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Abstract

Go-Explore is a powerful family of algorithms designed to solve hard-exploration
problems built on the principle of archiving discovered states, and iteratively re-
turning to and exploring from the most promising states. This approach has led to
superhuman performance across a wide variety of challenging problems including
Atari games and robotic control, but requires manually designing heuristics to guide
exploration (i.e. determine which states to save and explore from, and what actions
to consider next), which is time-consuming and infeasible in general. To resolve
this, we propose INTELLIGENT GO-EXPLORE (IGE) which greatly extends the
scope of the original Go-Explore by replacing these handcrafted heuristics with the
intelligence and internalized human notions of interestingness captured by giant pre-
trained foundation models (FMs). This provides IGE with a human-like ability to
instinctively identify how interesting or promising any new state is (e.g. discovering
new objects, locations, or behaviors), even in complex environments where heuris-
tics are hard to define. Moreover, IGE offers the exciting and previously impossible
opportunity to recognize and capitalize on serendipitous discoveries that cannot be
predicted ahead of time. We evaluate our algorithm on a diverse range of language-
based tasks that require search and exploration. In Game of 24, a problem testing
multistep mathematical reasoning, IGE reaches 100% success rate 70.8% faster
than the best classic graph search baseline. Next, in BabyAI-Text, a challenging par-
tially observable gridworld where an agent has to follow language instructions, IGE
exceeds the previous state-of-the-art with orders of magnitude fewer online sam-
ples. Finally, in TextWorld, a rich text game, we show the unique ability of IGE to
succeed in settings requiring long-horizon exploration where prior state-of-the-art
FM agents like Reflexion completely fail. Overall, INTELLIGENT GO-EXPLORE
combines the tremendous strengths of FMs and the powerful Go-Explore algo-
rithm, opening up a new frontier of research into creating more generally capable
agents with impressive exploration capabilities. All our code is open-sourced at:
https://github.com/conglu1997/intelligent-go-explore.

1 Introduction

Foundation models (FMs, [5, 7, 32, 37, 39]) trained on giant internet-scale datasets have demonstrated
strong general capabilities in reasoning [41] and understanding [9]. As such, these models have
been increasingly employed as autonomous agents [4, 28, 34, 40, 43, 44] in decision-making tasks,
showcasing the ability to adapt in-context [12, 31] to unseen tasks. However, a significant challenge
remains: foundation model agents often struggle in environments that require deep exploration over
extended time horizons [28]. Overcoming this limitation would enable us to realize their potential
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Figure 1: INTELLIGENT GO-EXPLORE (IGE) integrates the intelligence and internalized human notions of
interestingness from giant pretrained FMs into all stages of the Go-Explore [13, 14] algorithm, enabling FM
agents to robustly explore in complex environments. Bottom: Classic Go-Explore solved hard exploration
problems by archiving novel discovered states, resetting to promising ones via domain-specific heuristics, and
then performing random exploration. Top: Our approach, INTELLIGENT GO-EXPLORE, enables Go-Explore to
tackle virtually any type of problem that is representable in the context of a large language or multimodal model.
Instead of manually defining heuristics, we query the foundation model at all stages, enabling our approach to
automatically catch and return to serendipitous discoveries, and harness the power of FM agents to explore. The
environment shown is the BabyAI-Text game used in Section 4.2.

as autonomous assistants in more open-ended domains like scientific discovery and innovation [20].
This paper introduces INTELLIGENT GO-EXPLORE (IGE), a novel approach that combines the
intelligence foundation models with the powerful Go-Explore [13, 14] framework to substantially
increase the exploration capabilities of FM and reinforcement learning (RL, [35]) agents.

Go-Explore is a popular family of algorithms in deep RL based on maintaining an archive of
“interestingly new” discovered states and then iteratively returning to and exploring from the most
promising states (see Figure 1 for an overview of the three stages). This framework has led to
superhuman performance in a range of hard-exploration problems, including long-horizon Atari
games and robotic control. However, the algorithm’s success largely relies on carefully hand-designed
heuristics at all three stages to guide exploration [29, 30]. For example, in Montezuma’s Revenge [2],
an Atari game that was the previous grand challenge of exploration in deep RL, (1) saved states in
the archive were returned to with probability proportional to factors like the number of times a state
has been sampled before, (2) exploration was purely via random action sampling, and (3) the criteria
for which states were considered interestingly new enough to be added to the archive depended
on domain-specific factors like whether the agent visited a new location, or did so with more keys.
Without this pre-specified knowledge, the quality of discovered trajectories is typically significantly
worse [14].

These rigid, domain-specific choices are in stark contrast to human-like exploration of a new game,
where players can often intuitively judge the value or interestingness of any particular state [10].
More importantly, it is often impossible to know what is interesting or possible ahead of time in
complex domains. In the words of Isaac Asimov—The most exciting phrase to hear in science, the
one that heralds new discoveries, is not “Eureka!” but “That’s funny.”. With this motivation, IGE
stands on the shoulders of giant foundation models, and uses their intelligence to (1) act as a judge to
identify the most promising states to return to and explore from, (2) to select the best actions to take
to explore from a selected state, and (3) to identify serendipitous discoveries when they happen (e.g.
finding new objects, locations, or other novelties) and decide whether a new state is interestingly new
enough to be added to the archive as a stepping stone for future exploration (Figure 1, top).

We demonstrate IGE’s ability to reliably improve the exploration capabilities of FM agents on a
diverse range of language-based tasks that require search and exploration. These settings include
tasks that require commonsense reasoning, long-term planning and memory, and handling partial
observability. IGE integrates well with various agent strategies, including few-shot and chain-of-
thought-based prompting; and will only get better as the capabilities of foundation models improve
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further. While IGE performs strongly all-around, some highlights from our evaluation include:
IGE reaches 100% success rate on Game of 24 [43], a standard mathematical reasoning and search
problem, 70.8% faster than classic graph search. Moreover, on the TextWorld [11] Coin Collector
domain, IGE is the only algorithm that succeeds in discovering long-horizon optimal solution paths,
where prior state-of-the-art FM agent frameworks like Reflexion [34] fail.

INTELLIGENT GO-EXPLORE simultaneously empowers foundation model agents to reliably explore,
and reimagines the scope of Go-Explore to tackle virtually any type of problem, without being limited
to hand-designed heuristics. These abilities will substantially improve our ability to develop more
generally capable agents, and increase the range of tasks they can learn how to solve.

