

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 REASONING MATTERS: BENCHMARKING AND AD- VANCING SPATIAL REASONING IN VISION-LANGUAGE MODELS VIA AGENTIC APPROACHES

Anonymous authors

Paper under double-blind review

ABSTRACT

CAPTCHA, originally designed to distinguish humans from robots, has evolved into a real-world benchmark for assessing the spatial reasoning capabilities of vision-language models. In this work, we first show that step-by-step reasoning is crucial for vision-language models (VLMs) to solve CAPTCHAs, which represent high-difficulty spatial reasoning tasks, and that current commercial vision-language models still struggle with such reasoning. In particular, we observe that most commercial VLMs (e.g., Gemini, Claude, GPT, etc.) fail to effectively solve CAPTCHA and thus achieve low accuracy($\sim 21.9\%$), but our findings indicate that requiring the model to perform step-by-step reasoning before generating the final coordinates can significantly enhance its solving accuracy, this underscoring the severity of the gap. To systematically study this issue, we introduce **CAPTCHA-X**, the first real-world CAPTCHA benchmark with reasoning, covering seven categories of CAPTCHAs (e.g., Gobang, Hcaptcha, etc) with step-by-step action solutions, and grounding annotations. We further define five reasoning-oriented metrics that enable a comprehensive evaluation of models' reasoning capabilities. To further verify the effectiveness of reasoning, we propose a general agentic VLMs-based framework, incorporating the reasoning abilities of the model itself. Our method achieves state-of-the-art performance across five high-difficulty CAPTCHA types in general agents, with an average solving accuracy of **83.9%**, substantially surpassing existing baselines. These results both reveal the limitations of current models and highlight the importance of reasoning in advancing visual-spatial challenges in the future.

1 INTRODUCTION

CAPTCHAs were originally introduced as a security mechanism to distinguish humans from machines (Von Ahn et al., 2003). Early text-based CAPTCHAs exploited the limits of OCR (Wang et al., 2018b), but advances in computer vision shifted them toward complex visual–spatial puzzles requiring spatial reasoning, 3D mental rotation, and multi-step inference (Gao et al., 2021a; Luo et al., 2025). This evolution transforms CAPTCHAs from perception tests into probes of higher-level cognition, serving both as defenses against automated attacks and as testbeds for machine reasoning (Ding et al., 2025). Today, they stand as real-world benchmarks for evaluating spatial intelligence in vision–language models, combining perception, reasoning, and decision-making (Liu et al., 2023).

With the rapid progress of vision–language models (VLMs), existing CAPTCHA benchmarks suffer from several fundamental limitations. While Open CaptchaWorld (Luo et al., 2025) introduces reasoning-related difficulty metrics, it lacks reasoning annotations, preventing a comprehensive evaluation of models' reasoning abilities. Meanwhile, many recent general solvers (e.g., Halligan) achieve strong performance by combining VLMs with auxiliary tools and finetuned model (Teoh et al., 2025) (Deng et al., 2024) (Wu et al., 2025), yet they do not explicitly incorporate reasoning, and the lack of reasoning annotations further obscures the intrinsic reasoning capacity of the underlying models. Besides, most other datasets only provide CAPTCHA images with corresponding answers (such as coordinates) and evaluate correctness by measuring whether the distance between predicted and ground truth values falls within an empirically set threshold. This mismatch often

054 yields offline results that fail to reflect online performance and fail to capture the reasoning processes underlying successful CAPTCHA solving, as we will discuss in detail in §3.1. Ultimately, a
 055 central gap remains: no prior work has definitively answered whether reasoning itself is the key to
 056 solving CAPTCHA.
 057

058 In this paper, we create the first real-world
 059 benchmark CAPTCHA-X with reasoning and
 060 show evidence that reasoning is the key to solving
 061 CAPTCHAs. Directly applying commer-
 062 cial VLMs to solve CAPTCHAs, especially
 063 highly difficult tasks, achieves only an accuracy
 064 of 21.9%. underscoring severe deficits in spa-
 065 tial reasoning. As shown in Figure 1, we have
 066 seven categories CAPTCHA collection.

067 Once reasoning is introduced, however, perfor-
 068 mance statistically significantly improves by an
 069 average of 27.5% relative to the non-reasoning
 070 baseline. This confirms that reasoning funda-
 071 mentally changes models’ reasoning accuracy.
 072 To further validate this finding, we design an
 073 agentic VLM approach that relies only on large models with reasoning, without requiring complex
 074 toolchains or task-specific fine-tuned models.

075 Our contributions can be summarized as follows:

- 076 • We introduced CAPTCHA-X, the first real-world CAPTCHA benchmark with reasoning.
 077 CAPTCHA-X covers seven challenges with authentic annotations, region-level acceptance zones,
 078 and reasoning steps to systematic evaluation of reasoning capability for VLMs.
- 079 • Using CAPTCHA-X, we demonstrated the importance of reasoning for CAPTCHA solving and
 080 exposed severe deficits in existing VLMs’ spatial reasoning capability.
- 081 • Experiments on our benchmark show that incorporating reasoning improves performance by
 082 27.5% relative to the baseline, and statistical analysis confirms the improvement is highly signif-
 083 icant ($p < 0.001$), providing the first systematic evidence that reasoning fundamentally improves
 084 model accuracy.
- 085 • To further validate our finding, we propose a general agentic VLM framework that operationalizes
 086 the model’s reasoning process through a structured pipeline, enabling robust CAPTCHA solving
 087 without auxiliary components or task-specific adaptations. This framework serves as a conceptual
 088 validation that reasoning alone suffices to solve real-world CAPTCHAs. On our CAPTCHA-X,
 089 this design achieves an average accuracy of 83.9% across seven CAPTCHA categories and sets
 090 new state-of-the-art results on five categories in general solving agents.

092 2 RELATED WORK

094 **CAPTCHA Evolution and Benchmarking.** Over two decades, CAPTCHAs evolved from dis-
 095 torted text (Von Ahn et al., 2003) to image-based challenges like Asirra, later broken by machine
 096 learning (Hitaj et al., 2020). This fragility spurred variants requiring logical reasoning and multi-
 097 step interaction. Recent benchmarks such as MCA-Bench (Wu et al., 2025) and Bot-Hard (Teoh
 098 et al., 2025) emphasize multimodal reasoning and robustness, framing CAPTCHAs as tests of spa-
 099 tial intelligence. Yet, as Table 1 shows, gaps remain: Open CaptchaWorld (Luo et al., 2025) uses
 100 synthetic data without reasoning labels; Halligan (Teoh et al., 2025) and OEDIPUS (Deng et al.,
 101 2024) provide real data but lack reasoning annotations; and MCA-Bench, though large, is synthetic
 102 and detached from real-world challenges. By contrast, our CAPTCHA-X is one of the few large-
 103 scale real-world datasets (1,839 puzzles), and uniquely enriched with detailed reasoning annotations
 104 and region-based validation. This makes it the first benchmark to evaluate both solving accuracy
 105 and reasoning in vision–language models under realistic conditions.

