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ABSTRACT

Graph Neural Networks (GNNs) have achieved remarkable success across a range
of learning tasks. However, scaling GNNs to large graphs remains a significant
challenge, especially for graph-level tasks. In this work, we introduce SHAKE-
GNN, a novel scalable graph-level GNN framework based on a hierarchy of Kirch-
hoff Forests, a class of random spanning forests used to construct stochastic multi-
resolution decompositions of graphs. SHAKE-GNN produces multi-scale repre-
sentations, enabling flexible trade-offs between efficiency and performance. We
introduce an improved, data-driven strategy for selecting the trade-off parameter
and analyse the time-complexity of SHAKE-GNN. Experimental results on mul-
tiple large-scale graph classification benchmarks demonstrate that SHAKE-GNN
achieves competitive performance while offering improved scalability.

1 INTRODUCTION

Graph classification is a fundamental task in graph machine learning, in which one aims to determine
the class of an entire graph based on its structure and attributes. This task is widely applicable across
domains such as molecular property prediction, e.g., identifying active versus inactive compounds
(Wu et al.L|2021]), social network analysis, e.g., bot detection (Zhou et al.,[2020), and communication
system diagnostics, e.g., faulty topology detection (Zhang et al.| [2022)). With the rapid advancement
of Graph Neural Networks (GNNs), many approaches have achieved impressive results by leverag-
ing local neighbourhood information through message passing (Gilmer et al.l [2017)). Despite their
success, significant challenges remain in terms of scalability and global structure modelling, es-
pecially when dealing with large and complex graphs, such as protein graphs and social networks
among others.

Early GNNs such as Graph Convolutional Networks (GCNs) (Kipf & Welling| |2017), Graph Atten-
tion Networks (GATs) (Velickovi¢ et al.| 2018)), and Graph Isomorphism Networks (GINs) (Xu et al.,
2019) rely on iterative message passing between neighbouring nodes. While these models exhibit
linear time complexity in the number of edges and are effective for small to moderately sized graphs,
their scalability can be further enhanced. In particular, repeated aggregation steps across multiple
layers may incur redundant computations and memory overhead when deployed on large-scale or
densely connected graphs. Furthermore, their design typically emphasises fine-grained, local fea-
ture interactions at the node level, which often leads to over-fragmented representations that fail to
capture long-range dependencies and global semantic structure, which are critical components in
tasks requiring global graph understanding.

To address these limitations, we propose a new model called Scalable Hierarchical Kirchhoff-Forest
Graph Neural Network (SHAKE-GNN), anovel hierarchical graph neural architecture that constructs
multi-resolution representations via a Kirchhoff Forest-based coarse-graining method. A spanning
forest is a collection of spanning trees, each covering a connected component of a graph without
forming cycles. Building on this, Kirchhoff Forests (KFs) are probabilistic ensembles of spanning
forests, where the probability of each forest is determined by the graph Laplacian. This formula-
tion provides a principled way to capture structural dependencies and connectivity patterns within
graphs. Instead of relying on random or flat clustering schemes, we introduce a principled, layer-
wise node merging strategy guided by Kirchhoff Forests (KFs), which generates a hierarchy of
coarsened graphs. Each coarse node aggregates a substructure from the previous layer, using mean
or sum pooling for node and edge features depending on the dataset.
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Our main contributions are summarised as follows:

* We define a hierarchical graph decomposition pipeline based on KFs and integrate it with
the model architecture SHAKE-GNN, which effectively leverages multi-resolution struc-
tural information for graph classification tasks. This framework is applicable across diverse
graph domains and scales efficiently to large datasets.

* We introduce an improved strategy for selecting the resolution parameter ¢, balancing com-
putational complexity and information loss, and provide a theoretical time complexity anal-
ysis that demonstrates the scalability advantages of our architecture over conventional GNN
frameworks in multi-resolution settings.

* We empirically validate our approach through extensive experiments, showing that it
achieves scalability compared to state-of-the-art GNN models.

2 RELATED WORK

Graph Neural Networks (GNNs). Graph Neural Networks (GNNs) have emerged as a powerful
paradigm for representation learning on graph-structured data. GNNSs function by recursively aggre-
gating information from local neighbourhoods. The seminal Graph Convolutional Network (GCN)
(Kipf & Welling, [2017)) combines a node’s features with those of its neighbours and calculates a
weighted average over neighbourhoods. Subsequent extensions such as Graph Attention Networks
(GAT) (Velickovic et al.l 2018)) introduce adaptive weighting via an attention mechanism, while
Graph Isomorphism Networks (GIN) (Xu et al., | 2019) employ injective aggregation functions to en-
hance expressive capacity. These models have been successfully applied to a range of tasks. Typical
examples include molecular property prediction (Hu et al.| |2020), citation graph classification (Sen
et al., 2008; Yang et al.,[2016)), and social network modeling (Hamilton et al.,[2017; Li et al., [2020).

