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Abstract

In this paper, we study the problem of bandits with knapsacks (BwK) in a non-
stationary environment. The BwK problem generalizes the multi-arm bandit (MAB)
problem to model the resource consumption associated with playing each arm. At
each time, the decision maker/player chooses to play an arm, and s/he will receive a
reward and consume certain amount of resource from each of the multiple resource
types. The objective is to maximize the cumulative reward over a finite horizon
subject to some knapsack constraints on the resources. Existing works study the
BwK problem under either a stochastic or adversarial environment. Our paper
considers a non-stationary environment which continuously interpolates these two
extremes. We first show that the traditional notion of variation budget is insufficient
to characterize the non-stationarity of the BwK problem for a sublinear regret due
to the presence of the constraints, and then we propose a new notion of global
non-stationarity measure. We employ both non-stationarity measures to derive
upper and lower bounds for the problem. Our results are based on a primal-dual
analysis of the underlying linear programs and highlight the interplay between the
constraints and the non-stationarity. Finally, we also extend the non-stationarity
measure to the problem of online convex optimization with constraints and obtain
new regret bounds accordingly.

1 Introduction

The multi-armed bandit (MAB) problem characterizes a problem for which a limited amount of
resource must be allocated between competing (alternative) choices in a way that maximizes the
expected gain. The bandits with knapsacks (BwK) problem generalizes the multi-armed bandits
problem to allow more general resource constraints structure on the decisions made over time, in
addition to the customary limitation on the time horizon. Specifically, for the BwK problem, the
decision maker/player chooses to play an arm at each time period; s/he will receive a reward and
consume certain amount of resource from each of the multiple resource types. Accordingly, the
objective is to maximize the cumulative reward over a finite time horizon and subject to an initial
budget of multiple resource types. The BwK problem was first introduced by Badanidiyuru et al.
[2013] as a general framework to model a wide range of applications, including dynamic pricing and
revenue management [Besbes and Zeevi, 2012], Adwords problem [Mehta et al., 2005] and more.

The standard setting of the BwK problem is stochastic where the joint distribution of reward and
resource consumption for each arm remains stationary (identical) over time. Under such setting, a
linear program (LP), that takes the expected reward and resource consumption of each arm as input,
both serves as the benchmark for regret analysis and drives the algorithm design [Badanidiyuru et al.,
2013, Agrawal and Devanur, 2014]. Notably, a static best distribution prescribed by the LP’s optimal
solution is used for defining the regret benchmark. An alternative setting is the adversarial BwK
problem where the reward and the consumption may no long follow a distribution and they can be
chosen arbitrarily over time. Under the adversarial setting, a sublinear regret is not achievable in
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the worst case; Immorlica et al. [2019] derive a O(log T ) competitive ratio against the static best
distribution benchmark which is aligned with the static optimal benchmark in the adversarial bandits
problem [Auer et al., 1995]. Another key of the BwK problem is the number of resource types d.
When d = 1, one optimal decision is to play the arm with largest (expected) reward to (expected)
resource consumption ratio, where the algorithm design and analysis can be largely reduced to the
MAB problem. When d > 1, the optimal decision in general requires to play a combination of arms
(corresponding the optimal basis of the underlying LP). Rangi et al. [2018] focus on the case of d = 1
and propose an EXP3-based algorithm that attains a regret of O(

√
mB logm) against the best fixed

distribution benchmark. Their result thus bridges the gap between the stochastic BwK problem and
the adversarial BwK problem for the case of d = 1. The difference between the cases of d = 1 and
d > 1 is also exhibited in the derivation of problem-dependent regret bounds for the stochastic BwK
problem [Flajolet and Jaillet, 2015, Li et al., 2021, Sankararaman and Slivkins, 2021].

In this paper, we study the non-stationary BwK problem where the reward and the resource consump-
tion at each time are sampled from a distribution as the stochastic BwK problem but the distribution
may change over time. The setting relaxes the temporally i.i.d. assumption in the stochastic setting
and it can be viewed as a soft measure of adversity. We aim to relate the non-stationarity (or adversity)
of the distribution change with the best-achievable algorithm performance, and thus our result bridges
the two extremes of BwK problem: stochastic BwK and adversarial BwK. We consider a dynamic
benchmark to define the regret; while such a benchmark is aligned with the dynamic benchmark in
other non-stationary learning problem [Besbes et al., 2014, 2015, Cheung et al., 2019, Faury et al.,
2021], it is stronger than the static distribution benchmark in adversarial BwK [Rangi et al., 2018,
Immorlica et al., 2019]. Importantly, we use simple examples and lower bound results to show that the
traditional non-stationarity measures such as change points and variation budget are not suitable for
the BwK problem due to the presence of the constraints. We introduce a new non-stationarity measure
called global variation budget and employ both of this new measure and the original variation budget
to capture the underlying non-stationarity of the BwK problem. We analyze the performance of a
sliding-window UCB-based BwK algorithm and derive a near-optimal regret bound. Furthermore,
we show that the new non-stationarity measure can also be applied to the problem of online convex
optimization with constraints (OCOwC) and extend the analyses therein.

