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Abstract

Why do we build local large language models (LLMs)? What should a
local LLM learn from the target language? Which abilities can be trans-
ferred from other languages? Do language-specific scaling laws exist? To
explore these research questions, we evaluated 35 Japanese, English, and
multilingual LLMs on 19 evaluation benchmarks for Japanese and English,
taking Japanese as a local language. Adopting an observational approach,
we analyzed correlations of benchmark scores, and conducted principal
component analysis (PCA) to derive ability factors. We found that if LLMs
perform well in English on tasks like academic subjects, code generation,
arithmetic reasoning, commonsense, and reading comprehension, they also
perform well on the same tasks in Japanese. This indicates it is not necessary
to specifically train on Japanese text to enhance abilities for solving these
tasks. In contrast, training on Japanese text improves question-answering
tasks about Japanese knowledge and English-Japanese translation, which
indicates that abilities for solving these two tasks can be regarded as Japanese
abilities. Furthermore, we confirmed that the Japanese abilities scale with
the computational budget for Japanese text. Taken together, our findings
offer generalizable insights into which tasks benefit from local-language
data and what we can expect when building local LLMs.

1 Introduction

Major large language models (LLMs) are English-centric (English LLMs hereafter), e.g., Meta
Llama 3 (Dubey et al., 2024), Mistral (Jiang et al., 2023), and Phi-3 (Abdin et al., 2024), due
to the dominance of English on the internet and the global economy, which results in a
limited focus on non-English languages. Several companies and research institutes have
been actively developing LLMs targeting non-English languages (local LLMs hereafter), e.g.,
Bllossom (Choi et al., 2024), Chinese-LLaMA (Cui et al., 2024) and openCabrita (Larcher et al.,
2023), driven by various motivations. These include advancing research and development
in multilingual NLP, mitigating security risks associated with relying on a limited number
of foreign companies, and promoting responsible artificial intelligence for their community.

However, the advantages of training LLMs on non-English text remain underexplored–
particularly regarding the unique skills or knowledge such LLMs might gain compared to
English-centric or Multilingual LLMs. On the one hand, LLMs have demonstrated high
multilingual abilities, such as arithmetic reasoning (Shi et al., 2023) and machine translation
(Briakou et al., 2023), which casts doubt on the advantage of training on non-English text. On
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the other hand, training on non-English text has been reported to bring stronger cultural and
regional knowledge of the target language (Romanou et al., 2025), although there are mixed
findings for other tasks such as commonsense reasoning and reading comprehension (Cui
et al., 2024; Choi et al., 2024; Larcher et al., 2023). These two perspectives–multilinguality
versus language specificity–suggest that the effectiveness of training on non-English text
is inherently task dependent. Indeed, demonstrating an advantage of training on non-
English text remains not straightforward. Numerious studies have built non-English LLMs
from scratch (Holmström et al., 2023) or via continual pre-training (CPT) over English
LLMs (Cui et al., 2024; Choi et al., 2024; Larcher et al., 2023), but their task-specific results
are often mixed or contradictly, raising doubts about generalizability (§ 2.1). Because LLM
performances depends on several design choices–such as training from scratch or via CPT,
which base model is selected for CPT (Tejaswi et al., 2024a), and how the training data
is curated (Penedo et al., 2024; Li et al., 2024)–it is difficult to isolate performance gains
specifically attributable to training on non-English text. Given its huge impact, thorough
investigation and convincing insights into the advantages of local LLMs are valuable.

To explore what unique skills or knowledge may emerge as the natural consequence of
the training on non-English text, we adopt an observational approach (Ruan et al., 2024)
for Japanese-centric LLMs (Japanese LLMs hereafter), leveraging the exceptionally active
development in Japan (e.g., Llama 3.1 Swallow1 and LLM-jp (LLM-jp et al., 2024)) among
non-English initiatives. Specifically, we evaluate 35 publicly available Japanese, English,
and multilingual LLMs representing a variety of design choices. We also use 19 compre-
hensive evaluation benchmarks covering knowledge-based QA, academic subjects, reading
comprehension, and more, tasked in Japanese and English. These also includes paired
Japanese and English benchmarks so that we can compare the task performance across both
languages. Our goal is to derive generalizable insights (i.e., insights that are robust to design
choices) by conducting a quantitative analysis.

First, to explore multilinguality versus language specificity, we analyzed score correlations
across 19 task benchmarks for 35 LLMs, and applied Principal Component Analysis (PCA)
to represent the performance in a low-dimensional ability space (Ruan et al., 2024). We
found that tasks such as academic subjects, code generation, and arithmetic reasoning
exhibited strong cross-lingual correlations on their scores and were associated with the
same ability factors across languages. This indicates strong multilingual transferability,
suggesting that training in English text would also improve performance on these tasks
when tested in Japanese. Conversely, tasks such as QA about Japanese cultural knowledge
and English-Japanese translation exhibited weak correlations with other tasks and were
strongly associated with an independent ability factor, indicating language-specific abilities.

Second, to investigate the language-specific abilities attributed to training on Japanese text,
we examined language-specific scaling laws. Specifically, we defined the language-specific
computational budget as the product of the number of parameters and training tokens for
each language (Hoffmann et al., 2022), and analyzed the log-linear relationship between
these budgets and the ability factors obtained by PCA. We found that the English com-
putational budget showed a strong correlation with the general ability factor but a weak
correlation with the Japanese-specific ability factor. In contrast, the Japanese computational
budget showed a strong correlation with the Japanese ability factor, suggesting that enhance-
ment of Japanese knowledge and English-Japanese translation skills arise from training on
Japanese text itself beyond particular design choice. These knowledge and skill scale with
the amount of Japanese training text and are difficult to acquire solely from English text.

