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ABSTRACT

Modeling protein-protein interactions (PPI) represents a central challenge within
the field of biology, and accurately predicting the consequences of mutations in
this context is crucial for various applications, such as drug design and protein en-
gineering. Recent advances in deep learning (DL) have shown promise in forecast-
ing the effects of such mutations. However, the effectiveness of these models is
hindered by two primary constraints. First and foremost, obtaining the structures
of mutant proteins is a persistent challenge, as they are often elusive to acquire.
Secondly, interactions take place dynamically, but dynamics is rarely integrated
into the DL architecture design. To address these obstacles, we present a novel
framework known as Refine-PPI, which incorporates two key enhancements. On
the one hand, we introduce a structure refinement module that is trained by a
mask mutation modeling (MMM) task on available wide-type structures and then
is transferred to hallucinate the inaccessible mutant protein structures. Addition-
ally, we employ a new kind of geometric networks to capture the dynamic 3D
variations and encode the uncertainty associated with PPI. Through comprehen-
sive experiments conducted on the established benchmark dataset SKEMPI, our
results substantiate the superiority of the Refine-PPI framework. These findings
underscore the effectiveness of our hallucination strategy in addressing the ab-
sence of mutant protein structure and hope to shed light on the prediction of the

free energy change.

1 INTRODUCTION

Proteins seldom act in isolation and typically engage in interac-
tions with other proteins to perform a wide array of biological
functions (Phizicky & Fields, |1995; Du et al., [2016). One il-
lustrative instance involves antibodies, which belong to a cat-
egory of proteins within the immune system. They identify
and attach to proteins found on pathogen surfaces and trigger
immune responses by interacting with receptor proteins in im-
mune cells (Lu et al., |2018)). Accordingly, it is crucial to devise
approaches to modulate these interactions, and a prevalent ma-
nipulation strategy is to introduce amino acid mutations at the
interface (see Figure [J). However, the space of possible muta-
tions is vast, making it impractical or cost prohibitive to conduct
experimental tests on all viable modifications in a laboratory
setting (Li et al.| | 2023)). As a consequence, computational tech-
niques are required to guide the recognition of desirable muta-
tions by forecasting their mutational effects on binding strength,
which are commonly measured by the change in binding free
energy termed AAG.
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Figure 1: Performance of Refine-
PPI on SKEMPI v2 compared to
other energy-based or pretrained
baselines. Our supervised-only
approach achieves the best per-
structure correlation metrics.

The past decade has witnessed great potential of deep learning (DL) techniques (Rives et al.| 2021}
Wu et al., [2022a; Min et al.| 2022 [Wu et al., [2022c) in modeling proteins. They are employed to a
broad range of applications in biological science, such as protein design (Jing et al.| 2020), folding
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Figure 2: Geometric deep learning is applied to optimize the antibody sequences and achieve desired
properties (e.g., better affinity and specificity).

classification (Hermosilla et al., [2020), model quality assessment (Wu et al., [2023)), and function
prediction (Gligorijevi¢ et al, 2021). These DL algorithms also surpass a variety of conventional
approaches in computing AAG, which can be roughly divided into biophysics-based and statistics-
based kinds. In particular, biophysics-based methods depend on sampling from energy functions and
consequently face a trade-off between efficiency and accuracy (Schymkowitz et al., [2005; |[Leman
et al., 2020). Meanwhile, statistical-based methods are limited by the selection of descriptors and
cannot take advantage of the growing availability of protein structures (Alford et al.|[2017).

Despite the fruitful progress made by DL in identifying the free energy change, their efficacy contin-
ues to encounter various obstacles. First is the absence of the mutant complex structure. Due to the
long-standing consensus that the function of a protein is intricately related to its structure (Jumper
et al., [2021)), an emerging line of research seeks to encode protein structures using 3D-CNNs or
Graph Neural Networks (GNNs) (Jing et al.| [2020; Satorras et al. [2021). However, they typically
rely on experimental protein structures, specifically those of the Protein Data Bank (PDB), and
their performance deteriorates significantly when fed low-quality or noisy protein structures Wu
et al.|(2022a). Regrettably, in real-world scenarios that involve antibody optimization, obtaining
the mutant structure is an insurmountable obstacle, and the exact conformational variations upon
mutations are unknown. While groundbreaking approaches such as Alphafold (Jumper et al., [2021])
and Alphafold-Multimer (Evans et al., 2021) have brought a revolution in directly inferring a pro-
tein’s 3D structure from its amino acid sequence, they struggle to accurately forecast the structure
of antibody-antigen complexes when compared to monomeric proteins (Ruffolo et al., [2023). As
an alternative, some scientists turn to energy-based protein folding tools like FoldX (Delgado et al.,
2019) to sample mutant structures, which show finite efficacy and, more importantly, dramatically
increase overall computational time (Cai et al.,[2023)). The second limitation is that the present DL
mechanisms often overlook the fundamental thermodynamic principle. It is widely recognized that
proteins exhibit inherent dynamism, and these dynamic properties are critical for their biological
functions and therapeutic targeting (Miller & Phillips, 2021). Many observations in the real world
are not solely dependent on a single molecular structure, but are influenced by the equilibrium dis-
tribution of structures (Ganser et al., | 2019). For example, inferring biomolecule functions involves
assessing the probabilities associated with various structures to identify metastable states. Statistical
methods that incorporate probabilistic densities within the structural space enable computation of
essential thermodynamic properties, such as entropy and free energies.

To overcome these barriers, we introduce a novel framework named Refine-PPI (see Figure [3) with
two key innovations for the mutation effect prediction problem. Firstly, we devise a masked mu-
tation modeling (MMM) strategy and propose to simultaneously predict the mutant structure and
AAG. Refine-PPI combines the prediction of structure and the prediction of free energy change
into a joint training objective rather than relying on external software to sample mutant structures,
which offers several distinct advantages. On the one hand, hallucinated mutant structure exhibits sig-
nificant differences from the wide-type structure, providing crucial geometric information related to
the change in binding free energy. On the other hand, MMM not only enables inference of the most
likely equilibrium conformation of the mutant structure, but also encourages graph manifold learn-
ing with the denoising objective (Godwin et al.[|(2021). Besides, the free energy change implicitly
conveys extra information about the structural difference before and after the mutation. Collective
training with AAG would definitely promotes the efficiency of structure prediction. Last but not
least, in this study, we introduce a new sort of geometric GNN dubbed PDC-Net to capture the flex-
ibility and dynamics of conformations during the binding process. Specifically, each particle in a
complex is represented as a probability density cloud (PDC) that illustrates the scale and strength
of their motion throughout the interation procedure. Comprehensive evaluation of the SKEMPI
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Figure 3: A. Refine-PPI pipeline. The given wide-type structure and the masked mutant structure
are subsequently fed into weight-shared equivariant graph neural networks (EGNNs). The masked
region is reconstructed, and the mutation effect is predicted by comparing features of two resulting
complexes. B. Deep learning architecture. The particles in the complex are represented as probabil-
ity density clouds (PDCs) and then encoded by PDC-Net to propagate geometric distributions.

dataset (Jankauskaite et al., 2019) proves the superiority of our Refine-PPI and demonstrates that it
is promising to generate absent mutant structures (see FigurdT)).