Despite their empirical success, conventional GNNs encounter significant limitations when scaled to
large or densely connected graphs. Their reliance on multi-hop message passing increases computa-
tional overhead, particularly in deep architectures (Dwivedi et al.,2022)). Moreover, their inherently
local aggregation mechanisms often struggle to capture long-range dependencies and global seman-
tics, resulting in representations that are focused on neighborhood-level patterns.

Graph Pooling and Coarsening. To mitigate the locality and scalability issues inherent in GNNss,
various graph pooling and coarsening techniques have been developed to enable hierarchical rep-
resentation learning. Differentiable Pooling (DiffPool) (Ying et al., 2018) introduces differentiable
assignment matrices to softly cluster nodes into coarse representations, facilitating end-to-end hi-
erarchical learning. Graph clustering using weighted cuts (Graclus) (Dhillon et al.| 2007 adopts a
greedy coarsening strategy based on graph cuts, while minimum-cut-based pooling (minCUT pool-
ing) (Bianchi et al.| 2020) imposes spectral regularisation to enforce partition quality.

Traditional graph partitioning algorithms, such as METIS (Karypis & Kumar, |1998), employ mul-
tilevel coarsening and refinement heuristics to minimize edge cuts while maintaining balanced par-
tition sizes. This has enabled GNNss to scale to graphs with billions of nodes. A recent extension,
LPMetis (Zeng et al.,[2023)), integrates label propagation into the coarsening phase to improve scal-
ability and partition quality, particularly for distributed GNN training. Nevertheless, METIS and its
variants are inherently non-stochastic.

Personalised PageRank for Node-Level Scalability. To mitigate the computational inefficiencies
associated with recursive message passing in Graph Neural Networks (GNNs), recent research has
proposed decoupling feature propagation from transformation via Personalised PageRank (PPR)
scores. An illustrative instance of this approach is PPRGO (Bojchevski et al.l|2020), which utilises
a precomputed and sparsified approximation to facilitate efficient feature aggregation.

Despite their efficiency, PPR-based models such as PPRGO are node-centric in design. Each node’s
prediction is computed conditioned solely on its personalised neighbourhood. This localised per-
spective, while computationally advantageous, limits their applicability to graph-level tasks, such
as molecular property prediction or program classification, where coarse-grained, hierarchical, or
long-range interactions are significant.
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3 PRELIMINARY

In this section, we introduce the fundamental concepts required for our framework. We begin by re-
calling classical notions of spanning trees and spanning forests, which serve as the basis of Kirchhoff
Forests.

Definition 3.1 (Spanning Tree). A spanning tree of G is a subgraph T = (V, £7) such that:

1. 7 includes all vertices of G, i.e., V- = V;
2. T is acyclic, i.e., it contains no cycles;

3. 7T is connected, i.e., there exists a path between any two vertices in 7 .

Definition 3.2 (Spanning Forest). A spanning forest is a subgraph F = (V, Ex) such that:

1. Each connected component of F is a spanning tree of a connected component of G;

2. F is acyclic and covers all vertices V.

Kirchhoff Forest-Based Graph Decomposition. (Bressan & Vigna, 2023; Barthelmé et al.,
2025) Kirchhoff Forests (KFs) offer a principled and probabilistically grounded framework for hi-
erarchical graph decomposition. Rooted in spectral graph theory, KFs generate structured, multi-
scale partitions of nodes by sampling random spanning forests from a distribution derived from the
graph Laplacian (Bressan & Vignal [2023)). The resolution of the decomposition is modulated by a
temperature-like parameter ¢ > 0, which controls the probabilistic distribution over forest structures
and emulates fine-to-coarse abstraction.

Formally, let G = (V, £) be an undirected graph. Kirchhoff Forests define a distribution over rooted
spanning forests F C & with root set R C V), governed by the parameter q. The probability of
sampling a particular forest F is given by,

H q 3y (F) H 1
Pq(]:) o ( ) )
vey Na Tt dv Ger +di

where d,, denotes the degree of node v, and d,,(F) is an indicator function equal to 1 if v is a root
in F, and O otherwise. This formulation induces a trade-off between the number and size of trees in
the forest, allowing the parameter ¢ to control the expected number of connected components and
the granularity of the resulting partition.