106 **Reasoning in Visual CAPTCHA Solving.** Reasoning has become a decisive factor in solving
 107 modern CAPTCHAs. Early VLM-based solvers emphasized perceptual accuracy but failed on tasks
 108 requiring spatial inference or multi-step logic (Shi et al., 2019). Later work explored adversarial and

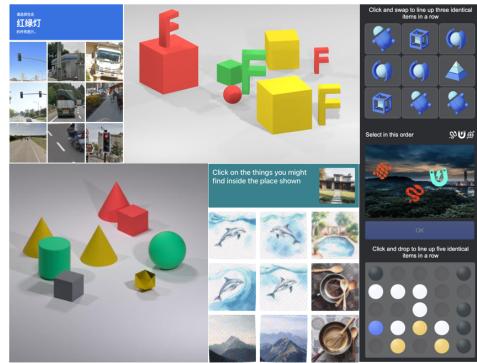


Figure 1: Our CAPTCHA-X Benchmark.

108
109
110 Table 1: CAPTCHA Benchmark Comparisons.
111
112
113
114
115

Benchmark	Real world	Reasoning	Region Consistent	Scale
Open CaptchaWorld (Luo et al., 2025)	✗	✗	✗	225
Halligan (Teoh et al., 2025)	✓	✗	✓	2600
OEDIPUS (Deng et al., 2024)	✓	✗	✗	300
MCA-Bench (Wu et al., 2025)	✗	✗	✗	180000
CAPTCHA-X (Ours)	✓	✓	✓	1839

cognitive-inspired CAPTCHA designs, showing that robustness depends not only on recognition but also on following reasoning chains (Bursztein et al., 2011; Yan & El Ahmad, 2016). Recent methods employ large language models to guide multi-modal perception, yet their evaluation usually reports only final accuracy without reasoning annotations or ablations (Ye et al., 2022). Platforms like Open CaptchaWorld attempted to capture reasoning complexity with new metrics and task designs, but still lacked reasoning annotations, limiting comprehensive evaluation across models.

Spatial Reasoning Benchmarks. Spatial reasoning is central to visual intelligence, motivating benchmarks such as ARC-AGI (Chollet, 2019) with grid-based puzzles testing object permanence and spatial relations, CLEVR (Johnson et al., 2017) for compositional reasoning, and PTR (Hong et al., 2021) for part-whole hierarchies. Extending to 3D, 3DSRBench (Ma et al., 2024) exposes large human–machine gaps. Distinctly, our CAPTCHA benchmark leverages decades of adversarially tested human–machine challenges, offering spatial reasoning tasks inherently designed to reveal AI weaknesses.

3 METHOD

3.1 DATA COLLECTION AND CURATION

To address the limitations of existing benchmarks, we developed CAPTCHA-X through a systematic data collection pipeline with high-quality, reasoning steps annotations.

Data Collection. We collect CAPTCHA data by programmatically interacting with websites using Selenium (Jason Huggins) and PyAutoGUI (Sweigart), while recording comprehensive mouse action sequences and screenshots before and after each puzzle. The detailed data collection process is provided in §A.1.

Grounding Annotation Generation. After solving a CAPTCHA, we record the click coordinates, which may not fall exactly at the object center. We therefore define acceptance regions by manually marking all valid circles or boxes and count a click as correct if it falls within one of them. Unlike prior work that uses a fixed threshold around the click, our approach covers the full target area more reliably, as shown in Figure 2.

Reasoning Steps Generation. To create reasoning annotations with accurate mouse actions, we use LLMs (i.e., GPT-5) to generate step-by-step reasoning steps. We choose LLM-based generation because manual annotation is highly labor-intensive, and manually written reasoning steps tend to lack diversity. Concretely, we condition the LLM on the ground-truth action trajectory for each puzzle and employ carefully designed prompts that are (1) goal-directed, explicitly stating the CAPTCHA’s objective and required click targets, (2) vision-language aware, maximally exploiting the LLM’s ability to jointly process visual content and text, (3) naturally expressed, encouraging concise and conversational reasoning steps, and (4) challenging, designed to maximally elicit the model’s reasoning ability. The prompt template is provided in §A.3.

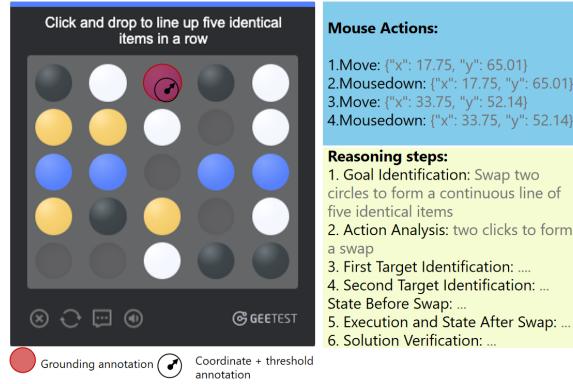


Figure 2: Grounding annotation (red) versus threshold-based annotation (black) in a **GeeTest Gobang** puzzle, along with recorded mouse actions and reasoning steps. These mouse actions and reasoning steps are generated by using carefully designed prompts.

162
 163 **Quality Assurance.** To ensure the reliability
 164 and accuracy of CAPTCHA-X, every generated
 165 reasoning step underwent rigorous human ver-
 166 ification by four domain experts. Each expert
 167 independently scored the quality of the reason-
 168 ing steps on a 0–10 scale. If the score dif-
 169 ference among the experts exceeded 2 points,
 170 or if the average score fell below 5, the sam-
 171 ple was jointly re-examined. Expert agreement
 172 reached 98% under this criterion, and the re-
 173 maining cases were resolved through discus-
 174 sion, yielding 100% consensus in the final an-
 175 notations. This multi-expert verification pro-
 176 cess ensures that CAPTCHA-X provides a robust and trustworthy foundation for evaluating the
 177 spatial reasoning capabilities of vision-language models.
 178
 179 **CAPTCHA-X.** Our benchmark comprises 1,839 CAPTCHA puzzles across seven categories, as
 180 shown in Figure 3. It covers grid-based puzzles, spatial reasoning tasks, and mixed styles, with each
 181 category contributing about 10–16% of the total for balanced distribution. For every puzzle, we
 182 provide reasoning steps and mouse action sequences to evaluate both solving accuracy and reasoning
 183 quality. An example from Gobang is shown in Figure 2.
 184

3.2 CAPTCHA EVALUATION METRICS

184 To systematically evaluate models’ capability in solving CAPTCHAs, we define a comprehensive
 185 evaluation metric. Specifically, our metrics consider both the correctness of actions and the reason-
 186 ing by comparing with our annotated ground truth.
 187

We formalize the answer to a CAPTCHA puzzle as an ordered sequence:

$$\mathcal{S} = \{(a_1, c_1), (a_2, c_2), \dots, (a_m, c_m); R\}, \quad (1)$$

188 where (a_i, c_i) denotes the i -th action and its associated coordinate; $R = \langle r_1, r_2, \dots, r_k \rangle$ denotes the
 189 reasoning process, expressed as a sequence of steps.
 190

3.2.1 ACTION ACCURACY

191 Our metric measures if the predicted action–coordinate sequence $\{(a_1, c_1), (a_2, c_2), \dots, (a_N, c_N)\}$
 192 exactly matches the ground-truth sequence in both order and correctness. Let a_i^* denote the ground-
 193 truth action at step i , (\hat{x}_i, \hat{y}_i) denote the predicted coordinate c_i , and \mathcal{RG}_i the corresponding accep-
 194 tance region. We define sequence-level accuracy as:
 195

$$AccRate = \frac{1}{M} \sum_{j=1}^M \mathbf{1}\left(a_i^{(j)} = a_i^{*(j)} \wedge (\hat{x}_i^{(j)}, \hat{y}_i^{(j)}) \in \mathcal{RG}_i^{(j)}, \forall i\right), \quad (2)$$

