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ABSTRACT

Synthetic tabular data generation has recently gained immense attention due to
applications in medicine, finance, and other fields. Generative adversarial net-
works (GANs) designed initially for image generation have been demonstrated
to be promising for generating certain types of tabular data. Tabular data may
contain mixed data types such as continuous, ordered, binary, and categorical
values. However, the causal relationships between the variables in tabular data have
been largely ignored by the prior art. Causality encodes real-world relationships
occurring naturally between variables measuring a phenomenon.
In this work, we propose Causal-TGAN, a data generation architecture that incor-
porates causal relationships at its core. The flexibility of this architecture is its
capability to support different types of expert knowledge (e.g., complete or partial)
about the causal nature of the underlying phenomenon. Extensive experimental
results on both simulated and real-world datasets demonstrate that Causal-TGAN
and its hybrid avatars consistently outperform other baseline GAN models. We also
argue that the architecture’s flexibility is promising for many practical applications.

1 INTRODUCTION

Synthetic data generation methods have drawn tremendous attention since the invention of generative
adversarial networks (GAN). In addition to the original intent of generating realistic images that
do not exist in the real world, synthetic data generation is now used to achieve a wide variety of
objectives such as data augmentation (Odena et al., 2017; Antoniou et al., 2017; Mariani et al.,
2018; Chatziagapi et al., 2019), missing values imputation (Wang et al., 2019; Shin et al., 2020),
counterfactual example generation (Neal et al. (2018); Madaan et al. (2020); Sauer & Geiger (2021)),
and interpretable artificial intelligence (Chang et al., 2018; Genovese et al., 2019; Kenny & Keane,
2020).

As generative models have demonstrated remarkable results on unstructured image and text data
generation, (structured) tabular dataset generation is emerging as a prominent research problem (Chen
et al., 2019; Yoon et al., 2018; Srinivasan et al., 2019). This is of great interest because tabular
datasets frequently occur in areas such as medicine and finance. One key difference in tabular datasets,
compared with image and text data, is that they contain mixed data types such as continuous, ordered,
binary, and categorical values.

Most tabular datasets are structured where each column (variable) within the data table has a physical
meaning, such as age or income. Though there are innumerable such variables representing different
meanings or measurements, it is fair to assume that variables within the same tabular dataset are
statistically related. This is because tabular data are usually collected to measure the attributes of an
object or a phenomenon. Causal factors among variables produce statistical relationships between the
collected data. For example, there could be three possible causal relations between variables A and
B, i.e., A causes B, B causes A, or another variable C causes both A and B. In this work we show
that exploiting these causal relations in deep generative models delivers synthesized data that more
accurately (compared to the state-of-the-art) capture the target data distribution.

In this paper, we propose a causally-aware tabular data generative adversarial network (Causal-
TGAN). Causal-TGAN employs a new framework for the generator that models inter-variable causal
relations. The generator is constructed as a structural causal model (SCM) to capture multiple causal
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Figure 1: An example the proposed Causal-TGAN with expert knowledge: Given a dataset of
five columns A − E and the partial knowledge that A and B are the causes of C, the proposed
Causal-TGAN constructs a generator following the causal structure of A→ C ← B. By doing this,
the Causal-TGAN can generate a sub-table that only contains columns A, B, and C. We employ
a conditional GAN to generate the rest of the columns D and E, conditioned on the samples from
the Causal-TGAN. Finally, we concatenate the output of the conditional GAN (D and E) with the
corresponding conditions (A, B, and C) to form the complete synthetic table. For Causal-TGAN
operating with full knowledge (all causal relationships are known), the entire dataset can be generated
without the use of another conditional GAN. The part enclosed in dashed lines will not be necessary
as all variables can be generated with the proposed Causal-TGAN.

processes. Completeness of the causal relationship information provided to the Causal-TGAN is
proportional to the extent of available expert knowledge. An example of Causal-TGAN working with
expert knowledge is illustrated in Figure 1. The availability of accurate and complete knowledge
(i.e., causal relations known for all variables) sometimes can be difficult. Therefore, we propose a
hybrid generative mechanism for data generation using only partial knowledge (i.e., causal relations
known only for some variables). In the partial knowledge setting, Causal-TGAN generates data for
the variables with known causal information while an auxiliary conditional GAN is developed for
generating data for the other variables. We also suitably modify the conventional conditional GANs
for application to tabular datasets.

We summarize our contributions as follows:

• Causal-TGAN, a novel GAN framework, that can incorporate (complete and incomplete)
inter-variable causal relationships from a domain expert.

