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Abstract
Improving observability in large-scale distributed computing clusters has always been
a complex problem, particularly in High-Performance Computing (HPC). Despite
the growing popularity of GPU-accelerated jobs, traditional workload managers in
HPC systems, such as Slurm, lack the feature for collecting GPU usage history at job
levels. In addition, with increasing workloads that rely on extensive GPU resources,
especially AI training jobs, GPUs have become the most power-consuming hardware
in the HPC system, so it’s essential to reduce resource waste on these devices.

To address these issues, in this master’s thesis, we design and implement a real-
time GPU usage alert service on top of the Slurm-based job monitoring system for
supercomputer systems, i.e., Puhti, Mahti, and the pre-exascale supercomputer LUMI
(the fastest supercomputer in Europe according to TOP500 by June 2024) at the CSC
– IT Center for Science. We aim to have complete control over the data pipeline and
tailor it to fit the characteristics of HPC systems so that it can be performant. As a
result, we design our own GPU monitoring metrics collection infrastructure from the
libraries provided by multiple GPU vendors and an in-memory real-time alert status
checker service with the help of database triggers and LISTEN & NOTIFY. We also
develop an alert algorithm to spot inefficient jobs with a bit of usage. In addition, we
benchmarked the alert service with random data under extreme conditions designed
for pre-exascale supercomputers, and the whole system was stable enough. Finally,
we deployed the entire system in production for Puhti and Mahti, and it had been
working well for months before we submitted the thesis.

The outcome of this master’s thesis empowers supercomputer administrators at
CSC – IT Center for Science to learn about sub-optimal GPU resource utilization
for specific jobs in real-time, finding out the cause for them, thus improving energy
efficiency and significantly reducing resource waste in HPC clusters.
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Chapter 1

Introduction

This Chapter provides an overview of the thesis, including its foundational back-
ground, the purpose and objectives to be pursued, and the identified problems. Addi-
tionally, we point out the thesis’s contributions, and structure.

1.1 Background
In contemporary computational science and AI, using HPC systems has become ad-
vantageous and indispensable. As the boundaries of human knowledge expand, so do
the complexities of the problems we seek to solve. From simulating climate models
to analyzing vast datasets in genomics and training deep neural networks to power-
ing advanced simulations in fluid dynamics, HPC emerges as the bedrock for modern
scientific research and technological advancement.

Traditional HPC clusters emphasized CPU-centric computing. However, the rise
of heterogeneous computing has introduced supercomputers with accelerators such as
the GPU [21]. At the core of the current computational revolution lies the GPU, which
has transcended its original purpose in graphics rendering to become the cornerstone
of parallel computing. In artificial intelligence, the demand for GPU resources for
training has surged dramatically, driven by the increasing complexity of neural net-
work models and the rise of LLMs in recent years. The significance of GPUs in HPC
cannot be overstated, as their massively parallel architecture and ability to handle
thousands of computational tasks simultaneously have pushed scientific research and
AI development to new heights. Indeed, GPUs have redefined the limits of what was
once computationally feasible, enabling researchers and engineers to tackle problems
of immense scale and complexity with remarkable efficiency and speed.

As a result, effective GPU monitoring has become an indispensable component
for ensuring optimal performance, reliability, and resource utilization. Comprehen-
sive monitoring solutions are paramount as computational workloads become increas-
ingly complicated and resource-intensive. GPU monitoring provides invaluable in-
sights into the utilization, temperature, power consumption, and memory usage of
GPUs in real-time, enabling researchers and system administrators to identify bottle-
necks, preemptively address hardware failures and code bugs, and optimize resource
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allocation. This proactive approach enhances the overall efficiency and stability of
HPC environments, minimizes downtime, and maximizes the return on investment in
GPU-accelerated infrastructure.

Furthermore, with the growing popularity of AI applications, from natural lan-
guage processing to computer vision, the demand for GPU resources continues to
grow. Effective monitoring ensures the smooth operation of AI training jobs. It fa-
cilitates capacity planning and scalability to ensure that all the resources are used
efficiently, allowing HPC users to seamlessly adapt to evolving computational de-
mands. Through the lens of this thesis, we aim to underscore how we conduct GPU
monitoring to harness the full potential of HPC in real-world applications, showing
its pivotal role in driving innovation, enhancing system performance, and advancing
the frontiers of both scientific research and artificial intelligence.

1.2 Purpose
Most workload managers in the HPC world lack a GPU monitoring feature. Imple-
menting a real-time GPU usage alert service at the job level on HPC clusters can
yield significant benefits across various domains. Notably, it can enhance the overall
sustainability of utilizing the computing cluster while facilitating the advancement of
generative AI development.

1.2.1 Sustainability
In HPC environments, GPUs are typically allocated by the device, while the CPU al-
locates cores. For instance, the LUMI supercomputer, ranked as the fastest in Europe
according to TOP500 by June 2024 [45], uses AMD Radeon Instinct MI250X GPU
Accelerator, which is equipped with 220 compute units (cores), in contrast to the 64-
core 3rd Gen EPYC 7A53s Trento CPU [13]. While this abundance of cores enables
GPUs to efficiently handle mathematical and spatial computations simultaneously, it
makes GPUs the most power-intensive component in a computing system.

Compared with CPUs, inefficient utilization of GPUs can lead to substantial re-
source wastage, particularly during peak hours when numerous jobs await allocation.
Referring to Subsection 2.2.3, as is shown in Table 1.1, in LUMI, the maximum TDP
for the CPU is 280W [3], whereas the TBP for the GPU is 500W, peaking at 560W
[2]. Thus, each allocation on systems like LUMI has a mere 4W energy consumption
per core for CPUs, contrasting wildly with the over 250W consumption for GPUs (1
GPU has 2 GCDs in this case here) [13].

Device Cores Maximum Power Allocable Allocation Power
GPU 220 560W 2 280W
CPU 64 280W 64 4.375W

Table 1.1: Resources comparison of GPU and CPU for LUMI
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However, for GPU, knowing the performance and getting alerted for sub-optimal
jobs on time poses a challenge for supercomputer administrators. Existing work-
load managers and job schedulers in HPC systems, such as Slurm and LSF, provide
descriptive accounts of CPU and memory usage but lack real-time hardware moni-
toring capabilities at the job level, and they have no recording of history monitoring
data. They also have no built-in alert systems. As a result, a GPU alerting system is
urgently needed to help administrators ensure sustainability and reduce carbon emis-
sions. Users also need this information to debug or improve the code and make their
programs more environmentally friendly.

1.2.2 Generative AI
In January 2024, the European Commission introduced comprehensive measures to
bolster European startups and SMEs (Small and Medium-sized Enterprises) in de-
veloping AI that upholds EU values and regulations [8]. This initiative follows the
political consensus reached in December 2023 regarding the EU AI Act, which is
tailored to support AI startups and foster innovation. It includes a proposal aimed
at amending the Regulation of the EuroHPC JU (European High-Performance Com-
puting Joint Undertaking) [9], thereby granting startups and the broader innovation
community access to AI-optimized supercomputers — AI Factories.

AI Factories leverage the supercomputing capacity of the EuroHPC Joint Under-
taking to develop trustworthy, cutting-edge generative AI models. Generative AI,
now a trendy research area, focuses on creating new content or data that is original
and often indistinguishable from human-created content. These models are trained
on vast amounts of text data to learn the intricacies of language. They can then gen-
erate coherent and contextually relevant text, pictures, sound, and videos in various
styles and topics. Through fine-tuning and conditioning on specific prompts or input
contexts (prompt engineering), LLMs can generate text that mimics human writing
remarkably, making them valuable tools for various creative and practical applica-
tions, including content generation, story writing, and even code generation. Most
of the generative AI models, such as LLaMA [49], Gemma [46] as well as OpenAI’s
GPT series [27], use transformers.

Transformers employ attention mechanisms to capture dependencies between words
in a sequence, allowing them to understand and generate text with greater contextual
awareness [50]. The architecture of transformers, characterized by their extensive
layers and attention mechanisms, necessitates vast amounts of parallel computation,
making them an ideal fit for GPU acceleration.

GPUs excel at handling the matrix multiplications and element-wise operations
inherent in the forward and backward passes of transformer models, leveraging their
massively parallel architecture to accelerate training and inference processes. More-
over, GPUs’ large memory bandwidth helps efficiently process the immense datasets
typically associated with LLMs, enabling scalability. As a result, integrating GPUs
in LLM frameworks enhances computational performance. It allows researchers and
practitioners to explore more complex models and larger datasets, pushing the bound-
aries of natural language understanding and generation.
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However, due to the highly intensive model structure and the complicated nature
of distributed parallel training and inference logic, those generative AI training pro-
grams and inference applications will likely not utilize all the GPUs fully. GPU mon-
itoring and alerting can provide insights into the performance and help identify code
bugs and optimization opportunities for AI workloads, thus advancing state-of-the-art
AI research and applications.