196 where M is the total number of CAPTCHA puzzles. Here $\mathbf{1}\{\cdot\}$ returns 1 only if the entire predicted
 197 sequence exactly matches the ground truth in both action order and coordinates, and 0 otherwise.
 198

3.2.2 REASONING ACCURACY

199 To comprehensively evaluate the quality of model-predicted reasoning, we design multiple new
 200 metrics for reasoning, each motivated by a distinct aspect of reasoning quality. We argue that high-
 201 quality reasoning steps should achieve high solving accuracy or capture maximal complexity with
 202 minimal reasoning cost.
 203

204 **Reasoning Steps.** To measure the granularity of reasoning, we count the number of reasoning steps
 205 in the generated textual reasoning. Since our reasoning is expressed as step-by-step text, this metric
 206 naturally reflects the level of detail in the reasoning process. A larger number of steps typically
 207 implies a more complex reasoning trajectory, but also indicates reduced reasoning efficiency.
 208

209 **Reasoning Length.** We measure the total number of tokens in the generated reasoning text. In
 210 contrast to Reasoning Steps, which capture the structural depth of reasoning, this metric quantifies
 211 the overall textual length, offering a finer-grained view of reasoning cost.
 212

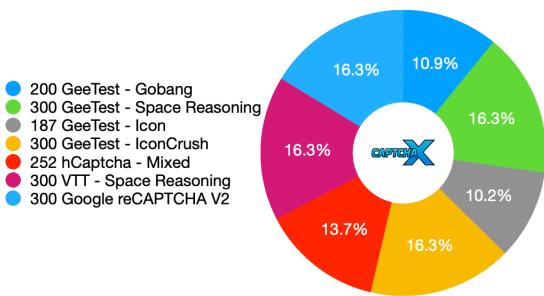


Figure 3: Distribution of our benchmark.

174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215

216 **Reasoning Score.** To evaluate alignment with ground-truth reasoning, we use four different large
 217 language models (LLMs) to provide automatic scores. Following the HD-Eval framework (Li et al.,
 218 2023), the evaluation is decomposed into multiple sub-dimensions to reduce potential bias. For-
 219 mally, if $s_{i,m}$ denotes the score for instance i from model m , then

$$220 \quad S_i = \frac{1}{M} \sum_{m=1}^M s_{i,m}, \quad M = 4. \quad (3)$$

223 To verify that LLM-based evaluation is consistent with human judgment, we randomly sampled 5%
 224 of the instances from each CAPTCHA category and asked human experts to provide independent
 225 scores. The Pearson correlation between the aggregated LLM scores and human scores reached
 226 **0.92**, indicating that our automatic evaluation method is well aligned with human preference.

227 **Reasoning Efficiency.** To assess the trade-off between predictive accuracy and reasoning cost, we
 228 define an efficiency metric. Let Acc_i denote the accuracy of model i , $\hat{L}_i = L_i/\bar{L}$ the normalized
 229 reasoning length, and $\hat{S}_i = S_i/\bar{S}$ the normalized reasoning steps. With equal weights $\alpha = \beta = 0.5$,
 230 efficiency is computed as

$$231 \quad Efficiency_i = \frac{Acc_i}{\alpha \cdot \hat{L}_i + \beta \cdot \hat{S}_i}. \quad (4)$$

233 Values are further using min–max normalized to $(0, 1)$. In all, higher reasoning efficiency reflects
 234 the model achieving stronger accuracy with fewer steps or tokens, which is more efficient.

236 **Trajectory Complexity Index (TCI).** To quantify the structural complexity of reasoning trajec-
 237 tories, we capture linguistic signals such as backtracking words (*but, however, etc.*) and symbolic
 238 markers (coordinates, grid indices, etc.). For each instance j in group i , we aggregate feature counts
 239 $F_{i,j}$ and normalize them by group-level averages:

$$240 \quad z_{i,j} = \frac{\sum_F (F_{i,j} - \bar{F}_i)}{0.5 \cdot (s_i/\bar{s}) + 0.5 \cdot (t_i/\bar{t})}. \quad (5)$$

242 The final TCI is obtained by applying a sigmoid function, which maps the feature values into the
 243 normalized range of $(0, 1)$:

$$244 \quad TCI_i = \sigma \left(\frac{1}{N_i} \sum_{j=1}^{N_i} z_{i,j} \right), \quad \sigma(x) = \frac{1}{1 + e^{-x}}. \quad (6)$$

247 A higher TCI indicates frequent backtracking or symbolic reasoning, demonstrating the intrinsic
 248 complexity of the reasoning path, and also reflecting higher information density.

250 3.3 VISION-LANGUAGE MODEL AGENTIC PIPELINE

252 To further validate our findings, we introduce a novel agentic framework that, unlike prior solvers,
 253 relies solely on a VLM’s inherent reasoning ability without external toolchains or fine-tuned models
 254 as shown in Figure 4.

255 The pipeline begins with a **Category Judger** that routes each puzzle to either a grid-based or a
 256 non-grid-based branch. This classification is crucial because the two types of puzzles require funda-
 257 mentally different reasoning strategies. And all the clickable CAPTCHA can be divided into
 258 these two categories. For grid-based puzzles (e.g., Google reCAPTCHA, GeeTest IconCrush), a
 259 dedicated **Mapping Tool**, implemented as a large language model guided by carefully designed
 260 prompts, converts the puzzle board into an $A \times A$ symbolic grid (e.g., $[a, a, a; b, b, b; c, c, c]$). This
 261 abstraction enables the **Reasoning Steps Generator** to conduct structured step-by-step inference
 262 over the grid, leading to accurate identification of the target cell(s). In contrast, non-grid-based
 263 puzzles (e.g., GeeTest Icon, VTT Space Reasoning) rely on spatial semantics rather than grid index-
 264 ing, and therefore the **Reasoning Steps Generator** first produces reasoning steps that are refined
 265 by a **Spatial Understanding Expert**, which grounds objects and regions into spatial coordinates.
 266 To ensure logical consistency across both branches, a **Discriminator** validates that the generated
 267 reasoning is coherent before passing it forward. The validated reasoning is then handled by an **Ac-
 268 tion Generator**, which translates reasoning outputs into executable click coordinates. Finally, an
 269 **Action Executor** performs the actual clicks on the screen to solve the CAPTCHA. By explicitly
 distinguishes between grid-based and non-grid-based categories, this unified framework highlights
 the central role of reasoning in solving diverse visual CAPTCHA.

