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Abstract

Tracer kinetic modeling serves a vital role in diagnosis, treatment planning, tracer1

development and oncology, but burdens practitioners with complex and invasive2

arterial input function estimation (AIF). We adopt a physics-informed CycleGAN3

showing promise in DCE-MRI quantification to dynamic PET quantification. Our4

experiments demonstrate sound AIF predictions and parameter maps closely re-5

sembling the reference.6

1 Introduction7

Kinetic modeling in dynamic positron emission tomography (dPET) allows for the determination8

of physiological parameters that are not accessible in static PET imaging. The parameters derived9

from kinetic modeling describe the underlying metabolic processes in the body, and can be used for10

diagnosis and treatment planning in various diseases, including cancer, neurological disorders, and11

cardiovascular diseases [6, 18, 3]. For instance, in oncology, kinetic modeling can help differentiate12

between benign and malignant lesions, assess tumor aggressiveness, and monitor treatment response13

in theranostics, providing superior information compared to static PET imaging.14

To derive these parameters, a tracer kinetic model is fitted to the time-activity curves (TACs) obtained15

from the dPET images. This fitting process requires an accurate arterial input function (AIF), which16

represents the concentration of the tracer in the blood plasma over time [1]. The gold-standard17

method for AIF determination is through arterial blood sampling, which is invasive, labor-intensive,18

and infeasible for routine clinical use. While alternatives such as image-derived input functions19

(IDIFs) [12, 5, 7, 4] and population-based input functions (PBIFs) [17], and more recently, machine20
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learning [10, 11], and deep learning methods [9, 14] offer noninvasive alternatives, these methods21

often suffer from inaccuracies due to partial volume effects, motion artifacts, and inter-subject22

variability. Moreover, once the AIF is determined, solving the kinetic model is typically performed23

over predetermined regions of interest, instead of on a voxel-level, due to the computationally24

intensive nature of nonlinear fitting algorithms. While voxel-wise kinetic modeling is possible, and25

used in brain quantification [2], it is not commonly used in whole-body PET imaging due to the26

computational burden compounded by the low signal-to-noise ratio (SNR) in many tissues.27

Due to the AIF being a vital component in parametric imaging, yet only useful for this purpose,28

simultaneous estimation of both quantities with an efficient feedforward neural network during29

the inference phase presents a more streamlined approach. Furthermore, a physically-informed30

approach that leverages the underlying physics captured in the kinetic models have shown promise in31

out-of-distribution settings [15]. Thus, we adopt a physics-informed CycleGAN as recently proposed32

for AIF estimation in the context of dynamic contrast-enhanced magnetic resonance imaging (DCE-33

MRI) [13]. This approach uses unpaired images and kinetic parameter maps with a combination of34

an adversarial loss and a cycle consistency loss, promoting consistency in estimated parameter maps35

with respect to the parameters of the input imaging data. This approach enables direct learning of the36

mapping from PET time series to kinetic parameter maps, eliminating the need for AIF determination37

and expensive fitting procedures.38

2 Methods39

Our approach closely follows that of Oh et al. [13], which uses a CycleGAN to learn the mapping40

between DCE-MRI and their parametric images, exploiting domain knowledge of the underlying41

kinetic model describing their relationship, where we use dPET data and a PET-specific compartment42

model instead. As the original CycleGAN [19], the proposed approach does not require paired data.43

The CycleGAN consists of a generator G : X → Y,CA that maps the dPET images X to the kinetic44

parameter maps Y and AIF a, and a forward tracer kinetic model F : Y,CA → X that maps the45

kinetic parameter maps back to the dPET images. The forward model uses an irreversible two-tissue46

compartment model (2TCM) [16] to generate the dPET images from the kinetic parameter maps and47

AIF. The model is defined as follows:48

X = CPET (t) = Vb · CA(t) + (1− Vb) · CT (t)

CT (t) =
K1

k2 + k3
[k3 + k2 · e−(k2+k3)t]⊗ CA(t)

(1)