1.3 Research questions
By the time we started the thesis, a monitoring system for GPU had already been
ready as part of the work during my 2023 summer internship at CSC – IT Center for
Science. As a result, this thesis aims to impact the above areas by implementing an
alert service based on our existing monitoring system for supercomputers at CSC. It
seeks to address the following research question:

How do we systematically design a service that efficiently and reliably ana-
lyzes jobs using GPUs in HPC systems in real-time?

This can be divided into the following sub-research questions:

• RQ1: How to minimize the alert delay with a fix-size window in real-time?
This involves exploring efficient methods to streamline detecting and respond-
ing to anomalies or critical events promptly.

• RQ2: How to minimize the performance impact on the database systems?
This includes optimizing database queries and resource allocation to ensure
minimal disruption to overall system performance.

• RQ3: How to reliably maintain a data structure for job alert status check?
This involves data organization, scalability, and fault tolerance to ensure reli-
able operation under varying workload conditions.

• RQ4: How to find the most reliable algorithm for generating alerts?
This includes assessing different algorithms’ accuracy, efficiency, and scala-
bility to determine their suitability for real-time alert generation of HPC.

1.4 Contributions
The contributions of this thesis are as follows:

• We have successfully created and deployed the monitoring system and the alert
service for Nvidia and AMD GPUs at job level with Slurm on HPC systems.

• Through an in-depth investigation of the collected monitoring data, an algo-
rithm has been developed to identify and alert jobs with inefficient GPU re-
source usage. This achievement not only enhances the effectiveness of the alert
service but also contributes to optimizing resource utilization and improving
overall system efficiency.

• By analyzing the collected monitoring data and identifying patterns of ineffi-
cient GPU usage, this thesis contributes to a deeper understanding of resource
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utilization changes and patterns within HPC environments. This knowledge can
inform future research and development efforts to optimize GPU-accelerated
computing and improve the performance of AI workloads on HPC.

1.5 Thesis structure
This thesis explores techniques and methodologies for designing and implementing
a monitoring system and alert service for GPU resource utilization on HPC clusters.
Following the introduction, which provides background information, outlines the ap-
plication domains, and presents research questions and contributions, the thesis is
organized as follows:

Chapter 2 focuses on the background, which discusses various techniques for
building the monitoring system and the alert service. This includes an examination
of job schedulers, an overview of HPC systems at CSC (including Puhti, Mahti, and
LUMI), an overview of the time-series database TimescaleDB, and an exploration of
different monitoring systems techniques, such as /proc, Cgroups, NVML, and ROCm-
SMI, as well as database techniques, including triggers, LISTEN & NOTIFY, and
continuous aggregates. Additionally, this Chapter delves into alert algorithms, cov-
ering descriptive statistics, decision trees, random forests, K-means clustering, and
silhouette analysis.

Chapter 3 details the methods we use for implementing the system, which includes
developing a monitoring daemon, timescale ingest, timescale reader, alert service, and
alert dashboard, configuring TimescaleDB, and designing alert algorithms.

In Chapter 4, benchmark results from both experimental and production setups
are presented and analyzed. This includes an overview of the experimental setup,
benchmarking results, and insights from production environments by case studies.

Chapter 5 discusses the findings, analyzing related work and their limitations.
Finally, Chapter 6 provides concluding remarks, including a summary of critical

points and suggestions for future work.
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Chapter 2

Background

2.1 Job scheduler
This Chapter briefly overviews the well-known open-source workload manager we
use at CSC – IT Center for Science, Slurm [54].

Let’s first start with some definitions:

1. ResourceManager is a software component for overseeing the resources within
a cluster, typically under the control of a scheduler. Its responsibilities include:

• Management of various resources such as nodes, CPUs, GPUs, memory,
and network.

• Coordination of job execution across compute nodes to ensure efficient
resource utilization.

• Prevention of resource overlap among concurrent jobs.

2. Scheduler is a software module that manages user jobs within a cluster based
on predefined policies. It interacts with users to receive and handle new jobs
while controlling the Resource Manager. Key features of a Scheduler include:

• Provision of partitions, queues, and Quality of Service (QoS) settings to
enforce policies and limits on job execution.

• Implementation of scheduling mechanisms such as backfilling, first-in-
first-out (FIFO), etc.

• Provision of interfaces for defining job workflows (e.g., job scripts), speci-
fying job dependencies, and issuing commands for job management (e.g.,
submission, cancellation, etc.).

3. Batch-System or Workload Manager is the combination of a scheduler and
a resource manager, combining the features of both components to manage
workload within the cluster efficiently.

Slurm, initially known as the Simple Linux Utility for Resource Management,
emerged in 2002 at Lawrence Livermore National Laboratory as a batch system tai-
lored for Linux clusters. As HPC environments require sophisticated workload man-
agers to efficiently manage and allocate computing resources among multiple users
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and tasks, it evolved into a sophisticated scheduling framework incorporating ad-
vanced plugins.

The architecture of Slurm is modular and extensible, with many plugins available
to cater to diverse requirements. At the core of Slurm, we have mainly the following
three components:

• Slurmctld serves as the central management daemon within the Slurm frame-
work, orchestrating the activities of all other Slurm daemons and resources. Its
primary functions include the monitoring of system resources and the alloca-
tion of these resources to incoming workloads (jobs). Additionally, Slurmctld
is a connecting point for accepting and processing job submissions, ensuring
efficient utilization of available computing resources.

• Slurmdbd offers a secure and centralized interface to interact with the database
system, specifically tailored to cater to the needs of Slurm. This daemon en-
ables features such as archiving accounting records and storing essential meta-
data related to job executions. It ensures the integrity and confidentiality of
data while providing seamless access to critical information for administrative
and analytical purposes.

• Slurmd functions as the compute node daemon, operating at the node level to
oversee the execution of computational tasks. Among its key responsibilities,
slurmd actively monitors the status of tasks running on the compute nodes, fa-
cilitating efficient task management and resource allocation. It also acts as a
connecting point for receiving task assignments, launching tasks onto the com-
pute nodes, and terminating tasks as per system requirements or user requests.

Slurm plays a crucial role in maximizing the utilization of computational re-
sources and ensuring fair access for users to run their parallel and distributed applica-
tions. It offers a powerful yet flexible solution for managing and scheduling compu-
tational workloads. Slurm is a preferred choice for orchestrating complex computing
infrastructures worldwide, as used by over 65% of TOP500 systems [36].

2.2 HPC systems at CSC
Table 2.1 shows the GPU statistics for the three HPC systems at the CSC – IT Center
for Science: Puhti, Mahti, and LUMI. Understanding the architecture and capabilities
of these systems is crucial for tailoring GPU monitoring and alerting strategies and
ensuring seamless integration with existing infrastructure. This Section provides an
overview of the GPU computing nodes for these HPC systems.
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Item Puhti Mahti LUMI
Number of GPU nodes 80 24 2928

GPU Model Nvidia V100 Nvidia A100 AMD MI250X
GPU number per node 4 4 4 / 8 (GCDs)
Total number of GPUs 320 96 11712 / 23424 (GCDs)

Table 2.1: GPU statistics for HPC systems at CSC – IT Center for Science

2.2.1 Puhti
Puhti [15] is an Atos BullSequana X400 cluster. Its AI partition comprises 80 GPU
nodes, tailored specifically for artificial intelligence tasks, and collectively achieve a
peak performance of 2.7 petaflops. Each node integrates the Intel Xeon Gold 6230
processors of the Cascade Lake family, which has 20 cores running at 2.1 GHz and
supports AVX-512 vector instructions & VNNI instructions for AI inference work-
loads. We have a total thread count of 80 threads per node (40 per socket). Addition-
ally, we have 4 Nvidia Volta V100 GPUs on each node, each with 32 GB of memory
and connected via NVLink. Each node also features 384 GB of main memory and
3.6 TB of high-speed local storage.

2.2.2 Mahti
Mahti [14] is an Atos BullSequana XH2000 cluster. It comprises 24 GPU nodes, ac-
cumulating a theoretical peak performance of 2.0 petaflops. Each CPU and GPU node
has 2 AMD Rome 7H12 CPUs featuring 64 cores each. The CPUs are based on the
AMD Zen 2 architecture and operate at a base frequency of 2.6 GHz and a maximum
peak frequency of up to 3.3 GHz. They also support the AVX2 vector instruction set.
Each core supports simultaneous multi-threading, enabling 256 threads per node.

The GPU nodes have 512 GB of memory and a local 3.8 TB NVMe drive. They
also have 4 Nvidia Ampere A100 GPUs, with a subset of nodes featuring split A100
GPUs, which enable lightweight workloads such as interactive tasks, courses, and
code development and save energy consumption.

2.2.3 LUMI
By Jun 2024, LUMI [13], one of the three European pre-exascale supercomputers
and an HPE Cray EX supercomputer, was the fastest supercomputer in Europe. The
GPU partition, LUMI-G, features the primary compute power, which consists of 2978
nodes, as described in Figure 2.1.
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Figure 2.1: LUMI GPU partition overview [13]

GPU

The LUMI-G compute nodes have four AMD MI250X GPUs, each based on the
2nd Gen AMD CDNA architecture. The MI250X GPU is structured as a multi-chip
module, which includes two GPU dies referred to as AMD Graphics Compute Dies
(GCD). In Slurm and HIP runtime, a single MI250X module is recognized as two
GPUs. Thus, in the actual system, the LUMI-G are 8-GPU nodes.