Sampling from this distribution is typically performed using Wilson’s algorithm (Wilson, |1996),
adapted with priority-based root selection to incorporate the influence of q. Priority-based root
selection refers to a biasing mechanism whereby nodes are assigned selection priorities proportional
to their restart probabilities. At each step in Wilson’s algorithm, a node initiates a loop-erased
random walk with stochastic restarts: it either terminates at a new root with probability (I“!‘Ldv or

continues to a randomly chosen neighbour with probability qu’ji . The resulting collection of walks

yields a spanning forest rooted at a dynamically constructed set of nodes.

To construct a hierarchical, multi-resolution decomposition, a strictly decreasing sequence of reso-
lution parameters ¢ > g2 > --- > qy, is applied recursively. Each level produces increasingly
fine-grained structural abstractions. To maintain consistency and reduce redundant computation
across levels, the Reboot (Wilson, |1996) algorithm incrementally adjusts previously sampled forests
by locally reassigning root nodes in response to a smaller resolution parameter ¢’ < ¢. This ap-
proach preserves the probabilistic semantics of the distribution while avoiding full re-sampling at
each stage of the hierarchy.

Graph Hierarchy Construction. We input a graph. Each node v € V is associated with a feature
vector in the node feature matrix X, € R"*J/v, where fv is the dimensionality of node attributes
and n is the number of nodes. Similarly, each edge e € £ is associated with a feature vector in the
edge feature matrix X, € R™*/<, where f. denotes the dimensionality of edge attributes and m is
the number of edges. The graph connectivity is represented by the adjacency matrix A € R"*",
and the corresponding graph-level target label is denoted as y € ).
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To construct hierarchical representations suitable for multi-resolution graph classification, we pre-
process each input graph using a coupled KF decomposition pipeline. Given a graph G, we begin by
extracting its structural and feature information, including node features, edge features, and connec-
tivity. We then apply the Wilson algorithm to generate a collection of randomised spanning forests,
each governed by a resolution parameter g drawn from a strictly decreasing sequence q1, g2, - - -, qn, -
Each value of ¢ controls the distribution over forest structures, where larger values yield coarser par-
titions with fewer components, and smaller values induce finer-grained decompositions.

At each level of this hierarchy, nodes in the original graph are assigned to disjoint subsets, referred
to as forest components, which form the basis for coarse nodes in the coarsened graph. Importantly,
the features of each coarse node are obtained by directly averaging or summing the feature vectors
of its constituent nodes from the original input graph, rather than from features from previously
coarsened levels. Similarly, the edge attributes between coarse nodes are computed by averaging the
features of all edges in the original graph that connect nodes across the corresponding components.
By recursively applying this decomposition procedure across the sequence of g-values, we obtain a
hierarchy of coarsened graphs, each capturing progressively higher-order structural abstractions.

For each pair of consecutive levels, we define a partition matrix P(¢<-1-fa) to specify and realize the
coarse-graining operation between level {4_; and level ¢4, where ¢4 € {1,..., N,}. We extract the
following components:

* The coarsened graph structure constructed by grouping nodes within each forest component
into a supernode;

* Node features for each super-node computed by averaging or summing the feature vectors
of constituent nodes in the original input graph;

* Edge features derived by averaging or summing the attributes of all original edges that
connect nodes across corresponding forest components;

e Partition matrices P(a-1:¢a) ¢ R™a-1 %"

nodes at level £4_1 and ¢.

, where ng, , and ng, denote the number of

It is important to note that the partition matrices P(“a-1¢a) are not computed with respect to the
original graph, but are instead derived recursively based on the coarsened structure from the pre-
ceding level. For example, if P(®") and P(®-7) denote mappings from the original graph to levels
i and j respectively, then their product satisfies P(7) = P(0.7) (P(O”'));, illustrating the compo-
sitional consistency of the hierarchy. A detailed proof is presented in Appendix [A] This recursive
construction ensures consistent hierarchical alignment while accommodating the stochastic devia-
tions introduced during random forest generation. Since nodes from different components in the
finer level may be grouped into the same supernode at the coarser level, the resulting partition ma-
trix naturally encodes soft associations as continuous values in [0, 1], representing the proportion of
contribution from each fine-level node.

This preprocessing yields a hierarchy of graphs {G(®) ... G(Na)} per graph, where G(©) = G de-
notes the original graph. The resulting hierarchical dataset is used to train our SHAKE-GNN model.