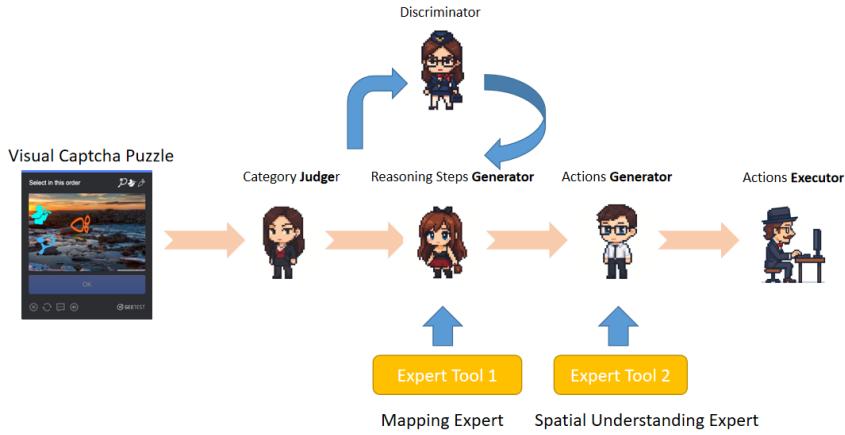


Figure 4: Our Agentic Vision-Language Model Pipeline.

4 EXPERIMENTS

We conduct experiments to assess the role of reasoning in CAPTCHA solving by comparing model performance with and without reasoning and measuring spatial alignment via L_2 distance. All experiments use a fixed API configuration (temperature = 0, seed = 41) for reproducibility. We report results in two dimensions: **Action Evaluation**, which measures end-task accuracy, and **Reasoning Evaluation**, which analyzes the quality of intermediate reasoning steps.

4.1 ACTION EVALUATION

Evaluation of Prediction Accuracy. As shown in Table 2, prompting models to generate reasoning steps almost always improves **solving accuracy**, confirming that reasoning provides strong guidance for CAPTCHA solving. Figure 5 further illustrates this trend.

Table 2: Model performance (WR = With Reasoning, WOR = Without Reasoning) across different CAPTCHA types.

Model	Gobang		Icon		Iconcrush		Recaptcha		Space Reasoning		heaptcha		VTT	
	WR	WOR	WR	WOR	WR	WOR	WR	WOR	WR	WOR	WR	WOR	WR	WOR
<i>GPT Family</i>														
GPT-O3	2.00	0.00	22.00	29.79	3.67	3.67	10.67	1.82	10.00	1.50	27.67	0.00	7.00	3.67
GPT-4O	0.00	0.00	9.52	7.48	28.00	23.33	11.00	1.52	47.00	40.00	23.71	1.92	42.00	37.67
GPT-5-Nano	0.00	0.00	0.00	0.00	28.00	23.33	8.33	2.00	31.00	32.00	58.33	40.00	30.67	32.67
<i>Gemini Family</i>														
Gemini-2.5-Pro	57.00	48.00	59.30	46.30	75.00	66.67	64.00	56.52	68.00	64.67	80.95	81.35	63.00	56.00
Gemini-2.0-Flash	2.00	0.00	36.33	39.67	2.33	2.00	36.33	31.67	53.00	51.00	43.21	0.79	45.67	47.67
<i>Other Models</i>														
Claude-4-Opus	18.00	8.00	17.65	13.00	18.00	6.67	12.33	3.33	29.00	23.33	26.70	0.00	26.67	23.67
Qwen-2.5VL-72B	0.00	0.00	0.00	0.00	6.00	5.00	14.00	0.00	24.00	27.67	38.10	36.11	19.33	26.67
<i>Ours</i>														
Captcha-X-Agent-O3 (Ours)	39.00	—	80.10	—	93.00	—	69.40	—	96.67	—	91.74	—	79.00	—
Captcha-X-Agent-2.5-Pro (Ours)	67.44	—	78.60	—	92.33	—	73.00	—	98.67	—	94.44	—	80.67	—

Gemini-2.5-Pro achieves the highest accuracy among existing models, with Gemini-2.0-Flash and GPT-5-Nano following at moderate levels. Claude-4-Opus, GPT-4O, GPT-O3, and Qwen-2.5VL-72B also benefit from reasoning, though with lower absolute performance. Building on GPT-O3 and Gemini-2.5-Pro, our agentic pipeline achieves the best accuracy across all CAPTCHA categories.

Evaluation of L2 Distance. Beyond accuracy, our dataset provides region centers to compute L_2 distance between predictions and ground truth. This metric directly measures spatial grounding: smaller distances indicate precise localization, while high accuracy with large distances may reflect

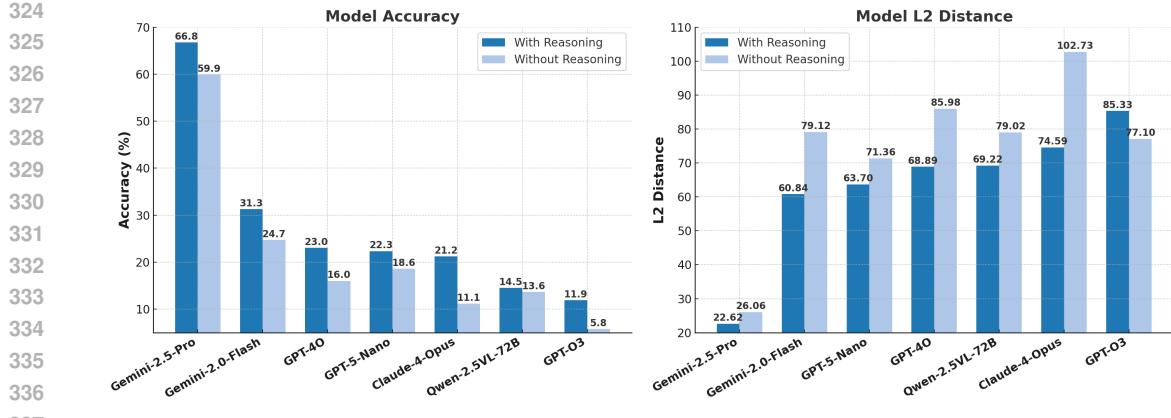


Figure 5: Model Accuracy and L2 Distance with and without reasoning.

Table 3: L2 distance between predicted coordinates and ground-truth centers across CAPTCHA benchmarks (lower is better).

Model	Gobang		Icon		Iconcrush		Recaptcha		Space Reasoning		haptcha		VTT	
	WR	WOR	WR	WOR	WR	WOR	WR	WOR	WR	WOR	WR	WOR	WR	WOR
<i>GPT Family</i>														
GPT-O3	149.54	65.73	27.56	17.34	127.71	131.78	14.64	17.25	99.89	102.69	67.62	90.07	110.37	114.82
GPT-4O	134.22	199.17	24.28	25.72	125.47	131.24	13.51	20.65	48.67	53.26	87.41	111.51	48.64	60.29
GPT-5-Nano	135.06	151.10	30.72	34.87	104.87	120.52	13.04	16.43	56.88	55.70	48.44	60.18	56.91	60.73
<i>Gemini Family</i>														
Gemini-2.5-Pro	19.13	27.75	8.63	9.25	34.67	38.94	3.41	2.65	34.23	34.32	18.12	27.98	40.18	41.56
Gemini-2.0-Flash	120.72	148.35	12.86	18.36	134.93	128.94	9.54	14.83	40.74	41.67	57.87	153.26	49.25	48.41
<i>Other Models</i>														
Claude-4-Opus	182.58	233.48	24.24	35.76	101.19	154.65	31.06	25.47	59.26	63.06	63.98	134.00	59.83	72.67
Qwen-2.5VL-72B	121.87	129.72	29.37	30.37	126.29	163.97	13.97	21.02	62.67	68.16	58.98	62.93	71.42	76.95
<i>Ours</i>														
Captcha-X-Agent-O3 (Ours)	29.87	—	5.19	—	26.48	—	2.52	—	1.15	—	8.33	—	3.94	—
Captcha-X-Agent-2.5-Pro (Ours)	37.12	—	5.03	—	22.32	—	2.91	—	1.34	—	9.74	—	3.47	—

boundary luck. Using both accuracy and L_2 distance yields a more reliable measure of solving quality.

