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ABSTRACT

CAPTCHA, originally designed to distinguish humans from robots, has evolved
into a real-world benchmark for assessing the spatial reasoning capabilities of
vision-language models. In this work, we first show that step-by-step reasoning
is crucial for vision-language models (VLMs) to solve CAPTCHAs, which repre-
sent high-difficulty spatial reasoning tasks, and that current commercial vision-
language models still struggle with such reasoning. In particular, we observe
that most commercial VLMs (e.g., Gemini, Claude, GPT, etc.) fail to effec-
tively solve CAPTCHA and thus achieve low accuracy(∼ 21.9%), but our find-
ings indicate that requiring the model to perform step-by-step reasoning before
generating the final coordinates can significantly enhance its solving accuracy,
this underscoring the severity of the gap. To systematically study this issue, we
introduce CAPTCHA-X, the first real-world CAPTCHA benchmark with reason-
ing, covering seven categories of CAPTCHAs (e.g., Gobang, Hcaptcha, etc) with
step-by-step action solutions, and grounding annotations. We further define five
reasoning-oriented metrics that enable a comprehensive evaluation of models’ rea-
soning capabilities. To further verify the effectiveness of reasoning, we propose
a general agentic VLMs-based framework, incorporating the reasoning abilities
of the model itself. Our method achieves state-of-the-art performance across five
high-difficulty CAPTCHA types in general agents, with an average solving ac-
curacy of 83.9%, substantially surpassing existing baselines. These results both
reveal the limitations of current models and highlight the importance of reasoning
in advancing visual-spatial challenges in the future.

1 INTRODUCTION

CAPTCHAs were originally introduced as a security mechanism to distinguish humans from ma-
chines (Von Ahn et al., 2003). Early text-based CAPTCHAs exploited the limits of OCR (Wang
et al., 2018b), but advances in computer vision shifted them toward complex visual–spatial puzzles
requiring spatial reasoning, 3D mental rotation, and multi-step inference (Gao et al., 2021a; Luo
et al., 2025). This evolution transforms CAPTCHAs from perception tests into probes of higher-
level cognition, serving both as defenses against automated attacks and as testbeds for machine
reasoning (Ding et al., 2025). Today, they stand as real-world benchmarks for evaluating spatial in-
telligence in vision–language models, combining perception, reasoning, and decision-making (Liu
et al., 2023).

With the rapid progress of vision–language models (VLMs), existing CAPTCHA benchmarks suf-
fer from several fundamental limitations. While Open CaptchaWorld (Luo et al., 2025) introduces
reasoning-related difficulty metrics, it lacks reasoning annotations, preventing a comprehensive eval-
uation of models’ reasoning abilities. Meanwhile, many recent general solvers (e.g., Halligan)
achieve strong performance by combining VLMs with auxiliary tools and finetuned model (Teoh
et al., 2025) (Deng et al., 2024) (Wu et al., 2025), yet they do not explicitly incorporate reasoning,
and the lack of reasoning annotations further obscures the intrinsic reasoning capacity of the un-
derlying models. Besides, most other datasets only provide CAPTCHA images with corresponding
answers (such as coordinates) and evaluate correctness by measuring whether the distance between
predicted and ground truth values falls within an empirically set threshold. This mismatch often
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yields offline results that fail to reflect online performance and fail to capture the reasoning pro-
cesses underlying successful CAPTCHA solving, as we will discuss in detail in §3.1. Ultimately, a
central gap remains: no prior work has definitively answered whether reasoning itself is the key to
solving CAPTCHA.

Figure 1: Our CAPTCHA-X Benchmark.

In this paper, we create the first real-world
benchmark CAPTCHA-X with reasoning and
show evidence that reasoning is the key to solv-
ing CAPTCHAs. Directly applying commer-
cial VLMs to solve CAPTCHAs, especially
highly difficult tasks, achieves only an accuracy
of 21.9%. underscoring severe deficits in spa-
tial reasoning. As shown in Figure 1, we have
seven categories CAPTCHA collection.

Once reasoning is introduced, however, perfor-
mance statistically significantly improves by an
average of 27.5% relative to the non-reasoning
baseline. This confirms that reasoning funda-
mentally changes models’ reasoning accuracy.
To further validate this finding, we design an
agentic VLM approach that relies only on large models with reasoning, without requiring complex
toolchains or task-specific fine-tuned models.

Our contributions can be summarized as follows:

• We introduced CAPTCHA-X, the first real-world CAPTCHA benchmark with reasoning.
CAPTCHA-X covers seven challenges with authentic annotations, region-level acceptance zones,
and reasoning steps to systematic evaluation of reasoning capability for VLMs.

• Using CAPTCHA-X, we demonstrated the importance of reasoning for CAPTCHA solving and
exposed severe deficits in existing VLMs’ spatial reasoning capability.