4 METHODOLOGY

In industry, graph classification in domains such as molecular property prediction and social network
analysis requires models to be scalable. Conventional message-passing GNNs are limited by their
local aggregation schemes and insufficient scalability, while pooling-based methods often rely on
rigid heuristics. To address these issues, we propose SHAKE-GNN, a hierarchical architecture that
employs Kirchhoff Forests for probabilistically grounded multi-resolution decomposition.

4.1 DATA-DRIVEN ¢-CHOICE VIA INFORMATION LOSS—COMPLEXITY TRADE-OFF

A central component of SHAKE-GNN is the selection of the smoothing parameter ¢, which governs
the resolution of the Kirchhoff Forest decomposition. To determine an appropriate value of ¢, we
adopt a data-driven strategy that balances information preservation against model complexity.
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Building on the work of |[Tremblay et al.|(2023)), we introduce an improved framework. Specifically,
we define Tikhonov smoothing operators on both nodes and edges, yielding smoothed features )A(U =
K(q)X, and X, = K. (q)X,, where K(¢q) = (L 4 qI)~! and K.(q) = q(L, + ¢I)~* are defined
on the unnormalised graph Laplacian L and line-graph Laplacian L., respectively. We measure
information loss as the average of feature reconstruction error

Xy — X%

Erec(Q) = = =
hmqﬁO* ”Xv - Xv”%“

and Dirichlet energy loss

La(q) = E(Ka= X,) TL(X, — X,))

i\ @) = tr(X, LX,) ‘
This optimisation problem admits a more efficient spectral formulation. Instead of repeatedly com-
puting matrix inverses for different values of g, one can perform a single eigendecomposition of L
and L., after which the quantities for all ¢ are obtained by simple per-eigenvalue evaluations. A
detailed proof is presented in Appendix B}

Let L = UAUT be the eigendecomposition of the Laplacian with eigenvalues {y;} and eigen-
vectors {u;}. In this basis, the Tikhonov gain is h;(¢) = -4~ and all quantities decompose into
per-eigenmode contributions.

The node-side reconstruction error reduces to

n

||Xv - Xw”% = Z(l - ( )) ||UTX11H27

i=1
while the Dirichlet energy loss becomes

tr((X, — X,) T L(X, — X,)) Zﬂz (1— 21U X, 3.
Analogously, on the edge side we have

IXe = XellF =D (1= hf(@)* [UFTXe |3,

i=1
and

tr((Xe - XE)TLe(Xe - Xe)) = Zﬂf(l - h;(‘])f HUfTXeH%,
where L, = U.A. U/ is the eigendecomposition of the line-graph Laplacian, and h$(q) = ﬁ.
To quantify model complexity, we compute the effective degrees of freedom on both the node and

edge sides. For the graph Laplacian L with eigenvalues {y;}? ; and the line-graph Laplacian L,
with eigenvalues {u¢}7 ,, we define
3

dfnode(‘]) - l Z

.Uz JF q # >0
1
dfedge(q) = — - Z hi(q
;L €>0 ’u7 ;Ll >0

where h;(q) = -4 with eigenvalues {y;} of L, and h§(q) = 7 4 of the

line-graph Laplaman L.. These spectral formulas enable efficient evaluation of 7 (¢) and hlghhght
its interpretation as a frequency-selective trade-off, where ¢ acts as a spectral filter modulating the
contribution of each eigenmode.

The final objective combines node and edge information losses with a complexity penalty,
j(Q) = Einfo,node (Q) + Linfo,edge(‘]) + d)(dfnode(Q) + dfedge (Q))a
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where ¢ > 0 controls the trade-off. The optimal resolution parameter is then selected as
* = i . 1
¢" = argmin J(q) (D

This formulation yields an interpretable criterion: small ¢ values preserve fine-grained information
at the expense of complexity, while large g reduce complexity but risk excessive information loss.
The proposed trade-off identifies the resolution that best balances these effects for a given dataset.

4.2 SEQUENTIAL SHAKE-GNN ARCHITECTURE

The Sequential SHAKE-GNN architecture is designed to exploit the hierarchical inductive bias of
multi-resolution graph decompositions by processing coarse-to-fine structural abstractions in a level-
wise sequential fashion. Given an input graph G, where each node and edge is endowed with a
feature vector, the model propagates information through a progressive refinement pipeline that
traverses a hierarchy of coarsened graphs.