1.1 Related literature

The study of non-stationary bandits problem begins with the change-point or piecewise-stationary
setting where the distribution of the rewards remains constant over epochs and changes at unknown
time instants [Garivier and Moulines, 2008, Yu and Mannor, 2009]. The prototype of non-stationary
algorithms such as discounted UCB and sliding-window UCB are proposed and analyzed in [Garivier
and Moulines, 2008] to robustify the standard UCB algorithm against the environment change. The
prevalent variation budget measure V =

∑T−1
t=1 ∥Pt −Pt+1∥ (where Pt and the norm bear different

meaning under different context) is later proposed and widely studied under different contexts, such
as non-stationary stochastic optimization (Besbes et al. [2015]), non-stationary MAB (Besbes et al.
[2014]), non-stationary linear bandits (Cheung et al. [2019]), and non-stationary generalized linear
bandits (Faury et al. [2021]) problems. In general, these works derive lower bound of Ω(V

1
3T

2
3 ),

and propose algorithms that achieve near-optimal regret of Õ(V
1
3T

2
3 ). Cheung et al. [2019] and

Faury et al. [2021] require various assumptions on the decision set to attain such upper bound; under
more general conditions, a regret bound of Õ(V

1
5T

4
5 ) can be obtained [Faury et al., 2021]. With the

soft measure of non-stationarity, the existing results manage to obtain sublinear regret bounds in T
against dynamic optimal benchmarks. In contrast, a linear regret in T is generally inevitable against
the dynamic benchmark when the underlying environment is adversarial. We remark that while all
these existing works consider the unconstrained setting, our work complements this line of literature
with a proper measure of non-stationarity in the constrained setting.

Another related stream of literature is the problem of online convex optimization with constraints
(OCOwC) which extends the OCO problem in a constrained setting. There are two types of constraints
considered: the long-term constraint [Jenatton et al., 2016, Neely and Yu, 2017] and the cumulative
constraint [Yuan and Lamperski, 2018, Yi et al., 2021]. The former defines the constraint violation by
∥(
∑T

t=1 gt(xt))
+∥ whilst the latter defines it by

∑T
t=1 ∥(gt(xt))

+∥ where (·)+ is the positive-part
function. The existing works mainly study the setting where gt = g for all t and g is known a priori.
Neely and Yu [2017] considers a setting where gt is i.i.d. generated from some distribution. In
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this paper, we show that our non-stationarity measure naturally extends to this problem and derives
bounds for OCOwC when gt’s are generated in a non-stationary manner.

2 Problem Setup

We first introduce the formulation of the BwK problem. The decision-maker/learner is given a fixed
finite set of arms A (with |A| = m) called as action set. There are d knapsack constraints with a
known initial budget of Bj for j ∈ [d]. Without loss of generality, we assume Bj = B for all j. There
is a finite time horizon T , which is also known in advance. At each time t = 1, ..., T , the learner
must choose either to play an arm it or to do nothing but wait. If the learner plays the arm i at time t,
s/he will receive a reward rt,i ∈ [0, 1] and consume ct,j,i ∈ [0, 1] amount of each resource j from
the initial budget B. As the convention, we introduce a null arm to model “doing nothing” which
generates a reward of zero and consumes no resource at all. We assume (rt, ct) is sampled from some
distribution Pt independently over time where rt = {rt,i}i∈[m] and ct = {ct,j,i}i∈[m],j∈[d]. In the
stochastic BwK problem, the distribution Pt remains unchanged over time, while in the adversarial
BwK problem, Pt is chosen adversarially. In our paper, we allow Pt to be chosen adversarially, while
we use some non-stationarity measure to control the extent of adversity in choosing Pt’s.