As shown in Table 3, Gemini-2.5-Pro achieves the smallest L_2 distances among existing models, with Gemini-2.0-Flash also showing relatively strong spatial grounding. In contrast, weaker models such as GPT-O3 and Claude-4-Opus exhibit very large errors, exceeding 100 pixels in several cases. Notably, our agent consistently achieves the lowest L_2 distances across all CAPTCHA types, demonstrating superior localization. These results confirm that L_2 distance provides complementary evidence of grounding beyond solving accuracy.

To further validate this relationship, we plot the average performance of all models across all CAPTCHA types in Figure 6. The regression analysis reveals a very strong correlation: models with higher solving accuracy consistently achieve smaller L_2 distances.

Importantly, no outliers are observed, indicating that this pattern holds universally across all tested models.

Statistical Validation. For solving accuracy, we adopt McNemar’s test (McNemar, 1947), which is designed for paired binary outcomes, and obtain a highly significant result ($p < 0.001$). For L_2 distance, we apply the Wilcoxon signed-rank test, and also obtain $p < 0.001$. Moreover, regression analysis between accuracy and L_2 distance yields a strong negative correlation with $R^2 = 0.97$ and $p < 0.001$, confirming that higher accuracy is consistently associated with smaller localization

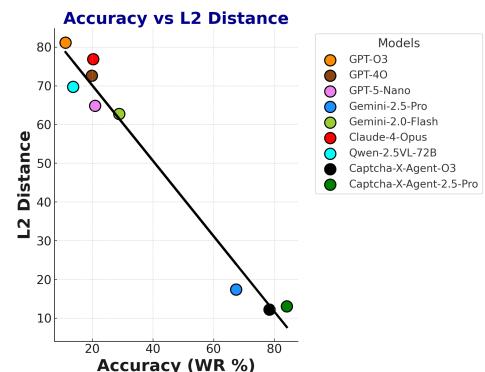
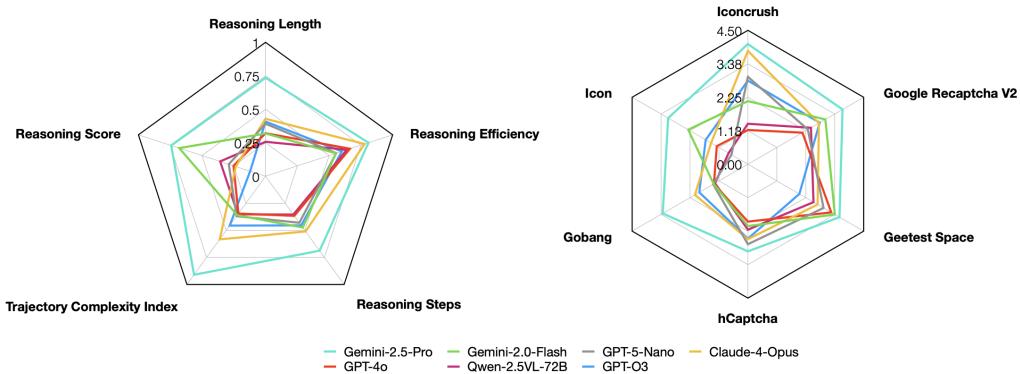


Figure 6: Average Accuracy vs L2 Distance.

378 errors. On average, reasoning improves solving accuracy by 27.5% while reducing L_2 distance by
 379 14.6%, further validating its effectiveness. Together, these results provide strong statistical evidence
 380 that reasoning significantly improves both solving accuracy and spatial localization.
 381

382 4.2 REASONING EVALUATION



397
 398 Figure 7: Reasoning Evaluation with Multi-Dimensions: The left radar chart shows overall reasoning
 399 metrics averaged across CAPTCHA categories. The right radar chart reports reasoning scores
 400 by CAPTCHA type.

401 To systematically assess reasoning quality, we evaluate multiple reasoning metrics here. Figure 7
 402 presents two complementary radar charts: the left radar chart aggregates overall reasoning metrics
 403 averaged across all CAPTCHA categories, while the right radar chart highlights reasoning scores
 404 by individual CAPTCHA type. For clarity, we only report the aggregated trends here, while the full
 405 quantitative results for all metrics and captcha types are provided in the §A.2.
 406

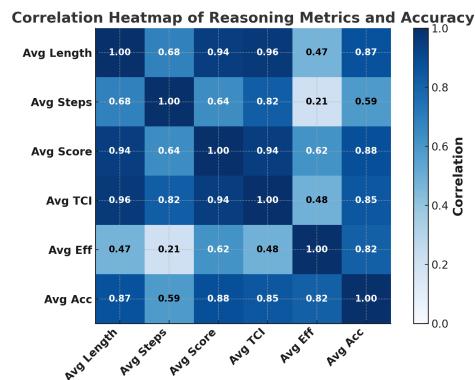
407 **Overall Reasoning Metrics.** The left radar chart summarizes average reasoning behaviors across models. Gemini-2.5-Pro is the strongest, combining long and
 408 information-dense reasoning with the highest efficiency. Claude-4-Opus ranks second but is much
 409 less efficient, while Gemini-2.0-Flash achieves comparable efficiency with shorter reasoning. In
 410 contrast, weaker models such as Qwen-2.5VL-72B produce short and low-efficiency traces, indicating
 411 limited reasoning capacity.
 412

413 **Reasoning Score by CAPTCHA Type.** The
 414 right radar chart shows reasoning alignment across
 415 CAPTCHA types. Gemini-2.5-Pro achieves the
 416 highest scores overall, demonstrating strong
 417 reasoning quality and generalization. Claude-4-Opus ranks
 418 second but with notable drops on some tasks, while
 419 GPT-O3 and GPT-4O remain inconsistent. Qwen-
 420 2.5VL-72B performs the weakest, rarely exceeding
 421 a score of 2.0.
 422

423 4.3 Correlation Analysis of Reasoning Metrics.

424 We conduct a correlation analysis across seven models to verify the validity of our proposed metrics. As
 425 shown in Figure 8, Reasoning Score ($r = 0.88$) and Efficiency ($r = 0.82$) both correlate strongly with
 426 accuracy, confirming that they are meaningful pre-
 427 dictors of task performance rather than ad-hoc mea-
 428 sures. Other metrics such as Length, Steps, and TCI
 429 capture complementary aspects of reasoning complexity, further supporting the effectiveness of our
 430 metric design.
 431

432 4.4 Reasoning Scaling Law in CAPTCHA.



