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Abstract

In this work, we investigate transfer learning001
from semantic role labeling (SRL) to event002
argument extraction (EAE), considering their003
similar argument structures. We view the ex-004
traction task as a role querying problem, unify-005
ing various methods into a single framework.006
There are key discrepancies on role labels and007
distance arguments between semantic role and008
event argument annotations. To mitigate these009
discrepancies, we specify natural language-like010
queries to tackle the label mismatch problem011
and devise argument augmentation to recover012
distant arguments. We show that SRL anno-013
tations can serve as a valuable resource for014
EAE, and a template-based slot querying strat-015
egy is especially effective for facilitating trans-016
fer. In extensive evaluations on two English017
EAE benchmarks, our proposed model obtains018
impressive zero-shot results by leveraging SRL019
annotations, reaching nearly 80% of the fully-020
supervised scores. It could further provides021
benefits in low-resource cases, where few EAE022
annotations are available. Moreover, we show023
that our approach generalizes to cross-domain024
and multilingual scenarios.025

1 Introduction026

Event argument extraction (EAE) is a key compo-027

nent in the task of event extraction (Ahn, 2006)028

that aims to identify the arguments that serve as029

roles for event frames. While recent developments030

in neural network models have enabled impressive031

improvements on this task in the fully-supervised032

setting (Wang et al., 2019b; Pouran Ben Veyseh033

et al., 2020; Ma et al., 2020; Li et al., 2021b), EAE034

still remains challenging when abundant annota-035

tions are not available. In particular, event schemes036

are usually specific to the target scenarios. For ex-037

ample, events in biomedical domains, like GENE-038

EXPRESSION in GENIA (Kim et al., 2008), can be039

quite different than the ones in ACE (LDC, 2005),040

such as ATTACK and CONTACT. It is costly and041
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Figure 1: Example annotations with ACE events (above)
and PropBank semantic frames (below). Brown and
red rectangles indicate predicate and argument words,
respectively. Green lines denote argument links.

inefficient to annotate large amounts of data for 042

every new application. 043

Compared with the specific event schemes, se- 044

mantic role labeling (SRL) is a general linguistic 045

task with the goal of extracting predicate-argument 046

structures from text (Gildea and Jurafsky, 2002; 047

Palmer et al., 2010). There are rich and carefully an- 048

notated SRL resources, such as PropBank (Palmer 049

et al., 2005) and FrameNet (Baker et al., 1998), 050

covering a wide range of semantic frame types. As 051

shown in the example in Figure 1, the SRL task 052

resembles EAE much: they both specify semantic 053

frames triggered by predicate words and aim at find- 054

ing arguments for participating roles. Therefore, 055

it is natural to consider applying transfer learning 056

(Pan and Yang, 2009; Ruder et al., 2019) to enhance 057

EAE with general SRL resources. 058

Notwithstanding the similarities, there are two 059

main discrepancies between SRL and EAE struc- 060

tures that should be managed in order to facilitate 061

transfer between the tasks. The first is label mis- 062

match. For example, ACE adopts role names with 063

natural language words, such as BUYER and PLACE, 064

whereas PropBank utilizes generalized labels like 065

ARG0 and ARGM-LOC. Although FrameNet also 066

adopts natural language role names, it is challeng- 067

ing to find clear direct mappings to the target event 068

frames. Moreover, SRL resources do not typically 069
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annotate distant arguments, where there are no ex-070

plicit syntactic encodings expressing the argument071

relation.1 For example, in the sentence depicted072

in Figure 1, though it can be understood that the073

“store” is very likely to be the place where the “buy-074

ing” happens, SRL annotations do not include this075

semantically inferred link, whereas it is considered076

an argument in event annotations.077

In this work, we provide a comprehensive inves-078

tigation of transfer from SRL to EAE. We view the079

tasks as a role querying problem within a unified080

framework, which covers many argument extrac-081

tion methods, including classification-based meth-082

ods (Ouchi et al., 2018; Ebner et al., 2020), ma-083

chine reading comprehension (MRC)-based meth-084

ods (Liu et al., 2020; Du and Cardie, 2020; Li et al.,085

2020; Feng et al., 2020; Lyu et al., 2021; Liu et al.,086

2021a) as well as sequence-to-sequence genera-087

tion based ones (Li et al., 2021b; Hsu et al., 2021;088

Lu et al., 2021). We further explore a template-089

based slot querying strategy, by querying argument090

roles using contextualized representations of the091

corresponding role slots in the frame template. We092

tackle the label-mismatch problem by forming the093

queries in templated natural language, which al-094

lows for the same query representation to be shared095

across varied schemes. To mitigate the lack of dis-096

tant argument annotations in SRL, we apply two097

argument augmentation techniques: Data augmen-098

tation by shuffling input texts, which reduces the099

model’s reliance on syntax, and knowledge distil-100

lation from question answering (QA) data, which101

incorporates distant argument signals.102

With experiments on the standard ACE and103

ERE English event benchmarks, we show that104

SRL annotations are valuable resources for EAE.105

With the template-based querying strategy, a model106

trained with SRL can reach nearly 80% of the fully-107

supervised F1 score in the zero-shot scenario, and108

an intermediate-training scheme provides further109

benefits in the low-resource setting. The model also110

obtains promising results in extensions to cross-111

domain and multi-lingual scenarios, demonstrating112

its generalizability. Our work highlights the utility113

of SRL annotations in the context of downstream114

applications with limited direct annotations.115

1These are also known as implicit arguments (O’Gorman,
2019). While there are more fine-grained linguistic criteria,
we take a simplified approximate approach by checking the
syntactic distances between triggers and arguments.

2 Method 116

2.1 Querying Methods 117

For either semantic roles or event arguments, we 118

can view the extraction task as a role querying 119

problem. Specifically, we are given a sequence 120

of words s = {w1, ..., wn} as input contexts as 121

well as a predicate or event trigger word we and 122

the semantic frame or event type t. Each type is 123

associated with a list of participating roles to be 124

filled and our aim is to extract arguments from the 125

input contexts for each role. We adopt one specific 126

modeling simplification, that is, our model only 127

predicts the syntactic head word of an argument. 128

For EAE, a heuristic method is further adopted to 129

expand from head words to spans: We simply in- 130

clude the head word’s child that is linked with a 131

MWE dependency relation2 and has an uppercase 132

first letter. We find that this heuristic works well 133

in practice, covering nearly 95% of the argument 134

spans in the ACE and ERE event datasets. We take 135

this approach to make it easier to transfer across 136

different schemes, which may have different anno- 137

tation criteria on span ranges. 138

In this way, we can view both SRL and EAE 139

as a role querying problem over the input words. 140

Specifically, the probability3 of a candidate word 141

w to be the argument filling a role r is: 142

pr(w) =
exp(λhT

wqr)∑
w′∈s∪{ϵ} exp(λh

T
w′qr)

143

Here, hw denotes the representation vector of the 144

word w and qr indicates the querying vector of the 145

role r. We further include a scaling factor λ, which 146

is fixed to 1√
d

, where d is the dimension of h and q, 147

following the attention calculation in Transformer 148

(Vaswani et al., 2017). We specify a dummy token 149

ϵ to handle the cases where no arguments can be 150

found for a role. This modeling scheme is flexible 151

and allows different argument extraction strategies 152

to be viewed in a unified way. In this work, we 153

explore four strategies, as illustrated in Figure 2. 154

Since these strategies are not totally novel, we give 155

brief descriptions in the main content and please 156

refer to Appendix A.1 for more details. 157

1) CLF. We start with querying based on tradi- 158

tional classification, which assigns to each role a 159

2Multi-word expressions: {“fixed”, “flat”, “compound”}.
3We also tried more complex scoring functions than dot

product, such as multi-layer perceptron or bi-affine scorers,
but found similar results. We thus choose this simplest one.
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Figure 2: Illustrations of different role querying strategies (for the “artifact” role), based on 1) CLF: classification,
2) MRC: machine reading comprehension, 3) GEN: generation and 4) TSQ: template-based slot querying.