• Experiments on our benchmark show that incorporating reasoning improves performance by
27.5% relative to the baseline, and statistical analysis confirms the improvement is highly signif-
icant (p < 0.001), providing the first systematic evidence that reasoning fundamentally improves
model accuracy.

• To further validate our finding, we propose a general agentic VLM framework that operationalizes
the model’s reasoning process through a structured pipeline, enabling robust CAPTCHA solving
without auxiliary components or task-specific adaptations. This framework serves as a conceptual
validation that reasoning alone suffices to solve real-world CAPTCHAs. On our CAPTCHA-X,
this design achieves an average accuracy of 83.9% across seven CAPTCHA categories and sets
new state-of-the-art results on five categories in general solving agents.

2 RELATED WORK

CAPTCHA Evolution and Benchmarking. Over two decades, CAPTCHAs evolved from dis-
torted text (Von Ahn et al., 2003) to image-based challenges like Asirra, later broken by machine
learning (Hitaj et al., 2020). This fragility spurred variants requiring logical reasoning and multi-
step interaction. Recent benchmarks such as MCA-Bench (Wu et al., 2025) and Bot-Hard (Teoh
et al., 2025) emphasize multimodal reasoning and robustness, framing CAPTCHAs as tests of spa-
tial intelligence. Yet, as Table 1 shows, gaps remain: Open CaptchaWorld (Luo et al., 2025) uses
synthetic data without reasoning labels; Halligan (Teoh et al., 2025) and OEDIPUS (Deng et al.,
2024) provide real data but lack reasoning annotations; and MCA-Bench, though large, is synthetic
and detached from real-world challenges. By contrast, our CAPTCHA-X is one of the few large-
scale real-world datasets (1,839 puzzles), and uniquely enriched with detailed reasoning annotations
and region-based validation. This makes it the first benchmark to evaluate both solving accuracy
and reasoning in vision–language models under realistic conditions.

Reasoning in Visual CAPTCHA Solving. Reasoning has become a decisive factor in solving
modern CAPTCHAs. Early VLM-based solvers emphasized perceptual accuracy but failed on tasks
requiring spatial inference or multi-step logic (Shi et al., 2019). Later work explored adversarial and
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Table 1: CAPTCHA Benchmark Comparisons.

Benchmark Real world Reasoning Region Consistent Scale
Open CaptchaWorld (Luo et al., 2025) ✗ ✗ ✗ 225
Halligan (Teoh et al., 2025) ✓ ✗ ✓ 2600
OEDIPUS (Deng et al., 2024) ✓ ✗ ✗ 300
MCA-Bench (Wu et al., 2025) ✗ ✗ ✗ 180000
CAPTCHA-X (Ours) ✓ ✓ ✓ 1839

cognitive-inspired CAPTCHA designs, showing that robustness depends not only on recognition but
also on following reasoning chains (Bursztein et al., 2011; Yan & El Ahmad, 2016). Recent methods
employ large language models to guide multi-modal perception, yet their evaluation usually reports
only final accuracy without reasoning annotations or ablations (Ye et al., 2022). Platforms like Open
CaptchaWorld attempted to capture reasoning complexity with new metrics and task designs, but
still lacked reasoning annotations, limiting comprehensive evaluation across models.

Spatial Reasoning Benchmarks. Spatial reasoning is central to visual intelligence, motivating
benchmarks such as ARC-AGI (Chollet, 2019) with grid-based puzzles testing object permanence
and spatial relations, CLEVR (Johnson et al., 2017) for compositional reasoning, and PTR (Hong
et al., 2021) for part-whole hierarchies. Extending to 3D, 3DSRBench (Ma et al., 2024) exposes
large human–machine gaps. Distinctly, our CAPTCHA benchmark leverages decades of adversari-
ally tested human–machine challenges, offering spatial reasoning tasks inherently designed to reveal
AI weaknesses.

3 METHOD

3.1 DATA COLLECTION AND CURATION

Figure 2: Grounding annotation (red) versus threshold-
based annotation (black) in a GeeTest Gobang puzzle,
along with recorded mouse actions and reasoning steps.
These mouse actions and reasoning steps are generated
by using carefully designed prompts.

To address the limitations of existing
benchmarks, we developed CAPTCHA-X
through a systematic data collection
pipeline with high-quality, reasoning steps
annotations.

Data Collection. We collect CAPTCHA
data by programmatically interacting with
websites using Selenium (Jason Hug-
gins) and PyAutoGUI (Sweigart), while
recording comprehensive mouse action se-
quences and screenshots before and after
each puzzle. The detailed data collection
process is provided in §A.1.