433 Figure 8: Correlation Heatmap.

Table 4: Comparison of CAPTCHA Solving Accuracy for Different CAPTCHA Solvers

Model	Icon	Space Reasoning	VTT	Iconcrush	hCaptcha	Gobang	Google Recaptcha V2
<i>Baseline Models</i>							
Baseline	46.3	64.67	50.00	66.7	0	48	56.52
OEDIPUS-DSL	–	65.4	–	67.4	–	80.2	–
Halligan	46	–	23	98	82	92	68
VTTsolver (Gao et al., 2021b)	–	90.8	50	–	–	–	–
PhishDecloaker (Teoh et al., 2024)	–	–	–	–	74	–	72
<i>Ours</i>							
Captcha-X-Agent (Ours)	80.1	98.67	80.67	93	94.44	67.44	73

Our analysis reveals a linear reasoning scaling law consistently observed across all evaluated models, showing that reasoning score grows proportionally with both reasoning length and trajectory complexity. Specifically, we observe a near-perfect linear fit, e.g., $\text{Length} \approx 78.95 \cdot \text{Score} - 62.11$ ($p < 0.01$ in significance test) and $\text{TCI} \approx 0.349 \cdot \text{Score} - 0.333$ ($p < 0.01$), across diverse models. Since reasoning score strongly predicts task accuracy ($r = 0.88$), this law establishes a principled connection between reasoning cost and problem-solving ability, enabling accuracy to be forecasted directly from reasoning complexity (Figure 9).

4.3 AGENTIC EVALUATION

We evaluate both a direct-prediction baseline and our proposed reasoning-centric agentic pipeline for CAPTCHA solving. The baseline uses Gemini-2.5-Pro without reasoning, where the model directly outputs click coordinates from the CAPTCHA image.

Among prior solvers on our dataset, Halligan (tool-integrated) and OEDIPUS (fine-tuned) are the only general agent models available for comparison. In contrast, our agent achieves state-of-the-art performance on five out of seven tasks (Table 4), with 98.67 on Space Reasoning, 80.67 on VTT, 94.44 on hCaptcha, 80.1 on Icon, and 73 on Google Recaptcha V2, while also remaining competitive on Iconcrush (93) and Gobang (67.44). These results highlight that our approach achieves strong performance across all CAPTCHA types without toolchains or task-specific finetuning, underscoring reasoning as the key capability for modern CAPTCHA solving.

5 LIMITATION

While our work highlights the role of reasoning in improving CAPTCHA-solving accuracy, it also raises security concerns. Our results suggest that modern vision-language models can bypass many existing CAPTCHA designs, indicating that CAPTCHAs may soon lose their effectiveness as a security barrier. We stress that our benchmark is for research purposes only, and urge the security community to explore next-generation human verification mechanisms that remain robust against reasoning-driven solvers.

6 CONCLUSION

Our work shows that reasoning is a decisive capability for solving modern visual CAPTCHA. With CAPTCHA-X, we pair real-world CAPTCHA challenges with reasoning steps, introduce reasoning-oriented metrics, and propose an agentic pipeline that isolates the role of reasoning. These findings highlight reasoning as central to advancing multimodal AI.

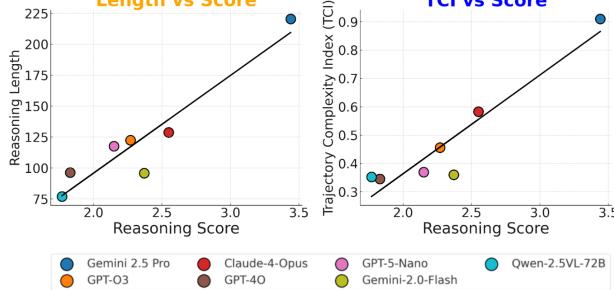
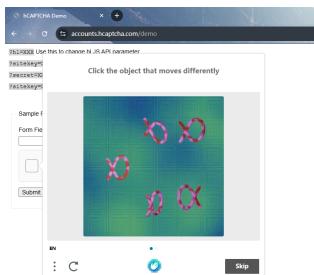


Figure 9: Reasoning Scaling Law in CAPTCHA.

486 **A APPENDIX**
487488 **A.1 DATA COLLECTION**
489

490 Our data collection approach leverages Selenium (Jason Huggins) and PyAutoGUI (Sweigart)
 491 to programmatically interact with websites hosting various CAPTCHA types, including GeeTest
 492 challenges (GeeTest) (Gobang, Icon, IconCrush), hCaptcha systems (Intuition Machines, Inc.),
 493 VTT (Wang et al., 2018a), and reCAPTCHA V2 (Google). For each CAPTCHA instance, we record
 494 comprehensive interaction data during the solving process, capturing all mouse actions with their
 495 corresponding screen coordinates. Our annotation scheme covers five distinct mouse action types,
 496 including mouse-click, mouse-down, mouse-up, mouse-drag, and mouse-move events. To provide a
 497 complete visual context, we capture screenshots both before and after solving each CAPTCHA puz-
 498 zle, enabling analysis of the initial problem state and solution verification. As shown in Figure 10
 499



500
501
502
503
504
505
506
507
508 Figure 10: We employ automated tools (Selenium and PyAutoGUI) to collect CAPTCHA images
509 and interaction data during the solving process.
510

511 **A.2 REASONING METRICS FOR EACH CAPTCHA TYPE**
512

513 To complement overall solving accuracy, we further report detailed reasoning-oriented metrics for
 514 each CAPTCHA type (Tables 5–10). These include *Reasoning Length* (textual size of generated
 515 reasoning), *Reasoning Steps* (discrete step count), *Reasoning Score* (human-annotated quality on
 516 a 0–5 scale), *Trajectory Complexity Index* (structural complexity of the predicted action path), and
 517 *Reasoning Efficiency* (normalized score relative to reasoning cost). Together, these metrics provide a
 518 fine-grained view of how different models trade off reasoning verbosity, structure, and effectiveness
 519 across tasks such as Icon, Gobang, and hCaptcha.
520

521 Table 5: Reasoning metrics for Icon.
522

Model	Reasoning Length	Reasoning Steps	Reasoning Score	Trajectory Complexity Index	Reasoning Efficiency
Gemini 2.5 Pro	179.03	5.47	3.10/5.00	0.9697	0.843
GPT-O3	134.99	4.87	1.64/5.00	0.2052	0.387
Claude 4 Opus	124.74	6.21	1.43/5.00	0.3806	0.287
GPT-4O	88.81	6.16	1.21/5.00	0.3661	0.181
GPT-5-Nano	121.93	5.11	0.64/5.00	0.4022	0.000
Gemini-2.0-Flash	81.16	3.34	2.32/5.00	0.1956	1.000
Qwen-2.5VL-72B	71.93	5.13	0.75/5.00	0.3110	0.000

531 Table 6: Reasoning metrics for Gobang.
532

Model	Reasoning Length	Reasoning Steps	Reasoning Score	Trajectory Complexity Index	Reasoning Efficiency
Gemini 2.5 Pro	287.29	8.83	3.31/5.00	0.9032	1.0
GPT-O3	110.33	6.44	1.89/5.00	0.8372	0.0673
Claude 4 Opus	104.90	7.40	2.06/5.00	0.6997	0.5721
GPT-4O	118.31	6.12	1.32/5.00	0.1174	0
GPT-5-Nano	90.28	4.50	1.35/5.00	0.1554	0
Gemini-2.0-Flash	148.38	2.73	1.35/5.00	0.4279	0
Qwen-2.5VL-72B	97.96	8.70	1.28/5.00	0.5818	0.0588

540 Table 7: Reasoning metrics for hCaptcha.
541

542 Model	543 Reasoning Length	544 Reasoning Steps	545 Reasoning Score	546 Trajectory Complexity Index	547 Reasoning Efficiency
Gemini 2.5 Pro	276.18	8.99	2.93/5.00	0.9213	0.3177
GPT-O3	129.69	7.36	2.50/5.00	0.6219	0.0359
Claude 4 Opus	123.43	8.67	2.52/5.00	0.4227	0
GPT-4O	61.53	6.37	1.93/5.00	0.4435	0.135
GPT-5-Nano	119.03	4.98	2.69/5.00	0.3377	0.6497
Gemini-2.0-Flash	69.90	5.34	2.08/5.00	0.5417	0.5764
Qwen-2.5VL-72B	51.89	2.69	2.20/5.00	0.2150	1

549

550

551

552

553

554

555

556

Table 8: Reasoning metrics for GeeTest Space Reasoning.