2 Related Work

2.1 Effects of Training on Non-English Text

There is a growing number of studies examining the impacts of training local LLMs on
target language data: Chinese (Zhao et al., 2024; Cui et al., 2024), Turkish (Toraman, 2024),
Portuguese (Larcher et al., 2023), Swedish (Holmström et al., 2023), and Finnish (Luukkonen

1https://swallow-llm.github.io/llama3-swallow.en.html
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et al., 2023). Some studies consistently reported gains in reading comprehension (Etxaniz
et al., 2024b; Fujii et al., 2024; Dou et al., 2024; Joshi et al., 2025; Vo et al., 2024; Larcher et al.,
2023), commonsense reasoning (Etxaniz et al., 2024b; Fujii et al., 2024; Phasook et al., 2024;
Dou et al., 2024; Joshi et al., 2025; Vo et al., 2024; Choi et al., 2024; Tejaswi et al., 2024b), and
local knowledge QA (Etxaniz et al., 2024b; Fujii et al., 2024; Joshi et al., 2025; Etxaniz et al.,
2024a). However, following our survey of 15 previous reports on non-English LLMs (see
Table 1 in § A), the evidence remains fragmented for two reasons: 1) Sparse coverage of
task types: Prior works evaluated only a small set of benchmarks (an average of 2.5). In
particular, machine-translation and coding tasks appear in just 2 and 0 out of 15 studies,
respectively. 2) Contradictory results: Some studies drew (self-)contradictory conclusions:
e.g., for mathematical reasoning, Etxaniz et al. (2024b) reported positive+neutral effects,
whereas Pipatanakul et al. (2023) noted negative+neutral effects; for academic subject, both
of Phasook et al. (2024) and Dou et al. (2024) documented positive+neutral effects; and, for
summarization, Fujii et al. (2024) observed a negative effect, whereas Joshi et al. (2025) and
Tejaswi et al. (2024b) found a positive effect.

2.2 Multilinguality vs Language-specificity

Training on non-English corpora sometimes involve using multilingual corpora. Berend
(2022) and Chang et al. (2024a) reported that multilingual training does not always improve
performance due to the curse of multilingualty (Conneau et al., 2020). Furthermore, En-
glish and multilingual LLMs reportedly show strong multilingual abilities on tasks such as
arithmetic and commonsense reasoning (Shi et al., 2023) through cross-language generaliza-
tion (Zhang et al., 2023). These findings suggest that the benefits of training on non-English
text might be limited or task-dependent.

2.3 Correlations between Tasks and Ability Factors

Several prior studies have investigated the correlations between different task benchmarks
and associated the task performance with a small number of ability factors (Ruan et al., 2024;
Ni et al., 2024; Tiong et al., 2024). These studies have reported strong correlations between
knowledge-based QA tasks and identified ability factors specific to arithmetic reasoning
and code generation. Additionally, Ruan et al. (2024) observed the log-linear relationship
between the computational budget and ability factors. However, these discussions are
limited to English monolingual settings, leaving cross-language generalization and scaling
laws in multilingual contexts, including Japanese and English as in our study, unexplored.

3 Experimental Settings

3.1 Models

To obtain generalizable insights, we evaluated publicly available 35 Japanese, English, and
Multilingual LLMs (see Table 2 in Appendix B.1 for the complete list), which represent
diverse design choices, including training data, the number of model parameters, and pre-
training approach. The evaluated models include: English LLMs (e.g., Llama 3 (Dubey et al.,
2024), Mistral (Jiang et al., 2023), and Mixtral (Jiang et al., 2024)); Japanese LLMs continually
pre-trained from English base LLMs on 18–175 billion tokens of Japanese text (e.g., Llama
3 Swallow (Fujii et al., 2024) and Llama 3 Youko (Sawada et al., 2024)); Japanese LLMs
pre-trained primarily on 130–1,050 billion tokens of Japanese text from scratch (e.g., LLM-
jp (LLM-jp et al., 2024) and Sarashina2; and multilingual LLMs pre-trained on multilingual
data including Japanese (e.g., C4AI Command-R2 and Qwen2 (Yang et al., 2024)). Notably,
all the English LLM families that served as base models for the continually pre-trained
Japanese LLMs were evaluated as well. We focused on base models and did not evaluate
instruction-tuned models to examine the effect of pre-training and avoid the confounding
effects of task-oriented instruction tuning.

2https://huggingface.co/CohereForAI/c4ai-command-r-v01
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PT primarily on Japanese language data  (n=5)
CPT on Japanese language data (n=15)

PT primarily on English language data (n=11)
PT on multilingual data including Japanese (n=4)
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Figure 1: Task performance grouped by primary language of LLMs. Bubble size indicates
the number of parameters.

To estimate the computational budget for each model, we collected data on the number of
model parameters and the number of training tokens for Japanese, English, and total across
all languages from official sources such as technical reports, press-release documents, and
model cards. Refer to Appendix B.3 for details. For a continually pre-trained model, we
calculated the total number of training tokens by summing the tokens used in both initial
and continual pre-training stages.

3.2 Evaluation Tasks and Benchmarks

We evaluated the models using 19 evaluation benchmarks in both Japanese and English3 ,
which is listed in Table 3 of Appendix B.2. These tasks were selected from the perspective of
cross-lingual benchmarking and comprehensiveness for general-purpose LLMs. The evalu-
ation was conducted using zero-shot or few-shot in-context learning settings depending on
tasks. Refer to Appendix B.2 for details.

We employed some Japanese benchmarks corresponding to their English counterparts
for cross-lingual benchmarking: code generation (JHumanEval (Sato et al., 2024) vs. Hu-
manEval (Chen et al., 2021)), commonsense (JCommonsenseQA (Kurihara et al., 2022)
vs. XWINO (Tikhonov & Ryabinin, 2021) and HellaSwag (Zellers et al., 2019)), arithmetic
reasoning (MGSM (Shi et al., 2023) vs. GSM8K (Cobbe et al., 2021)), encyclopedic knowledge-
based QA (JEMHopQA (Ishii et al., 2023) and NIILC (Sekine, 2003) vs. TriviaQA (Joshi et al.,
2017)), reading comprehension (JSQuAD (Kurihara et al., 2022) vs. SQuAD2 (Rajpurkar
et al., 2018)), and academic subjects (JMMLU (Yin et al., 2024) vs. MMLU (Hendrycks et al.,
2021)). Notably, MGSM, JMMLU, and JHumanEval are translations of GSM8K, MMLU, and
HumanEval, respectively. Cross-lingual correlations between these benchmarks provide
insights into the multilinguality and language specificity of each task. It is also worth
noting that JEMHopQA and NIILC are developed based on Japanese Wikipedia and include
instances that assess knowledge specific to Japanese culture, such as history, geography,
notable figures and society, making them suitable for evaluating how much LLMs acquire
knowledge about Japan.