• Detailed experimental results demonstrating that Causal-TGAN is better (compared to other
methods) at capturing the target data distribution on both simulated and real-world datasets.

• A comprehensive evaluation of Causal-TGAN’s performance for different degrees of knowl-
edge about inter-variable causal relationships. Demonstration of the practicality of Causal-
TGAN even in the absence of complete expert knowledge.

The paper is structured as follows. In Section 2, we discuss related synthetic tabular data generation
methods. We outline preliminary information on SCM and generative adversarial networks in Section
3. In Section 4, we describe the proposed Causal-TGAN framework and the hybrid generative
mechanism. We present the experimental setting and evaluation of Causal-TGAN on both simulated
and real-world datasets in Section 5.

2 RELATED WORK

Prior work has exploited GANs for tabular data generation. MedGAN (Choi et al., 2017) leverages
a combination of GAN and autoencoder to generate high-dimensional discrete variables in elec-
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tronic health record data. TableGAN (Park et al., 2018) guides the generator to generate synthetic
samples with a reasonable label by adding an auxiliary classifier. PATE-GAN (Jordon et al., 2019)
generates synthetic data with differential privacy guarantees. CorGAN (Torfi et al., 2020) uses a one-
dimensional convolutional GAN architecture for both the generator and the discriminator to capture
the correlation between variables in the feature space. CTGAN (Xu et al., 2019) addresses class
imbalance by introducing a conditional generator that provides the model with the capacity to evenly
re-sampling all categories from discrete columns during the training process. In addition, CTGAN
employs a Gaussian mixture model for multimodal distributed data in the table’s columns. OCT-
GAN (Kim et al., 2021) deploys a discriminator with an ODE (ordinary differential equation) layer
to perform a trajectory-based classification to improve the generator’s performance. A conditional
vector that efficiently encodes mixed-type data to solve the imbalanced data and long-tail distribution
(e.g., a variable with a sparse distribution over a long-range) is considered in CTAB-GAN (Zhao
et al., 2021).

Two papers closely related to this work are CGNN (Goudet et al., 2018) and CausalGAN (Kocaoglu
et al., 2017). Both of these constructs SCM-based generators but with different objectives. CGNN
discovers causal structures with the argument that a generator built with accurate causal graph
knowledge can learn the data distribution better. Causal-GAN leverages a causality-based generator
to sample interventional labels for generating facial images such as women with the mustache. The
data label type considered in CausalGAN is only binary to indicate if an image has an attribute
or not. Moreover, the main objective of CausalGAN is out-of-distribution image generation. The
causality-based generator is only one component for sampling labels. In contrast, our Causal-TGAN
design is proposed to generate datasets with different variable types.

3 BACKGROUND

3.1 STRUCTURAL CAUSAL MODELS

Figure 2: An example of SCM:
The causal graph and the corresponding
causal mechanisms are shown.

We briefly introduce the concept of the structural causal
models (SCM) (Pearl, 2009). SCM constitutes a causal
system with a set of variables, a causal graph encoding
causal relations between variables, and a set of equations
describing how each variable is generated based on its
causes (represented by parent nodes in the causal graph).

Mathematically, an SCMMG with a causal graph G can
be represented by a tripletMG = 〈X ,F ,U〉 that contains
a set of endogenous variables X = {X1, X2, ..., Xd}, a
set of causal equations (mechanisms) F = {f1, f2, ..., fd}
and a set of exogenous variables U = {U1, U2, ..., Ud},
where each Ui is independently from a distribution U . The
causal relationship “Xi causes Xj” is represented in the
causal graph by a directed edge that orientates from Xi to
Xj , i.e., Xi → Xj . The value of Xj is determined by its
causal equation Xj = fj(PaG(Xj), Uj) where PaG(Xj) denotes all the parent nodes of Xj in G.
Uj is the exogenous variable of Xj and can be seen as the cumulative effect of all unobserved causes
of Xj . Figure 2 illustrates an example of SCM with 5 variables.

3.2 GENERATIVE ADVERSARIAL NETWORKS (GAN)

GANs consist of two components: a generator G and a discriminator D. The purpose of G is to
describe the data distribution by mapping a low-dimensional normal distribution to a high-dimension
data distribution. D discriminates a sample from G as real or generated. G and D are trained
alternatively following the two-player min-max game:

min
G

max
D

Ex∼pdata(x)[logD(x)] + Ez∼p(z)[log(1−D(G(z)))] (1)

where z ∈ Rdz is a latent variable sampled from distribution p(z) and pdata(x) is the target data
distribution. The generator aims to improve the generation quality by confusing the discriminator
D. After the generator is improved the discriminator’s ability is improved. The generator and the
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discriminator repeatedly compete with each other until they reach a Nash Equilibrium (Goodfellow
et al., 2014).