Grounding Annotation Generation. Af-
ter solving a CAPTCHA, we record the
click coordinates, which may not fall ex-
actly at the object center. We therefore de-
fine acceptance regions by manually mark-
ing all valid circles or boxes and count a click as correct if it falls within one of them. Unlike prior
work that uses a fixed threshold around the click, our approach covers the full target area more
reliably, as shown in Figure 2.

Reasoning Steps Generation. To create reasoning annotations with accurate mouse actions, we
use LLMs (i.e., GPT-5) to generate step-by-step reasoning steps. We choose LLM-based gener-
ation because manual annotation is highly labor-intensive, and manually written reasoning steps
tend to lack diversity. Concretely, we condition the LLM on the ground-truth action trajectory for
each puzzle and employ carefully designed prompts that are (1) goal-directed, explicitly stating the
CAPTCHA’s objective and required click targets, (2) vision-language aware, maximally exploiting
the LLM’s ability to jointly process visual content and text, (3) naturally expressed, encouraging
concise and conversational reasoning steps, and (4) challenging, designed to maximally elicit the
model’s reasoning ability. The prompt template is provided in §A.3.
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Figure 3: Distribution of our benchmark.

Quality Assurance. To ensure the reliability
and accuracy of CAPTCHA-X, every generated
reasoning step underwent rigorous human ver-
ification by four domain experts. Each expert
independently scored the quality of the reason-
ing steps on a 0–10 scale. If the score dif-
ference among the experts exceeded 2 points,
or if the average score fell below 5, the sam-
ple was jointly re-examined. Expert agreement
reached 98% under this criterion, and the re-
maining cases were resolved through discus-
sion, yielding 100% consensus in the final an-
notations. This multi-expert verification pro-
cess ensures that CAPTCHA-X provides a robust and trustworthy foundation for evaluating the
spatial reasoning capabilities of vision-language models.

CAPTCHA-X. Our benchmark comprises 1,839 CAPTCHA puzzles across seven categories, as
shown in Figure 3. It covers grid-based puzzles, spatial reasoning tasks, and mixed styles, with each
category contributing about 10–16% of the total for balanced distribution. For every puzzle, we
provide reasoning steps and mouse action sequences to evaluate both solving accuracy and reasoning
quality. An example from Gobang is shown in Figure 2.

3.2 CAPTCHA EVALUATION METRICS

To systematically evaluate models’ capability in solving CAPTCHAs, we define a comprehensive
evaluation metric. Specifically, our metrics consider both the correctness of actions and the reason-
ing by comparing with our annotated ground truth.

We formalize the answer to a CAPTCHA puzzle as an ordered sequence:
S = {(a1, c1), (a2, c2), . . . , (am, cm); R}, (1)

where (ai, ci) denotes the i-th action and its associated coordinate; R = ⟨r1, r2, . . . , rk⟩ denotes the
reasoning process, expressed as a sequence of steps.

3.2.1 ACTION ACCURACY

Our metric measures if the predicted action–coordinate sequence {(a1, c1), (a2, c2), . . . , (aN , cN )}
exactly matches the ground-truth sequence in both order and correctness. Let a∗i denote the ground-
truth action at step i, (x̂i, ŷi) denote the predicted coordinate ci, and RGi the corresponding accep-
tance region. We define sequence-level accuracy as:

AccRate =
1

M

M∑
j=1

1
(
a
(j)
i = a

∗(j)
i ∧ (x̂

(j)
i , ŷ

(j)
i ) ∈ RG(j)

i , ∀i
)
, (2)

where M is the total number of CAPTCHA puzzles. Here 1{·} returns 1 only if the entire predicted
sequence exactly matches the ground truth in both action order and coordinates, and 0 otherwise.

3.2.2 REASONING ACCURACY

To comprehensively evaluate the quality of model-predicted reasoning, we design multiple new
metrics for reasoning, each motivated by a distinct aspect of reasoning quality. We argue that high-
quality reasoning steps should achieve high solving accuracy or capture maximal complexity with
minimal reasoning cost.

Reasoning Steps. To measure the granularity of reasoning, we count the number of reasoning steps
in the generated textual reasoning. Since our reasoning is expressed as step-by-step text, this metric
naturally reflects the level of detail in the reasoning process. A larger number of steps typically
implies a more complex reasoning trajectory, but also indicates reduced reasoning efficiency.