Each GCD has 110 compute units and accesses a 64 GB slice of high-bandwidth
memory, totaling 220 compute units and 128 GB of memory per MI250X module.
All compute units share an L2 cache with an 8 MB capacity to enhance memory
throughput. The cache is divided into 32 slices, capable of delivering 128 B/clock/s-
lice, amounting to a peak theoretical bandwidth of 6.96 TB/s. Including an L2 cache
in the MI250X GPU modules enhances synchronization capabilities for algorithms re-
liant on atomic operations to coordinate communication across the entire GPU. These
atomic operations are executed close to the memory within the L2 cache.

CPU

The CPU of LUMI-G nodes is a 64-core AMD EPYC 7A53 Trento CPU. These CPU
cores, built on the Zen 3 architecture, support AVX2 256-bit vector instructions, en-
abling a maximum throughput of 16 double-precision FLOP/clock (AVX2 FMA op-
erations). Each core has 32 KiB of private L1 cache, a 32 KiB instruction cache, and
512 KiB of L2 cache. The L3 cache has 32 MiB shared among groups of 8 cores,
accumulating 256 MiB of L3 cache per CPU. Configured as 4 NUMA nodes (NPS4),
the system allocates 128 GiB of DDR4 memory per NUMA node, resulting in 512
GiB of CPU memory.
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2.3 Monitoring tools
A robust selection of monitoring techniques is crucial for capturing accurate met-
rics, diagnosing performance issues, and ensuring efficient resource utilization. This
Section explores various components for building a monitoring system, each offering
unique capabilities for monitoring within large-scale distributed computing clusters.
Thus, it provides the cornerstone for building an accurate alert algorithm.

2.3.1 Cgroups
Cgroups [56] is a Linux kernel feature that enables the isolation and accounting of
resources, including CPU, memory, and devices, among a collection of processes. It
provides a means to track and manage CPU and memory utilization per process.

Slurm can be configured to use Cgroups to regulate resources allocated to jobs,
steps, and tasks and for resource accounting. Cgroups have different controllers (sub-
systems), each responsible for managing specific resources. Slurm’s plugins can
utilize multiple controllers, including memory, CPU, devices, freezer, cpuset, and
cpuacct. Each enabled controller empowers Slurm to enforce resource constraints
on a defined set of processes. Slurm cannot enforce resource constraints through
Cgroups for the associated resources if a controller is unavailable. Slurm supports
two Cgroup modes through plugins: Legacy mode (Cgroups v1) and Unified Mode
(Cgroups v2, introduced in Linux Kernel version 5.8).

At CSC, Puhti and Mahti still use Red Hat Enterprise Linux (RHEL) 8, which
means Cgroup v1. In contrast, LUMI uses a more recent system, SUSE Linux Enter-
prise Server (SLES) 15 SP4, which means Cgroup v2. So, we need to support both
Cgroup versions to cover the CPU and memory monitoring for all the systems.

Cgroups can form the foundation for understanding CPU and memory consump-
tion. Take Cgroups v1, for example:

• /sys/fs/cgroup/memory/slurm/uid_*/job_*/*/memory.usage_in_bytes tells the
memory usage for the job.

• /sys/fs/cgroup/cpuset/slurm/uid_*/job_*/cpuset.cpus tells the list of CPU cores
that are used by the job.

2.3.2 /proc
The /proc [55] directory is unique within the Linux file system, as it functions as
a virtual filesystem. Often described as a process information pseudo-file system,
it diverges from traditional directories by not containing actual files of the same size
since these files serve as pointers, directing users to the underlying location of process
information within the kernel. Thus, it provides runtime system data such as system
memory utilization, mounted devices, and hardware configurations.

When browsing the directory, we see those numbered subdirectories correspond-
ing to the unique process ID (PID). By cross-referencing these PIDs with the process
table, we can identify and examine specific processes. For instance, if the process
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table denotes a process with PID 1234, accessing the directory /proc/1234 reveals
detailed information about this process.

The /proc can also form the basis for understanding CPU and memory consump-
tion. Monitoring processes often involve parsing information from /proc to extract
consumption-related statistics according to process IDs, including their memory us-
age and CPU information:

• /proc/cpuinfo helps us know the frequency of CPU cores in the current node.
• /proc/<PID>/status helps us know how many CPU cores we got allocated, as

well as the current Resident Set Size (RSS) and max RSS, which is the maxi-
mum amount of memory used at any time by the process in that job context.

• /proc/<PID>/maps provides information about memory mappings for the spec-
ified process. It includes a list of memory regions allocated to the process and
details such as the starting and ending addresses, permissions, and file map-
pings, if applicable.

2.3.3 GPU management library
NVML

NVML [26] is a GPU-specific library provided by NVIDIA for managing and moni-
toring NVIDIA GPU devices. Its C-based API is designed to monitor and control the
diverse states of NVIDIA GPU devices. This API offers direct access to the queries
and commands accessible through Nvidia-SMI. It can help efficiently manage and
monitor NVIDIA GPU devices. NVML exposes a comprehensive set of metrics, in-
cluding GPU temperature, memory usage, and GPU utilization, allowing for detailed
insights into GPU performance.

NVML is a cornerstone for GPU monitoring on systems equipped with NVIDIA
GPUs, such as Puhti and Mahti.

ROCm-SMI

ROCm-SMI [4] is an analogous tool to NVML but tailored for AMD GPUs within the
Radeon Open Compute ecosystem. Like NVML, ROCm-SMI provides GPU-specific
metrics, allowing for the monitoring and managing of AMD GPU devices.

For HPC clusters that utilize AMD GPUs, such as LUMI, integrating ROCm-SMI
into the GPU monitoring framework is essential. In contrast, Puhti and Mahti utilize
NVIDIA GPUs, so NVML is used in these two systems.

2.4 Time-series databases
Time-series data management is a critical aspect of data lifecycle management, mainly
due to its complexities. Time-series data, comprising a sequence of data points recorded
over discrete time intervals, provides invaluable insights into evolving phenomena
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spanning milliseconds to years. Widely applicable across various domains, time-
series data uses time as the principal axis for data organization.

Effectively managing time-series data involves addressing numerous challenges,
ranging from efficient data ingestion to optimized query performance and cost-effective
resource utilization. Time-series databases play a pivotal role in storing and analyz-
ing time-stamped data efficiently. Choosing the right time-series database is crucial
for managing and querying the vast amount of data generated by monitoring metrics,
thus contributing to resolving RQ1 in Section 1.3.

One of the primary challenges in time-series monitoring for HPC jobs is handling
high cardinality, which refers to the number of unique sets of data combinations. High
cardinality can lead to performance bottlenecks as the database needs to manage and
index many unique series, each potentially requiring separate storage and processing
resources. This can strain the database system’s capacity to ingest data rapidly and
execute queries efficiently, especially as the data volume scales. Many non-time-
series databases, and other time-series databases, including InfluxDB, will crash as
the job to record (cardinality) increases.

TimescaleDB

TimescaleDB [5] emerges as a robust solution, excelling in both rapid data ingestion
and streamlined query processing, ensuring comprehensive time-series data manage-
ment capabilities. TimescaleDB is an open-source time-series database optimized for
fast ingest and complex queries. It is engineered on top of the mature RDBMS system
PostgreSQL and packaged as an extension. TimescaleDB extends PostgreSQL with
time-series-specific optimizations and functions, allowing it to manage time series
data efficiently. TimescaleDB supports the full range of SQL functionality, includ-
ing aggregates, joins, subqueries, and window functions.

Central to TimescaleDB’s architecture are hypertables, which serve as funda-
mental structures for efficient time-series data management as shown in Figure 2.2.
Hypertables abstract multiple individual tables that store the data, referred to as chunks,
providing users with a unified interface for data interaction. With hypertables, users
can execute diverse operations, including data insertion, querying, and schema mod-
ifications, seamlessly integrating standard SQL functionalities. Hypertables are par-
ticularly advantageous for time-series data management, because they efficiently par-
tition incoming data into smaller, manageable subsets. These data subsets, repre-
sented as time-based chunks, enable TimescaleDB to efficiently handle data reten-
tion and optimization. Consequently, TimescaleDB can do fast data ingestion and is
scalable to ions of rows per second, which is crucial for time-series applications.
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Figure 2.2: Hypertable compared with normal table [48]

Moreover, TimescaleDB effectively addresses cardinality issues. Leveraging hy-
pertables and their automatic partitioning mechanism minimizes the overhead of man-
aging high-cardinality data sets. This partitioning ensures the data is distributed
across smaller chunks, reducing the performance impact when querying large datasets
and maintaining efficient indexing.