2 METHOD AND MATERIALS

2.1 PRELIMINARY AND BACKGROUND

Definition and Notations. A protein-protein complex is a multi-chain protein structure that can
be separated into two groups. Each group contains at least one protein chain and each chain consists
of several amino acids. The wide-type complex is usually represented as a 3D geometric graph GV,
constituted of a ligand G T and a receptor Gy *. Each graph G is composed of a batch of nodes V and
edges £. Nodes V can represent residues or atoms at different resolutions, and every node v; € V
has several intrinsic attributes such as the initial 1);,-dimension roto-translational invariant features
h; € R¥0 (e.g., atom or amino acid types, and electronegativity) and coordinates x; € R3. The
edges £ determine the connectivity between these particles and can be divided into internal edges
within each component as & and &g and external edges between counterparts as & r. Furthermore,
we assume that there are n residues in the entire complex and the residue numbers are consistent (i.e.,
|VWT’ = |VMT‘ = n). In our case, we select 4 backbone atoms {N, C,,, C, O} and an additional Cg
to represent each amino acid.

Problem Statement. The task of predicting the mutation effect can be formulated as approximat-
ing the ground-truth function that maps from the wide-type structure G%T and mutant information
(i.e., where and how some residues mutate from one type a;, € { ACDEFGHIKLMNPQRSTVWY}
to the other a}) to the change in the binding free energy AAG.

2.2 STRUCTURAL HALLUCINATION

Overview of Refine-PPL.  Refine-PPI (see Figure [3) is made up of three major constituents, pa-
rameterized by p, 6, 7, respectively. Explicitly, the backbone module %, (.) encodes the input 3D
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complex structure, the structure refinement module fy(.) plays the role of hallucinating the unseen
mutant structure, and the predictor g (.) is used for the final AAG estimation. The whole pipeline
is described below. To begin with, the wide-type structure G and a well-initialized mutant struc-
ture GMT (the initialization details will be elucidated later) are fed into the encoder hp(.) to gain
their corresponding features Z%T € R"*¥1 and ZMT ¢ Rnxvr respectively. Then, the imperfect
mutant structure GMT along with its first-round representation ZMT is forwarded into the structure
refinement module fy(.) for several cycles and acquires the ultimate structure GMT with more robust
coordinates xMT. Subsequently, the hallucinated mutant structure GM™ is encoded by h,,(.) again,
and we can retrieve its second-round updated representation ZMT € R"*¥1, As last, a pooling layer
and g.(.) are appended to aggregate graph-level representations of both wide-type and mutation-
type noted as HYT € R¥2 and HMT ¢ RY2 based on ZWT and ZMT, and output the predicted free
energy change g.

Mask Mutation Modeling. Since the ground truth mutant structure GMT is hard to attain, we
rely on the accessible GVT to endow our structure refinement module fq(.) with the capability to
restore the fragmentary structures. To this end, we introduce a mask mutation modeling (MMM)
task, which requires fy(.) to reconstruct corrupted wide-type structures GVT. Here, we consider a
single-mutation circumstance for better illustration and assume that the m-th residue mutates from
am to a,,. Then, a (I 4+ r)-length segment around this mutation site is masked, denoted as Vi =
{w; Y™+ which starts from the (1 —1)-th residue and ends at the (m +r)-th residue. Our aim is to

i=m—I1>
recover the structure of this masked region {XWT}:,Z:_ , given the disturbed complex structure GgWT

and its corresponding representation, as well as the native amino acid type a,,,. The entire process
can be written as follows.

Jo (297, Gy ) = (VY (1
Intuitively, how to corrupt the wide-type structure GMT is significant to the success of our MMM,
since during the inference time, the same corruption mechanism will be imposed to procure the
incipient mutant structure GMT which serves as a starting point to deduce the final hallucinated
structure GMT. Here, we investigate two kinds of strategy to initialize the coordinates of of entities
within the masked regions V. Firstly, we borrow ideas from denoising-based molecular pretrain-
ing methods (Godwin et al.| 2021} |Feng et al.,|2023)) and independently add a random Gaussian noise
of zero mean € ~ N (0, a) to the original coordinates as X)'T = x)'! + ¢, where @ determines the
scale of the noisy deviation. This denoising objective has been shown to be equivalent to learning a
special force field (Zaidi et al., | 2022)).

In addition to that, we introduce a significantly more challenging mode to corrupt the wide-type
structure GMT and hypothesize that the mutant regions Vy, are completely unknown. To be specific,

we initialize the coordinates the masked regions {XWT}Z':;L , according to the even distribution
between the residue right before the region (namely, v,,,—;—1) and the residue right after the region
(namely, v;,4r41). Notably, the situation can occur when the residue immediately preceding or
following the region does not exist, in which case we extend the existing side in reverse to initialize

Vinut (see Figure @ The overall initialization process is mathematically written as follows:

. X frd1—Xm—1— :
Xm—i—1+ ('L -m+1l+ 1)%, if 3011, Ve 1,
ii = Xm4r+1 — (m +r+ 1-— Z) (Xm+r+2 - Xm+r+1) 3 if ﬂvmflfla EJ’Uﬂ%+r+11 (2)

Xm—i—1+ (Z -m+1+ 1) (Xm—l—l - Xm—l—2) ) ifavm—l—l; ﬂvm—i-r-ﬁ—l;
Noteworthily, both initialization strategies can be easily extended to multiple mutations.
After that, the corrupted wide-type structure GWVT is sent sequentially to the geometric encoder £, (.)
and the structure refinement module fy(.) to restore the coordinates of the mutant regions masked,
resulting in XV T. Due to the fact that coordination data usually contains noise, we take the cue from
MEAN (Kong et al.,|2022)) and adopt the Huber loss (Huber, |1992) instead of the common RMSD
loss to avoid numerical instability. The loss function is defined as follows by comparing to the actual
coordinates x;:

1 -
Lrefine = Z Zhuber(xia Xi)~ 3)

€ Vinut | me |
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Algorithm 1 The workflow of our Refine-PPI.
Input: wide-type structure GVT, mutant site and amino acid types a,, and a’,,; backbone module
h,, refinement model fy, head predictor g,; number of recycles k, the real free energy change ,
loss weight A
GoVT, GMT Equation (6% > Initialize wide-type and mutant structures
# Training-only
fort=0,1,....k— 1do
ZY b, (GVT)
X fo (GMT. 22 an )
end for

Lefine < Equation (i}fw, XWT) > The MMM loss
fort =0,1,....k—1do

No grad. 5

ZYT S, (G21)

iltvf1 No grad. o (g:]fvrr’ thvlT, }~(lt\/lT7 alm)
end for
ZVT ZMT b, (GVT) |, (g};ﬂ)
R A AL
Laag < RMSE(7,y) > The AAG loss
# Backpropagation
j2 0, T < 'CAAG + Aﬁreﬁne

AAG Prediction. We impose the same strategy in MMM to initialize the mutant structure, gain-
ing GMT based on GVT. Then given the mutant information a/,, we utilize the weight-shared encoder
h,(.) and the weight-shared structure refinement module fy(.) to hallucinate the unknown mutant
MT}mJ”“ GMT

PR ,al..0,p ). It is worth noting that the resulting VT does not

structure as p ({x

carry gradients and we do not expect to perform backpropagation at this phase. Later, we leverage
the original wide-type structure GV and the refined mutant structure GMT to extract their corre-
sponding representations ZWT and ZMT, separately. ZWT and ZMT are then delivered to the regressor
g-(.) to acquire the change in free energy g. Total supervision is realized by the sum of two losses as
~ m—+tr
L= L:AAG(y7 y) + A‘Cl’eﬁne ({XWT}

The whole training paradigm is illustrated in pseudo-code

mer {)A(WT}?:;:_ z) , where )\ is the balance hyperparameter.

Discussion. Previous studies exemplified by Google’s DeepDream (Mordvintsev et al.,[2015)) train
networks to recognize faces and other patterns in images, and invert and adjust arbitrary input images
to draw more strongly resemble faces or other patterns perceived by the network. The generated
images are often referred to as hallucinations because they may not faithfully represent any actual
face, but what DL models view as an ideal face. Remarkably, this mechanism has also demonstrated
success in the context of macromolecules. It has been shown that information stored in the many
parameters of trained networks can be harnessed to design new protein structures featuring new
sequences (Anishchenko et al.| 2021). In our Refine-PPI, we use a similar methodology and explore
whether networks trained on existing wide-type structures could be inverted to generate brand new
’ideal’ protein structures based on mutant information. We discover that networks do have the strong
hallucination capability to resolve the inevitable dilemma of the missing mutant structures.

2.3 PROBABILITY DENSITY CLOUD NETWORK

Kinetics in Molecules. In order to fully unleash the potential of our Refine-PPI pipeline, it is cru-
cial to devise an effective geometric network to comprehend protein structures and perform structure
refinement. Over the past few years, there has been a surge in the development of cutting-edge ar-
chitectures aimed at extending networks to work in both Euclidean and non-Euclidean domains,
encompassing structures like manifolds, meshes, or strings. Given that molecules can be naturally
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represented as graphs, graph-based approaches have become increasingly dominant in molecular
modeling (Thomas et al., 2018 [Schiitt et al., 2018 |[Fuchs et al., 2020;|Liao & Smidt, 2022). Beyond
addressing the inherent limitations of GNNs, such as over-smoothing, over-squashing, and repre-
sentation bottleneck (Wu et al.| |2022b)), these methods are all dedicated to incorporating geometric
principles. Symmetry is a crucial concept in this regard, often expressed through the notions of
equivariance and invariance, which describe how systems respond to various transformations. How-
ever, previous geometric approaches in molecular science were primarily designed for static and
stable molecules characterized by deterministic and uncertainty-free structures. Here, we propose a
new technique that takes dynamics into account and integrates it into geometric GNNs.

Probability Density Cloud. It is a fundamental concept in physics and chemistry that atoms and
molecules are never at rest, even at extremely low temperatures (Clerk-Maxwell, [1873). They ex-
hibit various types of motion, including translational motion (movement from one place to another),
rotational motion (spinning or rotating), and vibrational motion (oscillating back and forth). This
motivates us to consider microscopic particles in the universe from a kinetic and vibrate perspective
rather than an immobile view. Recall that in quantum mechanisms, electrons do not follow well-
defined paths like planets around the Sun in classical physics. Instead, they exist at specific energy
levels and are described by wave functions, which are mathematical functions that provide informa-
tion on the probability of finding an electron in various locations around the nucleus (Schumaker,
1986)). Physists commonly envision and represent an electron or other quantum particle by depict-
ing the probability distribution of finding them around a specific region of space within an atom
or molecule, where the shape and size of these orbitals vary depending on the quantum numbers
associated with the electron.

Inspired by this phenomenon, we portray particles as a probability density cloud (PDC) that shows
regions in space where there is a higher probability of finding them. For this purpose, we assume
that the coordinates of each particle x; follow the Gaussian distribution as N (p;, ;). p; € R3
is the place where node i is most likely to be located, and X; € R3*3 is a isotropic (or spherical)
covariance matrix signifying the independence upon the coordinate system. Given this premise, we
can derive a range of invariant geometric characteristics that emphasize molecular structural infor-
mation. The primary and most crucial variable is the distance, denoted as d;; = ||x; — x;||?. As
x; and x; are are statistically independent, their difference follows a normal distribution, specifi-
cally x; — x; ~ N (i — wy, 2+ Ej) (Lemons}, [2003). Consequently, the squared norm of this
difference, denoted as d?;, exhibits a generalized chi-squared distribution x?(.) with a set of natu-
ral parameters, comprising (p; — p5, 3; + ;). Hence, the mean and variance of this generalized

15
chi-square distribution x?(.), denoted as ta,;; and og,,, are as follows:

fagy; = tr (B + B5) i =l oayy = 20 (B + B5) +4(pi— )" (Bi +Z5) (i — 1),

4)
where tr(.) calculates the trace of a matrix. Furthermore, we can also mathematically induce the
distributions of some other geometric vaiables. Let x,; be the directed vector from x, to x;. For
example, when considering triangle nodes (4, j, k), the angle distribution /x;;x;), can be charac-

terized as the distribution of arccos % After establishing the precise first and second
& J J

moments of distributions of important geometric features, we can now dive into the process of in-
corporating this dynamic information into geometric GNNs.