2 Background

2.1 Go-Explore for Hard-Exploration Problems

Go-Explore [13, 14] is a family of algorithms designed to solve hard-exploration [24] problems
based on the principle of remembering and returning reliably to promising states. The classic setting
builds an “archive” of novel states it discovers in an environment, where similar states are grouped
in a single “cell”. These cells are defined by heuristics like having the same visual observation
when downsampled to low resolution. In the beginning, the archive only contains the initial state.
We describe the overall structure of the algorithm in the same order as Figure 1 (bottom): At each
iteration, (1) promising states are selected from the archive through domain-specific heuristics, e.g.
probabilistically sampling states proportional to their progress through the environment or potential
to lead to new states. The agent returns to that state, by resetting using the simulator or via a
goal-conditioned policy, and (2) a sequence of random actions is taken to explore from that state.
(3) All discovered states deemed interestingly new by the cell representation heuristics are added to
the archive, and the process repeats. The strength of Go-Explore is due to addressing two critical
impediments to exploration: forgetting how to reach previously visited states (detachment) and failing
to first return to a state before exploring from it (derailment) [13].

This approach leads to a collection of high-return trajectories being discovered, which may then be
fed into an imitation learning [19] algorithm to produce a policy that generalizes and is robust to
stochasticity. We adopt similar assumptions as the original setting, by assuming an agent can return
to a previously discovered state by restoring in the simulator. This assumption may readily be relaxed
by training a policy to return to a given state, or in the foundation model case, by simply prompting
the model with a past trajectory.

2.2 Large Language and Multimodal Foundation Models

The combination of model scaling and training over internet-scale data has resulted in a wide variety
of foundation models [5] that exhibit generalist capabilities. In this paper, we consider autoregressive
large language models (LLMs, [7, 32, 39]) which learn to generate text completions by modeling
the conditional probability of a new token given the preceding tokens, p(xt|x<t; θ). This framework
enables LLMs to not only generate coherent text but crucially also exhibit human-like abilities,
including on commonsense knowledge questions [36] and complex reasoning tasks [41]. These
models may also be extended to other input modalities such as images by tokenizing these inputs into
the same space as the text [49]. When prompting an FM with an instruction, the user may decide
to do so with no related examples (zero-shot), with a few successful examples in related problems
(few-shot, [7]), or ask for a chain of reasoning (chain-of-thought, [41]) before responding.

3 Driving Exploration with Giant Foundation Models

In this section, we propose INTELLIGENT GO-EXPLORE (IGE) which reimagines the classic Go-
Explore algorithm as described in Section 2 with the intelligence of giant pretrained foundation
models. Specifically, we introduce FM intelligence to selecting which archived state to return to and
explore from, which action to take from each state, and deciding whether a state is interestingly new
and should be archived. IGE’s use of foundation models is closely related to FM-as-a-judge [48],
which shows that foundation models are a good proxy for human judgment to evaluate the output of
generative models. Here, instead of judging synthetic output, the foundation model makes choices to
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determine the best way to explore an environment. We illustrate our resultant algorithm at the top of
Figure 1 and provide full pseudocode in Algorithm 1.

Wherever we query the foundation model, we introduce the overall strategy of Go-Explore alongside a
brief description of the current environment in the “system message” (high-level directive) displayed
below. The brief descriptions for each environment we evaluate on in Section 4 are listed in
Appendix B. In the following sections, we detail our prompting techniques at each stage of IGE. The
previous prompt history is visible to the agent, which enables each component of IGE to communicate
with each other. We provide precise details on how we parse responses in Appendix C.1.

System Prompt.

[Brief Description Of Environment]
You will be prompted to perform systematic exploration in the style of Go-Explore. An archive will be
maintained of interesting states found. You will be prompted to:
- Select a state from the archive that is the most promising, i.e., likely to lead to a solution or more novel
states.
- Explore from states intelligently, by picking new actions.
- For each new state, determine if the state is interestingly new and should be added to the archive.

3.1 Select State From Archive

The power to easily store and return to promising discovered states is crucial to Go-Explore’s
ability to reliably solve long-horizon exploration problems. IGE leverages the foundation model’s
internalized notions of interestingness [45] to select the most promising state to return to from the
archive (Figure 1, left). This is far more flexible than classic Go-Explore, which relied on hardcoded
hand-crafted heuristics to determine cell sampling probabilities. An example prompt is shown below.

State Selection Prompt.
Current state archive:
[Discovered states]

Select the most promising state.

Examples of the discovered states are given in Table 1. We as-
sign indices to these states in a list and ask the FM to select a nu-
merical index. We define a budget of Nstate “state-expansions”.
Each state expansion is followed by a sequence of exploratory
actions, which we describe in the next section.

3.2 Explore From State

In order to effectively explore from a state selected in the previous section, we leverage the power of
foundation model agents [18, 28] to choose how to act in an environment. This vastly improves on
the original Go-Explore’s use of random action sampling. One of the key strengths of IGE is that it
is a strict improvement on top of any FM agent framework, including zero-shot, few-shot, or even
chain-of-thought-based prompting [44]. We demonstrate this flexibility in Section 4.

Action Selection Prompt.

[Agent-Specific Prompt]
Current state:
[Current State]
Previously tried actions:
[Previous Action History]

Output the next action.

One point of departure from the classic Go-Explore is that
we additionally maintain a state-conditional action history for
each archived state, so that IGE can avoid repeating previously
tested options. While this information may already be available
in the entire history, this helps avoid any recency bias that
can occur with longer contexts [46]. The action history can be
easily reiterated in the prompt, or the prompt could display the
remaining untested actions. We define a budget of exploratory
actions per state expansion Naction, which is typically far shorter
than the full horizon of the environment and represents a small
number of trial actions. An example prompt is shown here.

3.3 Update Archive

IGE queries the foundation model to judge whether any newly discovered state is interestingly new
and sufficiently different from prior states to qualify to be added to the archive. Intuitively, we
should only save the most relevant stepping stones, and discard those that are unlikely to lead to
new discoveries. Whilst the original Go-Explore required extensive domain knowledge to determine
interestingness, IGE avoids this requirement and manual labor, critically gaining the ability to
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Table 1: We show that INTELLIGENT GO-EXPLORE can efficiently explore over a diverse set of environments
with increasing difficulty. The problems we consider all use text-based observations, but in general, IGE may be
extended to virtually any environment that can be embedded in the context of a multimodal foundation model.
For each environment, we provide an example observation, samples from the action space, and the horizon of
the task in the environment.