Let X, € R"*f» and X, € R™*/e denote the initial node and edge feature matrices, respectively.
These features are first embedded into a shared latent space R via dedicated encoders,

H”) = NodeEncoder(X,), H = EdgeEncoder(X,).

Depending on the dataset, the encoders are instantiated either as embedding layers for categorical
attributes or as multilayer perceptrons (MLPs) for continuous feature vectors.

The model iteratively processes the coarsened graphs corresponding to the resolution levels
q1,---,qn,- At each resolution level g;, a stack of L; message passing layers is applied, with
updates at each layer £ € {1, ..., L;} defined as,
0 _ (e=1) 1, (=1) (£=1)
hi = ¢msg (hi »hj ) €45 ) )

) € R? denotes

the hidden representation of node ¢ from the neural layer ¢, ez(f) € R represents the edge feature
associated with edge (4, j), j indexes the neighbors of node 7 in the coarsened graph.

. Lo . . ¢
where ¢ns; denotes a message passing function involving trainable parameters, hg

Upon completing the processing of message passing at level g;, the resulting node embeddings
HS,L")[qi] € R? are propagated to the next finer level ¢;;;. Specifically, a stochastic alignment
matrix P(~1%) ¢ R"*"i-1 encodes the distribution correspondence between coarse and fine level

nodes, Lo
H{"[g; 1] = PUTIH[g,].

After the GNN layers, a global mean pooling operator aggregates the node-level embeddings into a
graph-level representation,

Hloomp = GlobalMeanPool(FL " gy, )).

To further refine the representation, an optional read-out MLP composed of Lyi,p fully connected
layers is applied,
¥ = MLP(H¢omp) € R,

where o, denotes the output dimensionality corresponding to the number of classes.

4.3 TIME COMPLEXITY ANALYSIS

In this section, we provide a theoretical analysis of the computational complexity of SHAKE-GNN.
We first estimate the expected size of the coarsened graphs produced by the Kirchhoff Forest decom-
position, and then derive the overall time complexity of the model as a function of the resolution
parameter ¢ and the number of resolution levels N,,.

4.3.1 EXPECTED COARSE GRAPH SIZE

To assess the computational efficiency of our model, it is essential to characterise how the graph size
evolves under coarsening. Given an input graph G, we estimate the expected size of the coarsened
graph generated by applying the Kirchhoff Forest (KF) decomposition with resolution parameter q.
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Expected Number of Coarse Nodes. In the Wilson-based forest sampling procedure, each node
v € V independently becomes the root of a tree with probability

_ 4
q+d,’

2
where d, is the degree of node v. The expected number of coarse nodes (roots) is thus

BVl =3 o

veY

In our complexity calculation, assuming approximate uniform degree d,, ~ d = 22, we obtain
n

q
E[V,|] = n——.
Vil =t

Expected Number of Coarse Edges. Anedge (i, ) € £ contributes to a coarse edge if it connects
nodes belonging to different forest components. The probability of being cut can be calculated by
(Bressan & Vignal 2023} Barthelmé et al.| |2025))

2q

PCU .7‘ =5 7 3

Hence,

Ble )= 3 2

()€€ 2(] + dZ + dj

Withd; = d; = d, this simplifies to (Bressan & Vignal, 2023)

q
E[|&]] = m——.
€l m

The estimates of nodes and edges numbers show that both shrink by a resolution-dependent factor

__a
so that
Vol =r(@)n, &~ r(g)m.

4.3.2 TiIME COMPLEXITY

For one resolution level g, the computational cost consists of:

« Input Embedding. O(r(q) nf,o+ r(q) mf.o);
* Message Passing and MLPs. O (T r(g)(mo + nMo?));
* Graph-Level Pooling. O(r(q) no);
where M denotes the depth of the internal multilayer perceptron (MLP), i.e., the number of fully

connected layers within each message passing layer. Among these three components, the overall
complexity is dominated by the term Message Passing and MLPs.

If the model employs IV, distinct resolution levels, the total complexity is
O(Nyr(q) T (mo+ nMo?)).
This formulation shows explicitly how the reduction ratio r(g) controls the trade-off between effi-

ciency and representation capacity across multiple resolutions. Since r(¢q) < 1, the total complexity
of SHAKE-GNN is strictly lower than that of a standard GNN.
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Figure 1: The g-choice figure of MOLHIV and PPA dataset, respectively. The six curves correspond
to the node feature reconstruction loss, node structural loss, edge feature reconstruction loss, edge
structural loss, as well as the node and edge complexity terms. Other figures in Appendix E}

5 RESULT

To validate the proposed SHAKE-GNN framework, we conduct comprehensive experiments de-
signed to assess both predictive performance and computational efficiency. Our evaluation focuses
on whether the incorporation of multi-resolution structures and Kirchhoff Forest-based coarsening
can achieve competitive accuracy while significantly reducing training cost. In what follows, we first
detail the experimental setup, then analyse the effect of resolution parameter selection, and finally
present dataset-specific results with comparisons to standard baselines.