PDC-Net. Our idea of PDC can be generalized to the majority of existing geometric architec-
tures and here we select equivariant GNN (EGNN) (Satorras et al.l 2021) for example, which
foregoes computationally intensive high-order representations in intermediate layers while still
achieving competitive performance in modeling dynamical systems. The key difference is that
PDC-Net no longer accepts geometric deterministic values d;; and x;, but takes distributions
fa;; and fx, as ingredients. Its [ layer, named PDC-L, takes the set of node embeddings

h® = {hgl)}‘ X edge information & = {&,ERr, LR}, and geometric feature distributions

AT
v = {ugl), E,El)} as input, and outputs a transformation on h+1) and v+ Concisely,
i=1
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h(+1) p(+D) = pDC-L [h®, v ", ], which is defined as follows:

i = g0 (B0, HO, 1D 00, B = g, (0 Sme ] )
1
llq(l—H): (l)-‘ri(z Z (H(l) (l)) p(mj;), (6)
JEN(3)
1
S =w0 4 — = 3 (2050 6o(my0), )
VOIS

where ¢, ¢n, ¢, ¢ are the edge, node, mean, and variance operations respectively that are com-
monly approximated by Multilayer Perceptrons (MLPs). It is worth noting that the mean posi-
tion of each particle, denoted as p;, is updated through a weighted sum of all relative differences
(i — Nj)vj‘ EN() Meanwhile, the variance 3; is updated by a weighted sum of all additions

(3 + Ej)vj EN(i)* These strategies align with the calculation of the mean and variance of the

difference between two normal random variables. We also provide another type of mechanism to
update the variance and observe a slight improvement in Appendix As for the initialization of
coordinate variance 3, we explore three sorts of different approaches and details are elucidated in
Appendix [B.2] Moreover, it is readily apparent that PDC-Net maintains the equivariance property,
and the proof can be found in the Supplementary Note

3 EXPERIMENTS

3.1 EXPERIMENTAL SETUPS

Data and Metrics. Evaluation is carried out in the widely recognized SKEMPIL.v2
database (Jankauskaité et al., 2019). It contains data on changes in the thermodynamic parame-
ters and kinetic rate constants after mutation for structurally resolved protein—protein interactions.
The latest version contains manually curated binding data for 7,085 mutations. The dataset is split-
ted into 3 folds by structure, each containing unique protein complexes that do not appear in other
folds. Two folds are used for train and validation, and the remaining fold is used for test. This yields
3 different sets of parameters and ensures that every data point in SKEMPIL.v2 is tested once.

Similarly to[Luo et al.|(2023)), we use five metrics to evaluate the accuracy of AAG predictions, in-
cluding Pearson and Spearman correlation coefficients, minimized RMSE, minimized MAE (mean
absolute error) and AUROC (area under the receiver operating characteristic). Calculating AUROC
involves classifying mutations according to the direction of their AAG values. In practical sce-
narios, the correlation observed within a specific protein complex attracts heightened interest. To
account for this, we arrange mutations according to their associated structures. Groups with fewer
than 10 mutation data points are excluded from this analysis. Subsequently, correlation calculations
are performed for each structure independently. This introduces two additional metrics: the aver-
age per-structure Pearson and Spearman correlation coefficients. Other experimental details are
explained in the Appendix [A]

Baselines. We evaluate the effectiveness of our PDC-Net against various categories of tech-
niques. The initial kind encompasses conventional empirical energy functions such as Rossetta
Cartesian AAG [Park et al| (2016)); [Alford et al.| (2017) and FoldX. The second grouping com-
prises sequence/evolution-based methodologies, exemplified by ESM-1v|Meier et al.| (2021), PSSM
(position-specific scoring matrix), MSA Transformer Rao et al| (2021), and Tranception Notin
et al.|(2022)). The third category includes end-to-end learning models such as DDGPred Shan et al.
(2022) and another End-to-End model that adopts Graph Transformer (GT) Luo et al.|(2023)) as the
encoder architecture, but employs an MLP to directly forecast AAG. The fourth grouping encom-
passes unsupervised/semi-supervised learning approaches, consisting of ESM-IF [Hsu et al.| (2022)
and Masked Inverse Folding (MIF)|Yang et al.|(2022). They first pretrain networks on structural data
and then employ the pretrained representations to predict AAG. MIF also utilizes GT as an encoder
for comparative purposes with two variations: MIF-Alogit uses the disparity in log-probabilities of
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Table 1: Evaluation of AAG prediction on the SKEMPI.v2 dataset.

Per-Structure Overall

Method Pretrain Pearson Spearman | Pearson Spearman RMSE MAE  AUROC

Energy Function-based

Rosetta - 0.3284 0.2988 0.3113 0.3468 1.6173  1.1311  0.6562
FoldX - 0.3789 0.3693 0.3120 0.4071 1.9080  1.3089  0.6582
Supervised-based

DDGPred X 0.3750 0.3407 0.6580 0.4687 1.4998 1.0821  0.6992
End-to-End X 0.3873 0.3587 0.6373 0.4882 1.6198  1.1761  0.7172
Sequence-based

ESM-1v v 0.0073 -0.0118 0.1921 0.1572 1.9609  1.3683  0.5414
PSSM v 0.0826 0.0822 0.0159 0.0666 1.9978 13895  0.5260
MSA Transf. v 0.1031 0.0868 0.1173 0.1313 19835 1.3816  0.5768

Tranception v 0.1348 0.1236 0.1141 0.1402 2.0382 1.3883  0.5885
Unsupervised or Semi-supervised-based

B-factor v 0.2042 0.1686 0.2390 0.2625 2.0411 1.4402  0.6044
ESM-IF v 0.2241 0.2019 0.3194 0.2806 1.8860  1.2857  0.5899
MIF-Alogit v 0.1585 0.1166 0.2918 0.2192 1.9092  1.3301  0.5749
MIF-Net. 4 0.3965 0.3509 0.6523 0.5134 1.5932  1.1469  0.7329
RDE-Linear v 0.2903 0.2632 0.4185 0.3514 1.7832  1.2159  0.6059
RDE-Net. v 0.4448 0.4010 0.6447 0.5584 1.5799  1.1123  0.7454
Refine-PPI X 0.4475 0.4102 0.6584 0.5394 1.5556 1.0946  0.7517
Refine-PPI v 0.4561 0.4374 | 0.6592 0.5608 1.5643  1.1093  0.7542