At each time t, the learner needs to pick it using the past observations until time t− 1 but without
observing the outcomes of time step t. The resource constraints are assumed to be hard constraints, i.e.,
the learner must stop at the earliest time τ when at least one constraint is violated, i.e.

∑τ
t=1 ct,j,it >

B, or the time horizon T is exceeded. The objective is to maximize the expected cumulative reward
until time τ , i.e. E[

∑τ−1
t=1 rt,it ]. To measure the performance of a learner, we define the regret of the

algorithm/policy π adopted by the learner as

Reg(π, T ) := OPT(T )− E

[
τ−1∑
t=1

rt,it

∣∣∣∣∣π
]
.

Here OPT(T ) denotes the expected cumulative reward of the optimal dynamic policy given all the
knowledge of Pt’s in advance. Its definition is based on the dynamic optimal benchmark which
allows the arm play decisions/distributions to change over time.

2.1 A Motivating Example

The conventional variation budget is defined by

V :=

T−1∑
t=1

dist(Pt,Pt+1).

By twisting the definition of the metric dist(·, ·), it captures many of the existing non-stationary
measures for unconstrained learning problems. Now we use a simple example to illustrate why V no
longer fits for the constrained setting. Similar examples have been used to motivate algorithm design
and lower bound analysis in [Golrezaei et al., 2014, Cheung et al., 2019, Jiang et al., 2020], but have
not been yet be exploited in a partial-information setting such as bandits problems.

Consider a BwK problem instance that has two arms (one actual arm and one null arm), and a single
resource constraint with initial capacity of T

2 . Without loss of generality, we assume T is even. The
null arm has zero reward and zero resource consumption throughout the horizon, and the actual arm
always consumes 1 unit of resource (deterministically) for each play and outputs 1 unit of reward
(deterministically) for the first half of the horizon, i.e., when t = 1, ..., T

2 . For the second half of the
horizon t = T

2 + 1, ..., T , the reward of the actual arm will change to either 1 + ∆ or 1 −∆, and
the change happens adversarially. For this problem instance, the distribution Pt only changes once,
i.e., V = ∆ (varying up to constant due to the metric definition). But for this problem instance, a
regret of T ·∆

4 is inevitable. To see this, if the player plays the actual arm no less than T
4 times, then

the distributions of the second half can adversarially change to the reward 1 + ∆, and this will result
in a T ·∆

4 regret at least. The same for the case of playing the actual arm for the case of no more than
T
4 times, and we defer the formal analysis to the proof of the lower bounds in Theorem 2.

This problem instance implies that a sublinear dependency on T cannot be achieved with merely the
variation budget V to characterize the non-stationarity. Because with the presence of the constraint(s),
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the arm play decisions over time are all coupled together not only through the learning procedure,
but also through the “global” resource constraint(s). For the unconstrained problems, the non-
stationarity affects the effectiveness of the learning of the system; for the constrained problems, the
non-stationarity further challenges the decision making process through the lens of the constraints.

2.2 Non-stationarity Measure and Linear Programs

We denote the expected reward vector as µt = {µt,i}i∈[m] and the expected consumption matrix as
Ct = {Ct,j,i}j∈[d],i∈[m], i.e.,

µt,i := E[rt,i], Ct,j,i := E[ct,j,i].

We first follow the conventional variation budget and define the local non-stationarity budget: 1

V1 :=

T−1∑
t=1

∥µt − µt+1∥∞,

V2,j :=

T−1∑
t=1

∥Ct,j −Ct+1,j∥∞, V2 := max
1≤j≤d

V2,j .

We refer to the measure as a local one in that they capture the local change of the distributions
between time t and time t+ 1.

Next, we define the global non-stationarity budget:

W1 :=

T∑
t=1

∥µt − µ̄∥∞,

W2 :=

T∑
t=1

∥Ct − C̄∥1,

where µ̄ = 1
T

∑T
t=1 µt and C̄ = 1

T

∑T
t=1 Ct. These measures capture the total deviations for all the

µt’s and Ct from their global averages. By definition, W1 and W2 upper bound V1 and V2 (up to a
constant), so they can be viewed as a more strict measure of non-stationarity than the local budget. In
the definition of W2, the L1 norm is not essential and it aims to sharpen the regret bounds.