A variant of GAN is the conditional GAN (CGAN) (Mirza & Osindero, 2014). CGAN takes additional
information as input and extends GANs to a conditional model. By conditioning on the “information”,
CGAN can generate data with the attributes described by the “information”. The two-player minimax
game of CGAN with a conditional variable y is defined as follow:

min
G

max
D

Ex,y∼pdata(x,y)[logD(x, y)] + Ez∼p(z),y∼pdata(y)[log(1−D(G(z, y), y))] (2)

4 METHOD

4.1 SCM-BASED GENERATOR

In this section, we describe the steps to construct a Causal-TGAN for tabular data T consisting of
a set of n variables V = {V1, V2, ..., Vn}. Each variable corresponds to one column in T . We use
the lower case vi to denote a value of variable Vi. Hence a data sample is represented as a vector
(v1, v2, ..., vn). We also have a causal graph G that encodes the causal relationships among V . The
objective of Causal-TGAN is to estimate the empirical data distribution PT (V) of T by incorporating
expert knowledge encoded in G.

4.1.1 VARIABLE ENCODING

Tabular GAN training can benefit from the proper encoding of variables (Xu et al., 2019). Therefore,
we consider discrete and continuous variable-specific encoding. It is natural to encode discrete
variables as one-hot vectors. We use the mode-specific normalization proposed by (Xu et al., 2019)
for encoding continuous variables. The mode-specific normalization first fits a variational Gaussian
mixture model (VGM) for the column containing continuous variables. Let us assume that the VGM
consists of n Gaussian components. Then, a single value from this column can be encoded as a
vector of length n + 1. The first n elements denote a one-hot vector indicating the most likely
Gaussian component that the value belongs to. The last (i.e., n + 1st) element is the mean and
variance-normalized value of the corresponding Gaussian component.

4.1.2 GENERATOR CONSTRUCTION

Causal-TGAN is a generator that is built in an SCM fashion. Unlike conventional GANs that use
only one generator to map low-dimensional noise vectors to the high dimensional data samples,
Causal-TGAN employs multiple such generators, called sub-generators. Each sub-generator is
responsible only for generating values for one variable. Therefore each sub-generator is associated
with only one variable and can interpreted as the causal equation for that variable. These are the
endogenous variables of an SCM. The noise vector inputs to the sub-generators are the exogenous
variables. Connecting the sub-generators following the causal relationship described in the causal
diagram G produces the Causal-TGAN as an SCM-based generator.

Formally, for the tabular dataset T , we construct the Causal-TGAN, F , which is a set of sub-
generators F = {fV1

, fV2
, ..., fVn

}, where the sub-generator fVi
is a neural network corresponding

to the causal equation for variable Vi. To causally connect two sub-generators fVi
and fVj

for two
arbitrary variables Vi and Vj , if Vi is the parent node of Vj , we connect Vi and Vj by taking the output
of fVi as the input to fVj , otherwise do nothing.

4.1.3 DATA SAMPLING

In Causal-TGAN, one complete data sample is generated following the topological order of the causal
diagram. That is, the variables at the root position (i.e., variables without a parent node) are generated
first, followed by generating their children, and then follow this rule until all leaf nodes (i.e., variables
without child nodes) are generated. We summarize the steps to generate one sample by Causal-TGAN
as follows:

1. Sample a set of noise vectors, µ = {u1, u2, ..., un}, independently and identically from a
distribution U . In our case, U is the Gaussian distribution.
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2. Following the topological order, generate each variable Vi by vi = fi(ui, PaG(Xi)), where
PaG(Xi) are the values of parent nodes of Vi described in causal diagram G.

3. If the topological order is not consistent with the order of the variables in the dataset then
reorder the generated samples according to the order in the dataset.

Similar to regular GANs, Causal-TGAN can generates data samples by only taking noise as input.
For simplicity, we represent the Causal-TGAN data generation process described above as a function
GF (·) that maps noise µ to a data sample xS :

xS := GF (µ) (3)

4.2 DATA GENERATION USING PARTIAL KNOWLEDGE

Causal-TGAN can consume only partial knowledge (i.e., causal diagram known only partially for a
few variables) for data generation when complete knowledge is not accessible, or domain experts
only have high confidence only in partial knowledge. There are several practical use cases (e.g.,
medicine) where this is applicable. To do this, we first fit Causal-TGAN on a subset of the target
dataset containing only the variables with known causal relations. Then we leverage a conditional
GAN to generate the rest of the variables (i.e., variables without known causal relations) conditioned
on the variables used by Causal-TGAN.