non-contextualized vector. To allow transfer to dif-160

ferent role names, we initialize the role vectors161

with average-pooled representations obtained by162

passing the role names individually to a pre-trained163

language model. We call this strategy classification-164

based since the role vectors can be viewed as165

weights in a linear classifier. This corresponds166

to more traditional argument extraction methods167

(Ouchi et al., 2018; Ebner et al., 2020). One short-168

coming of this strategy is that the query vectors169

are constructed without access to input contexts,170

limiting their representation ability.171

2) MRC. Recently, the strategy of casting NLP172

tasks as machine reading comprehension problems173

(Rajpurkar et al., 2016, 2018) has been applied to174

EAE (Liu et al., 2020; Du and Cardie, 2020; Li175

et al., 2020; Feng et al., 2020; Lyu et al., 2021; Liu176

et al., 2021a). In this strategy, each role is queried177

with a contextualized question that is encoded to-178

gether with the context. Unless otherwise specified,179

we form the role questions using the templates of180

Liu et al. (2021a), which can be automatically gen-181

erated from the role names. Since each question182

queries only one role, this strategy requires a full183

pass through the encoder with respect to each role,184

raising concerns regarding its computational effi-185

ciency,4 as compared to CLF.186

3) GEN. More recently, many approaches ex-187

tract arguments by sequence-to-sequence genera-188

tion (Paolini et al., 2021; Li et al., 2021b; Hsu et al.,189

2021; Lu et al., 2021; Du et al., 2021; Huang et al.,190

2022). Specifically, Li et al. (2021b) and Hsu et al.191

(2021) adopt a template-based generation strategy,192

which aggregates the queries of all roles for an193

event into one template sentence. This strategy is194

promising since the template can contain all roles195

and query them in one pass. Since arguments come196

4Please refer to Appendix B.8 for speed comparisons.

from input contexts, we further adopt a pointer net- 197

work (Vinyals et al., 2015) for argument selection 198

rather than generation through output vocabularies, 199

fitting our unified querying framework. Because of 200

the auto-regressive decoding scheme, this strategy 201

can also suffer lower efficiency compared to CLF. 202

4) TSQ. We further explore a strategy that fully 203

exploits the representative powerful and querying 204

efficiency of templates. We do not fill the templates 205

with actual words in the context but simply keep the 206

role names as placeholders. We concatenate this 207

template with the context, then pass that represen- 208

tation to the encoder for contextualization. Finally, 209

the contextualized representations of the role slots 210

in the template are adopted as role query vectors. 211

We refer to this strategy as Template-based Slot 212

Querying (TSQ). This approach is similar to the 213

contemporaneous work of Ma et al. (2022). Our 214

approach to template querying differs primarily in 215

that: 1) We concatenate both the template and the 216

context and feed them to the encoder, allowing for 217

bidirectional modeling, and; 2) Our models predict 218

argument head words rather than spans to facilitate 219

transfer, since unlike Ma et al. (2022) the focus 220

of our work is transfer learning. Appendix B.4 221

includes further comparisons. 222

2.2 SRL Templates 223

We take PropBank5 (Palmer et al., 2005) and 224

FrameNet (Baker et al., 1998) as our main SRL re- 225

sources. To allow transfer across different schemes, 226

we need to specify extra information required by 227

the role querying strategies. In particular, templates 228

are not included in SRL frame definitions and it is 229

infeasible to manually specify them for hundreds 230

to thousands of SRL frames. We adopt a semi- 231

5We also include NomBank (Meyers et al., 2004) and map
its frames to PropBank frames.
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automatic method to construct the templates, with232

extra information collected from data statistics:233

• Role names. We directly take the role labels234

of FrameNet which are already in natural lan-235

guage form. We further train a role classifier236

with the FrameNet data and apply it to PropBank237

instances. For each frame-specific role in Prop-238

Bank, we choose the most frequently predicted239

FrameNet label as its role name.240

• Role orders. For each frame-specific role, we241

calculate its average relative distance to the pred-242

icate word (in non-passive verbal usages), and243

order all the roles with respect to this distance.244

• Preposition words. For each frame-specific role,245

we also count how frequent preposition words are246

used for the role’s arguments. If the frequency247

of a certain preposition surpasses a threshold,248

we prepend the preposition word before the role249

name in the template.250

With these three types of extra information, we251

construct the templates by concatenating all the252

corresponding ordered pieces. For example, the253

“buy.01” PropBank frame gets a template of “buyer254

buy goods for recipient from seller for money in255

place”. Please refer to Appendix A.2 for additional256

details of this process and examples.257

Note that this process can be noisy. Neverthe-258

less, the above three pieces provide complementary259

information for role specification: the role names260

provide semantic information, the role orders in-261

clude syntactic word order information, and the262

prepositions give further hints. In practice, we find263

that most of the the generated templates are rea-264

sonably close to natural language. In this way, we265

are able to form similar queries for both SRL and266

EAE, tackling the label mismatch problem between267

different tasks.268

2.3 Argument Augmentation269

In addition to label mismatch, another discrepancy270

between SRL and EAE is that arguments in tradi-271

tional SRL are syntactically constrained whereas272

event arguments can be extracted from any place273

in the context. Therefore, SRL models will have274

difficulties in predicting syntactically distant argu-275

ments. To mitigate this problem, we apply data276

augmentation (Feng et al., 2021) and knowledge277

distillation (Hinton et al., 2015) to augment distant278

arguments for SRL instances.279

Firstly, we apply a simple data augmentation280

method by shuffling the input contexts. Since the281

SRL arguments are constrained by syntax, we hy- 282

pothesize that by distorting syntax in some way, the 283

model can be trained to focus more on the seman- 284

tic relations between the predicates and arguments, 285

thus allowing predicting more distant arguments. 286

To distort syntax, we randomly chunk the input 287

context sequence with sizes randomly chosen from 288

one to three at each time. Then these text chunks 289

are shuffled, re-concatenated and fed to the pre- 290

trained model for contextualized encoding. Since 291

our model selects argument head words which are 292

still tractable, there is no change to the later pro- 293

cessing except for word position re-indexing. We 294

only apply this procedure during training and sim- 295

ply mix vanilla unshuffled data with the shuffled 296

ones by an 1:1 ratio. 297

Moreover, we seek signals of distant arguments 298

from question answering (QA)6 datasets, such as 299

SQuAD (Rajpurkar et al., 2016, 2018). In QA an- 300

notations, the answers are not constrained by syn- 301

tax and can be freely picked from the full context, 302

providing valuable resources for distant arguments 303

(Liu et al., 2021a). Motivated by this, we train a QA 304

model with the MRC strategy and predict the miss- 305

ing arguments for SRL instances. Instead of hard 306

predictions, we store a soft probabilistic distribu- 307

tion over the context words for each role and utilize 308

these for SRL training. To avoid noises from the 309

QA predictions, we adopt two filters. Firstly, we 310

only apply distillation for the unfilled roles accord- 311

ing to SRL annotations. This is intuitive since the 312

filled roles already have gold annotations. More- 313

over, we apply distillation only when the predic- 314

tion is confident enough. We perform calibration to 315

the QA model by temperature scaling (Guo et al., 316

2017) and adopt a probability threshold of 0.5. In 317

this way, we could borrow the signals of distant 318

arguments from the QA datasets to enhance SRL 319

instances with potential missing distant arguments. 320

3 Experiments 321

3.1 Settings 322

We conduct our main experiments7 with English 323

ACE8 (Walker et al., 2006) and ERE (LDC, 2015) 324

event datasets. We follow Lin et al. (2020) and 325

utilize their pre-processing scripts. For the target 326

6Specifically we adopt the extractive QA-MRC data. To
avoid confusion, we use “QA” when denoting data resources
while using “MRC” for the querying strategy.