557 Model	558 Reasoning Length	559 Reasoning Steps	560 Reasoning Score	561 Trajectory Complexity Index	562 Reasoning Efficiency
Gemini 2.5 Pro	171.00	6.50	3.56/5.00	0.9041	0.5478
GPT-O3	130.20	4.55	2.00/5.00	0.4450	0
Claude 4 Opus	130.55	5.13	2.71/5.00	0.8445	0.2393
GPT-4O	73.00	4.00	3.24/5.00	0.2278	0.782
GPT-5-Nano	63.97	1.90	2.94/5.00	0.2677	0.7928
Gemini-2.0-Flash	62.75	3.81	3.38/5.00	0.0903	1
Qwen-2.5VL-72B	74.87	4.62	2.55/5.00	0.4633	0.2901

564

565

566

567

568

569

570

571

Table 9: Reasoning metrics for Google reCAPTCHA V2.

572 Model	573 Reasoning Length	574 Reasoning Steps	575 Reasoning Score	576 Trajectory Complexity Index	577 Reasoning Efficiency
Gemini 2.5 Pro	215.03	8.10	3.68/5.00	0.8104	1.0
GPT-O3	104.01	7.25	2.79/5.00	0.3016	0.1143
Claude 4 Opus	153.57	8.70	2.76/5.00	0.6068	0.0732
GPT-4O	89.54	6.62	2.12/5.00	0.3874	0.1645
GPT-5-Nano	145.11	7.85	2.33/5.00	0.3952	0.0
Gemini-2.0-Flash	96.66	8.33	3.01/5.00	0.3909	0.8207
Qwen-2.5VL-72B	45.23	6.09	2.45/5.00	0.1026	0.4343

579

580

581

582

583

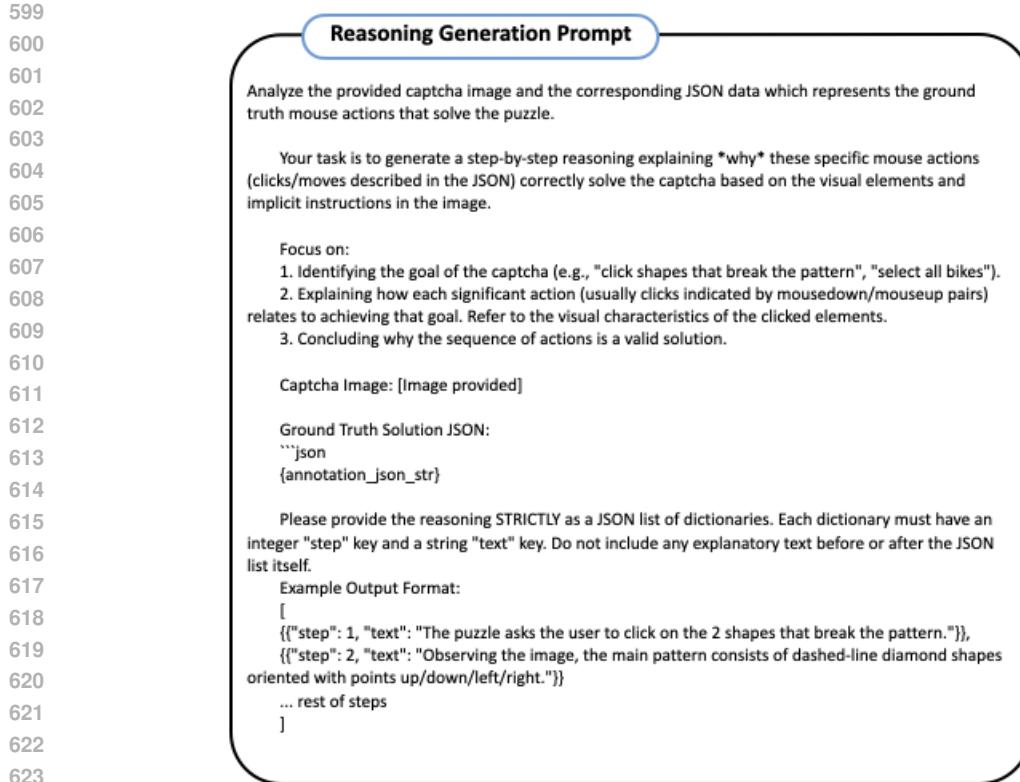
584

585

586

Table 10: Reasoning metrics for IconCrush.

587 Model	588 Reasoning Length	589 Reasoning Steps	590 Reasoning Score	591 Trajectory Complexity Index	592 Reasoning Efficiency
Gemini 2.5 Pro	194.40	10.71	4.04/5.00	0.9363	1.000
GPT-O3	126.01	5.54	2.81/5.00	0.3248	0.045
Claude 4 Opus	135.50	10.65	3.81/5.00	0.5435	0.257
GPT-4O	146.78	10.59	1.15/5.00	0.5258	0.053
GPT-5-Nano	165.54	9.00	2.94/5.00	0.6529	0.416
Gemini-2.0-Flash	115.71	9.67	2.12/5.00	0.5163	0.000
Qwen-2.5VL-72B	120.03	11.08	1.36/5.00	0.4380	0.059

594 A.3 REASONING GENERATION TEMPLATE
595596 We carefully design a **reasoning generation template** that guides the model to generate step-by-
597 step reasoning in a consistent and structured format for our benchmark’s reasoning annotations:
598625 Figure 11: Our prompt template.
626
627
628629 B ETHICS STATEMENT
630631 This work adheres to the ICLR Code of Ethics. In this study, no human subjects or animal exper-
632 imentation was involved. All datasets used, including CAPTCHA-X, were sourced in compliance
633 with relevant usage guidelines, ensuring no violation of privacy. We have taken care to avoid any
634 biases or discriminatory outcomes in our research process. No personally identifiable information
635 was used, and no experiments were conducted that could raise privacy or security concerns. We are
636 committed to maintaining transparency and integrity throughout the research process.
637638 C REPRODUCIBILITY STATEMENT
639640 We have made every effort to ensure that the results presented in this paper are reproducible. All
641 code and datasets have been made publicly available in an anonymous repository to facilitate repli-
642 cation and verification. The experimental setup, including training steps, model configurations, and
643 hardware details, is described in detail in the paper. We have also provided a full description of
644 our proposed CAPTCHA-X benchmark and evaluation metrics to assist others in reproducing our
645 experiments.
646647 We believe these measures will enable other researchers to reproduce our work and further advance
the field.