5.1 EXPERIMENTAL SETUP

To rigorously assess the effectiveness and generalizability of the proposed architecture, we conduct
a series of graph classification experiments across multiple benchmark datasets. These datasets
are drawn from diverse domains, including molecular chemistry and social network analysis. A
description of the datasets is presented in Appendix [D}

All experiments are conducted on a single NVIDIA RTX A6000 GPU equipped with 48GB of
memory. The computational environment also includes an Intel Xeon W5-3425 CPU and 256GB of
system RAM, providing sufficient resources for training efficient large-scale graph neural networks.
The operating system is Ubuntu 24.04. The software stack comprises Python 3.11 and PyTorch
2.4.0, with CUDA version 12.4 for GPU acceleration.

5.2 RESOLUTION PARAMETER SELECTION

All experiments share a common set of training hyperparameters: batch size of 256, learning rate
fixed at 0.005, weight decay set to 1.0 x 102, random seed 42, and a maximum of 100 training
epochs. A constant learning rate scheduler is used throughout. To prevent overfitting, we apply early
stopping with patience of 10 epochs and a minimum improvement threshold of 0.001.

For each dataset, we perform a spectral evaluation of 7(gq) on the training split and compute the
minimiser ¢* defined in Equation (1| The resulting values are then applied throughout the training
and evaluation phases. The result is shown in Figure

By traversing a range of ¢ values, we obtain the combined objective 7 (¢), whose minimum directly
identifies the optimal resolution parameter ¢* defined in Equation This procedure systemati-
cally balances information preservation with computational efficiency, and similar evaluations are
performed for all datasets.

In addition, each dataset uses specific architectural and optimization settings. These include the
number of GNN layers, the number of linear layers per GNN block, the number of MLP layers in the
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post-processing module, the hidden dimension size, and the optimiser. The complete configuration
is summarised in Table[T] The grid search domain is presented in Appendix [E]

Table 1: Dataset-specific hyperparameters used in experiments. INF indicates the original graph.

Dataset q Values Layers per q Value MLP Layers Linear per GNN Layer Hidden Dim Optimizer
MolHIV [INF, 1.9] [6, 4] 6 1 1024 PESG
MolPPA [INF, 207.0] [4,2] 0 2 256 AdamW
COLLAB [INF, 17.8] [4,4] 4 2 64 AdamW
DD [INF, 6.4] [6, 4] 4 1 64 AdamW
REDDIT-MULTI-12K  [INF, 0.03] [4, 4] 0 2 128 AdamW

We compare the baseline GNN trained on the original graphs with our hierarchical variant using
KF-based coarsening. For each dataset, we report both the training time (in minutes) and evaluation
performance (ROC-AUC for molecular datasets, accuracy for social/protein datasets). Results are
given for the original graphs and for the coarsened graphs, enabling direct comparison of efficiency
and predictive power.

Table 2: Comparison of training time and evaluation performance between original and coarsened
graphs.

D Training Time (mins) Evaluation
ataset

Original Coarsened Original Coarsened
MolHIV 6.83 2.63 (38.53%) 0.794 0.787 (99.11%)
MolPPA 151.740  73.48 (48.42%) 0.767 0.744 (97.00%)
COLLAB 9.41 2.57 (27.30%) 0.752 0.739 (98.27%)
DD 0.24 0.09 (37.43%) 0.749 0.740 (98.86%)

REDDIT-MULTI-12K 5.45 1.99 (36.46%) 0.492  0.481 (97.78%)

Across multiple benchmark datasets, our experimental results consistently validate the effectiveness
of incorporating multi-resolution structure and stochastic abstraction via the proposed Kirchhoff
Forest-based graph coarsening framework. The SHAKE-GNN architecture achieves competitive or
superior performance compared to standard GCN baselines, while at the same time significantly
reducing training time in several configurations. Across all datasets, we achieved at least 97% of the
baseline performance with the cost of at most 50% of the baseline.