Game of 24 BabyAI-Text TextWorld

Problem Type
mathematical reasoning and search partially observable gridworld with

language instructions
partially observable game requiring
long-term memory and planning,
exploration, and common sense

Text Observation
"Current state: (2 8 8 14)" "Goal: unlock the red door. You

see a wall 4 steps forward, You see
a yellow box 2 steps left."

"You arrive in a pantry... You see a
shelf. The shelf is wooden. On the
shelf you can see flour..."

Next Actions

- 2 + 8 = 10 Next: (8 10 14)
- 8 / 2 = 4 Next: (4 8 14)
- 14 + 2 = 16 Next: (8 8 16)
...

- turn left
- turn right
- go forward
...

- go east
- cook potato with oven
- unlock door with key
...

Task Horizon 3 64 or 128 25, 40 or 80

recognize serendipitous discoveries that could not have been predicted ahead of time. In practice, we
propose two options to filter discovered states after a sequence of exploratory actions. The first is to
iterate through every new state and ask whether each one is interestingly new and should be added
to the archive. The second is to first add all states, and then ask the foundation model to remove
the uninteresting states. We discuss this choice later in Section 4.3; the second form is preferable in
larger environments where there is more need to explicitly deprecate earlier discoveries that have
become irrelevant to not overload the archive. An example prompt for the first option is shown below.

Archive Filtering Prompt.

Current state archive: [State Archive]
New state: [Current State]

Is this state interestingly new (relevant
to the task or could lead to further step-
ping stones, and not close to the exist-
ing states) and should be added to the
archive?

By default, IGE implements the foundation model at
all three stages of Go-Explore, but we rigorously an-
alyze the relative importance of each component in
Section 5. In this paper, we focus on the discovery of
solutions to hard-exploration problems. However, these
solutions could easily then subsequently be used for
downstream reinforcement learning or even improve
the foundation model in the next task by in-context
learning—thus allowing an agent to bootstrap its own
learning indefinitely.

4 Empirical Evaluation

In this section, we evaluate INTELLIGENT GO-EXPLORE across a diverse set of text environments
that require search and exploration. We demonstrate IGE’s ability to handle partially observable
and complex observation spaces, discover solutions involving long chains of actions, and effectively
improve the ability of FM agents to explore. For all our experiments, we use GPT-4 [32], one of the
current SOTA LLMs, as our foundation model. We compare IGE to random action sampling, a naïve
LLM baseline, and two SOTA FM agents, ReAct [44] and Reflexion [34]. All methods use the same
amount of environment steps and receive the same observations for a fair comparison. Naïve LLM
simply queries the LLM for an action conditional on the interaction history. ReAct prompts the agent
to output its reasoning before making a decision. Based on ReAct, Reflexion further conditions the
agent on the previous attempted episode, asking the agent to learn from its mistakes. We provide an
overview of our environments in Table 1. Full hyperparameters are detailed in Appendix D.

4.1 Game Of 24

We first demonstrate the effectiveness of IGE in a mathematical reasoning task, Game of 24 [43].
The goal is to perform basic arithmetic operations (+,−,×, /) starting from 4 numbers to obtain
24. For example, given input (4, 9, 10, 13), a possible solution could be (10− 4)× (13− 9) = 24.
We formulate the problem as an MDP [35], where actions represent a reduction of two numbers
by an arithmetic operation—i.e., the above solution would be represented as the sequence of state
transitions (4, 9, 10, 13) 10−4=6−−−−−→ (6, 9, 13)

13−9=4−−−−−→ (6, 4)
6×4=24−−−−−→ (24). Therefore, IGE uses the

5



FM to iteratively expand possible solution paths and archive promising ones to return to. The action
space is the range of possible next operations, displayed in the same manner as in Yao et al. [43].
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Figure 2: IGE explores the Game of 24
with the intelligence of FMs and reaches
100% success rate on average 70.8% quicker
than DFS, the next best baseline. IGE com-
pletes all problems within 150 environment
operations. Our use of archiving and intel-
ligent action selection allows us to greatly
outperform prior LLM agents with an equal
number of operations performed. The suc-
cess rate is computed over 100 test problems.

We evaluate IGE across 100 hard test problems in Figure 2,
and additionally include the standard (unweighted) graph
search algorithms depth-first search (DFS) and breadth-
first search (BFS) as reference. Since the combinatorial
complexity of the problem is at most

(
4
2

)
·
(
3
2

)
· 43 = 1152,

graph search is guaranteed to find a solution within that
many actions. The system prompts for both IGE and the
LLM baselines contain few-shot examples with correct
calculations on different starting numbers. IGE rapidly
reaches 100% success rate, on average 70.8% quicker
than the next best baseline, depth-first search (DFS)— this
improvement is statistically significant (χ2 test, p < 0.05)
at 150 operations, where IGE has solved all problems.
This success may be attributed to the fact that language
models have internalized mathematical intuition and are
likely to be able to identify promising pairs like (6, 4) that
could easily be multiplied together for a solution.

All LLM agent baselines (naïve LLM, ReAct, Reflexion)
eventually plateau and even get beaten by the unintelligent
DFS. This highlights the need for diverse action selection,
which IGE enables. A final point of comparison we make
is to Tree of Thoughts (ToT, [43]) which achieved 74% on
Game of 24 within their evaluation budget. We emphasize
that our evaluation setting is very different as IGE selects
from the list of valid options rather than doing the math in context. However, we note the key
difference to our method is that ToT evaluates and expands multiple reasoning paths following a tree
structure, whereas IGE can easily jump around the search space—this is a crucial advantage in more
complex environments (like those in the following sections), where it takes many coordinated actions
to get from one state to another interesting state.