Formally, continuing with the notations defined above, we have a tabular dataset T with variables
V . We know the causal diagram GKc for a set of variables Kc, and Kc ⊂ V . Then the rest variables
can be represented as V \ Kc. We use T (Kc) and T (V \ Kc) to denote the dataset with and without
variables of known causal relations, respectively. To operate under partial knowledge, we first fit a
Causal-TGAN on T (Kc) with a known causal diagram GKc

. Then we use a conditional generator
Ccond to generate one sample of the rest of the variables xcondS by conditioning on the sample xcausalS
generated by Causal-TGAN:

xcondS = Ccond(e, x
causal
S ) (4)

where e is the noise vector. Then, under the partial knowledge setting a complete data sample is
generated as follow:

xS = orderT (x
cond
S ⊕ xcausalS ) (5)

where ⊕ is the operation of vector concatenation and orderT (·) is the operation that reorders the
values according to the order of the variables in T .

4.3 TRAINING CAUSAL-TGAN

Either the Causal-TGAN or the Conditional GAN is trained using WGAN loss with gradient penalty
(Gulrajani et al., 2017):

min
G

max
D

V (G,D) = ExR∼PT (V)[D(xR)]−Ez∼pz [D(G(z))]−λEx̂∼px̂ [(||∇x̂D(x̂)||2−1)2] (6)

where G and D are the generator and the discriminator. pz is the distribution of the noise vector. x̂
is a randomly weighted combination of the synthetic sample G(z) and the true sample xR. Math-
ematically, we randomly sample a weighting vector λλλ ∈ [0, 1]n, where n is the sample dimension.
Then, x̂ can be calculated by x̂ = λλλ ◦G(z) + (1− λλλ) ◦ xR, where ◦ denotes the Hadamard product.
Specifically, for training a Causal-TGAN, G represents GF defined in 3. For training the conditional
GAN, pz is the joint distribution of µ and e. G describes the generating process of conditional GAN
(defined in Eq.5) as:

G(z) = orderT (Ccond(e,GF (µ))⊕GF (µ)) (7)
During the conditional GAN training, we only update the parameters of Ccond, and the parameters
of GF are kept unchanged as the Causal-TGAN is pre-trained on the sub-table with known causal
relations.

5 EXPERIMENTAL RESULTS

We introduce the datasets and baseline models in Section 5.1, and the evaluation metrics in Section 5.2.
In Section 5.3, we present the performance of Causal-TGAN on simulated datasets under different
expert knowledge conditions. Results on real-world datasets are presented in Section 5.4.
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5.1 EXPERIMENTAL SETTING

We use Bayesian networks, Gaussian Bayesian networks, and conditional linear Gaussian Bayesian
networks to simulate three types of simulated datasets that are discrete-only, continuous-only, and
of mixed-type, respectively. We used the graph structures of the Bayesian networks to represent
true causal relations. We utilized UCI (Dua & Graff, 2017) and Kaggle datasets representing the
real-world. The Greedy Equivalence Search causal discovery (Glymour et al., 2019) technique was
applied to real-world datasets to estimate the causal graphs. Details about these datasets are presented
in Appendix A.

Several generative models proposed for tabular data—MedGAN (Choi et al., 2017), TableGAN
(Park et al., 2018), CTGAN (Xu et al., 2019) and TVAE (Xu et al., 2019)–were used as baseline.
We use Identity to denote the model for which the generated and the training data are the same.
Therefore, Identity yields the best performance uniformly. This means that the model generating
synthetic data with distribution most similar to the Identity model’s distribution performs best. For
all the baseline models, we use the recommended hyperparameters presented in the original papers or
provided in their implementations. Each model is trained with a batch size of 500 for 300 epochs. For
clarity of presentation, we highlight the best performance in bold font and underline the second-best
performance.

5.2 EVALUATION METRICS

There is no uniform metric that can be measured to evaluate the quality of the synthesized tabular data
accurately because of the combination of discrete, continuous, or mixed-type variables. Therefore, we
use five different metrics to evaluate the performances on different types. The details are as follows.