All the existing analyses of the BwK problem utilize the underlying linear program (LP) and establish
the LP’s optimal objective value as an upper bound of the regret benchmark OPT(T ). In a non-
stationary environment, the underlying LP is given by

LP ({µt}, {Ct}, T ) := max
x1,...,xT

T∑
t=1

µ⊤
t xt

s.t.
T∑

t=1

Ctxt ≤ B, xt ∈ ∆m, t = 1, . . . , T,

where B = (B, ..., B)⊤ and ∆m denotes the m-dimensional standard simplex. We know that

LP({µt}, {Ct}, T ) ≥ OPT(T).

In the rest of our paper, we will use LP({µt}, {Ct}, T ) for the analysis of regret upper bound. We
remark that in terms of this LP upper bound, the dynamic benchmark allows the xt to take different
values, while the static benchmark will impose an additional constraint to require all the xt be the
same.

For notation simplicity, we introduce the following linear growth assumption. All the results in this
paper still hold without this condition.

1Throughout the paper, for a vector v ∈ Rn, we denote its L1 norm and L∞ norm by ∥v∥1 :=
∑n

i=1 |vi|,
∥v∥∞ := max1≤i≤n |vi|. For a matrix M ∈ Rm×n, we denote its L1 norm and L∞ norm by ∥M∥1 :=

supx ̸=0
∥Mx∥1
∥x∥1

= max1≤j≤n

∑m
i=1 |Mij |, ∥M∥∞ := supx̸=0

∥Mx∥∞
∥x∥∞ = max1≤i≤m

∑n
j=1 |Mij |.
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Assumption 1 (Linear Growth). We have the resource budget B = bT for some b > 0.

Define the single-step LP by

LP(µ,C) := max
x

µ⊤x

s.t. Cx ≤ b, x ∈ ∆m.

where b = (b, ..., b)⊤. The single-step LP’s optimal objective value can be interpreted as the single-
step optimal reward under a normalized resource budget b.

Throughout the paper, we will use the dual program and the dual variables to relate the resource
consumption with the reward, especially for the non-stationary environment. The dual of the
benchmark LP({µt}, {Ct}, T ) is

DLP({µt}, {Ct}) := min
q,α

T · b⊤q +

T∑
t=1

αt

s.t. q ≥ 0, µt −C⊤
t q − αt · 1m ≤ 0, t = 1, . . . , T

where 1m denotes an m-dimensional all-one vector. Here we denotes one optimal solution as
(q∗,α∗).

The dual of the single-step LP(µt,Ct) is

DLP(µt,Ct) := min
q,α

b⊤q + α

s.t. q ≥ 0, µt −C⊤
t q − α · 1m ≤ 0.

Here we denotes one optimal solution as (q∗
t , α

∗
t ). The dual optimal solutions q∗ and q∗

t are also
known as the dual price, and they quantify the cost efficiency of each arm play.

Define
q̄ = max {∥q∗∥∞, ∥q∗

t ∥∞, t = 1, ..., T} .
The quantity q̄ captures the maximum amount of achievable reward by each unit of resource con-
sumption. We will return with more discussion on this quantity q̄ after we present the regret bound.
Lemma 1. We have the following upper bound on q̄,

q̄ ≤ 1

b
.

Proposition 1. We have

T∑
t=1

LP(µt,Ct) ≤ LP({µt}, {Ct}, T ) ≤ T ·LP(µ̄, C̄)+W1+q̄W2 ≤
T∑

t=1

LP(µt,Ct)+2(W1+q̄W2).

Proposition 1 relates the optimal value of the benchmark LP({µt}, {Ct}, T ) with the optimal values
of the single-step LPs. To interpret the bound, LP({µt}, {Ct}, T ) works as an upper bound of the
OPT(T ) in defining the regret, and the summation of LP(µt,Ct) corresponds to the total reward
obtained by evenly allocating the resource over all time periods. In a stationary environment, these
two are the same as the optimal decision naturally corresponds to an even allocation of the resources.
In a non-stationary environment, it can happen that the optimal allocation of the resource corresponds
an uneven one for LP({µt}, {Ct}, T ). For the problem instance in Section 2.1, the optimal allocation
may be either to exhaust all the resource in first half of time periods or preserve all the resource for
the second half. In such case, forcing an even allocation will reduce the total reward obtained. The
proposition tells that the reduction can be bounded by 2W1 + 2q̄W2 where the non-stationarity in
resource consumption W2 is weighted by the dual price upper bound q̄.