4.2 BabyAI-Text

Next, we show that IGE scales to the BabyAI-Text domain from Carta et al. [8], which is a
procedurally-generated partially-observable 2D gridworld with text-based observations. The agent is
given a textual goal instruction which could correspond to one or more instructions in a sequence, e.g.
“pick up X and then go to Y”. As we can see from the observations in Table 1, the task is challenging
even for humans to complete and requires forming a model of the world from partial text descriptions.
This kind of state observation would make it hard to define heuristics to determine how good any
particular state is, as in classic Go-Explore. The optimal path to a solution may include moving
blocking objects as well as finding keys to open doors. We consider 5 different task families of
increasing difficulty: “go to”, “pick up”, ‘pick up then go to”, “open door”, and “put next to”, which
are described fully in Appendix B.2.
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Figure 3: IGE can find solutions to challenging tasks in the BabyAI-Text environment more effectively and
with orders of magnitude fewer online steps than prior RL-trained baselines (GLAM, [8]). Task types are in
order of difficulty. As tasks become more difficult, the performance gap of IGE v.s. the LLM baselines grows.
We show the mean and 95% bootstrap confidence interval [50] over 25 seeds per environment type. Here, and
elsewhere, confidence intervals are obtained by bootstrapped resampling 10,000 times.
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Figure 4: IGE outperforms state-of-the-art FM agents in three challenging text games in TextWorld. These
results illustrate the powerful capabilities of planning, commonsense reasoning, and exploration of IGE (Sec-
tion 4.3). Notably, in the Coin Collector game where hard exploration is required, we observe BFS-like search
behavior emerge in IGE, enabling it to find the most efficient solution where all other approaches exhaust the
environment horizon. We show the mean and 95% bootstrap confidence interval over 25 seeds for each game.

We omit the Reflexion baseline in this environment due to the high cost of querying GPT-4 with
128-step episodes in the context. Due to the complexity of this environment, we use chain-of-thought
prompting in all three components of IGE. This allows the FM to deliberate on the state of the
game before making decisions. We show that IGE can find solutions to these problems with only
a tiny budget of 250 environment steps per task (divided into rollouts of 10 exploratory actions
each) and visualize the final performance in Figure 3. IGE and ReAct vastly outperform the prior
RL-trained language model approach, GLAM [8], with orders of magnitude fewer samples (GLAM
used 1.5M online steps) and requiring no training whatsoever. IGE achieves the best or close to the
best performance in every task. The gap between IGE and the second-best method grows with task
difficulty, with a statistically significant 36% improvement (χ2 test, p < 0.05) on ‘put next to’.

4.3 TextWorld

Finally, we show IGE’s ability to tackle tasks requiring long-horizon memory and planning, explo-
ration, and commonsense in TextWorld [11], a classic text-based agent benchmark. We consider
three challenging games in Textworld: Treasure Hunter, The Cooking Game, and Coin Collector.
In each game, the agent needs to complete the task while navigating a maze of different rooms,
while only seeing the current room’s description in text. The agent interacts with the world using
free-form natural language commands, such as “go east” or “cook potato with oven.” In Treasure
Hunter [33], the agent has to find a specific item by exploring, finding keys, and unlocking doors
and containers. In The Cooking Game, the agent must find a recipe, locate and process (e.g., dice,
cut, chop) ingredients, and cook them according to the recipe using various kitchen appliances (e.g.,
oven, pan). In Coin Collector, the agent must find a coin randomly located in the maze, testing its
navigation and exploration skills. We set each game to hard difficulty, details on game customizations
are provided in Appendix B.3. As in the previous section, we use chain-of-thought prompting in
all three components of IGE. Because the state archive in this environment grows significantly, we
implement rejection-based archive filtering, which we describe in Appendix C.2.

We present success rates achieved on the three games using IGE and the baselines in Figure 4. We
observe that IGE outperforms all other baselines, with a statistically significant (χ2 test, p < 0.05)
performance gap between IGE and the second-best method in the harder Cooking Game and Coin
Collector. In The Cooking Game, IGE outperforms the second-best agent, ReAct, by a large margin
of 36%, demonstrating IGE’s advantage in hard-exploration problems. In Coin Collector, IGE is
the only method that can find the solution in the maze, with all other methods completely failing.
Interestingly, we observe that IGE exhibits BFS-like behavior, and intelligently selects rooms with
unexplored directions and iteratively removes rooms with exhausted directions. This results in IGE
almost always finding the shortest path to the target, while other methods fail to navigate the maze.

We highlight that Reflexion does not improve over ReAct in all the games we tested. Although
Reflexion should in theory be an improvement over ReAct with the experience from previous attempts,
it tends to decrease performance. We hypothesize that in long-horizon environments, the history
becomes too long after the initial episode, and prevents Reflexion from effectively utilizing knowledge
from the previous episode. In contrast, IGE uses the FM to iteratively filter interesting states in
the archive, which ends up controlling the context length. This helps IGE truly make use of the
cumulative knowledge gained through exploration.
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Table 2: We rigorously ablate the design choices in IGE and analyze the importance of intelligent selection at
each stage. Game of 24 performance is taken at 150 environment steps, over 100 evaluation seeds. BabyAI-Text
performance is taken at 250 environment steps, over 25 evaluation seeds. TextWorld performance is taken at 240
environment steps, over 25 evaluation seeds. ‘Standard’ is mirrored from Section 4. We show the mean and 95%
bootstrap confidence interval for the success rate.

Variant of IGE Success Rate (%)
Game of 24 BabyAI (PN) TextWorld (CG)

Standard 100 ± 0.0 84 ± 14 92 ± 10
✗ Intelligent action selection 68 ± 9.0 24 ± 16 0 ± 0
✗ Intelligent state selection 96 ± 3.5 48 ± 20 76 ± 16
✗ Intelligent archive filtering 93 ± 5.0 64 ± 20 64 ± 20
✗ All 3 above 61 ± 9.5 4 ± 6 0 ± 0
✗ State-conditional action history 33 ± 9.0 72 ± 16 72 ± 16

5 Analysis

In this section, we analyze (1) the importance of FM intelligence for each of the three key components
of Go-Explore, (2) how IGE’s selectivity produces a smaller (and thus more efficient) archive, and (3)
how IGE’s performance improves as the FM’s size/intelligence increases. We take a representative
sample of environments from the previous section of Game of 24, Put Next To (PN) from BabyAI-Text,
and The Cooking Game (CG) from TextWorld. Hyperparameters are listed in Appendix D.