>
W

Overall SKEMPI.v2 Single-mutation Subset Multi-mutation Subset

10 Spearman: 0.55687
Pearson: 0.6584:x}
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Figure 4: A. Visualization of correlations between experimental AAG and predicted AAG. D. A
selected exapmle of a predicted mutant structure’s interface. B. The scatter plot shows that the error
of wide-type structure recovery has a positive relation with the error of AAG prediction.

amino acid types to attain AAG, and MIF-Network predicts AAG based on the acquired represen-
tations. Besides, B-factors is the network that anticipates the B-factor of residues and incorporate
the projected B-factor in lieu of entropy for AAG prediction. Lastly, Rotamer Density Estimator
(RDE) |Luo et al.|(2023) uses a flow-based generative model to estimate the probability distribution
of rotamers and uses entropy to measure flexibility with two variants containing RDE-Linear and
RDE-Network. More details on the implementation can be found in Appendix [A]

3.2 RESULTS

Comparison with Baselines. Table[T|documents the results, and performance on subsets of single-
mutation and multi-mutation are removed to Appendices ] and [5] due to the space limitation. Our
Refine-PPI model is competitive and better in all regression metrics. Precisely, it achieves the highest
per-structure Spearman and Pearson’s correlations, which are considered as our primary metrics
because the correlation of one specific protein complex is the most important.

In particular, multiple point mutations have been shown to be often required for successful affinity
maturation (Sulea et all |2018), and Refine-PPI outperforms DDGPred and RDE-Net by a large
margin in the multi-mutation subset. This stems from the fact that RDE-Net and DDGPred perceive
the mutant structures the same as the wide-type structures and consequently are not aware of the
structural distinction. On the contrary, the mutant structures with multiple mutations should be
more different than those with single mutations, and therefore it becomes more crucial to detect the



Under review as a conference paper at ICLR 2024

Table 2: Ablation study of Refine-PPI without pretraining, where we choose the backbone &, (i.e.,
Graph Transformer) as the foundation model for comparison (i.e., No. 1).

Per-Structure Overall

No. | MMM PDC-Net Pearson  Spearman | Pearson Spearman RMSE MAE  AUROC
1 X X 0.3708 0.3353 0.6210 0.4907 1.6199  1.1933  0.7225
2 v X 0.4145 0.3875 0.6571 0.5553 1.5580  1.1025  0.7460
3| v 4 | 0.4475 0.4102 | 0.6584 0.5394 1.5556 1.0946 0.7517

variant after the mutation. Refine-PPI anticipates the structural transformation due to mutation and
is capable of connecting the structural change with AAG. Notably, strong baselines such as RDE-
Net, MIF-Net, ESM-IF enjoy the benefits of unsupervised pretraining on PDB-REDO. Meanwhile,
Refine-PPI trained from scratch has already outpassed these pretrained methodologies. This further
verifies the great success of our Refine-PPI framework.

Visualization. We visualize three hallucinated mutant struc-
tures in Appendix |C} In addition, we envision the scatter plot
of experimental and predicted AAG and also draw the relation
between the error of wide-type structure recovery and the error
of AAG estimation in Figure 4] It can be found that, gener-
ally, a small error of wide-type structure reconstruction leads
to a more accurate AAG prediction. This indicates that these
two tasks are closely related to each other. In addition, we ran- >t
domly pick up four exemplary PDBs and visualize the learned ~~/<)
variance of our PDC-Net, that is, the magnitude of ||3;||? in
Figure [5] and quantitative analysis in Appendix Pictures
show that particles at the interface have a smaller variation
compared to those at the edges of proteins. This aligns with
the biological concept that atoms in the binding surface are
less volatile than atoms in other parts of the complex. This
phenonmenon confirms that PDC-Net has adaptively compre-
hended the magnitude and strength of entities’ motion during
PPI. Finally, we also provide a case study of 16 seed complexes
with different numbers of mutations that are well predicted by our Refine-PPI in the Appendix

WT SF4E

/

Figure 5: Visualization of the ther-
modyanmics learned by PDC-Net
within several complexes, where a
darker color corresponds to a more
flexible protein segment.

Ablation Studies. We also conduct additional experiments to in- Table 3: Performance of dif-

vestigate the contributions of each components of our Refine-PPI
and the results are displayed in Table 2] It can be concluded that
the introduction of co-training of the structure refinement and the
AAG prediction greatly contributes to the promotion of all met-
rics, cultimating in an increase of 11.8% and 15.6% in per-structure
Pearson’s and Spearman correlations. Additionally, PDC-Net also
brings obvious benefits such as a lower MAE and a higher AUORC.

ferent coordinate initializa-
tion strategies for MMM.

Method ‘ Per-Structure

Pearson  Spearman
Easy 0.4417 0.4060
Hard 0.4475  0.4102

In Table [3] we report the performance of two initialization strategies to corrupt the masked region.
The easy mode (denoising-based) is slightly outpassed by the hard one (surroundings-based).

4 CONCLUSION

In this work, we propose a new framework named Refine-PPI to predict the mutation effect. Given
the circumstance that mutant structures are always absent, we introduce an additional structure re-
finement module to recover the masked regions around the mutations. This module is trained simul-
taneously via mask geometric modeling. In addition to that, we notice that protein-protein interac-
tions are a dynamic process, but few prior studies have taken this characteristic into account in a
deep learning design. To bridge the gap, we present a probablity density cloud (PDC)-Network to
capture the dynamics in atomic resolution. Our results highlight the necessity to adopt a more robust
mutant structure and consider dynamics for molecular modeling. A statement regarding limitation
and future work is elaborated in Appendix [E|
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A EXPERIMENTAL DETAILS

We implement all experiments on 4 A100 GPUs, each with 80G memory. Refine-PPI is trained with
an Adam optimizer without weight decay and with 5; = 0.9 and 52 = 0.999. A ReduceLLROn-
Plateau scheduler is employed to automatically adjust the learning rate with a patience of 10 epochs
and a minimum learning rate of 1.e — 6. The batch size of is set to 64 and an initial learning rate
of 1.e — 4. The maximum iterations are S0K and the validation frequency is 1K iterations. The
node dimension is 128, and no dropout is conducted. For the implementation of all baselines, please
refer to |Luo et al|(2023) for more details and we directly copy the results from this paper. As for
the structure refinement, the number of recycle is set as 3, and the balance weight is tuned as 1.0.
We perform a grid search to find the optimal length of the masked region and find thatl = r = 5
is a good choice. However, different initializations require different optimal hyperparameters, and
typically we can mask longer regions for denoising-based MMM.