For comprehensiveness, inspired by the natural language processing taxonomy (Chang
et al., 2024b; Guo et al., 2023) and to capture as many ability factors as possible, we included
additional task benchmarks beyond cross-lingual benchmarks. Specifically, we employed

3The evaluation scores for each model are publicly available on Zenodo, licensed under CC BY 4.0,
at https://doi.org/10.5281/zenodo.13160661.
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with other tasks

between JA ver. and EN ver.
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Blue: JA Benchmarks
Black: EN Benchmarks

Figure 2: Pearson correlation matrix among task
benchmarks (n = 35).

Figure 3: Principal component
scores for each LLM.

Japanese automatic summarization (XL-Sum (Hasan et al., 2021)), machine translation
between English and Japanese (WMT20-en-ja and ja-en (Barrault et al., 2020)), English
question answering (OpenBookQA (Mihaylov et al., 2018)), and logical reasoning (Big-
Bench-Hard (Suzgun et al., 2023)). Because we posit that local LLMs serve as foundational
models for the target language, our evaluation focused on fundamental knowledge and
skills rather than domain-specific tasks (e.g., question answering in financial or medical
domains). Furthermore, we excluded safety and bias-related tasks, as these should be
addressed in the post-training stage.

3.3 Definition of the Computational Budgets

The Chinchilla scaling laws (Hoffmann et al., 2022) propose an approximation for training
FLOPs as C ≈ 6ND, where C represents the training FLOPs, N is the number of parameters,
and D is the number of training tokens. Following this formula, we define NDl as the
computational budget, where Dl is the training tokens for the language l.

3.4 Evaluation Framework and Environment

We evaluated all 35 LLMs on 19 task benchmarks by using a custom implementation 4 of
existing evaluation frameworks such as llm-jp-eval (Han et al., 2024) and the Language
Model Evaluation Harness5. Refer to Table 4 for the details of implementations used for
evaluation. We used NVIDIA A100 GPUs mostly for the evaluations.

4 Experimental Results

Based on the experimental setting explained in the previous section, we obtained a matrix of
benchmark scores X ∈ RM×D, where M and D are the numbers of LLMs and benchmarks,
respectively (M = 35 and D = 19 in this study) and an element Xi,j presents the score of the
LLM i on the benchmark j. In this section, we use the benchmark scores matrix X to analyze:
1) the effects of LLM’s primary language on overall performance (§ 4.1), 2) the similarity
of benchmarks based on LLM performance (§ 4.2), 3) the ability factors of LLMs (§ 4.3), 4)

4Our implementation, “swallow-evaluation” is publicly available on our GitHub: https://github.
com/swallow-llm/swallow-evaluation

5https://zenodo.org/records/10256836
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Figure 4: Factor Loadings of principal components for each benchmark (n = 35; r is the
variance explained; blue: Japanese benchmarks; black: English benchmarks).

Figure 5: Relationship between principal component scores and raw benchmark scores with
significant factor loadings: PC1 vs En/Ja average [left], PC2 vs Japanese knowledge-based
QA and En-Ja translation [center], and PC3 vs code-generation and arithmetic reasoning
[right] (n = 35; r is the pearson correlation coefficient).

whether these ability factors align with scaling laws (§ 4.4), and 5) their generalizability to
LLMs trained from scratch (§ 4.5).

4.1 Comparison of Benchmark Scores by Pre-trained Languages

Figure 1 presents a bubble chart showing the benchmark score distributions grouped by the
primary language of the LLMs: Japanese continually pre-trained (green), Japanese trained
from scratch (light blue), English (red), and Multilingual (gray). The variable n in each
group represents the number of models included.

On overall, it is evident that LLMs with larger parameters tend to achieve higher scores in
each group. When comparing benchmark scores for smaller models, there is a clear tendency
for LLMs continually pre-trained on Japanese text (the green bubbles) to outperform English
LLMs (the red bubbles) on Japanese benchmarks (shown in blue) except JHumanEval
and MGSM. This indicates the effectiveness of continual pre-training on Japanese text.
The advantage is particularly evident in tasks such as Japanese QA (NIILC) and English-
Japanese translation (WMT20-en-ja). Refer to Appendix C for detailed discussion. Similarly,
Japanese LLMs trained from scratch (the light blue bubbles), despite having relatively few
parameters, achieve competitive scores on most Japanese benchmarks, with the exceptions
of the arithmetic reasoning (MGSM) and the code-generation (JHumanEval).

4.2 Correlation Between Evaluation Benchmarks and Language-Specific Performance

To group benchmarks based on the similarities of LLM performance, we computed a Pearson
correlation between two benchmarks a and b. More specifically, let the column vectors X:,a
and X:,b represent the array of two benchmarks a and b, we compute the Pearson correlation
corr(X:,a, X:,b). Figure 2 shows the Pearson correlation matrix, revealing two key findings6:

First, we observed strong cross-lingual correlations on certain tasks: academic subjects
(MMLU vs. JMMLU: 0.91), arithmetic reasoning (GSM8K vs. MGSM: 0.94), and code
generation (HumanEval vs. JHumanEval: 0.98). In other words, for these tasks, when

6We confirmed that using Spearman’s rank correlation produced no significant differences in the
findings.
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Figure 6: Relationship between the compu-
tational budget for English and PC1 scores
(n = 27).

Figure 7: Relationship between the compu-
tational budget for Japanese and PC2 scores
(n = 25).

LLMs perform well on the English benchmarks, they are also likely to perform well on
the corresponding Japanese benchmarks. This suggests that multilinguality outweighs
language specificity in these tasks, and that LLMs may generalize abilities acquired through
training primarily on English text.

Second, QA tasks about Japanese knowledge (JEMHopQA, NIILC) and an English-Japanese
translation task (WMT20-en-ja) exhibit relatively weak correlations with other tasks re-
spectively. In particular, NIILC shows negative correlations with most English tasks, and
WMT20-en-ja shows almost no correlations with them. These facts suggest that performance
on these tasks may be determined by factors different from those influencing other tasks.