How Important is Foundation Model Intelligence at Each Step? First, we analyze the impact
of FM intelligence on each component of INTELLIGENT GO-EXPLORE. We ablate replacing state
and action selection with uniform random sampling, archive filtering with saving everything to the
archive, and not maintaining a state-conditional action history. We use these unintelligent choices,
as it would be very time-consuming to attempt to design the right heuristics based on the rich text
observations in Table 1. In Table 2, we observe that where the intelligence of FMs is more valuable
varies by environment. Since the environment horizon is only 3 in the Game of 24, the most important
factor is ensuring that the actions tried are diverse and intelligently selected. This hypothesis is
confirmed: the largest performance drops occur when removing either FM action selection or the
action history. Different IGE components are most helpful in both of the longer-horizon BabyAI-Text
and TextWorld environments: intelligent state selection and archive filtering make a big impact,
showcasing the strength of enabling IGE to return to promising discovered states. There are smaller
performance drops when removing the action history; likely because in larger environments, many
more unique states are discovered, so there is less gain from preventing taking the same actions
from frequently returned to states. In both environments, we also observe a drastic decrease when
switching to random actions, as in classic Go-Explore. This underscores the substantial benefits IGE
provides in harnessing FMs for action selection.

Finally, we elucidate the need for intelligent archive filtering across all our environments. Not
only does archive filtering improve performance, but it also drastically cuts down the number of
uninteresting states in the archive, as shown in Table 3 (left). As we use rejection-based archive
filtering on TextWorld, we quote the average size of the archive throughout each episode. In BabyAI-
Text, we observe the archive becoming around 8× larger without filtering. These metrics demonstrate
IGE’s innate ability to capture promising discoveries as they occur and focus attention on them,
without the need for any manual heuristics.

Table 3: Left: We show that intelligent filtering in IGE can drastically reduce the size of the archive, and help
the algorithm focus on the most interesting states. Without intelligent filtering in BabyAI-Text and TextWorld,
the archive becomes over 5× larger. Right: We show that IGE scales with the capabilities of the underlying
foundation model. We follow the same settings with Table 2 and show the mean and 95% bootstrap confidence
interval for the number of states and success rate.

Archive Filtering Number of States
Game of 24 BabyAI (PN) TextWorld (CG)

No Filter 18.5 ± 3.2 203.5 ± 56.7 22.4 ± 15.3
With Filter 15.6 ± 2.3 25.5 ± 5.2 4.4 ± 2.8

Foundation Model Success Rate (%)
Game of 24 BabyAI (PN) TextWorld (CG)

GPT-4 100 ± 0 84 ± 14 92 ± 10
GPT-3.5 57 ± 10 0 ± 0 0 ± 0

What is the Effect of Foundation Model Choice? We also analyze the dependence of our algorithm
on the strength of the foundation model by replacing GPT-4 with an earlier variant, GPT-3.5 in
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Table 3 (right). There is a considerable difference between the two, which suggests that our envi-
ronments are non-trivial to solve, and that future advancements in foundation models are likely to
readily scale the performance of IGE to even harder problems.

6 Related Work

FM-as-judge. We employ FM guidance at all stages of IGE to drive exploration. FMs as judges [6,
47] have already seen use in decision-making tasks: OMNI [45] considers FM guidance in multi-task
settings to select the most promising next task to train on. However, focusing on the broader task
could miss out on interesting behavior that happens at a more granular level, and thus IGE greatly
expands on the integration of FM intelligence into decision-making. RL from AI Feedback [1, 21, 25]
considers training RL agents using reward functions derived from FM preferences. This similarly
guides agents towards preferred states, but without the intelligence of FMs for action selection.

FM Agents. One of the key strengths of IGE is that it is agnostic to the precise agent formulation and
thus strictly additive on top of a wide variety of strategies. A common strategy is chain-of-thought-
based methods [17, 44], which prompts the FM to output a set of reasoning steps before the answer.
We integrate this into the FM guidance in our experiments in Sections 4.2 and 4.3. Reflexion [34]
enables an agent to improve over multiple episodes by asking it to reflect on the previous attempted
episode, and learn from its mistakes. However, we show this can break down in tasks with long
horizons, whilst IGE proposes a more efficient way to filter out the vast majority of uninteresting
interactions. Another set of agent frameworks that are related to the idea of exploring diverse solution
paths via state-connectivity is Tree of Thoughts [43] and Graph of Thoughts [3]. In contrast, IGE
can exploit search strategies that are not tied to any connectivity between states and can readily jump
across the archive of promising saved states. This is particularly important for long-horizon tasks
with larger state spaces, as we show in Sections 4.2 and 4.3.

Closely related to exploration, FM agents have also begun to see use in search-based tasks. Stream of
Search [16] considers a similar mathematical reasoning task to the Game of 24, and seeks to initially
clone the actions of graph search algorithms, then use RL to self-improve. In contrast, IGE already
greatly outperforms classic graph search—an exciting future direction could be to first clone the
exploratory behavior of Go-Explore and then self-improve with RL, enabling the FM to learn to select
better. Lehnert et al. [26] analogously train a language model to mimic the A∗ algorithm. Finally,
Krishnamurthy et al. [22] also consider bootstrapping exploration with an externally summarized
action-history in bandit problems; our focus is more on the detection of interesting states.

Go-Explore. The original Go-Explore [13, 14] framework enabled superhuman performance in a
variety of hard-exploration problems, including applications as diverse as automated game testing [29].
Gallouédec and Dellandréa [15] propose Latent Go-Explore which similarly aims to address the
difficulty of designing exploration heuristics by automatically learning a latent representation and
sampling states with a low latent density. However, this requires periodic retraining and could easily
miss out on rare serendipitous discoveries. HuGE [38] guides Go-Explore with humans in the loop
by asking for pair-wise feedback on which goal to select. On the other hand, we take humans out
entirely and apply intelligent FM guidance at all components of Go-Explore.

7 Conclusion and Limitations

In this paper, we demonstrate a new approach to robust exploration in complex environments,
INTELLIGENT GO-EXPLORE, reimagining Go-Explore in the era of giant foundation models. We
show that IGE can drive exploration for a diverse set of FM agents, including few-shot and chain-of-
thought prompting, across a variety of challenging text-based games. While we only evaluate IGE
on simulated text-based environments in this paper, a particularly exciting direction for future work
would be domains with multimodal search spaces. This could unlock applications as wide as scientific
discovery in synthetic biology (designing novel drugs or proteins) or material science. IGE could be
readily adapted to these areas, as there is already precedent for multimodal FMs as judges [42]. A
further direction that could break the limits of the current state-of-the-art in autonomous decision-
making is the (hitherto unsolved by intelligent agents) dungeon crawler, NetHack [23]. NetHack
requires the discovery of complex strategies, deep game knowledge, and coherent behavior over an
extremely long horizon. Küttler et al. [23] noted that for NetHack, classic Go-Explore’s “heuristic of
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downsampling images of states to measure their similarity to be used as an exploration bonus will
likely not work for large symbolic and procedurally generated environments.” IGE represents a sharp
departure from these limitations, by replacing hard-coded and inflexible exploration heuristics with
the dynamic intelligence of giant foundation models.