7The link to our implementation is omitted for review.
8We adopt ACE05-E+ (Lin et al., 2020) which keeps pro-

nouns as arguments.
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Method ACE ERE
P% R% F1% P% R% F1%

Super. 68.93±1.07 68.94±0.95 68.93±0.95 72.75±1.69 71.80±1.29 72.24±0.34

GPT-3 29.10 34.25 31.47 25.09 26.76 25.90
QA 32.77±3.70 47.43±1.17 38.62±2.58 32.68±2.78 48.13±4.08 38.74±2.09

SRLCLF 47.97±1.47 25.37±0.86 33.18±0.92 50.17±1.72 25.60±0.65 33.89±0.88
SRLMRC 58.27±0.75 39.54±1.60 47.08±0.89 62.02±1.15 45.31±1.74 52.32±0.83
SRLGEN 55.77±0.61 45.31±1.26 49.99±0.93 58.37±0.66 52.68±0.63 55.38±0.62

SRLTSQ 57.74±0.95 49.61±0.80 53.36±0.53 59.93±0.68 55.84±0.78 57.81±0.34
+shuf. 58.36±0.53 51.70±0.52 54.82±0.44 59.70±0.89 57.42±1.26 58.54±1.05
+distill 54.53±0.97 55.85±0.67 55.17±0.42 55.27±0.72 60.90±0.85 57.95±0.65
+both 55.68±1.26 57.04±0.93 56.35±1.07 56.63±0.78 61.48±0.18 58.96±0.48

Table 1: Zero-shot EAE results on event test sets. Except for GPT-3, all results are averaged over five runs.

event frames, we manually specify extra informa-327

tion such as templates, adopting those of Li et al.328

(2021b). Unless otherwise specified, we assume329

given gold event triggers and focus on the extrac-330

tion of event arguments. We also provide results331

with predicted event triggers in Appendix B.3. We332

evaluate arguments by labeled F1 scores, which333

require both argument spans and roles to match334

the gold ones. We run with five random seeds and335

report averaged results.336

For external data, we take PropBank, Nom-337

Bank 1.0 and FrameNet 1.7 as our main SRL re-338

sources. We prepare the SRL templates by the339

semi-automatic process described in §2.2. For QA340

datasets, we take SQuAD 2.0 (Rajpurkar et al.,341

2018), QA-SRL 2.1 (FitzGerald et al., 2018),342

QANom (Klein et al., 2020) and QAMR (Michael343

et al., 2018). For the training of SRL or QA mod-344

els, we simply adopt the concatenation of all the345

corresponding datasets. Except for those that have346

manual syntactic annotations, we utilize Stanza (Qi347

et al., 2020) to parse the texts to obtain the syntactic348

head words of the arguments.349

We adopt pre-trained language models for initial-350

ization and fine-tune the full models during training.351

Specifically, we use RoBERTabase (Liu et al., 2019)352

for encoder-only models (CLF, MRC, TSQ) and353

BARTbase (Lewis et al., 2020) for encoder-decoder354

models (GEN). Please refer to Appendix B.1 for355

more detailed experimental settings.356

3.2 Main Transfer Experiments357

We conduct our main experiments with English358

ACE and ERE datasets. Thanks to the unified359

querying framework, we are able to conduct ex-360

periments in a zero-shot setting (§3.2.1), where361

models trained on external data are directly eval-362

uated on EAE. We also investigate low-resource363

settings where some amounts of EAE annotations 364

are available for further fine-tuning (§3.2.2). 365

3.2.1 Zero-shot 366

In the zero-shot setting, we further compare with 367

two methods in addition to SRL: 1) GPT-3 (Brown 368

et al., 2020), where we form prompts9 for each 369

role and use GPT-3 to generate the answers; 2) QA, 370

where we train QA models10 with the QA datasets. 371

We also provide the fully-supervised results11 (Su- 372

per.) as references. 373

Results The main results are shown in Table 1. 374

Except for the one with the CLF strategy, SRL 375

models perform generally better than QA and GPT- 376

3, showing the effectiveness of utilizing SRL re- 377

sources. Among the SRL models, the TSQ strategy 378

generally performs the best, indicating the effective- 379

ness of this in-context querying strategy. Further 380

improvements can be obtained with the argument 381

augmentation techniques. Interestingly, if only 382

using shuffling augmentation (+shuf.), the preci- 383

sions roughly keep the same while recalls increase. 384

If only using distillation (+distill), the recalls get 385

boosted with the sacrifice of precisions. Finally, if 386

both are utilized (+both), the improvements on re- 387

calls get accumulated while the precisions slightly 388

recover when compared with the distillation-only 389

case. This leads to the overall best F1 scores, reach- 390

ing around 80% of the supervised results.12 391

Analysis As shown in Figure 3, we further per- 392

form breakdowns on the syntactic distances be- 393

tween triggers and arguments. We especially com- 394

9Please refer to Appendix B.2 for more GPT-3 details.
10Notice that we can only use the MRC strategy for QA

models because of the task-specific format.
11We take those of the TSQ model. More details of the

supervised results are provided in Appendix B.5.
12Please refer to Appendix B.6 for manual analysis.
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Figure 3: Breakdowns on trigger-argument syntactic
distances (on ACE dev set). Numbers in the parentheses
denote the percentages in the gold annotations.

pare the QA model and the four SRLTSQ models.395

Firstly, the QA model performs worse than SRL396

models except for the long distant ones (“d ≥ 4”).397

This is due to that SRL annotations mainly cap-398

ture syntactically local arguments while QA is not399

constrained by this. Within the SRL models, when400

adding shuffling (“+shuf.”) or distillation (“+dis-401

till”), the middle-ranged arguments consistently402

obtain improvements. One interesting pattern is403

that shuffling benefits “d = 1” but hurts “d ≥ 4”,404

while distillation seems to have the opposite effects.405

This may indicate that shuffling enhances more ro-406

bust predictions of short- and middle-ranged argu-407

ments while distillation encourages longer-ranged408

ones. Finally, when combining these two tech-409

niques (“+both”), the model can reach a good410

balance, achieving the best overall results. Due411

to its overall better performance, we will use the412

“SRLTSQ+both” strategy for our SRL models in the413

remaining of this work.414

3.2.2 Low-resource415

We further investigate scenarios where we have416

some amounts of target EAE annotations. With tar-417

get data, we can directly train an EAE model (from418

pre-trained language models). We further apply a419

simple intermediate-training scheme (Phang et al.,420

2018; Wang et al., 2019a) to transfer the knowledge421

from SRL. We take the SRL-trained model and fur-422

ther fine-tune it on the target event data. A similar423

scheme can also be adopted with the QA model.424

Figure 4 shows the results with different amounts425

of training instances. Generally, SRL intermedi-426

ate training is beneficial especially for middle- and427

low-resource cases, again showing that SRL an-428

notations can be valuable transfer sources for the429

extraction of event arguments.430
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Figure 4: Model performance with direct or intermedi-
ate training. Here x-axis (drawn in log scale) denotes
the percentage of utilized training data. The shaded
areas indicate the ranges of standard deviations.

3.3 Further Extensions 431

In the previous experiments, we take ACE and ERE 432

as the targets, which are still relatively similar to 433

the SRL annotations. In this sub-section, we further 434

investigate scenarios where there are larger discrep- 435

ancies between the source and the target. Specifi- 436

cally, we examine the transfer from SRL to EAE in 437

cross-domain (§3.3.1), multi-lingual (§3.3.2) and 438

multi-sentence (§3.3.3) cases. 439

3.3.1 Cross-domain 440

We first investigate the biomedical domain, utiliz- 441

ing the GENIA BioNLP-11 benchmark (Kim et al., 442

2011). The GENIA events are quite different than 443

general SRL frames and mainly describe detailed 444

bio-molecule behavior (Kim et al., 2008). Still fo- 445

cusing on the argument extraction step, we take the 446

event triggers predicted by the supervised system 447

BEESL (Ramponi et al., 2020). We perform zero- 448

shot argument extraction and evaluate the QA and 449

SRL models, with manually compiled role ques- 450

tions and templates. We adopt the official eval- 451

uation metric of approximate recursive matching. 452

Please refer to Appendix C.1 for more details. 453

Our main comparison is between the QA and 454

SRL models, while we also include the supervised 455

results of BEESL as references. We further adopt 456

a self-training approach where we predict SRL 457
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Types QA SRL SRL+self Super.