Compression functionalities in TimescaleDB further enhance data storage effi-
ciency. By employing compression algorithms such as delta encoding, delta-of-delta,
simple-8b, run-length encoding, etc. [24], TimescaleDB significantly reduces disk
space utilization, achieving very high compression ratios.

TimescaleDB also facilitates the implementation of data retention policies as
background jobs, automating the removal of obsolete data chunks and ensuring effi-
cient data lifecycle management.

These features collectively make TimescaleDB a preferred choice over other time-
series databases, especially for applications requiring robust performance under high
cardinality conditions.

2.5 Database techniques
Databases are crucial in effectively managing and analyzing time-series data gen-
erated in real-time GPU resource monitoring. Our motivation is to create a system
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that can handle long-term reliable storage and provide near real-time status overviews
without heavy SQL searches, thus contributing to resolving both RQ1 and RQ2 in
Section 1.3. To achieve this, we explore three significant database techniques that can
be employed: Triggers, LISTEN & NOTIFY, and Continuous Aggregates.

2.5.1 Triggers
Triggers [39, 32] are database elements that automatically respond to specific events
or changes in the database. In GPU resource monitoring, a trigger can be activated
upon inserting new GPU monitoring data, instantly processing this data and notifying
relevant services. This ensures that the data is immediately available for long-term
storage and real-time monitoring, facilitating a seamless integration between the two
tiers of data management.

A trigger in database management serves as a specification, that executes a des-
ignated function automatically, whenever a particular type of operation is conducted.
The function must be declared as accepting no arguments and returning type triggers.
It is important to note, that the trigger function receives input via a specially passed
TriggerData structure, rather than conventional function arguments. Triggers can be
configured to execute before or after an INSERT, UPDATE, or DELETE operation on
a per-row or per-statement basis. Upon occurrence of a trigger event, the designated
trigger function is invoked at the appropriate time to handle the event.

PostgreSQL offers two distinct types of triggers: per-row (row-level) triggers and
per-statement (statement-level) triggers. Per-row triggers invoke the trigger func-
tion once for each row affected by the triggering statement. Conversely, per-statement
triggers are invoked only once, when the corresponding statement is executed, irre-
spective of the number of rows impacted by the statement. Statement-level triggers
also lack a mechanism to examine the rows modified by the statement.

Triggers can further be categorized as before triggers or after triggers. Statement-
level before triggers are inherently activated before the start of the relevant statement,
while statement-level after triggers are triggered upon the end of the statement. On the
other hand, row-level before triggers are activated immediately before an operation
on a specific row, while row-level after triggers are triggered after the statement but
before any statement-level after triggers.

Typically, row-level before triggers are employed for data validation or modifica-
tion before insertion or updating. Conversely, row-level after triggers are generally
utilized to update other tables or perform consistency checks against other tables.
This distinction is generated from the fact, that an after trigger can make sure that it is
observing the final value of the row, whereas a before trigger cannot. Consequently,
if there is no specific rationale for selecting between a before or after the trigger, the
before the trigger is preferred for its efficiency, as information about the operation
need not be retained until the end of the statement.

The input data within the trigger function includes the trigger event type (e.g.,
INSERT or UPDATE) and any specified arguments in the CREATE TRIGGER com-
mand. For row-level triggers, the input data consists of the NEW row for all types of
triggers, and the OLD row for UPDATE and DELETE triggers precisely.
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2.5.2 LISTEN & NOTIFY
LISTEN & NOTIFY mechanism [38, 32] is a powerful feature in PostgreSQL that
provides asynchronous event notification. This technique enables efficient communi-
cation between the monitoring infrastructure and other system components, such as
the alert service. It helps avoid the overhead of continuous polling and heavy SQL
searches, enhancing system efficiency and responsiveness. When a relevant event
occurs, such as the arrival of new GPU metrics or job state changes, the NOTIFY
command can trigger notifications to any components that have registered interest
with the LISTEN command, providing near real-time status updates.

LISTEN command registers the current session as a listener on the notification
channel specified by the parameter. All sessions currently listening on the notification
channel receive notifications. As a result, each listening session can be notified of
its associated client application. Listen registrations of a session are automatically
cleared upon the termination of that session.

It is up to the underlying PostgreSQL application programming interface for the
client application to detect notification events. For the PostgreSQL driver and toolkit
(pgx) package in Golang, listening for notification is a blocking read operation on
the underlying socket. It will allocate a connection exclusively for listening purposes,
allowing it to be blocked indefinitely.

NOTIFY enables processes accessing a shared PostgreSQL database to exchange
information. The data transmitted to the client during a notification event includes
the name of the notification channel, the process ID (PID) of the notifying session’s
server, and the payload string, which defaults to an empty string if unspecified, to
client applications previously registered in listening for events on a specified channel
within the current database. These notifications are broadcast to all listeners. More
complex data structures can be established with database tables, to convey additional
information from the notifier to the listeners.

A practical programming approach to signaling changes to a particular table using
NOTIFY involves embedding the NOTIFY command within a trigger, triggered by
table insertion.

2.5.3 Continuous aggregates
Time-series data tends to experience rapid expansion over time. Consequently, aggre-
gating such data into meaningful summaries often encounters considerable latency.
Continuous aggregates [42] offer a solution by fastening the data aggregation process.

In scenarios where data is collected at high frequencies, it becomes advantageous
to aggregate the data into more considerable time intervals, such as minutes or hours.
For instance, when GPU usage readings are recorded every second, computing the
average GPU usage for each hour means we must scan the entire dataset and recalcu-
late the average with each query execution. There are generally three ways to do the
aggregation within TimescaleDB [47]:

• Materialized views is a conventional PostgreSQL feature used for caching the
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results of complex queries for subsequent reuse. While materialized views do
not update regularly, they can be manually refreshed.

• Continuous aggregates, exclusive to TimescaleDB, operate similarly to ma-
terialized views, but undergo automatic background updates, as new data is
appended to the database. These aggregates are continuously and incremen-
tally updated, resulting in lower resource requirements than materialized views.
Furthermore, continuous aggregates are compatible with hypertables, and can
be queried like standard tables.

• Real-time aggregates, another feature unique to TimescaleDB, share similari-
ties with continuous aggregates. However, incorporate the latest raw data with
previously aggregated data, to deliver accurate and up-to-date results without
necessitating real-time data aggregation.

Continuous aggregates represent a materialized view that undergoes automatic
refresh in the background, as new data is introduced or existing data is modified.
These aggregates effectively track alterations to the dataset, ensuring the underlying
hypertable is consistently updated. Furthermore, the maintenance overhead associ-
ated with continuous aggregates is substantially lower than conventional PostgreSQL
materialized views. This efficiency allows users to focus on data analysis, rather than
database maintenance.

Continuous aggregates comprise the following components:

• Materialization hypertable: The intermediary repository for aggregated data,
which is retrieved as required. It consists of columns representing various
group-by clauses in the query, a chunk column identifying the corresponding
data chunk, and partial aggregate columns for each aggregate function speci-
fied in the query. The partial columns are crucial in aggregating data across
chunks, particularly when groups span multiple chunks.

• Materialization engine: Responsible for orchestrating two transactions— the
first determines the time range for materialization and updates the invalidation
threshold. In contrast, the second executes the actual materialization process.
Notably, most work occurs during the second transaction to prevent interference
with other operations.

• Invalidation engine: Monitors changes to data in the hypertable and ensures
timely re-materialization of affected rows. The invalidation prioritizes recent
changes to minimize performance overhead.

• Query engine: Allows access to aggregated data in materialization hypertable.

For real-time continuous aggregates, it provides data by combining pre-aggregated
data from materialized views with recent unaggregated data, ensuring that query re-
sults remain up-to-date.

2.6 Alert algorithms
This Section explores the alert algorithms we can use, including descriptive statistics,
decision trees, random forest, and K-Means clustering, thus trying to resolve RQ4 in

26



Section 1.3. Although deep learning models are powerful tools with great flexibility
and capacity to learn feature hierarchies from raw data, they come with challenges.
They can hardly be used in our case, since they require a large amount of data and sub-
stantial computational resources, which makes them less efficient compared to sim-
pler models like decision trees and random forests when dealing with smaller datasets
or when computational resources are limited. Furthermore, deep learning models can
be challenging to interpret and require careful tuning to avoid over-fitting.

2.6.1 Descriptive statistics
Descriptive statistics is a branch of statistics that summarizes the data through nu-
merical calculations. Its main purpose is to simplify and present data in an easy-to-
understand format. Key measures include:

• Central Tendency: Mean, median, and mode. These measures of central ten-
dency describe a distribution’s center position.

• Dispersion: Standard deviation, range, variance, and interquartile range. These
are measures of dispersion that describe the spread of data.

• Skewness and Kurtosis: These are measures of shape that describe the asym-
metry and peakedness of a distribution, respectively.

Here is a list of definitions of these possible descriptive statistics:

• Percentiles (25%, 50%, 75%): Statistical measures used to describe the distri-
bution of a dataset. The 25th, 50th, and 75th percentiles are commonly known
as the first quartile (Q1), median, and third quartile (Q3) respectively. They
represent the values below which a given percentage of observations fall.