Reasoning Length. We measure the total number of tokens in the generated reasoning text. In
contrast to Reasoning Steps, which capture the structural depth of reasoning, this metric quantifies
the overall textual length, offering a finer-grained view of reasoning cost.
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Reasoning Score. To evaluate alignment with ground-truth reasoning, we use four different large
language models (LLMs) to provide automatic scores. Following the HD-Eval framework (Li et al.,
2023), the evaluation is decomposed into multiple sub-dimensions to reduce potential bias. For-
mally, if si,m denotes the score for instance i from model m, then

Si =
1

M

M∑
m=1

si,m, M = 4. (3)

To verify that LLM-based evaluation is consistent with human judgment, we randomly sampled 5%
of the instances from each CAPTCHA category and asked human experts to provide independent
scores. The Pearson correlation between the aggregated LLM scores and human scores reached
0.92, indicating that our automatic evaluation method is well aligned with human preference.

Reasoning Efficiency. To assess the trade-off between predictive accuracy and reasoning cost, we
define an efficiency metric. Let Acci denote the accuracy of model i, L̂i = Li/L the normalized
reasoning length, and Ŝi = Si/S the normalized reasoning steps. With equal weights α = β = 0.5,
efficiency is computed as

Efficiencyi =
Acci

α · L̂i + β · Ŝi

. (4)

Values are further using min–max normalized to (0, 1). In all, higher reasoning efficiency reflects
the model achieving stronger accuracy with fewer steps or tokens, which is more efficient.

Trajectory Complexity Index (TCI). To quantify the structural complexity of reasoning trajecto-
ries, we capture linguistic signals such as backtracking words (but, however, etc.) and symbolic
markers (coordinates, grid indices, etc.). For each instance j in group i, we aggregate feature counts
Fi,j and normalize them by group-level averages:

zi,j =

∑
F (Fi,j − F i)

0.5 · (si/s) + 0.5 · (ti/t)
. (5)

The final TCI is obtained by applying a sigmoid function, which maps the feature values into the
normalized range of (0, 1):

TCIi = σ

 1

Ni

Ni∑
j=1

zi,j

 , σ(x) =
1

1 + e−x
. (6)

A higher TCI indicates frequent backtracking or symbolic reasoning, demonstrating the intrinsic
complexity of the reasoning path, and also reflecting higher information density.

3.3 VISION-LANGUAGE MODEL AGENTIC PIPELINE

To further validate our findings, we introduce a novel agentic framework that, unlike prior solvers,
relies solely on a VLM’s inherent reasoning ability without external toolchains or fine-tuned models
as shown in Figure 4.

The pipeline begins with a Category Judger that routes each puzzle to either a grid-based or a
non-grid-based branch. This classification is crucial because the two types of puzzles require fun-
damentally different reasoning strategies. And all the clickable CAPTCHA can be divided into
these two categories. For grid-based puzzles (e.g., Google reCAPTCHA, GeeTest IconCrush), a
dedicated Mapping Tool, implemented as a large language model guided by carefully designed
prompts, converts the puzzle board into an A × A symbolic grid (e.g., [a, a, a; b, b, c; c, b, b]). This
abstraction enables the Reasoning Steps Generator to conduct structured step-by-step inference
over the grid, leading to accurate identification of the target cell(s). In contrast, non-grid-based
puzzles (e.g., GeeTest Icon, VTT Space Reasoning) rely on spatial semantics rather than grid index-
ing, and therefore the Reasoning Steps Generator first produces reasoning steps that are refined
by a Spatial Understanding Expert, which grounds objects and regions into spatial coordinates.
To ensure logical consistency across both branches, a Discriminator validates that the generated
reasoning is coherent before passing it forward. The validated reasoning is then handled by an Ac-
tion Generator, which translates reasoning outputs into executable click coordinates. Finally, an
Action Executor performs the actual clicks on the screen to solve the CAPTCHA. By explicitly
distinguishing between grid-based and non-grid-based categories, this unified framework highlights
the central role of reasoning in solving diverse visual CAPTCHA.
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Figure 4: Our Agentic Vision-Language Model Pipeline.

4 EXPERIMENTS

We conduct experiments to assess the role of reasoning in CAPTCHA solving by comparing model
performance with and without reasoning and measuring spatial alignment via L2 distance. All ex-
periments use a fixed API configuration (temperature = 0, seed = 41) for reproducibility. We report
results in two dimensions: Action Evaluation, which measures end-task accuracy, and Reasoning
Evaluation, which analyzes the quality of intermediate reasoning steps.

4.1 ACTION EVALUATION

Evaluation of Prediction Accuracy. As shown in Table 2, prompting models to generate reasoning
steps almost always improves solving accuracy, confirming that reasoning provides strong guidance
for CAPTCHA solving. Figure 5 further illustrates this trend.

Table 2: Model performance (WR = With Reasoning, WOR = Without Reasoning) across different
CAPTCHA types.