The Kullback–Leibler (KL) divergence quantifies how much one probability distribution differs
from another probability distribution. The KL divergence between synthetic (P (x)) and target (Q(x))
empirical distributions is:

DKL(P ‖ Q) =
∑
xεX

P (x) log(
P (x)

Q(x)
) (8)

where X denotes the set of all possible samples. We use KL divergence for evaluating the mixed-type
tabular datasets. For computations, continuous variables are binned to be treated as discrete variables.

Pairwise correlation difference (PCD) metric compares the difference of inter-variable correlation
between the synthetic and real-world datasets. PCD measures how well a synthetic dataset captures
the statistical properties of the corresponding real dataset. The PCD is defined as:

PCD(XS , XR) =
1

N
||Corr(XS)− Corr(XR)||1 (9)

where N is the number of variables and Corr(·) denotes the inter-variables’ correlation for a dataset.
In our experiment, we use Pearson correlation (Freedman et al., 2007) for Corr(·). We use PCD
on continuous-only datasets instead of KL divergence since the binning process in calculating KL
divergence can reduce the precision.

Bayesian network (BN)-likelihood (Xu et al., 2019) is an evaluation metric specifically designed
for Bayesian networks. BN-likelihood measures the likelihood that a synthetic dataset is derived from
the Bayesian network (the oracle) generating the target dataset. This likelihood is denoted by Lsyn.
Note that Lsyn can be high when over-fitting occurs. To solve this issue, Ltest score that is robust to
over-fitting is used. To calculate Ltest, we first use same oracle graph structure to fit the synthetic
dataset and then measure the likelihood of the target dataset being generated by the fitted BN.

Machine learning efficacy (Xu et al., 2019; Goncalves et al., 2020) evaluates how much the synthetic
dataset represents the target dataset when used as the training data in a supervised machine learning
task. The amount of representation can be quantified by the performance measurement of the machine
learning task (e.g., accuracy in classification task). To measure the machine learning efficacy, we
train machine learning models on the synthetic datasets and then evaluate the trained models on the
test data consisting of target datasets. We use the Macro-F1 score for classification tasks and R2 for
regression task to measure the machine learning efficacy score. The used machine learning models
for classification are the MLP classifier, AdaBoost, and Decision Tree. For regression, we use Linear
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Method Discrete Continuous Mixed

Lsyn Ltest PCD Log-cluster KL Div. Log-cluster
Identity -9.48 -9.51 0 +∞ 1 +∞

MedGAN -10.68 -12.00 -0.615 1.42 0.430 1.80
TableGAN -13.68 -11.34 -0.032 6.23 0.802 2.39

TVAE -10.41 -9.92 -0.068 3.88 0.838 2.84
CTGAN -14.19 -11.30 -0.138 2.77 0.806 2.94

Causal-TGAN (Ours) -9.70 -9.62 -0.013 6.48 0.971 3.06

Table 1: Causal-TGAN in full expert knowledge setting. Results on different types of simulated
datasets. For all metrics, higher values indicate better performances. Scores for each dataset are
provided in Appendix C.

regressor and MLP regressor. All the implementations of the machine learning algorithms mentioned
above were from scikit-learn (Pedregosa et al., 2011). Full details of the model settings used in our
experiments are provided in Appendix B.

The Log-cluster score (Goncalves et al., 2020) is intended to evaluate synthetic datasets in unsu-
pervised machine learning tasks such as clustering. To measure log-cluster, we first concatenate the
synthetic dataset and the real dataset into a single dataset. Secondly, a clustering method is applied
to the concatenated dataset with a fixed number of clusters G. Then the log-cluster score can be
calculated as:

Clog(XS , XR) = log(
1

G

G∑
i=1

[
nri
ni
− c]2) (10)

where ni is the number of samples in the ith cluster and nri is the number of samples in ni that form
the target dataset. c is defined the as ratio of the number of samples in the target dataset to the number
of samples in the concatenated dataset. A large value of Clog indicates a severe mismatch in cluster
members, indicating a disparity between the distribution of target and synthetic datasets. We set G
equal to 100 in our experiments.

To make the value of these metrics proportional to the synthetic data quality, we transform the values.
For PCD and Log-cluster, we report their negative values. The KL divergence is used to compute the
metric, DKL = 1/(1 +DKL).

5.3 COMPREHENSIVE EXPERIMENTAL ANALYSIS OF CAUSAL-TGAN

In this section, we evaluate Causal-TGAN on simulated datasets for which the causal relations
for all the variables are known. We also thoroughly investigate the performance of Causal-TGAN
with distorted causal information. The performance of Causal-TGAN with full expert knowledge
is first presented followed by the details of how we manipulate the true causal graph for examining
Causal-TGAN’s performance, and the corresponding results.