While we observe strong linear correlations between JMMLU, MGSM, and JHumanEval and
their English counterparts, given that these are derived from English benchmarks, readers
may be concerned that cross-lingual correlations of these benchmarks are overestimated. A
straightforward workaround would be to evaluate using random, non-overlapping subsets
of instances for each language. Instead of implementing this directly, we approximated the
accuracy variation from random splits using the estimated standard error (SE) following Bi-
derman et al. (2024) and confirmed that impact of fluctuation by the SE is negligible on the
observed linear trends. For example, MGSM has 250 instances, and the SE for an accuracy
of 0.5 is approximately

√
0.5(1 − 0.5)/250 ≈ 0.032. In contrast, the observed standard

deviation of accuracy across LLMs was 0.246, sufficiently larger than the SE.

4.3 Principal Component Analysis (PCA)

We observed benchmark groups from the correlation matrix in the previous subsection. In
order to identify ability factors of LLMs, we apply Principal Component Analysis (PCA)7 to
project the task performance into a low-dimensional ability space.

Formally, we first standardize each column of X to have mean of zero and a standard
deviation of one: X̂. Next, we perform eigendecomposition of the correlation matrix as
X̂⊤X̂ = UΛU⊤, where U = [u1, u2, . . . , uD], and uj ∈ RD is the j-th unit-length eigenvector.
We then select the top four principal components (PCs), as their cumulative variance
explained (r; contribution ratio) is 90.8% (= 65.2% + 15.4% + 7.0% + 3.2% from PC1 to PC4).
We define the eigenvectors corresponding to PC1 to PC4, U4 = [u1, u2, u3, u4] ∈ RD×4 as
the factor loadings and compute corresponding PC scores as S4 = X̂U4. Given that U is an

7We used the sklearn.decomposition.PCA() method from the scikit-learn package.
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Figure 8: Factor loadings of principal components for each benchmark (n = 20: only with
models trained from scratch; r is the variance explained; blue: Japanese benchmarks; black:
English benchmarks).

orthonormal matrix and the total variance explained by PC1–PC4 is about 90%, the original
matrix can be approximated as the product of PC scores and factor loadings: X̂ ≈ S4U⊤

4 .

In this way, we decompose standardized benchmark scores X̂ into the product of LLM-
specific principal component scores (ability factors) S4 ∈ RM×4 in Figure 3 and benchmark-
specific factor loadings U4 ∈ RD×4 in Figure 4, which represent the associations between
the ability factors and task performances8.

The first principal component (PC1) has relatively uniform factor loadings. As shown in
Figure 5 left, LLMs with higher PC1 scores tend to have higher average benchmark scores
in both English and Japanese, suggesting that PC1 represents a general ability factor. It
represents the average performance across most benchmark scores, including commonsense
and reading comprehension in Japanese. This indicates that, unlike prior studies (§ 2.1),
training on English text is effective and that Japanese-specific training is not necessarily for
improving these abilities.

The second principal component (PC2) shows concentrated factor loadings on JEMHopQA,
NIILC, and WMT20-en-ja, and relatively small factor loadings on JCommonsenseQA and
JSQuAD, indicating the abilities of (encyclopedic) knowledge about Japan and English-
Japanese translation. In fact, Figure 3 shows that LLMs pre-trained on Japanese text,
such as Swallow and Sarashina2 families, have high PC2 scores, which will be analyzed
in detail in § 4.4. Additionally, as shown in Figure 5 center, the higher PC2, the higher
benchmark scores on those tasks. For instance, the magin of NIILC accuracy between LLMs
with the lowest and highest PC2 scores is approximately 40 points. Considering that PC1
has relatively low factor loadings for these benchmarks, PC2 represents Japanese-specific
abilities, such as QA about Japanese knowledge and English-Japanese translation. Given
that PC2 strongly associates with Japanese knowledge-based QA tasks, this aligns with
previous work (Romanou et al., 2025), which found that multilingual LLMs struggle with
cultural questions, especially in languages not included in the pre-training data.

The third principal component (PC3) shows concentrated factor loadings on MGSM, GSM8K,
JHumanEval, and HumanEval, representing abilities of multilingualism, language-agnostic
arithmetic reasoning, and code generation. As shown in Figure 5 right, there is a moderate
trend suggesting that higher PC3 score are associated with higher benchmark scores on
code-generation and arithmetic-reasoning.

Finally, the fourth principal component (PC4) shows positive factor loadings for some
English benchmarks. However, strong English LLMs, such as Llama-3-70B, do not show
higher PC4 scores compared to Japanese LLMs like CyberAgentLM2-7B. In addition, given
that the variance explained by PC4 is only 3.2%, PC4 is likely to correspond to residuals
that are difficult to interpret in a way tied to specific benchmarks or abilities.

4.4 Scaling Laws between Ability Factors and Computational Budget

In § 4.3, we made two key observations: 1) PC2 represents Japanese ability while PC1
represents a general ability; 2) LLMs pre-trained on Japanese text tend to have higher

8Since the signs and magnitudes of the PC scores and factor loadings are arbitrary, we adjusted the
signs for ease of interpretation and normalized the factor loading vectors to have an L2 norm of 1.

8
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PC2 scores. Based on these observations, we explore the language-specific scaling laws
by examining the log-linear relationship between the computational budgets (§ 3.3) and
principal components, which are expected to represent different abilities.

Figure 6 shows the scatter plot with the English computational budget (log scale) and
PC1. It reveals that the general ability (PC1) scales with the English computational budget
(Pearson’s ρ = 0.916)9

Figure 7 shows the scatter plot with the Japanese computational budget (log scale) and PC2.
We can see that the Japanese ability (PC2) moderately scales with the Japanese computational
budget (ρ = 0.779). We also confirmed that the correlation between PC2 and the English
or total computational budget is much weaker (ρ = 0.164 and 0.186, respectively). These
findings indicate that PC2 and associated Japanese task performances scale with an increase
in Japanese training tokens, thereby supporting our claim in § 4.3 that “PC2 represents
Japanese ability.” Furthermore, we argue that the source of Japanese ability lies in the
computational budget allocated to Japanese texts.