These results further underscore the importance of architectural design choices. Allocating mod-
erate depth to the coarse levels and optionally incorporating lightweight read-out MLPs helps to
recover predictive capacity while preserving efficiency. In this way, SHAKE-GNN demonstrates
that carefully tuned multi-resolution decomposition can simultaneously reduce computational bur-
den in line with theoretical complexity estimates and maintain strong performance across diverse
graph domains, thereby establishing itself as a principled and practical solution for scalable graph
classification.

6 CONCLUSION

In this paper, we presented SHAKE-GNN, a scalable hierarchical graph neural network that couples
message passing with a Kirchhoff-Forest-based multi-resolution decomposition. By explicitly mod-
eling structure across resolutions and introducing a data-driven strategy for selecting the smoothing
parameter ¢ via an information—complexity trade-off, SHAKE-GNN attains competitive accuracy
while improving computational efficiency. Our analysis quantified how KF coarsening contracts
graph size and, in turn, reduces the dominant computational terms, clarifying when multi-resolution
processing is provably cheaper than a vanilla GNN. Empirically, across molecular and social bench-
marks, SHAKE-GNN matched or surpassed strong baselines while yielding tangible training-time
savings. We believe KF-guided hierarchical modelling provides a principled path toward scalable
GNNss that preserve both local fidelity and global semantics.
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A PROOF OF HIERARCHICAL PARTITION CONSISTENCY

Proposition A.1. For any hierarchy levels © < j, the partition matrices satisfy
PGd) — P(OJ)<P(0J))}_%1_
Proof. By definition, the partition matrix P(*-¥) maps the original feature matrix F(*) at level 0 to
its coarsened representation F® at level i, 1.€.,
POIFO) = ) POHEO) — @)
Similarly, the partition P (/) maps between consecutive coarse levels,
PEHFE — U
Combining these relations, we obtain
PEHPOHR0) — p0.)E0)
Since this holds for arbitrary F(%), it follows that
PEHP0) — p(0.4)

Since P(%%) is generally a non-square partition matrix, its transpose is not a true inverse. Instead,
we consider its right inverse, defined as

(p(&i));l — P(Ovi)T(P(OJ)P(07Z')T)_17
which satisfies P(%:%) (P(0:9)) 1;1 = 1. Substituting this into the relation yields

’i" o 7, )i 71
PG — pO J)(P(O ))R )

B FROM THE INVERSE FORMULATION TO THE SPECTRAL FORMULATION

B.1 NOTATION AND ASSUMPTIONS

Let L € R™ ™ be an unnormalised graph Laplacian, which is symmetric positive semidefi-
nite. Let L = UAUT be an eigen-decomposition, where U € R"*" is orthogonal, and
A = diag(py, ..., pn) With 0 = p; < --- < p,. Given node features X, € R"*f» and a
regularisation parameter ¢ > 0, define the Tikhonov smoothing operator

K(q) = q(L+qD)~".

We write the smoothed signal as X, = K(q)X,, and the residual as R = X, — X.,,. For any matrix
M, || M]|| r denotes the Frobenius norm and tr(M) the trace.

B.2 SMOOTHING OPERATOR IN THE SPECTRAL BASIS
Lemma B.1 (Spectral form of the resolvent). For any q > 0,

(L+qD) ' =UA+q¢)'UT.

Proof. Since L = UAU with U orthogonal,
L+¢I=UA+4q)U"'.

Taking the inverse on both sides and using U~! = U" yields the claim. O
Lemma B.2 (Spectral form of the smoother). Let h;(q) := M,‘iq. Then

K(g) = Udiag(hi(q)) U".
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Proof. By Lemma[B.T}
K(q) = a(L+qD) " = qU(A +qD)"'UT = Udiag(;:%; ) UT.

Let X, := UTX, be the spectral coefficients and define per-mode energies fori = 1,...,n,
fo

S = ||Xv,i:||2 ZX‘U ij*
By Lemma|B.2]

X, = K(¢)X, = Udiag(hi(q)) U'X, = X, =U'X, = diag(hi(q)) X,.
Therefore, the spectral residual is

R =X, — X, = diag(1 — hi(q)) X,.

B.3 FEATURE RECONSTRUCTION LOSS: EQUIVALENCE

Proposition B.3. Let L € R"*™ be the graph Laplacian with eigendecomposition . = UAUT,

where U is orthogonal and A = diag(ji1, . .., itn). For node features X,, € R"*/v and smoothing

parameter q > 0, define the Tikhonov smoothing operator
K(g)=qL+q)7", X, =K(@X,.