As for the specific model architecture, the backbone module £,(.) can take the form of any con-
ventional geometric neural networks (e.g., GVP-GNN, EGNN, SE(3)-Transformer, Graph Trans-
former). Here, we adopt a one-layer Graph Transformer (Luo et al.| [2023) to extract general rep-
resentations of proteins. The refinement module fy(.) needs to output both updated features and
coordinates, and therefore we use PDC-EGNN as fy(.) in our experiments. Lastly, the head predic-
tor g (.) is a simple linear layer that accepts the concatenation of representations of both wide and
mutation types and forecasts the change in free energy. The total model size of our Refine-PPI is
approximately 6M.

A.1 BASELINES IMPLEMENTATIONS

Baselines that require training and calibration using the SKEMPI.v2 dataset (DDGPred, End-to-
End, B-factor, MIF-Alogit, MIF-Network, RDE-Linear, and RDE-Net) are trained independently
using the 3 different splits of the dataset as described in Section[3.1] This is to ensure that every data
point in the SKEMPI.v2 dataset is tested on once. Below are descriptions of the implementation of
the baseline methods, which follow the same scheme as|Luo et al.[(2023)).

Rosetta (Alford et all 2017, [Leman et al.| [2020): The version we used is 2021.16, and the
scoring function is ref2015_cart. Every protein structure in the SKEMPIL.v2 dataset is first pre-
processed using the relax application. The mutant structure is built by cartesian_ddg. The
binding free energies of both wild-type and mutant structures are predicted by interface_energy
(dG_separated/dSASAx100). Finally, the binding AAG is calculated by subtracting the binding
energy of the wild-type structure from the binding energy of the mutant.

FoldX (Delgado et al.| 2019): Structures are first relaxed by the RepairPDB command. Mutant
structures are built with the BuildModel command based on the repaired structure. The change in
binding free energy AAG is calculated by subtracting the wild-type energy from the mutant energy.

ESM-1v (Meier et al., [2021): We use the implementation provided in the ESM open-source reposi-
tory. Protein language models can only predict the effect of mutations for single protein sequences.
Therefore, we ignore the cases where mutations occur in multiple sequences. We extract the se-
quence of the mutated protein chain from the SEQRES entry of the PDB file. We use the masked-
marginal mode to score both wild-type and mutant sequences and use their difference as an estimate

of AAG.

PSSM We construct MSAs from the Uniref90 database for chains with mutation annotations in the
SKEMPI dataset. We use Jackhmmer version 3.3.1 following the setting in Meier et al.| (2021).
The MSAs are filtered using HHfilter with coverage 75 and sequence identity 90 . This HHfilter
parameter is reported to have the best performance for MSA Transformer according to Meier et al.
(2021). We calculate position-specific scoring matrices (PSSM) and use the change in probability
as a prediction of AAG.

MSA Transformer (Rao et al. [2021): We use the implementation provided in the ESM open-
source repository. We input the MSAs constructed during the evaluation of the PSSM to the MSA
Transformer. We used masked-marginals mode to score both wild-type and mutant sequences and
use their difference as the prediction of AAG.
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Tranception (Notin et al.l 2022)): We use the implementation provided in the Tranception open-
source repository. We predict mutation effects using the large model checkpoint. Previously built
MSAs (not filtered by HHfilter) are used for inference-time retrieval.

DDGPred (Shan et all 2022): We use the implementation that follows the paper by |Shan et al.
(2022). Since this model requires predicted sidechain structures of the mutant, we use mutant struc-
tures packed during our evaluation of Rosetta to train the model and run prediction.

End-to-End: The end-to-end model shares the same encoder architecture as RDE (Luo et al., [2023).
The difference is that in the RDE normalizing flows follow the encoder to model rotamer distribu-
tions, but in the end-to-end model, the embeddings are directly fed to an MLP to predict AAG.

B-factor: This model predicts per-atom b-factors for proteins. It has the same encoder architecture
as RDE (Luo et al.,2023). The encoder is followed by an MLP that predicts a vector for each amino
acid, where each dimension is the predicted b-factor of different atoms in the amino acid. The amino
acid-level b-factor is calculated by averaging the atom-level b-factors. The predicted b-factors are
used as a measurement of conformational flexibility. They are used to predict AAG using the linear
model same as RDE-Linear (Luo et al.,|[2023)).

ESM-IF (Hsu et al) [2022): ESM-IF can score protein sequences using the log-likelihood. Im-
plementation of the scoring function is provided in the ESM repository. We enable the —
multichain_backbone flag to let the model see the whole protein-protein complex. We subtract the
log-likelihood of the wild-type from the mutant to predict AAG.

MIF Architecture. The masked inverse folding (MIF) network uses the same encoder architecture
as RDE (Luo et al., 2023). Following the encoder is a per-amino-acid 20-category classifier that
predicts the type of masked amino acids. We use the same PDB-REDO train-test split to train the
model. At training time, we randomly crop a patch consisting of 128 residues and randomly mask
10% amino acids. The model learns to recover the type of masked amino acids with the standard
cross entropy loss.

MIF-Alogit To score mutations, we first mask the type of mutated amino acids. Then, we use the
log probability of the amino acid type as the score. Analogously, we have the score of the wild-
type bound ligand, wild-type bound receptor, wild-type unbound ligand, unbound receptor, mutated
bound ligand, mutated bound receptor, and mutated unbound ligand. Therefore, we use the identical
linear model to RDE-Linear (Luo et al.,[2023) to predict AAG from the scores.

MIF-Network This is similar to RDE-Network (Luo et al., 2023)). The difference is that we use the
pre-trained encoder of MIF rather than the encoder of RDE. We also freeze the MIF encoder as we
aim to utilize the unsupervised representations.