Full Causal Knowledge Performance comparison of baseline models with Causal-TGAN is re-
ported in Table 1. Notice from the table that Causal-TGAN outperforms all the baseline models on all
types of datasets. MedGAN fails to produce comparable results on continuous-only and mixed-type
datasets since it is designed to deal with multi-label discrete patient data. Overall, TVAE ranks second
in performance. However, TVAE must have access to the true datasets for data generation that limits
its practical use. Surprisingly, TableGAN outperforms CTGAN on continuous datasets by a large
margin. One possible reason for this is that the continuous variables in the simulated datasets do not
conform to a mixture Gaussian distribution. CTGAN’s mixture Gaussian model could be introducing
a mismatch. However, note that, even though Causal-TGAN employs the same encoding strategy as
CTGAN, it still outperforms TableGAN by incorporating causal knowledge.

Partial Causal Knowledge To create partial knowledge, we prune the true causal graph by different
percentages. The percentage of knowledge is calculated as the percentage of remaining or unpruned
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(f) Mixed-type Datasets

Figure 3: Performance of Causal-TGAN for different qualities of expert knowledge. (a)-(c) true
graphs are given in different proportion. (d)-(f) different degrees of graph distortion. Plots for each
dataset are provided in Appendix D

variables. 100% denotes knowing causal relations for all variables and 0% denotes generating
using purely conditional GAN 1. For each percentage of knowledge, we randomly generate 10
corresponding causal graphs and report the average scores.

The average of results for each type of dataset is shown in Figure3 (a)-(c). Firstly, an ablation study
can compare the results of 0% knowledge with other fractional knowledge. It indicates that including
inter-variable causal relations can improve the data generation performance. Secondly, Causal-TGAN
can consistently and stably gain from incorporating more expert knowledge on all types of datasets.
However, the gain starts to get saturated when over 80% knowledge is incorporated on discrete-only
and continuous-only datasets.

Wrong Knowledge To create a wrong knowledge graph, we distort the graph. This includes either
deleting an edge or changing the direction of an edge. The percentage of distortion is measured
by the proportion of manipulated edges in the graph. We consider three settings for distortions:
deleting entirely (Delete%=100), half deletion and half reversing (Delete%=50), and fully reversal
(Delete%=0). Similarly, we randomly generate 10 distorted graphs for each level and each setting of
distortion and report the average scores.

The results of our experiments are shown in Figure3 (d)-(f). Except for Delete%=0 on the mixed-type
datasets, all other results show that the performance of Causal-TGAN degrades as the graph distortion
becomes worse. A possible cause of this behavior is that the causal graphs of the mixed-type datasets
are simple (i.e., they contain fewer nodes and edges), and hence the reversal of the causal directions
to a large degree is more likely to create a Markovian equivalent graph with the same statistical
properties of the dataset from the undistorted graph. We find that, when compared to deletion
distortion, Causal-TGAN is more robust to distortions due to reversal in the causal directions.

1we keep using the term conditional GAN here. However, in our implementation, 0% means there is no need
for Causal-TGAN for generation, and the conditional GAN is hence degraded to be a regular GAN without
taking conditional vectors.

8



Under review as a conference paper at ICLR 2022

Method adult census intrusion news

F1 F1 Macro R2

Identity 0.677 0.648 0.756 0.038

MedGAN 0.045 0.000 0.000 -1.182
TableGAN 0.496 0.367 0.308 -0.521
CTGAN 0.628 0.459 0.576 0.006
TVAE 0.611 0.464 0.380 -0.055

Causal-TGAN-NK 0.658 0.401 0.468 0.008
Causal-TGAN-PK 0.662 0.509 0.577 0.025

Table 2: Machine learning efficacy on real-world datasets. Note that, Causal-TGAN-NK is excluded
from comparison with baseline models since it is included for ablation study purposes.

5.4 RESULTS ON REAL-WORLD DATASET

We trained Causal-TGAN with partial knowledge setting to evaluate it on real-world datasets. The
reason for this is causal discovery methods for mixed-type datasets (Tsagris et al., 2018) have a much
lower recall score than those designed for single-type datasets (Ramsey, 2015). A lower recall score
of a causal discovery method indicates that it identifies insufficient causal relationships. Section
5.3 showed that Causal-TGAN is more vulnerable to the absence of causal relations. Therefore, we
designed an unbiased strategy for training Causal-TGAN on real-world datasets, i.e., we estimated
the causal relations for variables of the majority data type for each dataset. This strategy delivers
as much accurate partial knowledge as possible. For example, we estimate causal relations for
continuous variables in the news dataset, in which 45 out of 59 variables are of the continuous
type. We also trained Causal-TGAN in the no-knowledge setting to differentiate the performance
difference when expert knowledge is available. We denote Causal-TGAN with partial knowledge as
Causal-TGAN-PK and Causal-TGAN with no knowledge as Causal-TGAN-NK.