There remain exciting opportunities to improve IGE’s capabilities to explore vast state spaces. For
example, we currently recall and compare against the entire archive whenever we discover a new state.
This could be made much more efficient by using techniques like retrieval augmented generation [27]
and only comparing to the closest previously discovered states. As we consider IGE for real-world
settings, we should take steps to ensure the responsible deployment of FMs [5]. Our approach opens
up the road to safe and interpretable exploration: through careful prompt engineering or techniques
like constitutional AI [1], we could steer the agent away from unsafe behaviors. Furthermore, if we
ask or train the FM to explain its choices in each part of IGE, we could gain insight into its rationale
for exploring particular paths through an environment [17, 41]; improving safety, interpretability, and
perhaps one day even our own understanding of how best to explore.
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A Algorithm Pseudocode

We provide full pseudocode for INTELLIGENT GO-EXPLORE in Algorithm 1. This complements the
discussion in Section 3.

Algorithm 1 INTELLIGENT GO-EXPLORE

1: Hyperparameters: no. state expansions Nstate, no. exploratory actions Naction, foundation modelM
2: Initialize: archive of states Sarchive = ∅, state-conditional action history A(·) = ∅
3: Sarchive ← s0 ▷ Add initial state to archive
4: for i = 1, . . . , Nstate do
5: QueryM for the next state si,1, from Sarchive ▷ See Section 3.1
6: for j = 1, . . . , Naction do
7: QueryM for the next action ai,j from si,j conditional on A(si,j) ▷ See Section 3.2
8: si,j+1 ∼ P (si,j , ai,j), A(si,j)← ai,j ▷ Take action and update history
9: ifM determines that si,j+1 is interesting w.r.t Sarchive then ▷ See Section 3.3

10: Sarchive ← si,j+1

11: end if
12: end for
13: end for
14: Return best discovered trajectory

B Further Details on Environments

We provide further details for each of the environments used in the empirical evaluation in Section 4,
and the environment-specific descriptions appended to the system prompts. Each environment
description may include high-level information about the task and a description of the action space.

B.1 Game of 24

We use the environment and set of evaluation tasks from https://github.com/princeton-nlp/
tree-of-thought-llm which is released under the MIT License. We include the environment-
specific prompt that is appended to the system prompt in Section 3 below. The system prompt
contains examples of correct reasoning paths on different problems (few-shot prompting).

Environment Description.

You are given 4 numbers and must use basic arithmetic operations (+ - * /) to obtain 24. At each step,
you are only allowed to choose two of the remaining numbers to obtain a new number. A correct answer
is one that uses each input exactly once and no other numbers. Reaching 24 before the last step does not
count as a correct answer. Follow the convention that division is integer division, and never by zero.
Some examples of correct reasoning traces are as follows:
Initial state: (4 4 6 8)
Steps:
4 + 8 = 12. Next: (4 6 12)
6 - 4 = 2. Next: (2 12)
2 * 12 = 24. Next: (24)
Answer: (6 - 4) * (4 + 8) = 24
Initial state: (2 9 10 12)
Steps:
12 * 2 = 24. Next: (9 10 24)
10 - 9 = 1. Next: (1 24)
24 * 1 = 24. Next: (24)
Answer: (12 * 2) * (10 - 9) = 24
Initial state: (4 9 10 13)
Steps:
13 - 10 = 3. Next: (3 4 9)
9 - 3 = 6. Next: (4 6)
4 * 6 = 24. Next: (24)
Answer: 4 * (9 - (13 - 10)) = 24
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The action space at each step is all the valid arithmetic operations, presented in an analogous way as
the ‘propose’ step in Yao et al. [43].

B.2 BabyAI-Text

The BabyAI-Text [8] environment comes with five task types, which we list here and visualize in
order in Figure 5:

• Go to <object>, a simple navigation task that requires reasoning abilities to choose the right
plan given the object’s position;

• Pick up <object>, a reasoning task that combines navigation tasks;
• Pick up <object A> then go to <object B> and Go to <object B> after pickup <object A>,

both serving to test reasoning abilities on temporal sequences;
• Unlock <door>, a task that includes inferring that a key is needed to unlock the door, finding

the right key (i.e. the one colored as the door), and eventually using the toggle action with
the key on the door;

• Put <object A> next to <object B>, which requires first reaching <object A>, picking it up,
reaching <object B> and finally dropping <object A> next to <object B>.

go to the yellow box pick up the yellow box
pick up a yellow box, then

 go to a yellow box open the red door
put the red key next

 to a yellow box

Figure 5: We visualize the 5 types of tasks that BabyAI-Text consists of for our evaluation in Section 4.2. IGE
receives only partial text-based observations corresponding to the view in the figure.

We use the codebase from https://github.com/flowersteam/Grounding_LLMs_with_
online_RL which is released under the MIT License. The action space is discrete and composed
of 6 possible actions: turn left, turn right, go forward, pick up, drop, and toggle. The ‘go to’ and
‘pick up’ tasks have a shorter environment horizon of H = 64, whereas the rest have a horizon of
H = 128. We include the environment-specific prompt that is appended to the system prompt in
Section 3 below.

Environment Description.

You are an agent in an 8x8 partially-observable 2D text-based environment. You see the 6x6 grid in front
of you, and can face north, south, east, or west. The possible actions are turn left, turn right, go forward,
pick up, drop, and toggle. At each turn, you will receive a history of the last observations and actions.
Your aim is to complete the task described in the goal. Each tile in the grid can only contain at most one
object. Objects cannot be crossed, and may need to be bypassed or moved. You can only move onto an
empty tile or on a tile containing an open door. You can only hold one object at a time, using pick up
when they are one step in front. Objects are dropped one tile in front and cannot be dropped when there is
another object in front. Doors are unlocked with keys of the same color using the toggle action. Actions
are deterministic, do not repeat actions if they have no effect. You have H steps to complete the task.