648
649 D LLM USAGE650 We used Large Language Models (LLMs) exclusively to polish the manuscript’s language and read-
651 ability; all scientific ideas, methodology, and analyses remain the sole responsibility of the authors.
652653
654 REFERENCES655 Elie Bursztein, Steven Bethard, Cyril Fabry, John C. Mitchell, and Dan Jurafsky. How Good Are Hu-
656 mans at Solving CAPTCHAs? A Large Scale Evaluation. In *Proceedings of the IEEE Symposium*
657 *on Security and Privacy*, pp. 399–413. IEEE, 2011.658 François Chollet. On the measure of intelligence. In *arXiv preprint arXiv:1911.01547*, 2019.
659660 Gelei Deng, Haoran Ou, Yi Liu, Jie Zhang, Tianwei Zhang, and Yang Liu. Oedipus: Llm-enhanced
661 reasoning captcha solver. *arXiv preprint arXiv:2405.07496*, 2024.662 Ziqi Ding, Geng Liu, Zihao Deng, Yan Liu, Jingsheng Chen, Yu Sui, Yang Li, Guoxing Long,
663 Melanie Blumestein, Yiting Chang, Liane Lewin-Eytan, He Huang, and Elad Yom-Tov. Illusion-
664 CAPTCHA: A CAPTCHA based on Visual Illusion, 2025.
665666 Yipeng Gao, Haichang Gao, Sainan Luo, Yang Zi, Shudong Zhang, Wenjie Mao, Ping Wang, Yulong
667 Shen, and Jeff Yan. Research on the Security of Visual Reasoning CAPTCHA. In *30th USENIX*
668 *Security Symposium (USENIX Security 21)*, pp. 3291–3308, 2021a.669 Yipeng Gao, Haichang Gao, Sainan Luo, Yang Zi, Shudong Zhang, Wenjie Mao, Ping Wang, Yulong
670 Shen, and Jeff Yan. Research on the security of visual reasoning CAPTCHA. In *30th USENIX*
671 *Security Symposium (USENIX Security 21)*, pp. 3291–3308, 2021b.
672673 GeeTest. The geetest website. <https://www.geetest.com/en/>
674 adaptive-captcha-demo.675 Google. recaptcha v2. <https://developers.google.com/recaptcha>.
676677 Dorjan Hitaj, Paolo Pagnotta, Briland Hitaj, Fernando Perez-Cruz, and Luigi V. Mancini. Capture
678 the Bot: Using Adversarial Examples to Improve CAPTCHA Robustness to Bot Attacks. In *IEEE*
679 *Intelligent Systems*, volume 36, pp. 104–112. IEEE, 2020.680 Yining Hong, Li Yi, Josh Tenenbaum, Antonio Torralba, and Chuang Gan. Ptr: A benchmark
681 for part-based conceptual, relational, and physical reasoning. *arXiv preprint arXiv:2112.05136*,
682 2021.
683684 Intuition Machines, Inc. hcaptcha. <https://www.hcaptcha.com/>.685 Jason Huggins. Selenium webdriver. <https://www.selenium.dev/>.687 Justin Johnson, Bharath Hariharan, Laurens Van Der Maaten, Li Fei-Fei, C Lawrence Zitnick, and
688 Ross Girshick. Clevr: A diagnostic dataset for compositional language and elementary visual
689 reasoning. In *Proceedings of the IEEE conference on computer vision and pattern recognition*,
690 pp. 2901–2910, 2017.691 Wei Li et al. Hd-eval: Aligning large language models with human feedback. In *Advances in Neural*
692 *Information Processing Systems (NeurIPS)*, 2023.
693694 Fangyu Liu, Guy Emerson, and Nigel Collier. Visual Spatial Reasoning. *Transactions of the Asso-*
695 *ciation for Computational Linguistics*, 11:635–651, 2023.696 Haoran Luo, Chen Zhang, Xiaoyu Liu, Jian Wang, and Zhenyu Chen. Open CaptchaWorld: A
697 Comprehensive Web-based Platform for Testing and Benchmarking Multimodal LLM Agents,
698 2025.
699700 Wufei Ma, Haoyu Chen, Guofeng Zhang, Celso M de Melo, Alan Yuille, and Jieneng Chen. 3dsr-
701 bench: A comprehensive 3d spatial reasoning benchmark. *arXiv preprint arXiv:2412.07825*,
2024.

702 Quinn McNemar. Note on the sampling error of the difference between correlated proportions or
 703 percentages. *Psychometrika*, 12(2):153–157, 1947. doi: 10.1007/BF02295996.
 704

705 Yichuan Shi, Zhou Li, Yong Xue, and Mengjun Xu. Adversarial CAPTCHAs: Evaluating and
 706 Enhancing Robustness of CAPTCHAs Using Adversarial Techniques. In *Proceedings of the*
 707 *2019 ACM SIGSAC Conference on Computer and Communications Security (CCS)*, pp. 322–338.
 708 ACM, 2019.

709 Al Sweigart. Pyautogui. <https://pyautogui.readthedocs.io/>.
 710

711 Xiwen Teoh, Yun Lin, Ruofan Liu, Zhiyong Huang, and Jin Song Dong. PhishDecloaker: Detect-
 712 ing CAPTCHA-cloaked phishing websites via hybrid vision-based interactive models. In *33rd*
 713 *USENIX Security Symposium (USENIX Security 24)*, pp. 505–522, 2024.

714 Xiwen Teoh, Yun Lin, Ruofan Liu, Zhiyong Huang, and Jin Song Dong. Bot-Hard: Making
 715 CAPTCHAs Resilient Against Advanced Solvers. In *Proceedings of the 34th USENIX Security*
 716 *Symposium*, pp. xxx–xxx. USENIX Association, 2025.

717 Luis Von Ahn, Manuel Blum, Nicholas J. Hopper, and John Langford. CAPTCHA: Using Hard AI
 718 Problems for Security. In *Advances in Cryptology—EUROCRYPT 2003*, pp. 294–311. Springer,
 719 2003.

720 Haipeng Wang, Feng Zheng, Zhuoming Chen, Yi Lu, Jing Gao, and Renjia Wei. A captcha design
 721 based on visual reasoning. In *2018 IEEE International Conference on Acoustics, Speech and*
 722 *Signal Processing (ICASSP)*, pp. 1967–1971, 2018a. doi: 10.1109/ICASSP.2018.8461764.

723 Haipeng Wang, Feng Zheng, Zhuoming Chen, Yi Lu, Jing Gao, and Renjia Wei. A CAPTCHA
 724 Design Based on Visual Reasoning. In *2018 IEEE International Conference on Acoustics, Speech*
 725 *and Signal Processing (ICASSP)*, pp. 1967–1971. IEEE, 2018b.

726 Zongyu Wu, Ming Zhang, Yifan Li, Hao Chen, and Wei Xu. Mca-bench: A multimodal captcha
 727 benchmark for evaluating reasoning in vision-language models. *arXiv preprint arXiv:2506.05982*,
 728 2025.

729 Jeff Yan and Ahmad Salah El Ahmad. A Survey of CAPTCHAs and Their Applications. *ACM*
 730 *Computing Surveys*, 48(4):52:1–52:39, 2016.

731 Dongdong Ye, Wei Wang, Xinyu Chen, and Ming Zhang. Recognizing Complex CAPTCHAs with
 732 Multimodal Deep Learning Models. In *Proceedings of the 30th ACM International Conference*
 733 *on Multimedia (ACM MM)*, pp. 1234–1242. ACM, 2022.

734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755