Expression 70.71 76.66 77.59 80.90
Transcription 63.64 55.63 59.72 69.46
Catabolism 62.07 66.67 66.67 74.07
Phosphorylation 75.95 78.98 83.64 89.52
Localization 53.28 66.89 67.33 69.51
– Simple – 68.26 73.63 75.27 79.31

Binding 39.41 34.90 35.10 50.19

Regulation 33.80 38.95 38.52 45.90
Pos. regulation 31.85 38.96 39.95 49.41
Neg. regulation 36.62 44.84 44.51 47.17
– Complex – 33.36 40.44 40.88 48.32

– All – 47.42 51.95 52.76 60.22

Table 2: BioNLP-11 event extraction results (F1%).

frames on the unlabeled texts from the original458

GENIA training set and include these predicted459

structures for SRL training.460

The results on the test set are shown in Table 2.461

SRL generally outperforms QA for most of the462

types. This may due to the difficulty of asking463

proper questions. For example, for the “Regula-464

tion” event, we ask “What is regulated?” for the465

role of “Theme” and “What causes the regulation?”466

for “Cause”. These questions may be unrelated467

to the actual contexts, while for the SRL models,468

extra hints from the query templates may be help-469

ful. This may also explain the reason why QA is470

better on some of the types where it is relatively471

easy to ask questions. For example, for “Transcrip-472

tion”, the question of “What is transcribed?” would473

be accurate for most contexts. For the SRL mod-474

els, the self-training method is beneficial overall,475

showing the effectiveness of utilizing unlabeled476

corpus from the target domain.13 Finally, our best477

zero-shot model could recover more than 80% of478

the overall performance of the supervised model,479

showing that general SRL resources can still be480

helpful in the biomedical domain. The main gaps481

between the zero-shot and supervised systems are482

on the “Binding” and Complex events where there483

are complicated and even nested structures. One fu-484

ture direction is to investigate ways to better handle485

these complex structures.486

3.3.2 Multi-lingual487

We next explore a multi-lingual setting, taking488

ACE05 Arabic and Chinese datasets as our tar-489

gets. We follow Huang et al. (2022) and utilize490

their pre-precessing scripts14 for data preparation.491

13We also tried masked-language-model objectives using
the unlabeled target data, but did not find improvements.

14https://github.com/PlusLabNLP/X-Gear

Model Arabic Chinese

Zero-shot results without any EAE annotations.

QAen 22.56±1.48 26.58±2.61
QAen+tgt 23.54±1.43 27.08±1.79
SRLen 37.75±0.52 39.37±1.45
SRLen+tgt 40.64±1.49 41.50±1.04

Multi-lingual results with English EAE annotations.

GATE† 44.5 49.2
X-Gear† 44.8 54.0
EnMRC 37.44±3.02 51.86±0.92
+QAen 39.06±2.86 53.36±1.06
+QAen+tgt 44.27±1.37 53.97±1.41

EnTSQ 37.64±1.96 53.54±0.65
+SRLen 41.86±0.92 53.96±0.85
+SRLen+tgt 51.51±1.32 58.90±0.76

Supervised results with target EAE annotations.

Super. 58.09±1.51 65.11±0.94

Table 3: Results (Argument F1%) on ACE05 Arabic
and Chinese test sets. “†” denotes reported results from
Huang et al. (2022).

We further include multi-lingual external resources. 492

For SRL, we utilize Arabic and Chinese PropBank 493

annotations from OntoNotes (Hovy et al., 2006; 494

Weischedel et al., 2013). For the role names in 495

SRL frames, we again adopt a statistical approach: 496

predicting with a FrameNet classifier based on a 497

multilingual pre-trained encoder and adopting the 498

mostly predicted label for each role. Due to dif- 499

ferences in word order and usage of prepositional 500

words in non-English languages, we exclude prepo- 501

sition words and simply order the roles by their 502

ARG numbers.15 We also include QA datasets for 503

the target languages, adopting CMRC-2018 (Cui 504

et al., 2019) for Chinese and the Arabic portion 505

of TyDiQA (Clark et al., 2020) for Arabic. All 506

our models in this experiment are based on the pre- 507

trained multilingual encoder of XLM-Rbase (Con- 508

neau et al., 2020). 509

The results are shown in Table 3. In the first 510

group, we compare zero-shot performance with- 511

out any EAE training resources. Similar to the 512

previous trends, SRL models are obviously better 513

than QA models, while including annotations in 514

the target language could provide further benefits. 515

In the second group, we assume access to English 516

EAE training data. Similar to §3.2.2, we adopt 517

an intermediate-training scheme by further fine- 518

tuning the QA or SRL model on the English EAE 519

15The Arabic and Chinese frames adopt similar schemes as
in English, specifying roles of {ARG0, ARG1, ...}. We find it
reasonable by simply ordering them by the role numbers and
forming templates of “ARG0 V ARG1 ARG2 ...”.
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Model Overall Same-Sent. Cross-Sent.

QA 28.23±0.74 35.16±1.42 11.66±0.69
SRL 48.03±0.30 53.36±0.30 2.81±0.78
SRL+pseudo 48.00±0.14 53.50±0.16 11.17±1.88

Super. 57.38±0.84 63.45±0.86 25.52±1.31

Table 4: Argument head F1(%) on RAMS test set.

data. Compared with the results of directly training520

on English, intermediate-training with external re-521

sources could bring improvements. Again we see522

that models enhanced with SRL resources obtain523

the overall best results, which are quite promising524

when compared with the supervised ones.525

3.3.3 Multi-sentence526

Finally, we investigate multi-sentence event ar-527

guments, which are not constrained in the same528

sentence of the event trigger but can come from529

the document-level contexts. To investigate this530

phenomenon, we evaluate16 on the RAMS dataset531

(Ebner et al., 2020), which annotates event argu-532

ments within five-sentence windows around the533

triggers. We similarly extend contexts to five-534

sentence windows in our training of QA and SRL535

models for this experiment.536

The zero-shot results are shown in the first group537

of Table 4. Consistent with our previous findings,538

SRL performs better than QA for same-sentence539

arguments. Nevertheless, it predicts very few cross-540

sentence arguments. This is not surprising because541

there are no such signals in the SRL training data.542

Inspired by previous works on coreference and543

anaphora resolution (Varkel and Globerson, 2020;544

Konno et al., 2021), we create pseudo SRL data545

with cross-sentence arguments by surface-string546

matching. Specifically, for each nominal argument547

in an SRL instance, we search for words in nearby548

sentences that have the same lemma as the argu-549

ment’s head word. If there are, we delete the origi-550

nal true argument and add pseudo cross-sentence551

argument links to those matched words. Although552

deletion may create ungrammatical instances, we553

find it better than other schemes such as replac-554

ing the original argument with a “[MASK]” to-555

ken. With the additional pseudo training data, the556

model could recover certain cross-sentence argu-557

ments while keeping similar same-sentence perfor-558

mance. Multi-sentence argument extraction is still559

a difficult task, where even the supervised system560

16Since our head-expanding heurist does not cover the ar-
gument span annotation conventions on RAMS, for simplicity
we only evaluate argument head words.

could only obtain an F1 score of around 25%. This 561

calls for more future investigations, and exploring 562

how to better utilize external data resources such 563

as SRL might be a promising direction. 564

4 Related Work 565

Utilizing shallow semantics for the event tasks has 566

been explored previously. Liu et al. (2016) leverage 567

the FrameNet frames to enhance event detection. 568

Wang et al. (2021) conduct contrastive pre-training 569

with AMR structures to enhance event extraction. 570

Several works utilize predicted shallow semantic 571

structures as inputs to help low-resource event ex- 572

traction (Peng et al., 2016; Huang et al., 2018; Lyu 573

et al., 2021) and event schema induction (Huang 574

et al., 2016). This work focuses on the sub-task of 575

EAE and shows that SRL can be a valuable direct 576

training resource for EAE. 577

For the EAE task, most previous works adopt 578

methods with a classification-based strategy where 579

each role is assigned static querying parameters 580

(Chen et al., 2015; Nguyen et al., 2016; Wang et al., 581

2019b; Pouran Ben Veyseh et al., 2020; Ma et al., 582

2020; Ebner et al., 2020). Recently, two interesting 583

alternative strategies are explored to enable extrac- 584

tion in more flexible ways: MRC-based methods 585

cast the problem as answering role questions (Liu 586

et al., 2020; Du and Cardie, 2020; Li et al., 2020; 587

Feng et al., 2020; Lyu et al., 2021; Liu et al., 2021a), 588

while generation-based methods adopt sequence-to- 589

sequence generation schemes (Paolini et al., 2021; 590

Li et al., 2021b; Hsu et al., 2021; Lu et al., 2021; 591

Du et al., 2021; Huang et al., 2022). We cover 592

all these strategies within a unified role querying 593

framework and further explore a template-based 594

role querying strategy. This strategy is also re- 595

lated with prompt-based learning (Liu et al., 2021b; 596

Schick and Schütze, 2021; Li and Liang, 2021; 597

Petroni et al., 2019), but differs in the extraction- 598

targeted paradigm. Concurrently, Ma et al. (2022) 599

adopt a very similar idea, while our work differs 600

mainly on our focus upon transfer learning. 601

5 Conclusion 602

In this work, we explore transfer learning from se- 603

mantic roles to event arguments. With unified role 604

querying strategies, we show that SRL annotations 605

could be valuable resources to help the extraction 606

of event arguments. The SRL model could also 607

obtain promising results when extended to new sce- 608

narios with domain and language differences. 609
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A Details of Methods1040