A.2 VISUALIZATION OF COORDINATE INITIALIZATION IN MMM

To better clarify the initialization of our MMM, we show the process of two different mechanisms
(i.e., the easy denoising-based one and the hard surrounding-based one) in Figure[6]

/OKX¢ 3 O})
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OO0~ e

Linear Interpolation
O Raw Position
Extension
Noised Position
Denoising-based Surrounding-based

Figure 6: The illustration of coordinate initialization in the MMM task.
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B ADDITIONAL RESULTS

B.1 PERFORMANCE ON SUBSETS AND CASE STUDIES

For better comparison of our Refine-PPI and other baselines, we make a bar plot on per-structure
Pearson’s and Spearman correlations in Figure[8] We also explicitly document the evaluation results
of different methods on the multi-mutation and single-mutation subsets of the SKEMPI.v2 dataset
in Table [] and Table[5} It can be found that with pretraining on PDB-REDO, Refine-PPI achieves
the best per-structure metrics on both multi-mutation and single-mutation subsets. This indicates
that Refine-PPI is a more effective tool to screen and select mutant proteins for desired properties.
Moreover, we envision some case studies in SKEMPIL.v2 in Figure[7, where we select four examples
for each different number of mutations.
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Figure 7: Prediction plots of 16 seed PDBs that are made by Refine-PPI. Four rows correspond to
different numbers of mutations, where the grey belt represents acceptable prediction errors. It can be
found that Refine-PPI can perform well in all circumstances containing one, two, or more mutations.
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Figure 8: Per-structure Spearman and Pearson correlations of different baseline methods and Refine-
PPL

Table 4: Evaluation of AAG prediction on the multi-mutation subset of the SKEMPIL.v2 dataset.

Per-Structure Overall
Pearson Spearman | Pearson Spearman RMSE MAE AUROC

Method Pretrain

Energy Function-based

Rosetta - 0.1915 0.0836 0.1991 0.2303 2.6581 2.0246  0.6207
FoldX - 0.3908 0.3640 0.3560 0.3511 1.5576  1.0713  0.6478
Supervised-based

DDGPred X 0.3912 0.3896 0.5938 0.5150 2.1813  1.6699  0.7590
End-to-End X 0.4178 0.4034 0.5858 0.4942 2.1971 1.7087 0.7532
Sequence-based

ESM-1v v -0.0599  -0.1284 0.1923 0.1749 27586  2.1193  0.5415
PSSM v -0.0174  -0.0504 | -0.1126  -0.0458 27937  2.1499  0.4442
MSA Transf. v -0.0097  -0.0400 0.0067 0.0030 28115 2.1591 0.4870

Tranception 4 -0.0688  -0.0120 | -0.0185  -0.0184 29280 22359 0.4874
Unsupervised or Semi-supervised-based

B-factor 4 0.2078 0.1850 0.2009 0.2445 2.6557 2.0186  0.5876
ESM-IF 4 0.2016 0.1491 0.3260 0.3353 2.6446  1.9555 0.6373
MIF-Alogit v 0.1053 0.0783 0.3358 0.2886 2.5361 1.8967  0.6066
MIF-Net. 4 0.3968 0.3789 0.6139 0.5370 2.1399 1.6422  0.7735
RDE-Linear v 0.1763 0.2056 0.4583 0.4247 24460 1.8128  0.6573
RDE-Net. 4 0.4233 0.3926 0.6288 0.5900 2.0980 1.5747  0.7749
Refine-PPI X 0.4474 0.4134 0.6307 0.5839 2.0939 1589  0.7831
Refine-PPI X 0.4558 0.4289 | 0.6458 0.6091 2.0601 1.554 0.8064

B.2 INITIALIZATION OF VARIANCE

we investigate three kinds of initialization mechanism for 3. First and naively, we turn all 33; into
an identity matrix. Second, we depend on physical principles and utilize molecular dynamic (MD)
simulations to attain the short motion trajectories (10 nanoseconds) of these complexes in the 3D
space. Then we calculate the root-mean square fluctuation (RMSF) of each amino acid and take
this value to initialize 3. Third, we adopt a learnable strategy to initialize 3:. To be explicit, an
embedding layer is created to each category of 20 residue types to a 3-dimension continuous vector.
This routine learns the variance of different components completely from the data.

The performance of different initialization approaches are listed in Table[6] and it can be found that
the constant initialization is the worst. In addition, the MD-based methodology slightly outperforms
the embedding-based one. However, since MD simulations are time-consuming and costly, it is
prohibited to implement MD during the inference stage each time. As a consequence, we use the
third sort in our paper.
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Table 5: Evaluation of AAG prediction on the single-mutation subset of the SKEMPI.v2 dataset.

Per-Structure Overall
Pearson Spearman | Pearson Spearman RMSE MAE  AUROC

Method Pretrain

Energy Function-based

Rosetta - 0.3284 0.2988 0.3113 0.3468 1.6173  1.1311  0.6562
FoldX - 0.3908 0.3640 0.3560 0.3511 1.5576  1.0713  0.6478
Supervised-based

DDGPred X 0.3711 0.3427 0.6515 0.4390 1.3285 09618  0.6858
End-to-End X 0.3818 0.3426 0.6605 0.4594 1.3148  0.9569  0.7019
Sequence-based

ESM-1v v 0.0422 0.0273 0.1914 0.1572 1.7226  1.1917  0.5492
PSSM v 0.1215 0.1229 0.1224 0.0997 1.7420  1.2055  0.5659
MSA Transf. v 0.1415 0.1293 0.1755 0.1749 1.7294  1.1942  0.5917

Tranception v 0.1912 0.1816 0.1871 0.1987 1.7455  1.1708  0.6089
Unsupervised or Semi-supervised-based

B-factor v 0.1884 0.1661 0.1748 0.2054 1.7242  1.1889  0.6100
ESM-IF v 0.2308 0.2090 0.2957 0.2866 1.6728  1.1372  0.6051
MIF-Alogit v 0.1616 0.1231 0.2548 0.1927 1.6928  1.1671  0.5630
MIF-Net. 4 0.3952 0.3479 0.6667 0.4802 1.3052  0.9411 0.7175
RDE-Linear v 0.3192 0.2837 0.3796 0.3394 1.5997  1.0805  0.6027
RDE-Net. v 0.4687 0.4333 0.6421 0.5271 1.3333 09392  0.7367
Refine-PPI X 0.4474 0.4134 0.6667 0.5338 1.2963 0.9179 0.7431
Refine-PPI v 0.4701  0.4459 0.6658 0.5153 1.2978  0.9287 0.7481

Table 6: Performance of different initialization methodologies for the coordinate variance X (with-
out pretraining).