B.3 TextWorld

We evaluate IGE on ‘Treasure Hunter’, ‘The Cooking Game’, and ‘Coin Collector’ from the
TextWorld [11] domain. We use the environment code from https://github.com/microsoft/
TextWorld which is released under the MIT License.

B.3.1 Treasure Hunter

For Treasure Hunter, we set the ‘level’ option to the maximum value of 30, resulting in a maze with
20 rooms. Locked doors and containers are added, which may need to be unlocked and opened to
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find the target object. To further increase the difficulty, we remove the solution description from the
original game and filter out tasks that can be completed with 20 steps in the optimal solution. We
include the environment-specific prompt that is appended to the system prompt in Section 3 below.

Environment Description for Treasure Hunter.

You are an agent playing TextWorld, a text-based adventure game where you are in a randomly generated
maze and must find a specific object. You need to explore different rooms to find the target object.
Here are the available commands: look: describe the current room. goal: print the goal of this game
inventory: print the player’s inventory go <dir>: move the player north, east, south, or west. You can
only go in the direction indicated with an exit or a door. open ...: open a door or a container. You need to
open a closed door before you want to go through it. drop ...: drop an object on the floor take ...: take an
object that is visible. Make sure the object is visible to take. put ... on ...: place an object on a supporter
take ... from ...: take an object from a container or a supporter insert ... into ...: place an object into a
container unlock ... with ...: unlock a door or a container with a key. You need to unlock a locked door
with a matched key in your inventory before you want to open it.
- The target object might be located in a closed or locked container. - The adjective is useful for
determining whether the key is matched with the lock (e.g. non-euclidean keycard is matched with
non-euclidean safe). Make sure it is matched to unlock! - The key required to unlock the door may be in
another room or locked inside a container. - Take the key whenever you can. - After unlocking a locked
door or container, it will remain closed. You will then need to open it.
You have 40 steps to complete the task. Restarting is forbidden.

B.3.2 The Cooking Game

In The Cooking Game, we set the number of ingredients to a maximum of 5 and the number of rooms
to 13. We enable all challenging additional options: doors need to be opened, food must be processed
(e.g., cut, diced, chopped with a knife), and cooked (e.g., grilled with a BBQ, fried on a stove, roasted
in an oven). We include the environment-specific prompt that is appended to the system prompt in
Section 3 below.

Environment Description for The Cooking Game.

You are an agent playing TextWorld, a text-based adventure game where you navigate through different
rooms, interact with objects, and solve puzzles. Your goal is to first find the recipe, find and prepare food
according to the recipe, and finally prepare and eat the meal.
Here are the available commands: look: describe the current room goal: print the goal of this game
inventory: print player’s inventory go <dir>: move the player north, east, south or west. You can only go
to directions indicated with an exit or a door. examine ...: examine something more closely eat ...: eat
edible food open ...: open a door or a container. You need to open a closed door before you can go through
it. drop ...: drop an object onto the floor take ...: take an object that is visible put ... on ...: place an object
on a supporter take ... from ...: take an object from a container or a supporter insert ... into ...: place an
object into a container lock ... with ...: lock a door or a container with a key unlock ... with ...: unlock a
door or a container with a key cook ... with ...: cook cookable food with something providing heat slice ...
with ...: slice cuttable food with something sharp chop ... with ...: chop cuttable food with something
sharp dice ... with ...: dice cuttable food with something sharp prepare meal: combine ingredients from
inventory into a meal. You can only prepare meals in the Kitchen.
- You can examine the cookbook to see the recipe when it is visible. - The BBQ is for grilling things,
the stove is for frying things, the oven is for roasting things. Cooking ingredients in the wrong way will
lead to a failure of the game. - Once you have got processed ingredients and the appropriate cooking tool
ready, cook all of them according to the recipe. - There are two conditions to correctly cook something
(grill/fry/roast): a) the ingredient you want to cook is in your inventory and b) there is a suitable cooking
tool in the room, and then use ‘cook . . . with . . . ’ command. - When you need to chop/slice/dice
ingredients, you need to take the knife and the ingredient in your inventory and then ‘slice/chop/dice ...
with knife’ - Make sure to first process the food (chop/slice/dice) before you try to cook them. - When
you have all the ingredients (that got processed or cooked according to the menu), you can ‘prepare meal’
in the kitchen and then ‘eat meal’ to win the game. - The ingredients should EXACTLY match the color
in the recipe, but if the recipe doesn’t specify color, any color would be fine. When you ‘take ... with ...’,
use the EXACT name you see. - You don’t need to examine the container/supporter (e.g. toolbox) when
it says something like "there isn’t a thing on it"/"has nothing on it"
You have 80 steps to complete the task. Restarting is forbidden.

We show a successful example trajectory found by IGE below, from our evaluation in Section 4.3.
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Example trajectory found by IGE in The Cooking Game.