The results on real-world datasets are reported in Table 2. It illustrates that, even when full knowledge
is absent, Causal-TGAN outperforms all the baseline models. On the census and intrusion datasets,
by incorporating expert knowledge, Causal-TGAN surpasses CTGAN in its performance, whereas
originally, Causal-TGAN was not as good as CTGAN. The ablation results derived from comparing
Causal-TGAN-PK and Causal-TGAN-NK further validate the intuition that incorporation of expert
knowledge helps to improve the quality of synthesized data.

6 CONCLUSION

We propose Causal-TGAN, a tabular data generative model that leverages inter-variable causal
relationships. This method can handle discrete, continuous, and mixed data types. When combined
with an auxiliary conditional GAN, the proposed approach can flexibly consume different types or
qualities (complete or partial) of expert knowledge about the underlying causal structures. Extensive
experimental evaluation on simulated and real-life datasets indicates superior performance and
practicality of Causal-TGAN when compared to several other baseline generative models available in
the literature.
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A DATASETS DESCRIPTION

The statistics of datasets are summarized in Table 3 and the websites for all the datasets are listed as
follows:

• Simulated Datasets: http://www.bnlearn.com/bnrepository/
• Adult: http://archive.ics.uci.edu/ml/datasets/adult
• Census: https://archive.ics.uci.edu/ml/datasets/census+income
• Intrusion: http://archive.ics.uci.edu/ml/datasets/kdd+cup+1999+data
• News: https://archive.ics.uci.edu/ml/datasets/online+news+popularity

Dataset Name # train/test # Cols. # Binary Cols. # Categorical Cols. # Continuous Cols. Task

Simulated Dataset

asia 10k/10k 8 0 8 0 -
child 10k/10k 20 0 20 0 -

insurance 10k/10k 27 7 20 0 -
alarm 10k/10k 37 10 27 0 -

ecoli70 15k/15k 46 0 0 46 -
arth150 25k/25k 107 0 0 107 -

healthcare 15k/15k 7 0 3 4 -
mehra 25k/25k 24 0 4 20 -

Real Dataset

adult 23k/10k 15 2 7 6 C
census 200k/100k 41 3 31 7 C

intrusion 394k/100k 41 5 10 26 C
news 31k/8k 59 14 0 45 R

Table 3: Summary of datasets. Note that, # denotes the number of and Col. is the abbreviation of
columns. The machine learning tasks for real-world datasets are listed in the last column, where
C stands for classification and R stands for regression. We separate the train and test datasets by
randomly sampling from the whole dataset.

B MODEL SETTINGS IN MACHINE LEARNING EFFICACY

Dataset Model Description

adult
Adaboost n_estimators=50, and others=defaulted values.

Decision Tree max_depth=20, max_leaf_nodes=50, and others=defaulted values.
MLP hidden_layer_sizes=50, early_stopping=True, and others=defaulted values.

census
Adaboost n_estimators=50, and others=defaulted values.

Decision Tree max_depth=20 and others=defaulted values.
MLP hidden_layer_sizes=50, early_stopping=True, and others=defaulted values.

intrusion
Adaboost n_estimators=50, and others=defaulted values.

Decision Tree max_depth=20 and others=defaulted values.
MLP hidden_layer_sizes=50, early_stopping=True, and others=defaulted values.

news Linear Regression All settings with defaulted values.
MLP hidden_layer_sizes=100, early_stopping=True, and others=defaulted values.

Table 4: Classifier and Regressor used in the evaluation of Machine Learning Efficacy. The names of
all parameters that used in the description are consistent with those defined in scikit-learn.
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C BENCHMARK RESULTS ON SIMULATED DATASETS

Method asia alarm child insurance

Lsyn Ltest Lsyn Ltest Lsyn Ltest Lsyn Ltest

Identity -2.23 -2.25 -10.4 -10.5 -12.2 -12.2 -13.1 -13.1

MedGAN -2.81 -2.59 -11.1 -14.2 -14.2 -15.4 -14.6 -15.8
TableGAN -3.52 -2.75 -16.3 -12.5 -17.6 -14.1 -17.3 -16.0

TVAE -2.35 -2.28 -12.2 -11.0 -12.3 -12.5 -14.8 -13.9
CTGAN -4.34 -2.49 -20.3 -14.1 -14.9 -13.2 -17.2 -15.4

Causal-TGAN (Ours) -2.32 -2.26 -10.7 -10.8 -12.3 -12.2 -13.5 -13.2

Table 5: Benchmark results on discrete-only simulated datasets.