Percentile(𝑋, 𝑝) = value below which 𝑝% of the data fall

• Kurtosis: Measure of the tailedness or sharpness of the peak of a distribution.
Positive kurtosis indicates a sharper peak (leptokurtic), while negative kurtosis
indicates a flatter peak (platykurtic). The formula for kurtosis is given by:

Kurtosis(𝑋) = 𝑛(𝑛 + 1)
(𝑛 − 1)(𝑛 − 2)(𝑛 − 3)

𝑛∑
𝑖=1

(
𝑋𝑖 − �̄�

𝑠

)4

− 3(𝑛 − 1)2
(𝑛 − 2)(𝑛 − 3)

• Maximum: The highest value in a dataset, which is the extreme upper end of
the distribution.

• Mean: The average of all values in the dataset and is calculated as:

Mean(𝑋) = 1
𝑛

𝑛∑
𝑖=1

𝑋𝑖

• Minimum: The lowest value in a dataset represents the distribution’s extreme
lower end.
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• Skewness: The asymmetry of a distribution. Positive skewness indicates a
longer right tail, while negative skewness indicates a longer left tail. The for-
mula for sample skewness is given by:

Skewness(𝑋) = 𝑛

(𝑛 − 1)(𝑛 − 2)

𝑛∑
𝑖=1

(
𝑋𝑖 − �̄�

𝑠

)3

• Variance: Measure the average squared deviation of each data point from the
mean. The formula for sample variance is given by:

Variance(𝑋) = 1
𝑛 − 1

𝑛∑
𝑖=1
(𝑋𝑖 − �̄�)2

• Standard Deviation: Measure the variation or dispersion in a dataset. It is
calculated as the square root of the variance:

Standard Deviation(𝑋) =
√

Variance(𝑋)

2.6.2 Decision tree
A decision tree [43] represents possible solutions to a decision based on branches of
certain conditions and reaches several conclusions based on the conditions. As shown
in Figure 2.3, the main components of a decision tree are:

• Root Node: Collection of all the data that can be divided into two or more
homogeneous sets.

• Splitting: The process of dividing a parent node into two or more sub-nodes.
• Decision Node: The split sub-nodes.
• Leaf Node: Terminal nodes that do not further split.

Root Node

Decision Node Decision Node

Leaf Node Leaf Node Leaf Node Leaf Node

Splitting

Splitting Splitting

Figure 2.3: Decision tree structure
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2.6.3 Random forest
Random forest [18] is an ensemble machine learning algorithm with many individual
decision trees. Each tree in the random forest gives a prediction, of which the model’s
final prediction is the most voted class.

Extremely Randomized Trees (or Extra Trees) [16] is a type of ensemble learning
technique that aggregates the results of multiple de-correlated decision trees to reach
its final result. The fundamental difference between random forests and extra trees
is selecting the cut points to create the decision trees. Extra Trees selects these cut-
points comprehensively at random, while traditional decision tree-based algorithms
(like Random Forest) select the optimal ones.

2.6.4 K-Means clustering and silhouette analysis
K-means clustering [53] is a linear clustering method widely used in data mining and
machine learning that aims to partition data into several linearly separable homoge-
neous groups. It is an unsupervised learning method, meaning a training set is not
required, making it more sensible for unlabelled data.

Silhouette analysis [51] is an unsupervised method used for performance evalua-
tion in machine learning for clustering algorithms such as k-means clustering, which
examines the separation distance among resulting clusters and offers a visual means
to evaluate parameters such as the number of clusters. The silhouette index in the
plot effectively illustrates the proximity of each point within one cluster to points in
neighboring clusters that fall within the range of [-1, 1].

Silhouette coefficients close to +1 imply that a sample is far from neighboring
clusters, which means good separation. A value of 0 suggests the sample data is on or
near the decision boundary between two adjacent clusters. In contrast, negative values
imply the possibly wrong classification of a cluster. Furthermore, the thickness of the
silhouette plot allows for the visualization of cluster sizes.

2.7 Summary
In this Section, we have delved into the intricacies of designing and implementing
a real-time GPU monitoring and alerting system for large-scale distributed comput-
ing environments, focusing mainly on HPC clusters. By leveraging monitoring tech-
niques, database technologies, and event stream management platforms, we aimed
to address the need for efficient resource utilization and performance monitoring in
these complex computing infrastructures.

The exploration began with an overview of Slurm, emphasizing its role in resource
allocation, job scheduling, and management.

Subsequently, we provided insights into the architecture and specifications of
three HPC systems at the CSC – IT Center for Science: Puhti, Mahti, and LUMI.
These systems represent state-of-the-art computing clusters with diverse GPU con-
figurations, highlighting the need for a flexible and scalable monitoring solution to
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accommodate varying hardware architectures.
We then delved into monitoring systems, exploring essential techniques and tools

such as /proc, Cgroups, NVML, and ROCm-SMI for capturing resource utilization
metrics at both the CPU and GPU levels. Additionally, we discussed the significance
of time-series databases like TimescaleDB and related techniques such as triggers,
LISTEN & NOTIFY, and continuous aggregates in efficiently storing and querying
monitoring data, enabling real-time analysis and visualization.

Finally, we explored various alert algorithms, including descriptive statistics, K-
means clustering, silhouette analysis, decision trees, and random forests, as potential
methods for identifying patterns or anomalies necessary to catch attention.
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Chapter 3

Methods

Implementing real-time GPU resource monitoring and alerting involves systemati-
cally integrating various components. This Chapter provides detailed insight into how
we construct such a system, including the architecture, design, and implementation,
covering key elements such as the monitoring system, alert service, and algorithms.

3.1 Research process
This Section outlines the approach to achieving the thesis objectives, including de-
signing, implementing, and evaluating the monitoring system and alert service for
GPU utilization on HPC clusters.

1. Requirement Analysis: We begin with a thorough analysis of the monitoring
system and alert service requirements. This involves understanding the needs
of HPC administrators and users, and identifying key performance indicators
for assessing GPU utilization and job efficiency.

2. System Design and Architecture: The system design and architecture are de-
veloped based on the identified requirements. This phase involves defining
the components of the monitoring system, including data collection mecha-
nisms, storage infrastructure, and alert generation algorithms. Special atten-
tion is given to ensuring scalability, reliability, and compatibility with existing
HPC cluster environments.

3. Implementation and Deployment: With the system architecture finalized, the
implementation phase commences. This involves developing the necessary
software components for data collection, processing, and alert generation and
integrating the monitoring system with the HPC cluster infrastructure. The de-
ployment process includes configuration, testing, and validation to ensure the
system operates effectively in a production environment.

4. Data Collection and Analysis: Once deployed, the monitoring system collects
real-time data on GPU usage and job performance. This data is then analyzed to
identify patterns of inefficient resource utilization and inform the development
of alert generation algorithms. Statistical analysis and machine learning tech-
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niques can be employed to extract insights from the collected data and optimize
the performance of the alert service.

5. Evaluation andValidation: The effectiveness and reliability of the monitoring
system and alert service are evaluated through comprehensive testing and val-
idation. This includes assessing the accuracy of alerts, evaluating the system’s
responsiveness to dynamic workload conditions, and validating the impact of
the alert service on improving GPU utilization and job efficiency.

6. Feedback and Iterative Improvement: Feedback from HPC administrators
and users is solicited to identify areas for improvement and refinement. This
feedback is incorporated into iterative cycles of system enhancement, enabling
continuous improvement of the monitoring system and alert service over time.

7. Documentation and Knowledge Transfer: Finally, comprehensive documen-
tation is prepared to facilitate knowledge transfer and ensure the sustainability
of the implemented solution. This includes user manuals, technical specifi-
cations, and best practice guides to support HPC administrators in effectively
utilizing the monitoring system and alert service.

Through this systematic methodology, the thesis aims to deliver a robust and ef-
fective solution for monitoring and alerting GPU resource utilization on HPC clusters,
ultimately contributing to optimizing job scheduling, resource allocation, and overall
system efficiency in GPU computing environments.

3.2 Monitoring system
One of the issues faced by HPC resource users is that it is hard for them to see how
well they are using the resources. This is an even bigger issue with GPU nodes, where
users often request GPUs without actually using them, or they may run jobs on the
GPUs without putting any significant load on them.

Our monitoring system at the job level aims to improve observability and enable
HPC system admins to find out these situations. It consists of several components
with various roles that collect, process, store, and preset different metrics about jobs
that are run in HPC systems:

• Monitoring Server: Runs on all compute nodes and polls the performance
metrics of jobs.

• Monitoring Client: Used by the Slurm prolog and epilog script to initiate the
job collection.

• TimescaleDB: PostgreSQL database with an optimized extension for storing
the time-series data and used to store job metrics and metadata.

• Timescale Ingest: Receives the metrics data from all monitoring servers and
stores them into the TimescaleDB.