A.1 Modeling Details1041

This sub-section provides more details of the mod-1042

els and the querying strategies that are briefly de-1043

scribed in §2.1.1044

We first introduce some common modeling set-1045

tings before diving into specific querying strategies.1046

As described in the main context, we adopt a uni-1047

fied role querying model for argument extraction1048

with representations of the role queries qr and the1049

candidate words hw. The construction of word1050

representations follows common practice: we feed1051

the input sequence to a contextualized encoder and1052

utilize each word’s output hidden vector. When a1053

word is split into multiple sub-words, the first sub-1054

word is taken. To encode the trigger word, the input1055

embedding of the trigger is added with a specific1056

trigger embedding, which is randomly initialized1057

and tuned together with the model. There are cases1058

when the context does not have mentions for some1059

roles (no arguments), where we adopt an all-zero1060

dummy hϵ, which essentially fixes the no-argument1061

scores to zero.1062

During training, we use the standard cross-1063

entropy loss function. When there are more than1064

one gold arguments, we simply apply equal weights1065

to them. In testing, for each role, we select the1066

words whose score is larger than zero and ranks1067

within the top-two among all candidate words. One1068

important aspect that we do not explicitly consider1069

in the output modeling is the interactions between1070

arguments as well as frame-level global features,1071

which have been shown effective for event extrac-1072

tion (Lin et al., 2020) and event schema induction1073

(Li et al., 2021a). Incorporating these for the trans-1074

fer scenarios would be an interesting future direc-1075

tion. The selected words are further expanded to1076

argument spans using the dependency-tree based1077

heuristic as described in the main content.1078

The main difference among the querying strate-1079

gies is on the construction of the querying vectors,1080

which is described in the following.1081

1) CLF1082

For the traditional classification based strategy, we1083

allocate a specific vector for each role, which is1084

included as model parameters. In the case where1085

there are enough supervision, these vectors can be1086

randomly initialized. To fit our goal of transfer1087

learning, we take advantage of the natural language1088

role names and encode them individually using a1089

Role Question Template

Person Who is the []role_name in the []trigger_text event?
Place Where does the []trigger_text event take place?
Others What is the []role_name of the []trigger_text event?

Table 5: Question templates from Liu et al. (2021a).

vanilla pre-trained model, with an input format of: 1090

[CLS] role_name [SEP ] 1091

For example, for the role of “artifact”, the input 1092

is simply “[CLS] artifact [SEP ]”. We take 1093

the averagely-pooled output representations. No- 1094

tice that since each role name is encoded by itself 1095

without any other contexts, the representations are 1096

non-contextualized, making this strategy almost 1097

the same as using a classifier. 1098

2) MRC 1099

For the MRC based strategy, we form a question 1100

for each role and dynamically obtain the query 1101

vectors by encoding the question together with the 1102

context. We adopt the question templates from Liu 1103

et al. (2021a), as shown in Table 5. For example, 1104

to query the “artifact” role of the “bought” event 1105

in Figure 1, we ask: “What is the artifact of the 1106

bought event?”. One advantage of this strategy is 1107

that we only need role types, role names and trigger 1108

texts to form a question, making it less difficult 1109

to extend to the SRL cases. In our preliminary 1110

experiments, we also tried role-specific questions 1111

for ACE utilizing those from Lyu et al. (2021), such 1112

as “What is bought?”, and found similar results. 1113

Following standard MRC models, we concatenate 1114

the question and the context as the input sequence, 1115

which is fed to the encoder: 1116

[CLS] role_question [SEP ] context [SEP ] 1117

Furthermore, instead of introducing extra parame- 1118

ters with an extra answer selection head, we simply 1119

take the contextualized representations of the ques- 1120

tion word17 as the querying vector. 1121

3) GEN 1122

The template generation based strategy requires 1123

a template for each event or SRL frame, which 1124

specifies a canonical realization of this frame in a 1125

17We choose the question word instead of the role name to
allow easier transfer from QA datasets where there may be
no specific querying roles. In preliminary experiments, we
also tried average pooling over the question tokens to form
querying vectors but did not find better results.
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natural language sentence. For example, for the1126

“TransferOwnership” event, we have a template1127

of “seller give artifact to buyer for beneficiary in1128

place”, where each role occupies a placeholder slot.1129

In this strategy, a sequence-to-sequence encoder-1130

decoder model is utilized. The context is encoded1131

by the encoder while the filled template is gener-1132

ated by the decoder. We mostly follow Li et al.1133

(2021b) but make some modifications to the out-1134

put modeling. Instead of directly replacing the1135

slots with actual argument words, we keep the role1136

names and insert the actual arguments after the role1137

slots. For example, we output18 “seller [UNK] give1138

artifact book to buyer he for beneficiary [UNK]1139

in place store” instead of “[UNK] give book to he1140

for [UNK] in store”. We keep the role names for1141

two reasons: firstly, the role names in the target1142

sequence can act as a guidance of the to-be-filled1143

arguments; moreover, since the arguments are re-1144

stricted to be words from the context, we can utilize1145

the representations of the role names as queries to1146

point to the context words. The second point allows1147

us to form a pointer-network styled model, which1148

directly selects arguments from the context word1149

representations, fitting in our unified role-querying1150

framework.1151

4) TSQ1152

Actually we do not need to fill in the template with1153

actual argument words, since our target task is an1154

extraction task where we only need to find the ar-1155

gument mentions in the context. Moreover, if no1156

generation is required, we could merge the context1157

and the template together to allow bidirectional1158

modeling. Motivated by this, we keep the unfilled1159

but already natural language styled template as it1160

is, concatenate it with the context and feed the full1161

sequence to the encoder:1162

[CLS] template [SEP ] context [SEP ]1163

After the encoding, we take the output representa-1164

tions (first sub-token) of each role slot as its query1165

vector and apply all the role queries parallely to se-1166

lect the corresponding argument words. This can be1167

viewed as a combination of MRC and GEN, taking1168

the advantages of both methods. As in MRC, we1169

perform extraction for the role queries and no gener-1170

ation is needed, and as in GEN, the template allows1171

us to embed all the role queries in one sequence1172

18We utilize a specific [UNK] symbol to denote the case
when there are no arguments in the context.

rather than forwarding multiple times for differ- 1173

ent roles. Moreover, since all the role queries are 1174

performed parallelly without inter-dependencies, 1175

this can be viewed as a non-autoregressive method 1176

which is more efficient than GEN. 1177

Extra Information Requirements 1178

To allow transferring among different semantic 1179

frame schemes, all the above querying strategies re- 1180

quire some extra information for the event or SRL 1181

frames. Firstly, the natural-language styled role 1182

names are needed for all the methods, since with- 1183

out this, we can hardly model what each role aims 1184

to query. With the pre-trained language models, we 1185

have a way to obtain role representations within 1186

a shared space by encoding the natural language 1187

styled queries. For MRC, we further need the role 1188

types, more specifically, whether the role is person- 1189

related to decide using “What” or “Who”.19 For 1190

GEN and TSQ, we need templates that embed all 1191

the roles within a natural language sentence. 1192

For the target EAE tasks where there are only 1193

tens of event types, we manually specify all the 1194

required information. For SRL frames, we semi- 1195

automatically collect them with data statistics, as 1196

described in §2.2 and the next section. 1197

A.2 Extra Information for SRL Frames 1198

We adopt SRL frames from PropBank 3.1,20 Nom- 1199

Bank 1.021 and FrameNet 1.722. Since many Nom- 1200

Bank frames are derived from PropBank frames, 1201

we simply map23 them to the PropBank counter- 1202

parts and ignore the ones that do not have such 1203

mappings. We filter event-related SRL frames by 1204

excluding the ones that do not have any verb realiza- 1205

tions, which are judged by the POS sets provided in 1206

the frame files. Moreover, we only consider a sub- 1207

set24 of non-core or modifier roles that are related 1208

to the target EAE task. 1209

To apply the role querying strategies, we semi- 1210

automatically collect extra information from the 1211

SRL data. Specifically, for each role in a frame, we 1212

collect the following information. 1213

19The “Where” question is designated to the role of “place”.
20https://github.com/propbank/

propbank-frames/releases/tag/v3.1
21https://nlp.cs.nyu.edu/meyers/

nombank/nombank.1.0/
22https://framenet.icsi.berkeley.edu/

fndrupal/frameIndex
23We check the “source” attribute in a NomBank frame,

which points to a PropBank frame if existing.
24These include “ARGM-LOC” in PropBank and {“Place”,