You are hungry! Let’s cook a delicious meal. Check the cookbook in the kitchen for the recipe. Once
done, enjoy your meal!
-= Backyard =- You find yourself in a backyard. A normal kind of place. You can see a patio table. But
oh no! there’s nothing on this piece of garbage. This always happens! You make out a patio chair. But oh
no! there’s nothing on this piece of trash. You can make out a BBQ, so there’s that. There is a closed
barn door leading north. There is a closed sliding patio door leading west. There is an exit to the east.
Don’t worry, there is no door.
> open sliding patio door
You open sliding patio door.
> go west
-= Kitchen =- You find yourself in a kitchen. An ordinary kind of place. The room is well lit. You can
make out a fridge. You hear a noise behind you and spin around, but you can’t see anything other than
an oven. Were you looking for a table? Because look over there, it’s a table. On the table you see a
cookbook. You can’t wait to tell the folks at home about this! Look out! It’s a- oh, never mind, it’s just a
counter. Now why would someone leave that there? You see a red apple, a raw purple potato, a red onion,
a yellow apple and a knife on the counter. You can see a stove. You shudder, but continue examining the
stove. Unfortunately, there isn’t a thing on it. Hm. Oh well There is an open sliding patio door leading
east. There is a closed plain door leading north. You don’t like doors? Why not try going west, that
entranceway is not blocked by one.
> examine cookbook
You open the copy of "Cooking: A Modern Approach (3rd Ed.)" and start reading:
Recipe #1 ——— Gather all following ingredients and follow the directions to prepare this tasty meal.
Ingredients: block of cheese carrot orange bell pepper red apple tomato Directions: chop the block of
cheese fry the block of cheese dice the carrot grill the carrot chop the orange bell pepper fry the orange
bell pepper chop the red apple grill the red apple slice the tomato grill the tomato prepare meal
> take red apple
You take the red apple from the counter.
Your score has just gone up by one point.
> open fridge
You open the fridge, revealing a block of cheese, a carrot, a white onion and a yellow bell pepper.
> take block of cheese
You take the block of cheese from the fridge.
Your score has just gone up by one point.
> take carrot
You take the carrot from the fridge.
Your score has just gone up by one point.
> examine counter
The counter is solid.
On the counter are a raw purple potato, a red onion, a yellow apple and a knife.
> go west
-= Livingroom =- You arrive in a livingroom...
... (skip 30 steps)
> cook tomato with BBQ
You grilled the tomato.
Your score has just gone up by one point.
> go west
-= Kitchen =- You find yourself in a kitchen...
> prepare meal
Adding the meal to your inventory.
Your score has just gone up by one point.
> eat meal
You eat the meal. Not bad.
Your score has just gone up by one point.
*** The End ***
You scored 17 out of a possible 17, in 44 turns.

B.3.3 Coin Collector

In Coin Collector, we set the number of rooms to 40 and allow distractor rooms to be added along
the way. Similar to Treasure Hunter, we remove the solution description from the original game,
and the optimal path from the agent’s starting point to the target is set to 20 steps. We include the
environment-specific prompt that is appended to the system prompt in Section 3 below.
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Environment Description for Coin Collector.

You are an agent playing TextWorld, a text-based adventure game where you are in a randomly generated
maze and must find the coin. You need to explore different rooms to find the target object.
Here are the available commands: goal: print the goal of this game go <dir>: move the player north, east,
south, or west. You can only go in the direction indicated with something like an exit or a door. take coin:
2in the game by ‘take coin’ if you see the coin in the room
The only action you can do is go <dir> to explore the maze and ‘take coin’ when you see the coin in the
room.
You have 25 steps to complete the task. Restarting is forbidden.

C Further Prompt Discussion

C.1 Extracting Choices

By default, in Section 4.1, we prompt the FM to return a JSON object containing just the numerical
index of the choice. We choose this because of the ease of parsing the response and validating it lies
within the correct bounds. An example prompt is displayed below.

JSON Choice Prompt.

Reply concisely and exactly with the following JSON format:
{“choice”: X}
where X is the index of the desired choice.

When using chain-of-thought as in Section 4.2, we use the following prompt:

JSON Choice Prompt (Chain of Thought).

First, briefly reason about your plan.
Reply concisely and exactly with the following JSON format:
{“thought”: X, “choice”: Y}
where X is your reasoning and Y is the index of the desired choice. Make sure Y is a parsable integer.

For the TextWorld environment in Section 4.3, since the action space is much larger, we ask the FM
to directly output a text action that we automatically parse.

Decision Making Prompt.

Please briefly reason about your plan and then output the command in the format ‘> command’. Ensure
only one command is included.

We use the regex “> (.*?)(?:̇|$)” (in Perl notation) to parse the command. We note that the failure rate
for both of these options is very low, less than 0.1% across our evaluation. Despite this, we include a
failsafe that returns a random choice in case of an invalid output.

C.2 Rejection-based Archive Filtering

The ‘acceptance-based’ archive filter in Section 3.3 iterates through every new state and asks whether
each one is interestingly new and should be added to the archive. This can break down in larger
environments where there is more need to explicitly deprecate earlier discoveries that have become
irrelevant to not overload the archive, for example, in Section 4.3. In this environment, we use an
alternate version of the prompt which first adds all states, and then asks the foundation model to
remove the uninteresting states. An example prompt is shown below.
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Rejection-based Archive Filtering Prompt.

Current state archive:
[State Archive]
Remove outdated states that are no longer relevant to the task, have had all interesting explorations
attempted, or have similar states in the archive that show more progress.

D Hyperparameters

In this section, we provide the hyperparameters for our empirical evaluation in Section 4. We list the
hyperparameters for IGE in Table 4. We choose the values for exploratory rollout length based on
the average number of steps needed to make ‘reasonable progress’ in the environment.

Table 4: IGE Sampling Parameters. TH, TCG, and CC are abbreviations for Treasure Hunter, The
Cooking Game, and Coin Collector in TextWorld.

Hyperparameter Value(s)
Game of 24 BabyAI-Text TH TCG CC

No. state expansions, Nstate 50 25 24 48 125
No. exploratory actions, Naction 3 10 5 5 1

We list the sampling parameters for GPT-4 [32] passed via the OpenAI API in Table 5.

Table 5: GPT-4 Sampling Parameters

Hyperparameter Value
Game of 24 BabyAI-Text TextWorld

Temperature 0.7 0.7 0.3
Max new tokens 1000 1000 1000
Response format JSON Object JSON Object Text

Version Turbo-2024-04-09 o-2024-05-13 o-2024-05-13

We used GPT-4-Turbo for Game of 24 and GPT-4o for BabyAI and TextWorld. This was purely
done to select the version of GPT-4 that was available and the cheapest at the time of running the
experiments. The version of GPT-4 is consistent per environment. We use a reduced temperature for
the TextWorld domain to reduce the possibility of generating malformed responses, as actions are
output in free-form natural language. In our ablations in Section 5, we use the ‘turbo-0125’ variant of
GPT-3.5.

D.1 Cost of Experiments

We provide the average cost per task for our algorithm per environment (the number of seeds is
specified in Section 4):

Table 6: Per task API cost for IGE using GPT-4 listed in USD.
Environment API Cost (USD)

Game of 24 1.04
BabyAI-Text 2.01

TextWorld 1.28

We note that the price per token of the ‘o-2024-05-13’ option is half that of ‘Turbo-2024-04-09’, so
we could expect to achieve the same level of results on the Game of 24 with half the price. The total
cost of API access required to perform the final experiments in this paper was under 2,000 USD.
During development, we iterated on IGE with a smaller number of seeds, which represents a small
fraction of this cost added on top.
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