Model Gobang Icon Iconcrush Recaptcha Space Reasoning hcaptcha VTT
WR WOR WR WOR WR WOR WR WOR WR WOR WR WOR WR WOR

GPT Family

GPT-O3 2.00 0.00 22.00 29.79 3.67 3.67 10.67 1.82 10.00 1.50 27.67 0.00 7.00 3.67
GPT-4O 0.00 0.00 9.52 7.48 28.00 23.33 11.00 1.52 47.00 40.00 23.71 1.92 42.00 37.67

GPT-5-Nano 0.00 0.00 0.00 0.00 28.00 23.33 8.33 2.00 31.00 32.00 58.33 40.00 30.67 32.67

Gemini Family

Gemini-2.5-Pro 57.00 48.00 59.30 46.30 75.00 66.67 64.00 56.52 68.00 64.67 80.95 81.35 63.00 56.00
Gemini-2.0-Flash 2.00 0.00 36.33 39.67 2.33 2.00 36.33 31.67 53.00 51.00 43.21 0.79 45.67 47.67

Other Models

Claude-4-Opus 18.00 8.00 17.65 13.00 18.00 6.67 12.33 3.33 29.00 23.33 26.70 0.00 26.67 23.67
Qwen-2.5VL-72B 0.00 0.00 0.00 0.00 6.00 5.00 14.00 0.00 24.00 27.67 38.10 36.11 19.33 26.67

Ours

Captcha-X-Agent-O3 (Ours) 39.00 – 80.10 – 93.00 – 69.40 – 96.67 – 91.74 – 79.00 –
Captcha-X-Agent-2.5-Pro (Ours) 67.44 – 78.60 – 92.33 – 73.00 – 98.67 – 94.44 – 80.67 –

Gemini-2.5-Pro achieves the highest accuracy among existing models, with Gemini-2.0-Flash and
GPT-5-Nano following at moderate levels. Claude-4-Opus, GPT-4O, GPT-O3, and Qwen-2.5VL-
72B also benefit from reasoning, though with lower absolute performance. Building on GPT-O3 and
Gemini-2.5-Pro, our agentic pipeline achieves the best accuracy across all CAPTCHA categories.

Evaluation of L2 Distance. Beyond accuracy, our dataset provides region centers to compute L2

distance between predictions and ground truth. This metric directly measures spatial grounding:
smaller distances indicate precise localization, while high accuracy with large distances may reflect

6
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Figure 5: Model Accuracy and L2 Distance with and without reasoning.

Table 3: L2 distance between predicted coordinates and ground-truth centers across CAPTCHA
benchmarks (lower is better).

Model Gobang Icon Iconcrush Recaptcha Space Reasoning hcaptcha VTT
WR WOR WR WOR WR WOR WR WOR WR WOR WR WOR WR WOR

GPT Family

GPT-O3 149.54 65.73 27.56 17.34 127.71 131.78 14.64 17.25 99.89 102.69 67.62 90.07 110.37 114.82
GPT-4O 134.22 199.17 24.28 25.72 125.47 131.24 13.51 20.65 48.67 53.26 87.41 111.51 48.64 60.29

GPT-5-Nano 135.06 151.10 30.72 34.87 104.87 120.52 13.04 16.43 56.88 55.70 48.44 60.18 56.91 60.73

Gemini Family

Gemini-2.5-Pro 19.13 27.75 8.63 9.25 34.67 38.94 3.41 2.65 34.23 34.32 18.12 27.98 40.18 41.56
Gemini-2.0-Flash 120.72 148.35 12.86 18.36 134.93 128.94 9.54 14.83 40.74 41.67 57.87 153.26 49.25 48.41

Other Models

Claude-4-Opus 182.58 233.48 24.24 35.76 101.19 154.65 31.06 25.47 59.26 63.06 63.98 134.00 59.83 72.67
Qwen-2.5VL-72B 121.87 129.72 29.37 30.37 126.29 163.97 13.97 21.02 62.67 68.16 58.98 62.93 71.42 76.95

Ours

Captcha-X-Agent-O3 (Ours) 29.87 – 5.19 – 26.48 – 2.52 – 1.15 – 8.33 – 3.94 –
Captcha-X-Agent-2.5-Pro (Ours) 37.12 – 5.03 – 22.32 – 2.91 – 1.34 – 9.74 – 3.47 –

boundary luck. Using both accuracy and L2 distance yields a more reliable measure of solving
quality.

Figure 6: Average Accuracy vs L2 Distance.

As shown in Table 3, Gemini-2.5-Pro achieves the
smallest L2 distances among existing models, with
Gemini-2.0-Flash also showing relatively strong
spatial grounding. In contrast, weaker models such
as GPT-O3 and Claude-4-Opus exhibit very large
errors, exceeding 100 pixels in several cases. No-
tably, our agent consistently achieves the lowest L2

distances across all CAPTCHA types, demonstrat-
ing superior localization. These results confirm that
L2 distance provides complementary evidence of
grounding beyond solving accuracy.