Method ecoli70 arth150 healthcare mehra

PCD Log-cluster PCD Log-cluster KL div. Log-cluster KL div. Log-cluster

Identity 0 +∞ 0 +∞ 1 +∞ 1 +∞
MedGAN -0.477 1.41 -0.753 1.43 0.432 1.57 0.428 2.02
TableGAN -0.010 6.68 -0.053 5.78 0.737 2.85 0.866 1.92

TVAE -0.044 5.63 -0.092 2.14 0.901 3.62 0.775 2.06
CTGAN -0.227 2.71 -0.049 2.82 0.733 3.84 0.878 2.04

Causal-TGAN (Ours) -0.018 6.69 -0.008 6.27 0.956 4.04 0.985 2.08

Table 6: Benchmark results on continuous-only and mixed-type simulated datasets. Specifically,
ecoli70 and arth150 are continuous-only datasets and healthcare and mehra are mixed-type datasets.
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D EXPERT KNOWLEDGE OF DIFFERENT QUALITIES
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Figure 4: Partial Knowledge. (a)-(d) are discrete-only datasets; (e)-(f) are continuous-only datasets;
(g)-(h) are mixed datasets.

102030405060708090

Percentage of Distorted Knowledge

−2.40

−2.38

−2.36

−2.34

−2.32

−2.30

−2.28

−2.26

B
a
y
e
s
ia
n
N
e
tw

o
r
k
s
L
ik
e
li
h
o
o
d

(a) asia

102030405060708090

Percentage of Distorted Knowledge

−14.5

−14.0

−13.5

−13.0

−12.5

−12.0

−11.5

B
a
y
e
s
ia
n
N
e
tw

o
r
k
s
L
ik
e
li
h
o
o
d

(b) alarm

102030405060708090

Percentage of Distorted Knowledge

−13.4

−13.2

−13.0

−12.8

−12.6

−12.4

B
a
y
e
s
ia
n
N
e
tw

o
r
k
s
L
ik
e
li
h
o
o
d

(c) child

102030405060708090

Percentage of Distorted Knowledge

−15.2

−15.0

−14.8

−14.6

−14.4

−14.2

−14.0

−13.8

B
a
y
e
s
ia
n
N
e
tw

o
r
k
s
L
ik
e
li
h
o
o
d

(d) insurance

102030405060708090

Percentage of Distorted Knowledge

−0.026

−0.024

−0.022

−0.020

−0.018

−0.016

−0.014

−0.012

P
a
ir
w
is
e
C
o
r
r
e
la
ti
o
n
D
if
fe
r
e
n
c
e
(P
C
D
)

(e) arth150

102030405060708090

Percentage of Distorted Knowledge

−0.16

−0.14

−0.12

−0.10

−0.08

−0.06

P
a
ir
w
is
e
C
o
r
r
e
la
ti
o
n
D
if
fe
r
e
n
c
e
(P
C
D
)

(f) ecoli70

102030405060708090

Percentage of Distorted Knowledge

0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96

K
u
ll
b
a
c
k
–
L
e
ib
le
r
D
iv
e
r
g
e
n
c
e

(g) healthcare

102030405060708090

Percentage of Distorted Knowledge

0.9765

0.9770

0.9775

0.9780

0.9785

K
u
ll
b
a
c
k
–
L
e
ib
le
r
D
iv
e
r
g
e
n
c
e

(h) mehra-complete

Figure 5: Wrong Knowledge: fully reversing (Delete=0%). (a)-(d) are discrete-only datasets;
(e)-(f) are continuous-only datasets; (g)-(h) are mixed datasets.
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Figure 6: Wrong Knowledge: half deleting and half reversing (Delete=50%). (a)-(d) are discrete-
only datasets; (e)-(f) are continuous-only datasets; (g)-(h) are mixed datasets.
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Figure 7: Wrong Knowledge: fully deleting (Delete=100%). (a)-(d) are discrete-only datasets;
(e)-(f) are continuous-only datasets; (g)-(h) are mixed datasets.
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