• TimescaleReader: Backend API loads data from TimescaleDB, enabling fron-
tend UI or command line interface to render job statistics.

• Timescale Chart: Web interface to render user usage graphs.
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• Seff: Command line interface to render user usage tables.
• Lmod: Environment module system used at CSC, and we configured the mod-

ule load hook to send a notification to the monitoring server every time a mod-
ule is loaded in the hope that we can better use this information to help debug
the job as well as do classification on those jobs in the future.

Communication between different components during the lifetime of a job is pre-
sented in Figure 3.1. This Section will then give a detailed description of the design
and how they work together.

TimescaleDB

Timescale 
Reader

Timescale 
Ingest

Monitoring 
Client

Node
Cgroups, /proc, nvidia-
ml, ROCm-libs (AMD)

Monitoring 
Server

Job
slurm
prolog

slurm
epilog

Tell MonServer
job starts

Tell MonServer
job ends

Start collecting data
(with fixed
interval)

Stop 
collecting
data

Trigger data 
ingestion 
when the 
MonServer
buffer is full

Write to DB 
when 
ingestion 
buffer is full

Render graphs / table as 
of user requests

HPC User

Check UsageSeff / Timescale 
Chart

API for 
fetching job 
usage data

Lmod

Send loaded module information

Figure 3.1: Monitoring system structure

3.2.1 Monitoring Daemon
Monitoring Daemon is written in C++ and consists of MonClient and MonServer.
MonClient and MonServer are utilities that run on each compute node. They collect
the job metadata and metrics and send them out from the node.

MonClient is a CLI utility that passes information about the job start and end to
the MonServer process via UDP. MonClient commands are run in prolog and epilog
scripts of jobs and tasks in Slurm.

MonServer runs continuously in the background of the compute nodes. It gets in-
formation about the job, such as hardware specifications, job ID, and step ID, from the
client, collects the metrics of each job accordingly, and sends them to the Timescale
Ingest server once the local buffer is complete so we can monitor how the actual hard-
ware resources are used. The metrics that MonServer collects are as follows:

• CPU usage: Reads the CPU metrics from /proc for the cores assigned to the
job. Since the number of CPU cores can be too large to analyze individual jobs,
we can also use the aggregated result of the assigned cores per node.

• Memory usage per job: Gets the total memory usage from Cgroups for the
job per node. This requires that Slurm is set up to use the Cgroups plugin.
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• Memory usage per process: Uses the ps command line utility to get the mem-
ory usage of processes for a job. ps needs the job step information from prolog
and epilog scripts passed by MonClient to get the process ID information.

• GPU usage: Reads GPU load, memory, power, temperature, and energy infor-
mation from Nvidia Management Library / ROCm-SMI for the GPUs assigned
to the job.

We have intentional delays in collecting the monitoring data to filter out the IO
loading period caused by dataset loading and environment initialization so that moni-
toring can genuinely reflect the use of GPU. Also, those jobs only last for a very short
time, so we only collect from those jobs with a meaningful length of data to analyze
and reduce the burden of the database and maintain the stability of the whole mon-
itoring infrastructure. Data sent to the Timescale Ingest will be tagged with the job
ID, the username, and the step ID if it is for memory usage per process.

We also support dropping those jobs from the collection loop that have exceeded
the maximum possible end time configured by the partition or after two weeks in case
the job is killed accidentally and the Slurm epilog does not run.

3.2.2 Timescale Ingest
Timescale Ingest offers API for data ingestion through HTTP or UDP. We do sym-
metric encryption on the monitoring data. We derive a cryptographic key from an API
key using the PBKDF2-HMAC-SHA256 (Combining Password-Based Key Deriva-
tion Function 2, Hash-based Message Authentication Code, and Secure Hash Algo-
rithm 256-bit), and then use the derived key as the key for AES-GCM (Combining
Advanced Encryption Standard and Galois/Counter Mode) encryption. The server is
configured to handle incoming data according to the specified protocol. A UDP server
is spun up in a separate thread (goroutine in Golang) if UDP is chosen. If HTTP is
selected, the server creates a route to handle incoming POST requests to the /write
API endpoint. The transmitted data format follows the InfluxDB line protocol [19].

We have an ingestion buffer to store the data temporarily in memory. Whenever
we receive the data, we parse it into an instance of Go’s structs. When the buffer is
full, or after a timeout, we sort the buffer by timestamp, convert them into SQL insert
statements, and execute them together. This allows us to reduce the database’s write
load in batches.

Timescale Ingest implements the graceful shutdown, where a Goroutine uses a
channel to wait for an interrupt signal (SIGINT or SIGTERM). Once the interrupt
signal is received, the server initiates a graceful shutdown process, which involves
creating a context with a timeout of 5 seconds, during which the server attempts to
finish handling any ongoing requests and stops receiving new updates. The server is
forcibly shut down after the timeout or when all requests are completed. Once the
server is shut down, any remaining tasks should be completed. This includes closing
the database connection, sending all the data in the buffer, and logging.

In addition to the /write API endpoint as demonstrated above, the API design for
the Timescale Ingest is as follows:
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• /version: Displaying the version information and build time. If the current
commit is tagged, git describe starts from the tagged commit and counts
how many commits are on top of that tag. It then generates a string in the format
of <tag>-<number_of_commits>-<short_commit_hash>, where the tag is the
name of the closest annotated one reachable from the commit, the number of
commits is the count between the tagged commit and the current commit. The
short commit hash is the current commit, abbreviated commit hash (typically
seven characters).

• /status: A JSON-encoded representation of the server’s current status, includ-
ing information about the metrics being ingested. The JSON output contains
fields such as ok to indicate whether the operation was successful, msg to pro-
vide any additional messages if the service has any error, and status to contain
the JSON-encoded heartbeat information with the key as follows:

– BufferSize: The number of metric items currently stored in the buffer.
– BufferLimit: The maximum number of metric items allowed in the buffer.
– CommitCount: The count of commits made to the database.
– ReceiveCount: The count of metric items received by the server.
– NextCommitTime: The next time scheduled for committing to the database

if the buffer is not full.
– LastCommitDuration: The duration to commit the last buffer batch to

the database.
– CommitMetric: The time taken per metric item to commit the last batch

to the database.
• /healthStatus: A liveliness check for connection status between the ingest and

the database.

3.2.3 TimescaleDB
TimescaleDB, as the time-series database, introduces a relational aspect to monitor-
ing. This component stores metrics in a structured manner, allowing for complex
SQL queries and analysis. TimescaleDB accommodates the evolving nature of HPC
workloads by enabling the retention of historical data. It also accelerates the query
speed, essential for identifying trends and patterns over time.

Table 3.1 shows how we define the database table for storing the GPU usage data
at the job level collected by MonServer. These give us a basic idea of how well the
job performs using GPUs.
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Column Type Explanation
timestamp TIMESTAMP Time when the data is collected
host TEXT Name of the host where data is from
GPU INT ID of the GPU in the host machine
username TEXT Name of the user that starts the job
job INT ID of the job that uses the GPU
load_gpu INT Instantaneous GPU core load (%, 0-100)
load_memory INT Instantaneous GPU memory load (%, 0-100)
used_mem BIGINT Instantaneous GPU memory in use (Byte)
total_mem BIGINT Instantaneous GPU memory in total (Byte)
power INT Instantaneous GPU power (mW for Nvidia, uW for AMD)
temperature INT Instantaneous GPU temperature (°C for Nvidia, m°C for AMD)

Table 3.1: Table for storing GPU usage

Table 3.2 shows how we define the database table for storing the unstructured job
information collected by MonClient. The JSON string in the metadata column rep-
resents the data structure containing information related to jobs, tasks, and allocated
hardware information. Each JSON object corresponds to a specific event or action
within Slurm indicated by the type, such as starting or stopping a job, task, or event.
Every type follows a similar structure, containing fields such as method (indicating
the type of event), slurmInternalID (job ID assigned by the Slurm workload manager),
hostname (name of the computing node), and gpu_energy (energy consumption data
for GPUs), which contains the PCI Bus ID of each GPU as well as the energy counter
when the event is triggered (in Millijoule, mJ). Here is a breakdown of each unique
field of the types that happen in order during a job lifetime:

Column Type Explanation
timestamp TIMESTAMP Time when the data is collected
host TEXT Name of the host where data is from
job INT ID of the job that uses the GPU
type TEXT Type of the metadata (start/stop job/task, event)
metadata TEXT Actual key-value data in JSON format

Table 3.2: Table for storing Slurm job metadata

1. start-job indicates initiating a new job. It includes details such as the user
name (user), user’s ID (uid), the group ID that the user belongs to (gid), the
partition that the job belongs to (partition), and resource allocations, e.g., GPU
and CPU id lists that get allocated to the job). Additionally, it includes the GPU
energy counter of all the GPUs that belong to the node.
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1 {
2 "method":"start-job",
3 "slurmInternalID":8934,
4 "hostname":"g1101",
5 "user":"dowjohn",
6 "uid":100567,
7 "gid":100567,
8 "partition":"gputest",
9 "gpu":"1",