3 Sliding-Window UCB for Non-stationary BwK

In this section, we adapt the standard sliding-window UCB algorithm for the BwK problem (Algorithm
1) and derive a near-optimal regret bound. The algorithm will terminate when any type of the resources
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is exhausted. At each time t, it constructs standard sliding-window confidence bounds for the reward
and the resource consumption. Specifically, we define the sliding-window estimators by

µ̂
(w)
t,i :=

∑t−1
s=1∨(t−w) rt,j · 1{is = i}

n
(w)
t,i + 1

, Ĉ
(w)
t,j,i :=

∑t−1
s=1∨(t−w) ct,j,i · 1{is = i}

n
(w)
t,i + 1

,

where n(w)
t,i =

∑t−1
s=1∨(t−w) 1{is = i} denotes the number of times that the i-th arm has been played

in the last w time periods. To be optimistic on the objective value, UCBs are computed for rewards
and LCBs are computed for the resource consumption, respectively. With the confidence bounds, the
algorithm solves a single-step LP to prescribe a randomized rule for the arm play decision.

Our algorithm can be viewed as a combination of the standard sliding-window UCB algorithm
[Garivier and Moulines, 2008, Besbes et al., 2015] with the UCB for BwK algorithm [Agrawal and
Devanur, 2014]. It makes a minor change compared to [Agrawal and Devanur, 2014] which solves a
single-step LP with a shrinkage factor (1− ϵ) on the right-hand-side. The shrinkage factor therein
ensures that the resources will not be exhausted until the end of the horizon, but it is not essential
to solving the problem. For simplicity, we choose the more natural version of the algorithm which
directly solves the single-step LP. We remark that the knowledge of the initial resource budget B
and the time horizon T will only be used for defining the right-hand-side of the constraints for this
LP(UCBt(µt),LCBt(Ct)).

Algorithm 1 Sliding-Window UCB Algorithm for BwK

Input: Initial resource budget B, time horizon T , window sizes w1 (for reward) and w2 (for resource
consumption).

Output: Arm play indices {it}’s
1: while t ≤ T do
2: if

∑t−1
s=1 ct,j > B for some j then

3: Break
4: %% Terminate the procedure if any resource is exhausted.
5: end if
6: Construct confidence bounds UCBt(µt),LCBt(Ct) with window size w1, w2

UCBt,i(µt) := µ̂
(w1)
t,i +

√
2

n
(w1)
t,i + 1

log(12mT 3)

LCBt,j,i(Ct) := Ĉ
(w2)
t,j,i −

√
2

n
(w2)
t,i + 1

log(12mdT 3)

7: Solve the single-step problem LP(UCBt(µt),LCBt(Ct))
8: Denote its optimal solution by x∗

t = (x∗
t,1, ..., x

∗
t,m)

9: Pick arm it randomly according to x∗
t , i.e., P(it = i) = x∗

t,i

10: Observe the realized reward rt and resource consumption ct,j for j ∈ [d]
11: end while

Now we begin to analyze the algorithm’s performance. For starters, the following lemma states a
standard concentration result for the sliding-window confidence bound.
Lemma 2. The following inequalities hold for all t = 1, ..., T with probability at least 1− 1

3T :

UCBt,i(µt) +

t−1∑
s=1∨(t−w1)

∥µs − µs+1∥∞ ≥ µt,i, ∀i,

LCBt,j,i(Ct)−
t−1∑

s=1∨(t−w2)

∥Cs,j −Cs+1,j∥∞ ≤ Ct,j,i, ∀j, i

where the UCB and LCB estimators are defined in Algorithm 1.

With Lemma 2, we can employ a concentration argument to relate the realized reward (or resource
consumption) with the reward (or resource consumption) of the LP under its optimal solution. In
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Lemma 3, recall that τ is the termination time of the algorithm where some type of resources is
exhausted, and x∗

s is defined in Algorithm 1 as the optimal solution of the LP solved at time s.
Lemma 3. For Algorithm 1, the following inequalities hold for all t ≤ min{τ, T},∣∣∣∣∣

t∑
s=1

(rt −UCBs(µs)
⊤x∗

s)

∣∣∣∣∣ ≤ 4
√
T log(12mT 3) + 8

√
log(12mT 3)m · T

√
w1

+ w1V1,∣∣∣∣∣
t∑

s=1

(cs,j − LCBt(Cs,j)
⊤x∗

s)

∣∣∣∣∣ ≤ 4
√
T log(12mdT 3)+8

√
log(12mdT 3)m· T

√
w2

+w2V2 for all j,

with probability at least 1− 1
T .