4.5 PCA for LLMs Trained from Scratch

To verify that our findings are not heavily influenced by the pre-training method, we
repeated the analysis after excluding continually pre-trained Japanese LLMs, retaining only
20 LLMs trained from scratch. Figure 8 shows the factor loadings of PCs extracted from
the performance of these 20 LLMs, revealing ability factors similar to those identified in
the original analysis (§ 4.3). We omit the results of relationships between computational
budgets and English and Japanese abilities, but observed the consistent correlations with
Figures 6 and 7 (see Figures 13 and 14 in Appendix D.2).

5 Conclusion and Future Work

In this paper, we performed the most comprehensive evaluation to date, testing 35 Japanese,
English, and Multilingual LLMs on 19 task benchmarks that assess the abilities in both
Japanese and English. This breadth of coverage is one of the key novelties of our study and
enables us to extract more generalizable insights than prior work. We then analyzed the
cross-task and cross-lingual correlations of benchmark scores, mapped the performance
in a low-dimensional ability space, and explored the relationship between ability factors
and computational budgets for English and Japanese. The correlation analysis showed
strong multilingual abilities in academic subjects, code generation, and arithmetic reasoning
tasks. This suggests that, in order to enhance the abilities of these tasks, there is no strong
motivation for using Japanese training data.

The low-dimensional factor analysis using PCA identified three ability factors. PC1 repre-
sents the general ability and affects nearly all tasks except for QA about Japanese knowledge
and English-Japanese translation. PC1 follows a scaling law with the computational budget
for English. Complementing PC1, PC2 represents the ability for QA about Japanese knowl-
edge and English-Japanese translation. Interestingly, PC2 follows a scaling law with the
computational budget for Japanese data. Although PC3 represents multilingual abilities in
arithmetic reasoning and code generation, we have not reached the point of identifying a
scaling law that it follows.

From these analyses, we concluded that the advantage of building local LLMs by training
on Japanese text is particularly evident in acquiring local knowledge written in Japanese
and enhancing the ability to translate from English. This conclusion is likely to characterize
Japanese LLMs. Our study is the first broad, unified evaluation across dozens of LLMs
and an extensive benchmark suite to reveal which tasks do and do not benefit from target-
language training.

9The correlation with the logarithm of the total computational budget was slightly higher (ρ =
0.938). Still, given the weak correlation with the Japanese computational budget, we concluded that it
scales more with the English computational budget.

9
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We consider two directions as future work. First, we plan to extend the analysis with
more LLMs and evaluation tasks to discover additional insights. This includes using LLMs
with unique designs, for example, Phi family (Li et al., 2023; Abdin et al., 2024), which
were trained on synthetic text. We also want to add evaluation tasks such as Japanese
logical reasoning and standardized admission exams. The second direction is to extend our
analysis and findings to other languages. We believe that the conclusion of this paper can be
generalized to: the advantage of building local LLMs by training in a language is acquiring
local knowledge written in the language and enhancing the ability to translate from English
to the language. This direction is nontrivial because conducting LLM experiments properly
requires a deep understanding of the target languages and cultures. We hope this paper
serves as a catalyst for the development and anlaysis of non-English LLMs.
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A Survey of Prior Work and Comparison with Our Analysis

We systematically surveyed prior works on non-English LLM development in two perspec-
tives: coverage of design choices and effects of training on target languages.

At the first glance on Table 1, we can find that several task types are covered sparsely.
Only 0–3 papers address machine translation (in either direction), code generation, or
summarization—indicating that these areas remain largely unexplored in the literature.

More importantly, we observed the contradictory evidence for “language-agnostic” tasks.
The majority of prior studies actually report gains from target-language training on com-
monsense reasoning (8 positive, 1 neutral, 0 negative) and academic subject benchmarks (5
positive, 2 neutral, 0 negative). These findings contrast both with our results. Furthermore,
there seems no clear consensus on other tasks. For reading comprehension and mathemat-
ical reasoning benchmarks, prior work offers mixed or inconclusive evidence regarding
the impact of target-language data (6 positive, 3 neutral, 0 negative; 3 positive, 2 neutral, 1
negative, respectively).

B Details of the Experimental Setup

B.1 Evaluated Models

Table 2 shows a list of LLMs evaluated in this study. The table includes the name, the
number of active parameters during inference, the base model from which the model was
continually pre-trained, the language distribution of the training corpus, the total number
of training tokens, the reported or estimated number of training tokens in English and
Japanese, and the reference of each model. § B.3 explains the method used to estimate the
number of language-specific training tokens. CPT stands for continual pre-training.

B.2 Evaluation Tasks and Benchmarks

Table 3 provides an overview of the evaluation benchmarks used in this study. The table
includes the benchmark name, a brief description, the language of the task, the metric for
scoring the model’s output, the experimental setting (e.g., few-shot, zero-shot, chain-of-
thought), and the reference of each benchmark. The scale of evaluation metrics is normalized
between 0 and 1, and EM means exact match.

10Number of active parameters on inference. The total number of parameters is 47B.
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Table 1: The impact of training on the target language text. ↗: Positive, ↘: Negative, →:
Neutral, −: Not investigated

Reference Lang Method Read-
Compr.

Com-
mon-
Sense
Reason.

Math-
Reason.