To further validate this relationship, we plot the aver-
age performance of all models across all CAPTCHA
types in Figure 6. The regression analysis reveals a
very strong correlation: models with higher solving
accuracy consistently achieve smaller L2 distances.
Importantly, no outliers are observed, indicating that this pattern holds universally across all tested
models.

Statistical Validation. For solving accuracy, we adopt McNemar’s test (McNemar, 1947), which
is designed for paired binary outcomes, and obtain a highly significant result (p < 0.001). For L2

distance, we apply the Wilcoxon signed-rank test, and also obtain p < 0.001. Moreover, regression
analysis between accuracy and L2 distance yields a strong negative correlation with R2 = 0.97
and p < 0.001, confirming that higher accuracy is consistently associated with smaller localization

7
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errors. On average, reasoning improves solving accuracy by 27.5% while reducing L2 distance by
14.6%, further validating its effectiveness. Together, these results provide strong statistical evidence
that reasoning significantly improves both solving accuracy and spatial localization.

4.2 REASONING EVALUATION

Figure 7: Reasoning Evaluation with Multi-Dimensions: The left radar chart shows overall reason-
ing metrics averaged across CAPTCHA categories. The right radar chart reports reasoning scores
by CAPTCHA type.

To systematically assess reasoning quality, we evaluate multiple reasoning metrics here. Figure 7
presents two complementary radar charts: the left radar chart aggregates overall reasoning metrics
averaged across all CAPTCHA categories, while the right radar chart highlights reasoning scores
per individual CAPTCHA type. For clarity, we only report the aggregated trends here, while the full
quantitative results for all metrics and captcha types are provided in the §A.2.

Overall Reasoning Metrics. The left radar chart summarizes average The left radar chart shows
average reasoning behaviors across models. Gemini-2.5-Pro is the strongest, combining long and
information-dense reasoning with the highest efficiency. Claude-4-Opus ranks second but is much
less efficient, while Gemini-2.0-Flash achieves comparable efficiency with shorter reasoning. In
contrast, weaker models such as Qwen-2.5VL-72B produce short and low-efficiency traces, indicat-
ing limited reasoning capacity.

Figure 8: Correlation Heatmap.

Reasoning Score by CAPTCHA Type. The
right radar chart shows reasoning alignment across
CAPTCHA types. Gemini-2.5-Pro achieves the
highest scores overall, demonstrating strong reason-
ing quality and generalization. Claude-4-Opus ranks
second but with notable drops on some tasks, while
GPT-O3 and GPT-4O remain inconsistent. Qwen-
2.5VL-72B performs the weakest, rarely exceeding
a score of 2.0.

Correlation Analysis of Reasoning Metrics.

We conduct a correlation analysis across seven mod-
els to verify the validity of our proposed metrics. As
shown in Figure 8, Reasoning Score (r = 0.88) and
Efficiency (r = 0.82) both correlate strongly with
accuracy, confirming that they are meaningful pre-
dictors of task performance rather than ad-hoc mea-
sures. Other metrics such as Length, Steps, and TCI
capture complementary aspects of reasoning complexity, further supporting the effectiveness of our
metric design.

Reasoning Scaling Law in CAPTCHA.

8
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Table 4: Comparison of CAPTCHA Solving Accuracy for Different CAPTCHA Solvers

Model Icon Space Reasoning VTT Iconcrush hCaptcha Gobang Google Recaptcha V2
Baseline Models

Baseline 46.3 64.67 50.00 66.7 0 48 56.52
OEDIPUS-DSL – 65.4 – 67.4 – 80.2 –

Halligan 46 – 23 98 82 92 68
VTTsolver (Gao et al., 2021b) – 90.8 50 – – – –

PhishDecloaker (Teoh et al., 2024) – – – – 74 – 72

Ours

Captcha-X-Agent (Ours) 80.1 98.67 80.67 93 94.44 67.44 73

Our analysis reveals a linear reasoning scaling law consistently observed across all evaluated mod-
els, showing that reasoning score grows proportionally with both reasoning length and trajectory
complexity. Specifically, we observe a near-perfect linear fit, e.g., Length ≈ 78.95 · Score − 62.11
(p < 0.01 in significance test) and TCI ≈ 0.349 · Score − 0.333 (p < 0.01), across diverse models.
Since reasoning score strongly predicts task accuracy (r = 0.88), this law establishes a principled
connection between reasoning cost and problem-solving ability, enabling accuracy to be forecasted
directly from reasoning complexity (Figure 9).

4.3 AGENTIC EVALUATION

Figure 9: Reasoning Scaling Law in CAPTCHA.