Method ‘ Per-Structure

Pearson  Spearman

0.4422 0.4043
0.4522  0.4287
0.4475 0.4102

Identity Matrix
MD Simulations
Learnable Variance

B.3 POSITION VARIANCE UPDATE IN PDC-EGNN

Notably, the way to update the variance of the positions of different atoms is not unique. Here, we
offer another kind of approach to renew the variance in the layer of PDC-EGNN.

2
(+1) 1 m, 1
: W], 2, s 0]

S bumn)sP, (®)

JEN(4)

where we leverage the same ¢, instead of a new ¢,. Besides, we distribute and square the x;
terms because x; — x; is not independent of x;. Noticeably, this Equation [§] does not damage the
equivariance property of our model. Experiments show that this form of position variance compu-
tation performs slightly better in the mutant effect prediction task (see Table[7), with a per-structure
Spearman of 0.4490.

Table 7: Performance of different position variance update methods (without pretraining).

Per-Structure
Pearson  Spearman

Equ.f7] | 04475 04102
Equ.[B| | 0.4490 0.4153

Method
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B.4 QUANTITATIVE ANALYSIS OF LEARNED UNCERTAINTY

In addition to the visualization of several complexes in Figrue |5} we quantitatively investigate the
correlation between the learned variance and the positional uncertainty of the ground truth. To be
specific, we run short MD simulations of each seed complex and compute the root mean square
fluctuation (RMSF) of each amino acid. Additionally, we determine the magnitude of ||3;||2, which
is the learned variance of our uncertainty module. A detailed comparison of these values, classified
by residues at and not at the interface, is presented in Table [§] Notably, the ground truth RMSF at
the interface is significantly smaller than that observed elsewhere. At the same time, the learned X;
exhibits a parallel pattern, where ||X;||? at the interface is much smaller. This quantitative analysis
serves to substantiate the claim that the learned variance indeed corresponds to uncertainty.

Table 8: Performance of different position variance update methods (without pretraining).

| Interface  Non-Interface

RMSF | 0.4945 0.9735
IZ]12 | 0.6072 0.8940

C VISUALIZATION OF HALLUCINATED STRUCTURES

Here we provide some instances of mutant structures hallucinated by our Refine-PPI in Figure [9]
Since the ground truth mutant structures are inaccessible, we leave it for future work to examine its
accuracy.

Seed: 1A4Y Seed: 4K71 Seed: SUFQ
Mut: HBSA Mut: MA418V Mut: QC27R

Figure 9: Examples of hallucinated structures of mutation-type.

D PROOF OF EQUIVARIANCE

Equivariance is an important characteristic, and here, we demonstrate that PDC-Net strictly follow
this rule of principle. More formally, for any translation vector ¢ € R? and for any orthogonal
matrix Q € R3*3, the model should satisfy:

n n
= =

B+, {QuEZH) +, QTEE””Q} , =PDCL [h”)7 {ngl) +9, QTEEUQ} 1 ’g] @

We will analyze how translation and rotation of input coordinates propagate through our
model. We start by assuming that h® is invariant to the E(n) transformations on the co-
ordinate distributions v. In other words, information on the absolute position or orientation
of 10 is not encoded in h®. Then, the distance between two particles is invariant to trans-
lations, rotations and reflections. This is because, for the mean of distance pgq,;, we have

tr (QTEiQ + QTEjQ) = tr(3; + X;) due to the characteristic of the isotropic matrix and

18



Under review as a conference paper at ICLR 2024

leu? +9 — @u + gl* = llem” - QuIP = (" — w))TQ Q" — ") =
(pz(.l) — p;l))TI(/,LZ(.l) — u§l)) ||/L§l) /1,§”\|2. Meanwhile, for the variance of distance

0a,,, we have [Qu; + g — (Quj + 9)] (QT:Q +QTX;Q) [Qui + 9 — (Qu;j +9)] = (i —
)T (B + %) Q(ui — py) = (i — pj) " (Zi + ;) (u; — pj). Consequently, the output
m,_,; will also be invariant as the edge operation ¢.(.) becomes invariant.

Aterwards, the equations of our model that update the mean and variance of coordinates x are
E(n) equivariant as well. In the following, we prove their equivariance by showing that a E(n)
transformation of the input leads to the same transformation of the output. Notice that m;_,; is
already invariant as proven above. Notably, the translation g has no impact over the variance of

O]

coordinates X;"’. Thus, we want to show:

Q™ +g=Qu + g+ W@ Z (Q“ - {Q“;l) + gD Pulmysa),
(10)
Q"= = Q=0+ Z (QT2<”Q+QTE(”Q) Pa ().
JEN()
Its derivation is as follows.
Qu’ ARTo Z (th - {Qﬁ‘;‘l) +9D 9iu(my-si)
=Qu +g+ Q| i (1 = 1) 6u(my0)
JEN( i) (11D
_ 0 1 0 ) L
Qlmt NV ()] FEN(D) (NZ K )é”(m]ﬁl) T
=Qu™ +g.
QTElQ+ N( i Z (@7=" Q+QTE(”Q) d0(m;os)
N (4)
== E(l + TA N Z (2 l) + 2 ) ¢a(mj~>z) (12)

_ Eyﬂ o> l+1)Q

Therefore, we have proven that rotating and translating the mean and variance of x(*) results in the
same rotation and translation on the mean and variance of x(+1),

Furthermore since the update of h(®) only depend on m;_,; and h(®) which as saw at the begin-

ning of this proof, are E(n) invariant, therefore, h(@+1) will be invariant too. Thus, we con-

@ (I141)

clude that a transformation Qu, 4 g in p;’ will result in the same transformation on g,

n
while h(*1) will remain invariant to it such that h(+1) {nglﬂ) +g,QTEEl+1)Q} =
i=1

PDC-L [h<l>, {Q;é” Yy, QTEE”Q}R ,5} is satisfied.
=1

E LIMITATIONS AND FUTURE WORK

In spite of the success of Refine-PPI in estimating the mutation effect, there are still rooms left for
improvements. First, Refine-PPI keeps most of the complex stable and merely restores a region
around the mutant site. It is possible that the enire complex can be significantly different upon
the mutation. Therefore, a promsing future direction would be enlarge the mask region. Besides,
preceding studies demonstrate the benefit of structural pretraining to dramatically expand the repre-
sentation space of DL models. We expect to implement MMM with more experimental structures
other than PDB (e.g., Alphafold-Database) and transfer the knowledge to predict free energy change.
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