MT to
Tgt Lang

MT from
Tgt Lang

Acad.
Subject Coding

Local
Knowl.
QA

Sum-
mar-
iza-
tion

Ours JA PT
CPT → → → ↗ ↗ → → ↗ ↗

Etxaniz et al. (2024b) EU CPT ↗ ↗ ↗,→ − − ↗ − ↗ −
Fujii et al. (2024) JA CPT ↗ ↗ ↗ ↗ ↘ − − ↗ ↘
Phasook et al. (2024) TH CPT → ↗ ↗ − − ↗,→ − − −

Dou et al. (2024)

VI
TH
ID
MS
LO

CPT ↗ ↗ − − − ↗,→ − − −

Joshi et al. (2025) HI CPT ↗ ↗ − − − ↗ − ↗ ↗
Vo et al. (2024) KO CPT ↗ ↗ − − − − − − −
Choi et al. (2024) KO CPT → ↗ − − − − − − −
Toraman (2024) TR CPT → → − − − − − − −
Larcher et al. (2023) PT CPT ↗ − − − − − − − −

Tejaswi et al. (2024b)

TA
HI
AR
TR

CPT − ↗ − ↗ − − − − ↗

Cui et al. (2024) ZH CPT − − − − − ↗ − − −
Etxaniz et al. (2024a) EU CPT − − − − − − − ↗ −
Holmström et al. (2023) SV PT − − ↘,→ − − − − − −
Luukkonen et al. (2023) FI CPT − − − − − − − − −
Pipatanakul et al. (2023) TH CPT − − − − − − − − −

B.3 Estimating the Number of Training Tokens

The numbers of language-specific training tokens (in billions) were either obtained from
or calculated based on official sources such as technical reports, release documents, or
model cards. When an exact number was unavailable in the source, we used the following
estimates:

• Ratio of Japanese training tokens:
– Llama 2, Llama 3: 0.1%
– Mistral, Mixtral: 0%
– Full-scratch Japanese LLMs: 50%
– Japanese LLMs with CPT: 100%

• Ratio of English training tokens:
– Qwen1.5, Qwen2: 50%
– Yi-1.5: 70%
– Llama 2: 89.7%
– Llama 3: 95%

A symbol ‘–’ in Table 2 indicates that the number could not be obtained or estimated despite
our best efforts. We excluded these LLMs from the analysis of the scaling laws in § 4.4.

B.4 Evaluation Framework

Table 4 reports a list of evaluation frameworks used in this study. The table shows the frame-
work name, a brief description, and the reference of the framework. We slightly customized
these evaluation frameworks to cover benchmarks that are not officially supported and to
implement workarounds for LLMs; for example, some LLMs require special tokens or line
breaks in the prompt to generate valid outputs.

B.5 Details of LLM Grouping

Table 5 shows the breakdown of LLM groups used in Figure 1.
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Table 2: List of evaluated LLMs (the number of tokens is in billions [Bil], including estimates).

Model name
Num

of
params

Con-
stru-
ction
met-
hod

Source of CPT Corpus Training
tokens

EN
tokens

JA
tokens Reference

Yi-1.5 6B 6 PT －
ZH,EN,
Code 3600 2170 － AI et al. (2024)

CyberAgentLM2-7B 7 PT － JA,EN 1300 650 650 cyberagent/calm2-7b
Japanese Stable LM
Base Gamma 7B 7 CPT Mistral-7B-v0.1 JA,EN － － 100 stabilityai/japanese-

stablelm-base-gamma-7b
Japanese StableLM
Beta 7B 7 CPT Llama2 7B JA,EN 2100 1794 102 stabilityai/japanese-

stablelm-base-beta-7b
Llama 2 7B 7 PT － EN 2000 1794 2 Touvron et al. (2023)
Mistral-7B-v0.1 7 PT － EN － － － Jiang et al. (2023)
Mistral-7B-v0.2 7 PT － EN － － － Jiang et al. (2023)
Qwen1.5-7B 7 PT － － 4000 2000 － Team (2024)

Qwen2-7B 7 PT －
ZH,EN,
Code+27 7000 3500 － Yang et al. (2024)

RakutenAI-7B 7 CPT Mistral-7B-v0.1 JA,EN － － 175 RakutenGroup et al. (2024)
Sarashina2-7B 7 PT － JA,EN 2100 840 1050 sbintuitions/sarashina2-7b
Swallow 7B 7 CPT Llama2 7B JA,EN 2100 1794 102 Fujii et al. (2024)

Swallow-MS v0.1 7 CPT Mistral-7B-v0.1 JA,EN,
Code － － 100 Fujii et al. (2024)

Youri 7B 7 CPT Llama2 7B JA,EN 2040 1834 42 Sawada et al. (2024)
Llama 3 8B 8 PT － EN 15000 14250 15 Dubey et al. (2024)

Llama 3 Swallow 8B 8 CPT Llama3 8B JA,EN,
Code 15100 14250 115 Fujii et al. (2024)

Llama 3 Youko 8B 8 CPT Llama3 8B JA,EN 15022 14250 37 Sawada et al. (2024)

Yi-1.5 9B 9 PT －
ZH,EN,
Code 3100 2170 － AI et al. (2024)

ELYZA-japanese-
Llama-2-13b 13 CPT Llama2 13B JA 2018 1794 20 Sasaki et al. (2023)

Fugaku-LLM 13B 13 PT － JA,EN 400 200 200 Fugaku-LLM/Fugaku-
LLM-13B

Llama 2 13B 13 PT － EN 2000 1794 2 Touvron et al. (2023)

LLM-jp-13B v2.0 13 PT －
JA,EN,
Code 260 120 130 LLM-jp et al. (2024)

Sarashina2-13B 13 PT － JA,EN 2100 840 1050 sbintuitions/sarashina2-
13b

Swallow 13B 13 CPT Llama2 13B JA,EN 2100 1794 102 Fujii et al. (2024)

Yi-1.5 34B 34 PT －
ZH,EN,
Code 3100 2170 － AI et al. (2024)

C4AI Command-
R v0.1 35 PT －

JA,EN,
ZH+8 － － － CohereForAI/c4ai-

command-r-v01
Mixtral-8x7B-
v0.1 1310 PT － EN － － － Jiang et al. (2024)

Swallow-MX 8x7B
v0.1 1310 CPT Mixtral-8x7B-

Instruct-v0.1 JA,EN － － 100 Fujii et al. (2024)

Japanese Stable LM
Beta 70B 70 CPT Llama2 70B JA,EN 2100 1794 102 stabilityai/japanese-

stablelm-base-beta-70b
KARAKURI LM 70B
v0.1 70 CPT Llama2 70B JA,EN 2016 1794 18 KARAKURI Inc. (2024)

Llama 2 70B 70 PT － EN 2000 1794 2 Touvron et al. (2023)
Llama 3 70B 70 PT － EN 15000 14250 15 Dubey et al. (2024)

Llama 3 Swallow 70B 70 CPT Llama3 70B JA,EN,
Code 15100 14250 115 Fujii et al. (2024)

Swallow 70B 70 CPT Llama2 70B JA,EN 2100 1794 102 Fujii et al. (2024)

Qwen2-72B 72 PT －
ZH,EN,
Code+27 7000 3500 － Yang et al. (2024)

C Analysis of the Evaluation Results

This section presents detailed observations that complement the explanation in § 4.1.