We note that the single-step LP’s optimal solution is always subject to the resource constraints. So
the second group of inequalities in Lemma 3 implies the following bound on the termination time τ .
Recall that b is the resource budget per time period; for a larger b, the resource consumption process
becomes more stable and the budget is accordingly less likely to be exhausted too early.

Corollary 1. If we choose w2 = min
{
⌈m 1

3V
− 2

3
2 T

2
3 log

1
3 (12mdT 3)⌉, T

}
in Algorithm 1, the

following inequality holds

T − τ ≤ 1

b
·
(
10m

1
3V

1
3
2 T

2
3 log

1
3 (12mdT 3) + 8

√
mT

√
log(12mdT 3) + 4

√
T log(12mdT 3)

)
= Õ

(
1

b
(m1/3V

1
3
2 T

2
3 +

√
mT )

)
with probability at least 1− 1

2T .

To summarize, Lemma 3 compares the realized reward with the cumulative reward of the single-step
LPs, and Corollary 1 bounds the termination time of the algorithm. Recall that Proposition 1 relates
the cumulative reward of the single-step LPs with the underlying LP – the regret benchmark. Putting
together these results, we can optimize w1 and w2 by choosing

w1 = min
{
⌈m 1

3V
− 2

3
1 T

2
3 log

1
3 (12mT 3)⌉, T

}
, w2 = min

{
⌈m 1

3V
− 2

3
2 T

2
3 log

1
3 (12mdT 3)⌉, T

}
and then obtain the final regret upper bound as follows.
Theorem 1. Under Assumption 1, the regret of Algorithm 1 is upper bounded as

Reg(π1, T ) ≤
1

b

(
4
√
T log(12mdT 3) + (10 + 2d)m

1
3V

1
3
2 T

2
3 log

1
3 (12mdT 3) + 8

√
mT

√
log(12mdT 3) + 1

)
+ 4

√
T log(12mT 3) + 12m

1
3V

1
3
1 T

2
3 log

1
3 (12mT 3) + 2(W1 + q̄W2)

= Õ

(
1

b

√
mT +m

1
3V

1
3
1 T

2
3 +

1

b
·m 1

3 dV
1
3
2 T

2
3 +W1 + q̄W2

)
where π1 denotes the policy specified by Algorithm 1 and Õ(·) hides the universal constant and the
logarithmic factors.

Theorem 1 provides a regret upper bound for Algorithm 1 that consists of several parts. The first
part of the regret bound is on the order of 1

b

√
mT and it captures the regret when the underlying

environment is stationary. The remaining parts of the regret bound characterize the relation between
the intensity of non-stationarity and the algorithm performance. The non-stationarity from both the
reward and the resource consumption will contribute to the regret bound and that from the resource
consumption will be weighted by a factor of 1

b or q (See Lemma 1 for the relation between these two).
For the local non-stationarity V1 and V2, the algorithm requires a prior knowledge of them to decide
the window length, aligned with the existing works on non-stationarity in unconstrained settings. For
the global non-stationarity W1 and W2, the algorithm does not require any prior knowledge and they
will contribute additively to the regret bound. Together with the lower bound results in Theorem 2,
we argue that the regret bound cannot be further improved even with the knowledge of W1 and W2.

When the underlying environment degenerates from a non-stationary one to a stationary one, all the
terms related to V1, V2, W1 and W2 will disappear and then the upper bound in Theorem 1 matches
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the regret upper bound for the stochastic BwK setting. In Theorem 1, we choose to represent the
upper bound in terms of b and T so as to reveal its dependency on T and draw a better comparison
with the literature on unconstrained bandits problem. We provide a second version of Theorem
1 in Appendix E that matches the existing high probability bounds using OPT(T ) [Badanidiyuru
et al., 2013, Agrawal and Devanur, 2014]. In contrast to the Θ(log T )-competitiveness result in the
adversarial BwK [Immorlica et al., 2019], our result implies that with a property measure of the
non-stationarity/adversity, the sliding-window design provides an effective approach to robustify the
algorithm performance when the underlying environment changes from stationary to non-stationary,
and the according algorithm performance will not drastically deteriorate when the intensity of the
non-stationarity is small.

When the resource constraints become non-binding for the underlying LPs, the underlying environ-
ment degenerates from a constrained setting to an unconstrained setting. We separate the discussion
for the two cases: (i) the benchmark LP and all the single-step LPs have only non-binding constraints;
(ii) the benchmark LP have only non-binding constraints but some single-step LP have binding
constraints. For case (i), the regret bound in Theorem 1 will match the non-stationary MAB bound
[Besbes et al., 2014]. For case (ii), the match will not happen and this is inevitable. We elaborate the
discussion in Section D.