Where CPET (t) is the tissue TAC observable from the scan, CA(t) is the AIF, CT (t) denotes the49

tissue compartment concentration, Vb is the blood volume fraction. Rate constants K1, k2, and k350

represent the tracer transport from blood to tissue, from tissue to blood, and the phosphorylation51

rate, respectively. The symbol ⊗ denotes the convolution operation. For further details, we refer the52

interested reader to Oh et al. [13].53

2.1 Data54

This study used a dataset of 70 whole-body [18F]FDG dPET scans of mice accompanied by arterial55

blood sampling simultaneously acquired during scanning. After reconstruction, the spatio-temporal56

images were of dimensions 42 × 96 × 48 × 48 (time, axial, coronal, sagittal) with a time frame57

duration of 1× 30s, 24× 5s, 9× 20s, and 8× 300s. To obtain the initial kinetic maps for each scan,58

a voxel-wise kinetic model using a linearization of the 2TCM [2] was fitted to the dPET images using59

the arterial input function obtained from blood sampling, solving Eq 1 to determine the rate constants.60

2.2 Implementation Details61

Unpaired training is accomplished by sampling a dPET image and a parametric map with AIF from62

two distinct samples. The patch discriminator is initialized with 32 filters in the final layer, and63

3 layers in total. The generator takes 3D PET images with 42 input channels, to match the time64

dimension of our data, before mapping to 4 output channels K1, k2, Vb, k3 corresponding to the65

output produced by the forward compartment model (Eq. 1). The CycleGAN is trained over 100066

epochs using AdamW [8] with β1 = 0.5 and β2 = 0.999.67
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FC-DLIF: y = 0.93x+0.12, corr = 0.96

PI-DLIF: y = 0.91x+0.09, corr = 0.95

CycleGAN: y = 0.91x+0.21, corr = 0.90

y = x

(b) AIF comparison.

Figure 1: Comparison of (a) the ground truth and estimated kinetic parameter maps for K1 and Ki,
and (b) the estimated AIF from FC-DLIF [14], PI-DLIF [15] and the proposed CycleGAN approach.
In (a), the first axis contains the measured AIF values from blood sampling, while the second axis
contains the estimated AIF values from the three methods. The dashed line reports the identity line,
i.e., perfect estimation.

3 Experiments and Results68

We evaluate fidelity to our reference parametric mapping pipeline on a held-out test set using69

structural similarity index measure (SSIM) and peak signal-to-noise ratio (PSNR), obtaining 0.742570

and 34.49 dB, respectively. Because the network is trained to produce the reference parametric71

maps, these metrics reflect generalization to the baseline rather than absolute physiological accuracy.72

The perceived quality of the produced parametric maps (Fig. 1a) reflects the decent SSIM and73

PSNR values reported, but notable discrepancies in intensity and fine details are observed. Our74

implementation continue using instance normalization in the generator [13], which interferes with75

the absolute scale of the rate constants because of the per-volume normalization being applied.76

In terms of AIF estimation, the CycleGAN is compared against two recently proposed methods77

for AIF estimation from dPET images: a fully convolutional deep learning-based input function78

(FC-DLIF, [14]) predictor, and a physics-informed extension to this model (PI-DLIF, [15]). These79

methods have undergone more extensive training and predict using an ensemble of 10 models, yet the80

CycleGAN achieves comparable performance, as shown in Fig. 1b.81

4 Discussion and Conclusion82

In this work, we have presented a physics-informed CycleGAN for simultaneous estimation of the83

arterial input function and kinetic parameter maps from [18F]FDG dPET images. The method learns84

to map dPET images to kinetic parameter maps and AIFs without requiring paired training data. The85

method achieves comparable AIF estimation performance to two recently proposed deep learning-86

based methods, and exhibit a high level of fidelity to the reference parametric mapping pipeline.87

However, normalization in the generator interferes with the absolute scale of the estimated rate88

constants, which is a limitation of the current implementation. Future work will focus on addressing89

this shortcoming, artificially augmenting the scant data available, and evaluating the method on90

out-of-distribution data.91
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5 Potential Negative Societal Impact92

The proposed methodology has been tested in pre-clinical studies, on a limited set of healthy mice.93

More research is needed until the proposed approach can eventually be translated to clinical use-cases94

in human studies and cancer diagnostics. To address potential negative impacts associated with this95

application development of XAI and uncertainty estimates are necessary for spatio-temporal images96

that can capture underlying dynamics in order to identify outliers and failure cases. As the proposed97

method is a generative method with a reconstruction component, care has to be taken regarding98

weight sharing, as the weights encode potentially sensitive medical data if applied to human patients.99
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