Let X, = U"X, be the spectral coejﬁcients and S; = || X,,:|13 = Zf”

energies. With the spectral gain h;(q) =

spectral form

X2 .ij the per-mode

" +q the feature reconstruction loss admits the exact

n

IX, = RKolZ = S —hi(@)?Si, Xl = }js @)

=1
B.4 DIRICHLET LOSS: EQUIVALENCE

Proposition B.4. Let L € R"*™ be the graph Laplacian with eigendecomposition . = UAUT,
where U is orthogonal and A = diag(j1, . .., itn). For node features X,, € R"*/v and smoothing
parameter q > 0, define the Tikhonov smoothing operator

K(q) = q(L+qD)~", X, = K(¢)X,.

Let X, = UTX, be the spectral coefficients and S; = ||)~(M 13 = Zf” the per-mode

v )4
energies. With the spectral gain h;(q) = #—Jr and residual R = X, Xv, the Dirichlet energy
loss admits the exact spectral form

tr((Xv - XU)TL(XU - iv)) = Zl’[/l(l - hz(Q))2 Sia XTLX ZM’L [ (3)

B.5 EDGE/LINE-GRAPH CASE

Let L, = U.A. U/ be the line-graph Laplacian and X, € R™*/e the edge features (optionally
aggregated to undirected edges). Define h¢(q) = X, = U] X,, and S¢ = ||X...||2. Then,

103 +q
repeating the node-side derivations verbatim,
m m
IXe — Xel3 =31 R(q)* S5 n&%=25
i=1 i
tr((Xe — Xe) ' Le(X. Zﬂz 25¢, tr(X)L.X.) ZMfo,

tr K Zhe
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C ADDITIONAL ¢-CHOICE FIGURES

In the main text (Figure [T)), we reported the g-choice curves for the OGBG-MOLHIV and OGBG-
PPA datasets. For completeness, we provide here the corresponding plots for the remaining datasets,
that are COLLAB, DD, and REDDIT-MULTI-12K. For datasets without edge features, the corre-
sponding edge-related quantities remain constant at zero.
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(a) The g-choice curves for the COLLAB dataset. (b) The g-choice curves for the DD dataset.
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(¢c) The g-choice curves for the REDDIT-MULTI-
12K dataset.

Figure 2: The g-choice curves for COLLAB, DD, and REDDIT-MULTI-12K datasets.

D EXPERIMENT DATASETS

OGBG-MolHIV. The ogbg-molhiv datasetis a molecular graph classification benchmark orig-
inating from the MoleculeNet collection (Wu et al.l 2018) and integrated into the Open Graph
Benchmark (OGB) (Hu et al.| 2020). Each sample is a molecule represented as a graph, with atoms
as nodes and chemical bonds as edges. The prediction task is binary classification, determining
whether a molecule exhibits HIV-inhibitory activity, evaluated using the ROC-AUC metric.

OGBG-MolPPA. The ogbg-ppa dataset is a protein—protein association network from the OGB
suite. Nodes correspond to proteins and edges indicate biological associations such as functional
interactions. The task is graph classification, where the objective is to predict the biological class
of a protein association graph, providing a challenging benchmark due to the large graph sizes and
heterogeneity.

COLLAB. The COLLAB dataset is a social network graph classification benchmark derived from
scientific collaboration networks. Each graph corresponds to the ego-network of a researcher, where
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nodes represent collaborators and edges represent co-authorship. The classification task is multi-
class, aiming to predict the scientific field of the researcher based on the collaboration structure.

DD. The DD dataset (D&D) is a protein graph classification benchmark. Each graph corresponds
to a protein, where nodes represent amino acids and edges are formed between pairs of amino acids
that are spatially close in the 3D structure. The task is binary classification, predicting whether a
protein is an enzyme or a non-enzyme.

REDDIT-MULTI-12K. The REDDIT-MULTI-12K dataset is a social network benchmark de-
rived from Reddit discussion threads. Each graph represents a discussion thread, where nodes are
users and edges indicate interactions (e.g., replies). The classification task is multi-class, predicting
the category of the discussion thread (e.g., technology, politics, sports).

E HYPERPARAMETER GRID SEARCH DOMAIN

For reproducibility, we document the hyperparameter search domain used for tuning SHAKE-GNN
and baseline models. The search was conducted via grid search over the following ranges:

* Number of GNN layers per resolution level: {2, 4, 6, 8, 10, 12}.
* Read-out layers: {0, 2, 4, 6, 8, 10, 12}.

* Linear layers per GNN layer: {1, 2, 3, 4}.

* Hidden dimension: {64, 128, 256, 512, 1024, 2048}.
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