We evaluate both a direct-prediction
baseline and our proposed reasoning-
centric agentic pipeline for
CAPTCHA solving. The base-
line uses Gemini-2.5-Pro without
reasoning, where the model directly
outputs click coordinates from the
CAPTCHA image.

Among prior solvers on our dataset,
Halligan (tool-integrated) and OEDI-
PUS (fine-tuned) are the only general
agent models available for compari-
son. In contrast, our agent achieves
state-of-the-art performance on five
out of seven tasks (Table 4), with 98.67 on Space Reasoning, 80.67 on VTT, 94.44 on hCaptcha,
80.1 on Icon, and 73 on Google Recaptcha V2, while also remaining competitive on Iconcrush (93)
and Gobang (67.44). These results highlight that our approach achieves strong performance across
all CAPTCHA types without toolchains or task-specific finetuning, underscoring reasoning as the
key capability for modern CAPTCHA solving.

5 LIMITATION

While our work highlights the role of reasoning in improving CAPTCHA-solving accuracy, it also
raises security concerns. Our results suggest that modern vision–language models can bypass many
existing CAPTCHA designs, indicating that CAPTCHAs may soon lose their effectiveness as a
security barrier. We stress that our benchmark is for research purposes only, and urge the security
community to explore next-generation human verification mechanisms that remain robust against
reasoning-driven solvers.

6 CONCLUSION

Our work shows that reasoning is a decisive capability for solving modern visual CAPTCHA. With
CAPTCHA-X, we pair real-world CAPTCHA challenges with reasoning steps, introduce reasoning-
oriented metrics, and propose an agentic pipeline that isolates the role of reasoning. These findings
highlight reasoning as central to advancing multimodal AI.

9
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A APPENDIX

A.1 DATA COLLECTION

Our data collection approach leverages Selenium (Jason Huggins) and PyAutoGUI (Sweigart)
to programmatically interact with websites hosting various CAPTCHA types, including GeeTest
challenges (GeeTest) (Gobang, Icon, IconCrush), hCaptcha systems (Intuition Machines, Inc.),
VTT (Wang et al., 2018a), and reCAPTCHA V2 (Google). For each CAPTCHA instance, we record
comprehensive interaction data during the solving process, capturing all mouse actions with their
corresponding screen coordinates. Our annotation scheme covers five distinct mouse action types,
including mouse-click, mouse-down, mouse-up, mouse-drag, and mouse-move events. To provide a
complete visual context, we capture screenshots both before and after solving each CAPTCHA puz-
zle, enabling analysis of the initial problem state and solution verification. As shown in Figure 10

Figure 10: We employ automated tools (Selenium and PyAutoGUI) to collect CAPTCHA images
and interaction data during the solving process.

A.2 REASONING METRICS FOR EACH CAPTCHA TYPE

To complement overall solving accuracy, we further report detailed reasoning-oriented metrics for
each CAPTCHA type (Tables 5–10). These include Reasoning Length (textual size of generated
reasoning), Reasoning Steps (discrete step count), Reasoning Score (human-annotated quality on
a 0–5 scale), Trajectory Complexity Index (structural complexity of the predicted action path), and
Reasoning Efficiency (normalized score relative to reasoning cost). Together, these metrics provide a
fine-grained view of how different models trade off reasoning verbosity, structure, and effectiveness
across tasks such as Icon, Gobang, and hCaptcha.

Table 5: Reasoning metrics for Icon.

Model Reasoning Length Reasoning Steps Reasoning Score Trajectory Complexity Index Reasoning Efficiency
Gemini 2.5 Pro 179.03 5.47 3.10/5.00 0.9697 0.843

GPT-O3 134.99 4.87 1.64/5.00 0.2052 0.387

Claude 4 Opus 124.74 6.21 1.43/5.00 0.3806 0.287

GPT-4O 88.81 6.16 1.21/5.00 0.3661 0.181

GPT-5-Nano 121.93 5.11 0.64/5.00 0.4022 0.000

Gemini-2.0-Flash 81.16 3.34 2.32/5.00 0.1956 1.000

Qwen-2.5VL-72B 71.93 5.13 0.75/5.00 0.3110 0.000

Table 6: Reasoning metrics for Gobang.

Model Reasoning Length Reasoning Steps Reasoning Score Trajectory Complexity Index Reasoning Efficiency
Gemini 2.5 Pro 287.29 8.83 3.31/5.00 0.9032 1.0

GPT-O3 110.33 6.44 1.89/5.00 0.8372 0.0673

Claude 4 Opus 104.90 7.40 2.06/5.00 0.6997 0.5721

GPT-4O 118.31 6.12 1.32/5.00 0.1174 0

GPT-5-Nano 90.28 4.50 1.35/5.00 0.1554 0

Gemini-2.0-Flash 148.38 2.73 1.35/5.00 0.4279 0

Qwen-2.5VL-72B 97.96 8.70 1.28/5.00 0.5818 0.0588
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Table 7: Reasoning metrics for hCaptcha.