10 "cpu":"0-255",
11 "gpu_energy":[
12 {
13 "pciBusId":"00000000:03:00.0",
14 "energy":1260156826
15 },
16 {
17 "pciBusId":"00000000:44:00.0",
18 "energy":999985444
19 },
20 {
21 "pciBusId":"00000000:84:00.0",
22 "energy":793570107
23 },
24 {
25 "pciBusId":"00000000:C4:00.0",
26 "energy":708110133
27 }
28 ]
29 }

2. start-task: indicates the start of a specific task within a job. It contains meta-
data such as the task’s process ID, step ID (-1 indicates the batch step), node-
local task ID for the process within a job (locaID), number of processes in
the job step or whole heterogeneous job step (stepTasks) and loaded modules,
which records the modules name as well as their versions separated by a colon.
It also includes the GPU energy counter assigned to the job.
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1 {
2 "method":"start-task",
3 "slurmInternalID":8934,
4 "hostname":"g1101",
5 "taskPID":44689,
6 "stepID":-1,
7 "locaID":0,
8 "loadedModules":"gcc/11.2.0:openmpi/4.1.2:openblas/0.3.18-

omp:csc-tools:StdEnv",
9 "gpu_energy":[

10 {
11 "pciBusId":"00000000:44:00.0",
12 "energy":999996492
13 }
14 ]
15 }

1 {
2 "method":"start-task",
3 "slurmInternalID":8934,
4 "hostname":"g1101",
5 "taskPID":45279,
6 "stepID":0,
7 "locaID":0,
8 "stepTasks":1,
9 "loadedModules":"csc-tools:StdEnv:gcc/9.4.0:tensorflow/2.12:

openblas/0.3.18-omp:openmpi/4.1.2:cuda/11.5.0",
10 "gpu_energy":[
11 {
12 "pciBusId":"00000000:44:00.0",
13 "energy":1000040684
14 }
15 ]
16 }

3. event: denotes the event that happens when the task is running. This can be
that a new module is loaded in the job context.

1 {
2 "method":"event",
3 "slurmInternalID":8934,
4 "stepID":0,
5 "eventKind":"module-load",
6 "eventField":"tensorflow/2.15"
7 }

4. stop-task: denotes completing or terminating a task within a job. Like the start
task, it includes metadata for the task and the energy consumption of GPUs
allocated to the task-related job during its execution.
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1 {
2 "method":"stop-task",
3 "slurmInternalID":8934,
4 "hostname":"g1101",
5 "taskPID":44689,
6 "stepID":0,
7 "locaID":0,
8 "stepTasks":1,
9 "gpu_energy":[

10 {
11 "pciBusId":"00000000:44:00.0",
12 "energy":1001166893
13 }
14 ]
15 }

1 {
2 "method":"stop-task",
3 "slurmInternalID":8934,
4 "hostname":"g1101",
5 "stepID":-1,
6 "locaID":0,
7 "gpu_energy":[
8 {
9 "pciBusId":"00000000:44:00.0",

10 "energy":1001173148
11 }
12 ]
13 }

5. stop-job: indicates the completion or termination of a job. It includes metadata
about the job and the total energy consumption of all the GPUs inside the job
running node during its execution.
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1 {
2 "method":"stop-job",
3 "slurmInternalID":8934,
4 "hostname":"g1101",
5 "gpu":"1",
6 "gpu_energy":[
7 {
8 "pciBusId":"00000000:03:00.0",
9 "energy":1261452017

10 },
11 {
12 "pciBusId":"00000000:44:00.0",
13 "energy":1001180831
14 },
15 {
16 "pciBusId":"00000000:84:00.0",
17 "energy":794875873
18 },
19 {
20 "pciBusId":"00000000:C4:00.0",
21 "energy":709266506
22 }
23 ]
24 }

We use TimescaleDB-specific features to improve query performance. We turn
the metrics table into a hypertable with 6-hour chunking. We also create indexes on
job IDs, hostnames, and GPU IDs, as those are the keys most commonly used for our
SQL group queries. We compress data older than one day and drop data older than
six months.

We define two triggers and corresponding notification functions in PL/pgSQL –
SQL Procedural language. These triggers are designed to automatically send notifi-
cations whenever new data is inserted into table slurm_job_metadata and gpu_usage.
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1 -- Notify of new job metadata
2 CREATE OR REPLACE FUNCTION notify_new_job_metadata_insertion()
3 RETURNS trigger AS $notify_new_job_metadata_insertion$
4 BEGIN
5 PERFORM pg_notify('job_updates', (NEW.host || '|' || NEW.job || '

|' || NEW.type || '|' || NEW.metadata)::text);
6 RETURN NEW;
7 END;
8 $notify_new_job_metadata_insertion$ LANGUAGE plpgsql;
9

10 CREATE TRIGGER job_metadata_insertion_notify_trigger
11 AFTER INSERT ON slurm_job_metadata
12 FOR EACH ROW EXECUTE FUNCTION notify_new_job_metadata_insertion();
13

14 -- Notify on new gpu_usage_aggregate data
15 CREATE OR REPLACE FUNCTION notify_new_gpu_usage_insertion()
16 RETURNS trigger AS $notify_new_gpu_usage_insertion$
17 BEGIN
18 PERFORM pg_notify('gpu_usage_insertion', (NEW.host || ',' || NEW.

gpu || ',' || NEW.job || ',' || NEW.username || ',' || NEW.
load_gpu || ',' || NEW.load_memory || ',' || NEW.used_mem || '
,' || NEW.power || ',' || NEW.temperature)::text);

19 RETURN NEW;
20 END;
21 $notify_new_gpu_usage_insertion$ LANGUAGE plpgsql;
22

23 CREATE TRIGGER gpu_usage_insertion_notify_trigger
24 AFTER INSERT ON gpu_usage
25 FOR EACH ROW EXECUTE FUNCTION notify_new_gpu_usage_insertion();

• notify_new_job_metadata_insertion(): This function retrieves the newly in-
serted row and constructs a notification message using concatenation (||) sep-
arated with | to avoid any collision with the JSON format text (metadata). The
message includes all the fields except the timestamp from the inserted row.
Finally, the pg_notify() function is called to send a notification to a specific
channel named job_updates.

• job_metadata_insertion_notify_trigger: This trigger fires after each inser-
tion into the slurm_job_metadata table. It is associated with the
notify_new_job_metadata_insertion() function, causing the function to execute
automatically whenever new data is inserted into the table.

• notify_new_gpu_usage_insertion(): Similar to the first function, it constructs
a notification message using all the fields except the timestamp, username, and
total_mem from the inserted row separated by commas (,). It then notifies
through the gpu_usage_insertion channel.

• gpu_usage_insertion_notify_trigger: This trigger fires after each insertion
into the gpu_usage table and is associated with the notify_new_gpu_usage_insertion()
function, triggering it automatically upon insertion of new data.
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These triggers and notification functions facilitate real-time communication within
the database system. They enable other parts of the system to be notified instantly
whenever new job metadata or GPU usage data is inserted, allowing for timely up-
dates and actions based on the newly inserted data.

3.2.4 Timescale Reader
The Timescale Reader component facilitates the retrieval of metrics from TimescaleDB
for analysis and reporting. It provides a RESTful API for building other elements that
support administrators in gaining insights into historical resource utilization, aiding
in capacity planning, performance optimization, and trend analysis. It also enables
the integration of other components to show statistics to users via GUI or CLI. The
Timescale Reader complements the real-time monitoring capabilities, providing a
comprehensive view of metrics across different time intervals.

We have a centralized web page that allows users to use the APIs provided by
Timescale Reader to check job history data with interactive graphs about the GPU
load, memory, power, and temperature, as shown in Figure 3.2. Figure 3.3 shows
one example of a graph rendered via Timescale Chart through Timescale Reader API
data. It also has accessibility support to help viewers with vision deficiencies (e.g.,
color blindness or partial sight) more easily understand the data with patterns and
gradients, as shown in Figure 3.4.

