss admits the exact spectral form

tr
(
(Xv − X̂v)

⊤L(Xv − X̂v)
)
=

n∑
i=1

µi(1− hi(q))
2 Si, tr(X⊤

v LXv) =

n∑
i=1

µiSi. (3)

B.5 EDGE/LINE-GRAPH CASE

Let Le = UeΛeU
⊤
e be the line-graph Laplacian and Xe ∈ Rm×fe the edge features (optionally

aggregated to undirected edges). Define he
i (q) =

q
µe
i+q , X̃e = U⊤

e Xe, and Se
i = ∥X̃e,i:∥22. Then,

repeating the node-side derivations verbatim,

∥Xe − X̂e∥2F =

m∑
i=1

(1− he
i (q))

2 Se
i , ∥Xe∥2F =

m∑
i=1

Se
i ,

tr
(
(Xe − X̂e)

⊤Le(Xe − X̂e)
)
=

m∑
i=1

µe
i (1− he

i (q))
2 Se

i , tr(X⊤
e LeXe) =

m∑
i=1

µe
iS

e
i ,

trKe(q) =

m∑
i=1

he
i (q).

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

C ADDITIONAL q-CHOICE FIGURES

In the main text (Figure 1), we reported the q-choice curves for the OGBG-MOLHIV and OGBG-
PPA datasets. For completeness, we provide here the corresponding plots for the remaining datasets,
that are COLLAB, DD, and REDDIT-MULTI-12K. For datasets without edge features, the corre-
sponding edge-related quantities remain constant at zero.

(a) The q-choice curves for the COLLAB dataset. (b) The q-choice curves for the DD dataset.

(c) The q-choice curves for the REDDIT-MULTI-
12K dataset.

Figure 2: The q-choice curves for COLLAB, DD, and REDDIT-MULTI-12K datasets.

D EXPERIMENT DATASETS

OGBG-MolHIV. The ogbg-molhiv dataset is a molecular graph classification benchmark orig-
inating from the MoleculeNet collection (Wu et al., 2018) and integrated into the Open Graph
Benchmark (OGB) (Hu et al., 2020). Each sample is a molecule represented as a graph, with atoms
as nodes and chemical bonds as edges. The prediction task is binary classification, determining
whether a molecule exhibits HIV-inhibitory activity, evaluated using the ROC-AUC metric.

OGBG-MolPPA. The ogbg-ppa dataset is a protein–protein association network from the OGB
suite. Nodes correspond to proteins and edges indicate biological associations such as functional
interactions. The task is graph classification, where the objective is to predict the biological class
of a protein association graph, providing a challenging benchmark due to the large graph sizes and
heterogeneity.

COLLAB. The COLLAB dataset is a social network graph classification benchmark derived from
scientific collaboration networks. Each graph corresponds to the ego-network of a researcher, where

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

nodes represent collaborators and edges represent co-authorship. The classification task is multi-
class, aiming to predict the scientific field of the researcher based on the collaboration structure.

DD. The DD dataset (D&D) is a protein graph classification benchmark. Each graph corresponds
to a protein, where nodes represent amino acids and edges are formed between pairs of amino acids
that are spatially close in the 3D structure. The task is binary classification, predicting whether a
protein is an enzyme or a non-enzyme.

REDDIT-MULTI-12K. The REDDIT-MULTI-12K dataset is a social network benchmark de-
rived from Reddit discussion threads. Each graph represents a discussion thread, where nodes are
users and edges indicate interactions (e.g., replies). The classification task is multi-class, predicting
the category of the discussion thread (e.g., technology, politics, sports).

E HYPERPARAMETER GRID SEARCH DOMAIN

For reproducibility, we document the hyperparameter search domain used for tuning SHAKE-GNN
and baseline models. The search was conducted via grid search over the following ranges:

• Number of GNN layers per resolution level: {2, 4, 6, 8, 10, 12}.
• Read-out layers: {0, 2, 4, 6, 8, 10, 12}.
• Linear layers per GNN layer: {1, 2, 3, 4}.
• Hidden dimension: {64, 128, 256, 512, 1024, 2048}.

15

	Introduction
	Related Work
	Preliminary
	Methodology
	Data-Driven q-Choice via Information Loss–Complexity Trade-off
	Sequential SHAKE-GNN Architecture
	Time Complexity Analysis
	Expected Coarse Graph Size
	Time Complexity

	Result
	Experimental Setup
	Resolution Parameter Selection

	Conclusion
	Proof of Hierarchical Partition Consistency
	From the Inverse Formulation to the Spectral Formulation
	Notation and Assumptions
	Smoothing Operator in the Spectral Basis
	Feature Reconstruction Loss: Equivalence
	Dirichlet Loss: Equivalence
	Edge/Line-Graph Case

	Additional q-Choice Figures
	Experiment Datasets
	Hyperparameter Grid Search Domain