“Instrument”, “Weapon”, “Vehicle”} in FrameNet.
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Scheme Frame Template

PropBank

buy.01 buyer buy goods for recipient from seller for money in place
forbid.01 authority forbid protagonist action in place
rent.01 at lessor lessee rent goods from lessor for money in place

swim.01 from area self mover swim against area to goal in place

FrameNet

Abandonment agent abandon theme in place
Commerce_buy buyer buy goods in place

Employing employer employ employee field position task in place
Mention communicator mention specified content message in medium in place

Table 6: Examples of the auto-generated templates. The predicate is emboldened and the roles are underlined. Note
that some of the examples are especially picked to show typical problems of this semi-automatic process.

• Role names. We directly take the role label1214

names of FrameNet since they are already in nat-1215

ural language forms. We further train a role label1216

classifier25 with the FrameNet data and apply1217

it to the PropBank data. Then for each frame-1218

specific role, the most frequently predicted label1219

will be the role name. For example, for the “Arg0”1220

role of the “buy.01” frame, its arguments in the1221

dataset are mostly predicted to the “buyer” label,1222

which is thus assigned as its role name.1223

• Role orders in the templates. We construct a1224

template for an SRL frame by concatenate its1225

predicate word26 and role names. The main thing1226

to specify is their ordering. We again take a sta-1227

tistical approach and collect each role’s relative1228

distance to the predicate. For example, in the1229

“buy.01” frame instance of “He bought a book in1230

a store.”, “Arg0” (He) gets a distance of -1, “Arg1”1231

(book) gets a +1 and “ArgM-LOC” (store) gets1232

a +2. Finally, the role orders in the templates are1233

decided by the roles’ average relative distances.1234

We aim to obtain a canonical verb-styled order-1235

ing in active voice, and thus we only consider1236

frame instances that are realized by non-passive1237

verbal predicates.1238

• Preposition words in the templates. When real-1239

ized in natural language sentences, many roles1240

are accompanied by prepositions. We count the1241

frequency that a role is filled by an argument that1242

utilizes a preposition27 and keep the prepositions1243

that appear more frequent than 25%. When there1244

25This classifier is similar to our CLF querying model ex-
cept that no extraction is needed. Its accuracy on the FrameNet
dev set is around 0.7. Notice that even when the classifier does
not hit the most suitable label, the predicted ones may still be
reasonable for our usage.

26For PropBank frames we simply take the predicate’s
lemma, while for FrameNet frames, we choose the lemma
of the lexicon unit that overlaps mostly with the frame name.

27The criterion is that the argument’s head word has a de-
pendency relation of “case” to a child whose POS is “ADP”.

are such prepositions, we add the preposition be- 1245

fore the role name and put them together into the 1246

slot. When there are multiple feasible preposi- 1247

tions, we randomly sample one in training and 1248

utilize the most frequent one in testing. 1249

• Question words. For the MRC strategy, we also 1250

need to identify the role types to select ques- 1251

tion words. Since the “Where” question is spe- 1252

cific to places (“ArgM-LOC” in PropBank and 1253

“place” in FrameNet), we only need to distinguish 1254

whether the role is person-related. We again take 1255

a counting-based method by checking how many 1256

times a role is filled by a personal pronoun. If this 1257

happens for a role with a frequency larger than 1258

10%, we regard it as potentially person-related. 1259

Since there are cases where a role can be filled 1260

by either a person or an object, at training time 1261

we randomly pick “Who” or “What” questions 1262

for these potentially person-related roles, while 1263

only asking “Who” in testing. 1264

Most of the above heuristics are decided by man- 1265

ually checking the generated outputs for the Prop- 1266

Bank and FrameNet frames. We provide some 1267

examples of generated templates in Table 6. No- 1268

tice that this semi-automatic approach is far from 1269

perfect and there can be noises and inconsisten- 1270

cies. For example, in the templates of “rent.01” 1271

and “swim.01”, the role ordering is slightly strange 1272

and there are repeated role names, and in the “Em- 1273

ploying” and “Mention” frames, prepositions are 1274

missing for some roles. Nevertheless, we find that 1275

most of the generated templates are close to natural 1276

language and they generally look reasonable for 1277

the aim of our usage. There is one more caveat, 1278

that is, we only allow one template for one frame, 1279

while there can be multiple templates with syntac- 1280

tic variations. We leave the investigations of better 1281

template constructing methods to future work. 1282

15



Dataset Split Sent. Event Arg. A/E

ACE
Train 192.2K 4.4K 6.6K 1.5
Dev 0.9K 0.5K 0.8K 1.6
Test 0.7K 0.4K 0.7K 1.6

ERE
Train 147.3K 6.2K 8.9K 1.4
Dev 1.2K 0.5K 0.7K 1.4
Test 1.2K 0.6K 0.8K 1.5

Table 7: Statistics of the ACE and ERE data. “A/E”
denotes the averaged argument number per event.

Type Dataset Sent. Inst. Arg. A/I

SRL
PropBank 77.7K 256.1K 374.5K 1.5
NomBank 28.2K 56.9K 86.8K 1.5
FrameNet 173.0K 173.4K 208.5K 1.5

QA

SQuAD 62.2K 130.3K 86.8K 0.7
QA-SRL 64.0K 299.3K 299.3K 1.0
QANom 7.1K 26.4K 26.4K 1.0
QAMR 4.8K 88.3K 88.3K 1.0

Table 8: Statistics of the SRL and QA data. “Inst.”
denotes the number of SRL or QA instances, where “A/I”
denotes the averaged number of argument or answer per
instance.

B Details of Main Experiments1283

B.1 Settings1284

The main experiments are conducted with En-1285

glish ACE28 (ACE05-E+) and ERE29 (ERE-EN)1286

datasets. We adopt the preprocessing scripts30 from1287

ONEIE (v0.4.8) Lin et al. (2020). The statistics of1288

the event data are shown in Table 7. For SRL data,1289

we take those from the latest PropBank31 (EWT1290

and OntoNotes), NomBank32 and FrameNet33. For1291

FrameNet, we utilize the lexicographic annotation1292

sets since there are much more instances. As de-1293

scribed in §A.2, we ignore SRL frames that do1294

not have verbal predicates and only keep related1295

non-core roles. For QA data, we include SQuAD34,1296

QA-SRL35, QANom36 and QAMR37. For the QA1297

28https://catalog.ldc.upenn.edu/
LDC2006T06

29LDC2015E29, LDC2015E68, and LDC2015E78.
30http://blender.cs.illinois.edu/

software/oneie/
31https://github.com/propbank/

propbank-release
32https://nlp.cs.nyu.edu/meyers/NomBank.