Theorem 2 (Regret lower bounds). The following lower bounds hold for any policy π,

(i) Reg(π, T ) = Ω(m
1
3V

1
3
1 T

2
3 ).

(ii) Reg(π, T ) = Ω(1b ·m 1
3V

1
3
2 T

2
3 ).

(iii) Reg(π, T ) = Ω(W1 + q̄W2).

Theorem 2 presents a few lower bounds for the problem. The first and the second lower bounds are
adapted from the lower bound example in non-stationary MAB [Besbes et al., 2014] and the third
lower bound is adapted from the motivating example in 2.1. There are simple examples where each
one of these three lower bounds dominates over the other two. In this sense, all the non-stationarity-
related terms in the upper bound of Theorem 1 are necessary including the parameters 1/b and
q̄. There is one gap between the lower bound and the upper bound with regard to the number of
constraints d in the term related to V2. We leave it as future work to reduce the factor to log d
with some finer analysis. Furthermore, we provide a sharper definition of the global nonstationarity
measure Wmin

1 and Wmin
2 in replacement of W1 and W2 in Appendix C2. It makes no essential change

to our analysis, and the two measures coincide with each other on the lower bound problem instance.
We choose to use W1 and W2 for presentation simplicity, while Wmin

1 and Wmin
2 can capture the

more detailed temporal structure of the nonstationarity. The discussion leaves an open question that
whether the knowledge of some additional structure of the environment can further reduce the global
non-stationarity.

4 Extension to Online Convex Optimization with Constraints

In this section, we show how our notion of non-stationarity measure can be extended to the problem
of online convex optimization with constraints (OCOwC). Similar to BwK, OCOwC also models a
sequential decision making problem under the presence of constraints. Specifically, at each time t,
the player chooses an action xt from some convex set X . After the choice, a convex cost function
ft : X → R and a concave resource consumption function gt = (gt,1, ...., gt,d) : X → Rd are
revealed. As in the standard setting of OCO, the functions ft is adversarially chosen and thus a static
benchmark is consider and defined by

OPT(T ) := min
x∈X

T∑
t=1

ft(x)

s.t.
T∑

t=1

gt,i(x) ≤ 0, for i ∈ [d].

Denote its optimal solution as x∗ and its dual optimal solution as q∗.
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While the existing works consider the case when gt’s are static or sample i.i.d. from some distribution
P. We consider a non-stationary setting where gt may change adversarially over time. We define a
global non-stationarity measure by

W :=

T∑
t=1

d∑
j=1

∥gt,j − ḡj∥∞

where ḡj =
1
T

∑T
t=1 gt,j and ∥f∥∞ := supx∈X |f(x)|.

The OCOwC problem considers the following bi-objective performance measure:

Reg1(π, T ) =
T∑

t=1

ft(xt)−
T∑

t=1

ft(x
∗)

Reg2(π, T ) =
d∑

i=1

(
T∑

t=1

gt,i(xt)

)+

where (·)+ denotes the positive-part function and π denotes the policy/algorithm.

In analogous to the single-step LPs, we consider an optimization problem with more restricted
constraints as

OPT′(T ) := min
x∈X

T∑
t=1

ft(x)

s.t. gt,i(x) ≤ 0, for t ∈ [T ], i ∈ [d].

Denote its optimal solution as x∗′
, and its dual optimal solution as q∗′

. The following proposition
relates the two optimal objective values.
Assumption 2. We assume that Slater’s condition holds for both the standard OCOwC program
OPT(T ) and the restricted OCOwC program OPT′(T ). We assume that ft,∇ft, gt,i, and ∇gt,i are
uniformly bounded on X and that X itself is bounded. Moreover, we assume that their dual optimal
solutions are uniformly bounded by q̄, i.e.

q̄ = max
{
∥q∗∥∞, ∥q∗′

∥∞
}
.

The following proposition relates the two optimal objective values.
Proposition 2. For OCOwC problem, under Assumption 2, we have

0 ≤ OPT′(T )−OPT(T ) ≤ q̄W.