C.1 Performance Difference between the Pre-trained Languages

Figure 1 reveals a notable observation: the scores of Japanese LLMs pre-trained from scratch
(the blue box) are consistently lower than those of continually pre-trained models. This
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Table 3: List of benchmarks used for evaluation.
Name Description Lang.

Eval.
metric9,10

Exp.
setup Reference

JcommonsenseQA
(JCom.)

Multiple-choice questions
with 5 options based on
a knowledge base

JA Acc. 4-shot Kurihara et al. (2022)

JEMHopQA
Free-form question answering
to evaluate knowledge
and reasoning ability

JA Char F1 4-shot Ishii et al. (2023)

NIILC
Free-form question answering
where answers can be obtained
from an encyclopedia

JA Char F1 4-shot Sekine (2003)

JSQuAD Free-form question answering
on Wikipedia articles JA Char F1 4-shot Kurihara et al. (2022)

XL-Sum Generating summaries
from BBC articles JA ROUGE-2 1-shot Hasan et al. (2021)

MGSM

Japanese translation of the
primary school math
word problem
dataset (GSM8K)

JA Acc.
(EM) 4-shot Shi et al. (2023)

WMT20(en-ja) English-Japanese translation
of news articles JA BLEU 4-shot Barrault et al. (2020)

WMT20(ja-en) Japanese-to-English translation
of news articles JA BLEU 4-shot Barrault et al. (2020)

JMMLU
Japanese translation of the
multiple-choice benchmark
MMLU (53 subjects)

JA Acc. 5-shot Yin et al. (2024)

JHumanEval Japanese translation of
HumanEval JA pass@1 0-shot

10 trials Sato et al. (2024)

OpenBookQA
Multiple-choice questions based
on scientific knowledge and
common sense

EN Acc. 4-shot Mihaylov et al. (2018)

TriviaQA Free-form question answering
based on trivia knowledge EN Acc.

(EM) 4-shot Joshi et al. (2017)

HellaSwag Multiple-choice questions
to predict the next event EN Acc. 4-shot Zellers et al. (2019)

SQuAD2 Free-form question answering
based on a supporting document EN Acc.

(EM) 4-shot Rajpurkar et al. (2018)

XWINO
Binary-choice questions
to identify the antecedent
of a pronoun in a sentence

EN Acc. 4-shot Tikhonov & Ryabinin (2021)

MMLU Multiple-choice questions
across 57 subjects EN Acc. 5-shot Hendrycks et al. (2021)

GSM8K Primary school math word
problem dataset EN Acc.

(EM) 4-shot Cobbe et al. (2021)

BBH 23 challenging tasks from
the BIG-Bench dataset EN Acc.

(EM)
3-shot
CoT Suzgun et al. (2023)

HumanEval Evaluation of code generation
ability via unit tests EN pass@1 0-shot

10 trials Chen et al. (2021)

Table 4: List of evaluation frameworks.
Name Description Reference
LLM-jp eval
(1.3.0)

Automatic evaluation tool
for Japanese LLMs Han et al. (2024)

JP Language Model
Evaluation Harness
(commit #9b42d41)

An evaluation framework
for Japanese LLMs zenodo.10256836

Language Model
Evaluation Harness
(0.4.2)

An evaluation framework
for LLMs zenodo.10256836

Code Generation LM
Evaluation Harness
(commit #0261c52)

An evaluation framework
for code generation task Ben Allal et al. (2022)

may be due to the relatively small number of parameters of the LLMs in this category
(e.g. CyberAgentLM2-7B, Sarashina2-7B, Fugaku-LLM 13B), as well as the limited training
budget (i.e., number of training tokens) available for developing LLMs from scratch. This
highlights a challenge in developing local LLMs in Japan.
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Table 5: Breakdown of LLM groups used in Figure 1.
Category Models
Japanese LLMs pre-trained
from scratch

CyberAgentLM2-7B， Sarashina2-7B， Sarashina2-13B，
Fugaku-LLM 13B， LLM-jp-13B v2.0

LLMs continually pre-trained
on Japanese text

Japanese Stable LM Base Gamma 7B
Japanese Stable LM Beta 7B，
RakutenAI-7B， Swallow 7B， Swallow-MS v0.1，
Youri 7B， Llama 3 Swallow 8B，
Llama 3 Youko 8B， ELYZA-japanese-Llama-2-13b，
Swallow 13B， Swallow-MX 8x7B v0.1，
Japanese Stable LM Beta 70B， KARAKURI LM 70B v0.1，
Llama 3 Swallow 70B， Swallow 70B

Egnlish LLMs

Yi-1.5 6B， Llama 2 7B，Mistral-7B-v0.1，
Mistral-7B-v0.2， Llama 3 8B， Yi-1.5 9B，
Llama 2 13B， Yi-1.5 34B，Mixtral-8x7B-v0.1，
Llama 2 70B， Llama 3 70B

Multilingual LLMs C4AI Command-R v0.1,
Qwen1.5-7B， Qwen2-7B， Qwen2-72B

Additionally, compared to other groups, multilingual LLMs (the black box) performed
significantly better in arithmetic reasoning (MGSM and GSM8K) and code generation
(JHumanEval and HumanEval) tasks. However, we believe that this does not reflect the
overall strength of multilingual LLMs, but rather the strengths of Qwen family (Yang et al.,
2024), which represents three out of four LLMs in this group.

C.2 Variations in Task Scores

Figure 1 highlights tasks with both high and low score variances. Tasks with low score
variances can be grouped into two categories:

1. Benchmarks evaluated with n-gram based metrics (e.g. WMT20-ja-en and WMT20-
en-ja with BLEU, and XL-Sum with ROUGE-2).