Model Reasoning Length Reasoning Steps Reasoning Score Trajectory Complexity Index Reasoning Efficiency
Gemini 2.5 Pro 276.18 8.99 2.93/5.00 0.9213 0.3177

GPT-O3 129.69 7.36 2.50/5.00 0.6219 0.0359

Claude 4 Opus 123.43 8.67 2.52/5.00 0.4227 0

GPT-4O 61.53 6.37 1.93/5.00 0.4435 0.135

GPT-5-Nano 119.03 4.98 2.69/5.00 0.3377 0.6497

Gemini-2.0-Flash 69.90 5.34 2.08/5.00 0.5417 0.5764

Qwen-2.5VL-72B 51.89 2.69 2.20/5.00 0.2150 1

Table 8: Reasoning metrics for GeeTest Space Reasoning.

Model Reasoning Length Reasoning Steps Reasoning Score Trajectory Complexity Index Reasoning Efficiency
Gemini 2.5 Pro 171.00 6.50 3.56/5.00 0.9041 0.5478

GPT-O3 130.20 4.55 2.00/5.00 0.4450 0

Claude 4 Opus 130.55 5.13 2.71/5.00 0.8445 0.2393

GPT-4O 73.00 4.00 3.24/5.00 0.2278 0.782

GPT-5-Nano 63.97 1.90 2.94/5.00 0.2677 0.7928

Gemini-2.0-Flash 62.75 3.81 3.38/5.00 0.0903 1

Qwen-2.5VL-72B 74.87 4.62 2.55/5.00 0.4633 0.2901

Table 9: Reasoning metrics for Google reCAPTCHA V2.

Model Reasoning Length Reasoning Steps Reasoning Score Trajectory Complexity Index Reasoning Efficiency
Gemini 2.5 Pro 215.03 8.10 3.68/5.00 0.8104 1.0

GPT-O3 104.01 7.25 2.79/5.00 0.3016 0.1143

Claude 4 Opus 153.57 8.70 2.76/5.00 0.6068 0.0732

GPT-4O 89.54 6.62 2.12/5.00 0.3874 0.1645

GPT-5-Nano 145.11 7.85 2.33/5.00 0.3952 0.0

Gemini-2.0-Flash 96.66 8.33 3.01/5.00 0.3909 0.8207

Qwen-2.5VL-72B 45.23 6.09 2.45/5.00 0.1026 0.4343

Table 10: Reasoning metrics for IconCrush.

Model Reasoning Length Reasoning Steps Reasoning Score Trajectory Complexity Index Reasoning Efficiency
Gemini 2.5 Pro 194.40 10.71 4.04/5.00 0.9363 1.000

GPT-O3 126.01 5.54 2.81/5.00 0.3248 0.045

Claude 4 Opus 135.50 10.65 3.81/5.00 0.5435 0.257

GPT-4O 146.78 10.59 1.15/5.00 0.5258 0.053

GPT-5-Nano 165.54 9.00 2.94/5.00 0.6529 0.416

Gemini-2.0-Flash 115.71 9.67 2.12/5.00 0.5163 0.000

Qwen-2.5VL-72B 120.03 11.08 1.36/5.00 0.4380 0.059
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A.3 REASONING GENERATION TEMPLATE

We carefully design a reasoning generation template that guides the model to generate step-by-
step reasoning in a consistent and structured format for our benchmark’s reasoning annotations:

Figure 11: Our prompt template.

B ETHICS STATEMENT

This work adheres to the ICLR Code of Ethics. In this study, no human subjects or animal exper-
imentation was involved. All datasets used, including CAPTCHA-X, were sourced in compliance
with relevant usage guidelines, ensuring no violation of privacy. We have taken care to avoid any
biases or discriminatory outcomes in our research process. No personally identifiable information
was used, and no experiments were conducted that could raise privacy or security concerns. We are
committed to maintaining transparency and integrity throughout the research process.

C REPRODUCIBILITY STATEMENT

We have made every effort to ensure that the results presented in this paper are reproducible. All
code and datasets have been made publicly available in an anonymous repository to facilitate repli-
cation and verification. The experimental setup, including training steps, model configurations, and
hardware details, is described in detail in the paper. We have also provided a full description of
our proposed CAPTCHA-X benchmark and evaluation metrics to assist others in reproducing our
experiments.

We believe these measures will enable other researchers to reproduce our work and further advance
the field.
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D LLM USAGE

We used Large Language Models (LLMs) exclusively to polish the manuscript’s language and read-
ability; all scientific ideas, methodology, and analyses remain the sole responsibility of the authors.
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