Utilizing the proposition, we can show that the gradient-based algorithm of [Neely and Yu, 2017]
achieves the following regret for the setting of OCO with non-stationary constraints. Moreover, we
further extend the results and discuss in Appendix F on an oblivious adversarial setting where gt is
sampled from some distribution Pt and the distribution Pt may change over time.
Theorem 3. Under Assumption 2, the Virtual Queue Algorithm of [Neely and Yu, 2017] for any
OCOwC problem (denoted by π2) produces a decision sequence {xt} such that

Reg1(π2, T ) ≤ O(
√
T ) + q̄W,

Reg2(π2, T ) ≤ O(d
√
T ).

The theorem tells that the non-stationarity when measured properly will not drastically deteriorate the
performance of the algorithm for the OCOwC problem as well. Moreover, the non-stationarity will
not affect the constraint violation at all. Together with the results for the BwK problem, we argue that
the new global non-stationarity measure serves as a proper one for the constrained online learning
problems. Note that the upper and lower bounds match up to a logarithmic factor (in a worst-case
sense) subject to the non-stationarity measures. The future direction can be to refine the bounds in
a more instance-dependent way and to identify useful prior knowledge on the non-stationarity for
better algorithm design and analysis.
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5 Discussions

In this paper, we study the non-stationary setting of the BwK problem. We remark that our formulation
is not different from stochastic BwK and adversarial BwK, but it should be viewed as a generalization
of both:

• When the underlying distribution Pt is i.i.d., our formulation degenerates into the stochastic
BwK problem.

• Our formulation allows Pt to be point-mass distributions and also allows it to be chosen
adversarially, so it recovers the setting of adversarial BwK. Different from the existing worst-
case results on adversarial BwK, our result characterizes a problem-dependent performance
that relates the regret with the temporal change of Pt’s.

Two important applications (among others, see Badanidiyuru et al., 2013) are AdWords problem
(under pay-by-click and pay-by-conversion), and the pricing problem, where the knapsack constraints
capture the bidder’s budget or the available inventory. Under such application context, the distri-
bution of the arms’ reward and/or resource consumption may change over time; for example, the
bidder’s bidding policy may change according to their remaining budget, and the underlying market
environment may change due to seasonality, day-of-week effect, promotions etc. Both our work and
the adversarial BwK aim to capture such violation of the i.i.d. assumption in the stochastic BwK.
Speaking of these applications, the stochastic setting is too ideal, while the adversarial setting is too
worst-case/conservative; non-stationarity provides a smooth connection between these two ends. The
spirit inherits the study of non-stationary environment for unconstrained online learning problem
[Besbes et al., 2014, 2015, Cheung et al., 2019, Faury et al., 2021].

Technically, we first make a comparison between the existing results on MAB and on BwK. For the
stochastic setting, as we discussed in Appendix D, when the constraints are non-binding, the stochastic
BwK’s regret bound can recover the regret bound of a corresponding MAB problem. However, for
the adversarial setting, the EXP3 algorithm achieves O(

√
T ) regret bound for adversarial MAB

problem against a static benchmark, while the state-of-the-art adversarial BwK algorithm only
achieves an O(log T ) competitiveness ratio against the static benchmark, i.e., even worse than a linear
regret. In comparison, we believe the BwK problem in a non-i.i.d. (non-stochastic) environment is
pessimistically difficult and far from being resolved. In this light, our work provides a positive result
for the problem. We provide in Appendix C1 a detailed discussion and comparison of the benchmarks
used in the existing BwK works. Numerical experiments compare the performance of our algorithm
with existing BwK algorithms and are presented in Appendix A.

The key for our paper to achieve this result is the proposal of of the new non-stationarity measure,
while the algorithm and analysis are largely standard as in the UCB literature. The standard analysis
also appears in existing works on non-stationary online learning/optimization [Besbes et al., 2014,
2015, Cheung et al., 2019, Faury et al., 2021] where the techniques more or less follow the paradigm
of combining the sliding-window concentration argument with the analysis in a corresponding context
of stochastic optimization, MAB, linear bandits, or RL. Our measure is new as all existing works on
non-stationarity study unconstrained settings. Our measure is also critical for a constrained setting;
we believe its application goes beyond the BwK and OCO problem and it also provides a useful
measure for other constrained problems such as constrained MDP and safe RL. Insight-wise, our
discussion in Section 2.1 not only validates the criticality of such a measure but also highlights that
even if one does not need to perform any learning to the system, the non-stationarity in a constrained
problem can still hurt. This intuition is orthogonal to the existing implications of the current works
on non-stationarity which mainly focus on remedying the negative effect of nonstationary induced on
the learning of the system.
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