2. Tasks requiring essential skills (e.g. JSQuAD and SQuAD2.0 (reading comprehen-
sion), and OpenBookQA and XWINO (commonsense)).

In contrast, tasks with high score variances can be grouped into two categories:

1. Tasks requiring specific capabilities (e.g. MGSM, GSM8K (arithmetic reasoning),
JHumanEval and HumanEval (code generation))

2. Knowledge-intensive tasks (e.g. NIILC, JMMLU, MMLU, and TriviaQA)

The scores for these tasks heavily depend on whether a model possesses the necessary
capabilities or specialized knowledge, which leads to a greater variance.

D Robustness Check of Findings Obtained from Experimental Results

To test the robustness of the findings presented in § 4, we conducted two additional analyses
using different methods and settings: the use of maximum likelihood estimation and Promax
rotation11 instead of PCA (in § 4.3); and exclusion of continually pre-trained models to focus
on models trained from scratch. Moreover, we performed leave-one-out cross-validation
to confirm that our insights derived from observational approach are robust to statistical
errors.

11We used the factor analyzer.FactorAnalyzer() and factor analyzer.Rotator() method from
the factor analyzer package.
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Figure 9: Factor scores for each model with Promax rotation applied.

D.1 Maximum Likelihood Estimation and Promax Rotation

Figure 10 presents factor loadings with Promax rotation applied. This figure reveals two
factors similar to those identified in § 4.3: ability factor for arithmetic reasoning and code
generation (Factor 2 for PC3), and ability factor Japanese (Factor 3 for PC2). In contrast,
the first factor (Factor 1) seems to represent English ability, not the general ability (PC1),
since the loading scores are strongly positive on the English task benchmarks such as
OpenBookQA, TriviaQA, HellaSwag, and XWINO.

Additionally, the fourth factor (Factor 4) seems to be a distinct ability factor for Japanese at
first glance since the loading scores are strongly positive on two Japanese task benchmarks
(JCom. and JSQuAD). However, the correlation coefficient with the logarithm of the compu-
tational budget for Japanese is as small as 0.241, much lower than that of the computational
budget for English (0.788). Figure 9 shows small Factor 4 scores on Japanese LLMs, such as
Llama 3 Youko 8B, Japanese Stable LM Beta 7B, CyberAgentLM2-7B, LLM-jp-13B v2.0 and
Fugaku-LLM 13B. Even strong Japanese LLMs (e.g., Llama 3 Swallow 70B, Japanese Stable
LM Base Gamma 7B) do not show high scores compared to non-Japanese LLMs. Therefore,
the fourth factor should be considered as a residual that is difficult to interpret; therefore,
commonsense tasks and reading comprehension do not determine Japanese abilities.

To sum, these results confirm two similar factors to those identified in § 4.3 (an ability factor
for arithmetic reasoning and code generation, and a Japanese ability factor) and two unique
factors (an English ability factor and a residual factor).

D.2 Analysis with only Full-scratch Models

We removed continually pre-trained LLMs, which are categorized as LLMs continually
pre-trained on Japanese text in Table 5 and conducted the same analysis as in § 4.2 to § 4.4.

Figure 15 shows the Pearson correlation matrix of benchmark scores. The figure reveals that
JEMHopQA, NIILC (QA about Japanese knowledge) and WMT20-en-ja (English-Japanese
translation) are weakly correlated with other tasks. In addition, the figure shows strong
correlations across languages in benchmarks of arithmetic reasoning (GSM8K vs. MGSM),
academic subjects (MMLU vs. JMMLU), and code generation (HumanEval vs. JHumanEval).

21



Published as a conference paper at COLM 2025

Figure 10: Factor loadings by task with Promax rotation applied (n = 35; r represents a
contribution; blue and black colors correspond to Japanese and English task benchmarks,
respectively).

Figure 11: Relationship between the com-
putational budget for English and Factor 1
(n = 27).

Figure 12: Relationship between the com-
putational budget for Japanese and Factor 3
(n = 27).

Figure 13: Relationship between the compu-
tational budget for English and PC1 (n = 16;
only with models trained from scratch).

Figure 14: Relationship between the com-
putational budget for Japanese and PC2
(n = 10; only with models trained from
scratch).

These findings are consistent with those identified with continually pre-trained LLMs in
§ 4.2.
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青

Relatively weak correlations
with other tasks

between JA ver. and EN ver.
Strong correlations

Blue: JA Benchmarks
Black: EN Benchmarks

Figure 15: Pearson correlation matrix among benchmark
scores (n = 20; only with models trained from scratch).
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Figure 16: Principal compo-
nent scores for each model
(n = 20; only with models
trained from scratch).

Figure 16 shows the factor loadings for each task benchmark. The figure highlights four
factors: a general ability factor with uniform scores on each benchmark (PC1); a Japanese
ability factor with high scores on JEMHopQA, NIILC, and WMT20-en-ja (PC2); an ability
factor for arithmetic reasoning and code generation with high scores on HumanEval, JHu-
manEval, MSGM, and GSM8K (PC3); and a residual factor that is difficult to interpret (PC4).
These observations are consistent with those obtained with continually pre-trained LLMs in
§ 4.3.

Lastly, we examined the relationship between the computational budget for English and
PC1 (Figure 13) and the one between the computational budget for Japanese and PC2
(Figure 14). Figure 13 exhibits a strong positive correlation between PC1 (general ability)
and computational budget for English (ρ = 0.923), and Figure 14 indicates a moderate
positive correlation between PC2 (Japanese ability) and computation budget for Japanese
(ρ = 0.779). These relationships are the same as those confirmed with continually pre-trained
LLMs in § 4.4.

In this way, we could confirm the findings observed in § 4.2 to § 4.4 even with the LLMs
built from scratch, which indicates the robustness of the findings against the construction
methods of LLMs.

D.3 Leave-One-Out Cross-Validation

We assessed the statistical error of factor loadings using leave-one-out cross-validation on
the analyzed LLMs (see Figure 17) and confirmed that the standard deviations were small
relative to the absolute values.
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Figure 17: Leave-One-Out CV statistics: mean and standard deviations of the factor loadings
(n = 35, blue: Japanese benchmarks, black: English benchmarks).
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