html
33https://framenet.icsi.berkeley.edu/

fndrupal/
34https://rajpurkar.github.io/

SQuAD-explorer/
35https://github.com/uwnlp/qasrl-bank
36https://github.com/kleinay/QANom
37https://github.com/uwnlp/qamr

instances, we follow Michael et al. (2018) and use a 1298

question-context alignment heuristic to find a pred- 1299

icate in the context for each question. Since the ex- 1300

ternal data is mainly utilized as training resources, 1301

we simply concatenate the all the available data 1302

portions for training while splitting a small subset 1303

for development. Data statistics of SRL and QA 1304

are shown in Table 8. 1305

We utilize pre-trained language models 1306

(RoBERTabase for encoder-only models (CLF, 1307

MRC, TSQ) and BARTbase for encoder-decoder 1308

models (GEN)) to initialize our models and 1309

fine-tune the full models in all the experiments. 1310

The model parameter numbers are 125M and 1311

139M, for those with RoBERTa and BART 1312

respectively. For the hyper-parameter settings, we 1313

mostly follow common practices. Adam is utilized 1314

for optimization. The learning rate is initially set 1315

to 2e-5 and linearly decayed to 2e-6 throughout the 1316

training process. The models are trained for 50K 1317

steps with a batch size of 16 for event and SRL and 1318

32 for QA. We pick models by the performance on 1319

the development set of each task. In low-resources 1320

cases, the original event development set is also 1321

down-sampled accordingly as the training set. All 1322

the experiments can be conducted with one 1080 1323

Ti GPU and the training can usually be finished 1324

within several hours. 1325

B.2 Details of GPT-3 Prompting 1326

To perform prompting with GPT-3, we utilize the 1327

OpenAI API.38 We adopt the “Davinci” model 1328

and the Completion endpoint. We design the 1329

prompts with a strategy that is similar to MRC. 1330

The prompts consist of three parts: the context 1331

sentence, a question for the querying role and a 1332

partial answer to be completed. The context is 1333

simply the sentence where the event trigger appear, 1334

while the questions are those shown in Table 5 as 1335

in the MRC strategy. The to-be-completed answer 1336

sentence is a declarative repetition of the question. 1337

For example, we have the following prompt to 1338

query the “artifact” role with the context of “He 1339

went to the store and bought a book.”: 1340

He went to the store and bought a 1341

book. 1342

Q: What is the artifact of the 1343

bought event? 1344

A: The artifact of the bought 1345

event is 1346

38https://openai.com/api/
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Method ACE ERE
gold pred. gold pred.

Super. 68.93 53.98 72.24 49.77

QA 38.62 29.94 38.74 26.02

SRLCLF 33.18 26.65 33.89 25.78
SRLMRC 47.08 25.50 52.32 38.39
SRLGEN 49.99 37.01 55.38 38.77

SRLTSQ 53.36 39.41 57.81 40.08
+shuf. 54.82 41.15 58.54 40.78
+distill 55.17 41.50 57.95 40.01
+both 56.35 42.16 58.96 41.15

Table 9: Zero-shot EAE results (F1%) on event test sets
with gold or predicted event triggers.

Model ACE ERE

encoder-only 56.35 58.96
encoder-decoder 55.36 58.44

Table 10: Comparisons between encoder-only and
encoder-decoder TSQ models.

We let the GPT-3 model to greedily decode the1347

remaining of the answer sentence and match1348

the results to the tokens in the original context1349

to obtain the arguments. When there are no1350

matchings or the answer is “not specified”, no1351

arguments are predicted for the querying role.1352

Since the answer should come from the context,1353

we utilize the “logit_bias” parameter to constrain1354

the model to adopt sub-tokens that appear in the1355

context (or those from “not specified”).1356

B.3 Results with Predicted Triggers1357

In our main experiments, we assume given gold1358

event triggers. In this sub-section, we train a super-1359

vised sequence-labeling event detector and further1360

utilize the predicted triggers to perform zero-shot1361

argument extraction. The results are shown in Ta-1362

ble 9. The event detectors could obtain labeled F11363

score of 71.0 and 58.4 for ACE and ERE, respec-1364

tively. With the predicted triggers, the results drop1365

correspondingly against those with gold triggers.1366

Nevertheless, the overall trends are similar. The1367

TSQ strategy performs the best while the argument1368

augmentation is also helpful with predicted trig-1369

gers. One interesting direction to explore is full1370

event extraction in the zero-shot and low-resource1371

scenarios, which we leave to future work.1372

B.4 Model Choice for TSQ1373

Concurrently, Ma et al. (2022) explore an idea1374

that is similar to TSQ, while taking sequence-to-1375

Method Gold Predicted

OneIE (Lin et al., 2020) - 54.8
EEQA (Du and Cardie, 2020) 63.34 -

GenIE (Li et al., 2021b) 66.67 53.71

CLF 66.96 52.62
MRC 66.55 52.43
GEN 66.76 52.81
TSQ 68.93 53.98

Table 11: Comparisons of fully-supervised ACE05-E+

test results (F1%) (with gold or predicted triggers).
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Figure 5: Argument F1(%) scores on ACE and ERE test
sets with different amounts of training data. Here x-axis
(drawn in log scale) denotes the percentage of original
training data sampled. The shaded areas indicate the
ranges of standard deviations.

sequence encoder-decoder model to perform ar- 1376

gument extraction. Specifically, they encode the 1377

contexts with the encoder while put the template 1378

at the decoder side. We also compare this encoder- 1379

decoder scheme with our encoder-only TSQ in the 1380

transfer scenario. The results are shown in Table 10, 1381

where the encoder-only model is slightly better. 1382

Therefore, we utilize the encoder-only model for 1383

the TSQ strategy. 1384

B.5 Supervised Results 1385

Although our main focus is on the transfer scenar- 1386

ios, we also conduct purely supervised experiments 1387

on the target EAE datasets. We first compare fully- 1388

supervised results with previous works. As shown 1389
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Category Example SRL Super.

Correct — 194 (50.52%) 238 (63.47%)

Role Actually, they paidTransferMoney for [it]Beneficiary. 45 (11.72%) 22 (5.87%)

Local MyBuyer plan is to payTransferOwnership off my car. 40 (10.42%) 23 (6.13%)

Head They firedAttack mortars in the [direction]Target of the 7th CavalryTarget. 24 (6.25%) 8 (2.13%)

Global “We condemned the attackAttack,” he said, adding that his messages to
the terroristsAttacker is: Their efforts will not be successful.

24 (6.25%) 17 (4.53%)

Others — 14 (3.65%) 10 (2.67%)

Ambiguous At least four [policeman]AttackerVictim were injured in clashesAttack. 18 (4.69%) 20 (5.33%)

Span The 1st [Brigade]AttackerAttacker took Karbala with a minimal fightAttack. 12 (3.12%) 14 (3.73%)

Coreference HeDefendant skipped bail during [his]Defendant trialHearing. 13 (3.39%) 23 (6.13%)

Table 12: Examples of the categories and results of the manual error analysis. In the examples, the triggers are shown
in bold texts with brown event types. The gold arguments are presented in underlined spans with red roles, while
predicted ones are [bracketed] followed by blue roles. Results are denoted with number counts and (percentages).
The rows of the error categories are sorted by the gap between SRL and supervised counts.

in Table 11, our results are generally comparable to1390

those in previous works, which validates the quality1391

of our implementation.1392

Furthermore, we compare the four querying1393

strategies with different amounts of training data.1394

The results are shown in Figure 5. The overall trend1395

is similar in both datasets. In high-resource sce-1396

narios, different querying strategies could obtain1397

similar results. In low-resource cases, generally the1398

methods that capture more contextual information1399

in the queries can perform better. The CLF strategy1400

with non-contextualized queries obtain obviously1401

worse results than the others, while TSQ is the over-1402

all best-performing strategy. This is also consistent1403

with the results in the zero-shot transfer scenarios.1404

B.6 Manual Analysis1405

We further perform a manual error analysis to inves-1406

tigate what the main error types are. We randomly1407

take 100 event frames that contain prediction errors1408

from the ACE development set and categorize the1409

errors. We perform this analysis for both our best1410

zero-shot SRL model and the supervised model to1411

examine where the main gaps are. We specify eight1412

error categories:1413

• Ambiguous cases, where there are annotation1414

errors or ambiguities and the predictions could1415

be regarded as correct in some way.1416

• Coreference, where predicted and gold argu-1417

ments are co-referenced in some way.1418

• Span mismatch, where the main contents are1419

captured with non-crucial boundary mismatches.1420

• Head mismatch, where the main contents are 1421

roughly captured but not with the exact annotated 1422

words. This happens mostly in appositions or 1423

noun modifiers with more specific contents. 1424

• Role misunderstanding, where the semantic 1425

meaning of a role is not correctly understood. 1426

• Local inference, where correct predictions re- 1427

quire semantic inference at the local clause. 1428

• Global understanding, where correct predictions 1429

require global understanding of the full context. 1430

• Others, where the error does not fall into any of 1431

the above categories. 1432

Examples of these categories and the results are 1433

shown in Table 12. According to the statistics, 1434

the main gaps between the SRL and supervised 1435

models are on the categories of role misunderstand- 1436

ing, lacking of semantic inference as well as head 1437

mismatch. Head mismatches are due to the discrep- 1438

ancies between syntactic head and semantic core 1439

words, and might not cause severe problems. The 1440

first two are more semantic errors that are related 1441

to the essence of the EAE task. Role misunder- 1442

standing may be related with template mismatches, 1443

where roles in the SRL templates are different than 1444

those in target event ones. Lacking of semantic in- 1445

ference is mostly upon distant arguments. Though 1446

the argument augmentation techniques recover cer- 1447

tain distant arguments for SRL frames, this prob- 1448

lem is still far from being solved. Notice that these 1449

semantic errors reveal the main difficulties of the 1450

EAE task, which even supervised systems have not 1451

yet fully tackled. To solve these problems, more 1452

comprehensive semantic understanding is required. 1453
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Event Template Role questions

Expression agent express theme What is expressed?
Transcription agent transcribe theme What is transcribed?
Catabolism agent degrade theme What is degraded?

Phosphorylation agent phosphorylate theme What is phosphorylated?
Localization agent localize theme What is localized?

Binding agent bind theme1 to theme2 What is bound?
What is something bound to?

Regulation cause regulate theme What causes the regulation?
What is regulated?

Table 13: Manually specified templates and role questions for GENIA events (“agent” is a dummy role introduced
to form the templates in active voice).

Role QA SRL +shuf. +distill +both

Place 51.73 47.10 46.94 56.46 57.38
Attacker 34.59 56.52 59.03 57.88 58.19
Entity 38.02 40.96 43.97 41.59 43.36
Target 33.15 38.62 38.66 37.59 39.04
Victim 66.98 80.58 81.18 79.27 79.49
Artifact 13.95 49.52 62.82 46.47 60.54
Person 58.53 71.82 72.16 73.46 73.20

Recipient 45.75 46.68 47.51 50.64 49.37
Destination 66.11 65.97 66.14 68.02 66.00
Instrument 34.28 40.00 47.05 43.54 49.56

Table 14: F1% score breakdowns by argument roles.

Method Single-instance Batched

CLF 184 316
MRC 106 146
GEN 28 144
TSQ 167 281

Table 15: Decoding speed (instances per second) com-
parisons of different role querying strategies. We evalu-
ate both single-instance and batched decoding modes.

B.7 Role Breakdowns1454

We perform breakdowns on argument roles on ACE1455

with the zero-shot models. Table 14 shows the1456

results of the top-ten frequent roles. Interestingly,1457

distillation generally helps more on the non-core1458

roles, such as PLACE and DESTINATION, while1459

shuffling enhances core roles, like ATTACKER and1460

VICTIM. Finally, applying both could lead to the1461

overall best results.1462

B.8 Speed Comparisons1463

We also perform decoding speed comparisons to ex-1464

amine the efficiency of different querying strategies.1465

The results are shown in Table 15. There are no sur-1466

prises that the simplest CLF strategy achieves the1467

highest decoding speed, since its input sequences1468

are the shortest and there is no further complex1469

query encoding. TSQ is only around 10% slower, 1470

but still efficient compared with other two meth- 1471

ods, where MRC suffers from multiple forwarding 1472

for different role queries and GEN requires auto- 1473

regressive decoding at testing time. 1474

C Further Extensions 1475

C.1 GENIA Details 1476

For the GENIA experiments, one more assumed in- 1477

put is the protein entities, following the settings of 1478

BioNLP shared task. Since our model-predicted ar- 1479

gument head words might not match the protein en- 1480

tities, we perform a syntax-based post-processing 1481

heuristic. For a predicted argument word, we check 1482

its descendants in the dependency tree and relocate 1483

the argument to the highest node that belongs to 1484

an entity (or an event for the “Theme” of “Regula- 1485

tion”). If no such items can be found, the prediction 1486

is ignored. The evaluation metric is approximate re- 1487

cursive matching using the official online service.39 1488

For the GENIA events, we manually specify tem- 1489

plates, which are shown in Table 13. We also man- 1490

ually specify role questions since the templated 1491

questions mostly fail in this scenario. For the three 1492

regulation events, we simply adopt the same spec- 1493

ifications since no obvious differences are found 1494

when adding modifiers of “positively” or “nega- 1495

tively”. Since our SRL templates are all formed in 1496

active voice, we introduce a dummy “agent” role 1497

to form non-passive GENIA templates. The predic- 1498

tion of this dummy role is ignored in testing. 1499

C.2 Multi-lingual Analysis 1500

One interesting aspect in the multi-lingual scenario 1501

is how the predictions are influenced by the word 1502

39http://bionlp-st.dbcls.jp/GE/2011/
eval-test/

19

http://bionlp-st.dbcls.jp/GE/2011/eval-test/
http://bionlp-st.dbcls.jp/GE/2011/eval-test/


Language Model Pearson Spearman

Arabic w/o SRL 0.6050 0.6727
w/ SRL 0.5157 0.1394

Chinese w/o SRL 0.6910 0.5636
w/ SRL 0.5025 0.2727

Table 16: Correlations between relative role order dif-
ferences and performance gaps to supervised systems
for multi-lingual EAE (with top-10 frequent roles).

order difference between the source and target lan-1503

guages. We analyze the influence by measuring1504

the performance differences in different roles. We1505

firstly calculate the directional statistics for each1506

role in each language, specifically: for a role in1507

a language, what percentage of its arguments ap-1508

pear after the trigger? For example, “Attacker” ap-1509

pears after the trigger in 26.9% of the times in1510

English, while this percentage is 72.7% in Arabic.1511

Then for each role, we have a source-target order1512

difference metric, which is the absolute value of1513

the frequency difference. We further calculate the1514

performance differences between a transfer model1515

trained with English data and a supervised model1516

directly trained on the target language. Finally, we1517

measure the correlation between the order differ-1518

ences and performance differences for the top-ten1519

frequent roles in each language. The results for the1520

transfer model with or without (multi-lingual) SRL1521

intermediate-training are shown in Table 16. Inter-1522

estingly, if directly transferring from English to the1523

target languages, there are at least moderate corre-1524

lations between the order differences and perfor-1525

mance gaps. While using SRL, the correlations de-1526

crease probably because of the extra signals about1527

target language order in the SRL data. This shows1528

that order difference may be a major factor influ-1529

encing the effectiveness of cross-lingual transfer.1530

Currently our templates are all in English-styled1531

and it would be an interesting future direction to1532

explore the influences of template specifications1533

such as role orders.1534

C.3 More Multi-sentence Results1535

We also perform intermediate-training on the1536

RAMS dataset with different amounts of target1537

training instances. The test results are shown in1538

Figure 6. The same-sentence patterns are similar1539

to those in previous ACE experiments, while SRL1540

seems to be able to provide small but consistent1541

benefits for cross-sentence arguments.1542

1% 5% 10% 25% 100%
Percentage of Training Data

10

20

30

40

50

60

F1
(%

)

RAMS

w/o SRL - Same
w/o SRL - Cross
w/ SRL - Same
w/ SRL - Cross

Figure 6: RAMS results (same- or cross-sentence argu-
ment F1%) with or without SRL intermediate-training.

D Discussion of Limitations 1543

This work has several limitations. Firstly, we only 1544

focus on the event argument extraction step and 1545

assume given event triggers. Though the first step 1546

of event detection is also important for event extrac- 1547

tion, we do not cover it in this work mainly due to 1548

two reasons: 1) the annotation of event triggers is 1549

generally less laborious than argument annotation 1550

since word-level tagging instead of pairwise linking 1551

is required; 2) Event detection is highly specific to 1552

the target scheme, which is different than argument 1553

extraction where there are more sharings between 1554

semantic roles and event arguments. Secondly, in 1555

this work, SRL templates are created heuristically 1556

and do not cover syntactic and language variations. 1557

For example, we only construct English-styled tem- 1558

plates in active voice, which might not be ideal 1559

for all the cases. We mainly aim to show that the 1560

template-based method is a promising way to per- 1561

form argument extraction especially in transferring 1562

scenarios, but surely there could be better ways to 1563

construct the querying templates. Finally, though 1564

the applying of argument augmentation recovers 1565

certain amounts of distance arguments, it is still far 1566

from an ideal solution to the problem. This calls 1567

for more future investigations on this direction, re- 1568

searching towards deeper and more comprehensive 1569

semantic understanding of natural languages. 1570
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