Figure 3.2: GPU usage history checking dashboard
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Figure 3.3: GPU usage history graph from Timescale Chart

Figure 3.4: GPU usage history graph from Timescale Chart with accessibility

Below is an example showing the output of our modified seff command. The
GPU job efficiency section is printed via the Timescale Reader API. Here, we show
the metrics related to the GPU, including the load, memory, and energy. Each en-
try shows the hostname, the GPU ID about the metrics, and the aggregated mean,
standard deviation, and maximum value for the whole job history.
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1 $ seff 5465
2 Job ID: 5465
3 Cluster: mahti
4 User/Group: johndoe/pepr_johndoe
5 State: COMPLETED (exit code 0)
6 Nodes: 1
7 Cores per node: 16
8 CPU Utilized: 19-19:45:45
9 CPU Efficiency: 82.58% of 24-00:05:52 core-walltime

10 Job Wall-clock time: 1-12:00:22
11 Memory Utilized: 14.41 GB
12 Memory Efficiency: 22.51% of 64.00 GB
13 Job consumed 3600.61 CSC billing units based on the following used

resources.
14 Billed project: project_1008888
15 Non-Interactive BUs: 3600.61
16 GPU BU: 7201.22
17 NVME BU: 38.89
18 GPU job efficiency:
19 -------------------------------------------------------------------
20 GPU load
21 Hostname GPU Id Mean (%) stdDev (%) Max (%)
22 g5101 0 86.21 18.69 99.00
23 g5101 3 78.53 19.65 97.00
24 -------------------------------------------------------------------
25 GPU memory
26 Hostname GPU Id Mean (GiB) stdDev (GiB) Max (GiB)
27 g5101 0 22.64 0.00 22.64
28 g5101 3 22.32 0.00 22.33
29 -------------------------------------------------------------------
30 GPU energy
31 Hostname GPU Id Energy (Wh)
32 g5101 0 8532.60
33 g5101 3 8664.34
34 -------------------------------------------------------------------

The API design for the Timescale Reader is as follows:

• /version: Same as Timescale Ingest, it displays the version information and
build time.

• /status: Liveness checking endpoint.
• /chart: Serving the static files for Timescale Chart JS web interface (an encap-

sulated web component using Chart.js), available parameters can be referred
from Table 3.3.

• /getJobs: Endpoint for listing all the available job IDs in the database with
valid GPU monitoring data, meaning those jobs are long enough to view data.

• /getData/:table/:jobid: Fetching the raw (unaggregated) history data in JSON
format to be rendered by Timescale Chart.

• /getLoad/:metric/:resource/:jobid/:type: Displaying aggregated result of the
history monitoring data.
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• /getGPUEnergy/:jobid: Displaying the GPU energy counter.

Table 3.3: Timescale Chart parameter description

Parameter Description
api API endpoint to read data from, such as

http://localhost:8001/getData. Default to be
/getData at the same site.

domain Database table name to read from, such as gpu_usage.
job Job ID to be displayed.
title Title of the chart.
group Grouping of the data for different domain datasets, such

as core (for CPU usage), gpu (for GPU usage), pid (for
Memory usage by PID).

metric Column name of the data to be displayed in the specific table.
name Name of the group that will be displayed.
divide Value to divide the data with.
mode Chart zoom and pan mode, available values are xy, x, y. The

default is x, which means zoom only at the x-axis.
type Chart graph type, default is line

The parameters we support for displaying the aggregated result of the history mon-
itoring data, as well as the GPU energy counter, are as follows:

• display: 1 for printing in human-readable format, 2 for printing a table (similar
to human-readable format but separated by tabs), and any other values will be
in JSON format organized by a list of values using the hostname as the top level
and hardware ID as the second level.

• unit: Specify the unit of the value to be printed.
• type: Specify the name of the value.
• metric: Specify the metric of the value (average, minimum, maximum, stan-

dard deviation, etc.), support multiple metrics separated by , (comma).
• divide: Divide the data value stored in the database by this specified number.
• precision: Specify the precision of the value to be printed. The default is 2. -1

for no rounding.
• index: Specify the device’s index to get printed. The default is all devices.
• hide_device: 1 for hiding the [device], other values for printing the [device].

The human-readable printing format is as follows. Note that #[index] will only
get printed when there is more than one.

[device] #[index] ( [type] [metric]) : [value] [unit]
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3.3 Alert algorithms
The Alert algorithms component comprises predefined algorithms, that determine
the conditions under which alerts are triggered. These algorithms consider various
factors, including GPU utilization thresholds and temperature limits. The flexibility
of the alert algorithms allows for customization — based on the specific requirements
of HPC clusters — ensuring that alerts are triggered for conditions deemed critical
by administrators.

Regarding the design of the alert algorithms for GPU usage: many high-performance
computing applications have load-balancing issues regarding pipeline parallelism,
and the data has highly fluctuated characteristics for multiple GPU jobs. Thus, alert-
ing only according to average is neither reliable nor practical, as it may not be fixable
easily by the user, so those can be non-critical. Machine learning models could be one
way to address the data fluctuation issue by recognizing the data pattern. Algorithm
1 defines how we can use them.
Algorithm 1: Checking GPU load alert based on machine learning
Data: Array, Fixed-size sliding window of latest GPU usage history: 𝐴
Result: Boolean, indicating if an alert should be raised

1 Function mlAlgo(𝑎𝑟𝑟𝑎𝑦):
2 Run a machine learning algorithm with an input of 𝑎𝑟𝑟𝑎𝑦;
3 return classification result (0 or 1) for good or bad jobs;
4 Function checkAlert(𝐴):
5 𝑅 ← mlAlgo(𝐴);
6 if 𝑅 == 1 then
7 return true;
8 end
9 else
10 return false;
11 end

Unsupervised machine learning, such as reinforcement learning, is hard to train
and interpret. Deep learning algorithms are also very slow to run, and do not fit
our need for real-time job analysis. Most importantly, we cannot find a good reward
function. The only way is from human feedback.

For supervised machine learning, such as random forests that involve decision
trees, although it can be much faster to run, all the data collected from the monitoring
system is unlabeled. It is unrealistic for humans to label all those data manually.

In the hope of doing labeling automatically, we also did the silhouette analysis of
K-means clustering on the collected GPU monitoring data starting from December
2023 directly, as shown in Figure 3.5, as well as features generated with statistical
aggregation, as shown in Figure 3.6. Each color in the figure represents a cluster. The
red vertical line denotes the average silhouette coefficient value across all clusters.
More explanation of silhouette analysis can be found in Subsection 2.6.4. The result
shows that neither of the methods works well since most clusters have the majority
proportion of negative coefficient value, and they cannot be reasonable classifications.
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Figure 3.5: Silhouette analysis of KMeans on raw windowed GPU load data

47



0.6 0.4 0.2 0.00.10.20.30.40.50.6
The silhouette coefficient values

Cl
us

te
r l

ab
el

0

1

(a) n_clusters = 2

0.6 0.4 0.2 0.00.10.20.30.40.50.6
The silhouette coefficient values

Cl
us

te
r l

ab
el

0

1

2

(b) n_clusters = 3

0.6 0.4 0.2 0.00.10.20.30.40.50.6
The silhouette coefficient values

Cl
us

te
r l

ab
el

0

1
2

3

(c) n_clusters = 4

0.6 0.4 0.2 0.00.10.20.30.40.50.6
The silhouette coefficient values

Cl
us

te
r l

ab
el

0

1

2

3
4

(d) n_clusters = 5

0.6 0.4 0.2 0.00.10.20.30.40.50.6
The silhouette coefficient values

Cl
us

te
r l

ab
el

0

1

2

3
45

(e) n_clusters = 6

0.6 0.4 0.2 0.00.10.20.30.40.50.6
The silhouette coefficient values

Cl
us

te
r l

ab
el

0

1

2

3

4
56

(f) n_clusters = 7

Figure 3.6: Silhouette analysis of KMeans on windowed GPU load statistics
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Ultimately, we used more descriptive statistics to help understand its central ten-
dency, spread, and shape to aid alerting. We can use nine descriptive statistics met-
rics to provide valuable insights into the characteristics of the data: percentiles (25%,
50%, 75%), kurtosis, maximum, minimum, skewness, standard deviation, and vari-
ance, as defined in Subsection 2.6.1.

Figure 3.7 and Figure 3.8 show the histogram distribution graph. The graph shows
that kurtosis, mean, skewness, and standard deviation have a central tendency. We
cannot find a good separation for these data, so these metrics cannot separate good
and bad jobs. Combined with the analysis of the monitoring data in production and the
actual need for job alerting, which is to find out the bad jobs that can be significantly
improved, we eventually fine-tuned and discovered that 20 in the 75th percentile and
32 in the maximum are good separations, as defined in Algorithm 2.
Algorithm 2: Checking GPU load alert based on percentile and maximum
Data: Array, Fixed-size sliding window of latest GPU usage history: 𝐴
Result: Boolean, indicating if an alert should be raised

1 Function getPercentile(𝑎𝑟𝑟𝑎𝑦, 𝑑𝑖𝑣𝑖𝑑𝑒):
2 return 𝑎𝑟𝑟𝑎𝑦[⌊(len(𝑎𝑟𝑟𝑎𝑦) − 1)/𝑑𝑖𝑣𝑖𝑑𝑒⌋];
3 Function checkAlert(𝐴):
4 𝑎𝑟𝑟𝑎𝑦 ← Sort 𝐴 in ascending order;
5 𝑃75 ← getPercentile(𝑎𝑟𝑟𝑎𝑦, 4

3 );
6 𝑀 ← getPercentile(𝑎𝑟𝑟𝑎𝑦, 1);
7 if 𝑃75 < 20 or 𝑀 < 32 then
8 return true;
9 end
10 else
11 return false;
12 end
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Figure 3.7: Histogram of statistics analysis on windowed GPU load data, Part 1
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Figure 3.8: Histogram of statistics analysis on windowed GPU load data, Part 2

3.4 Alert service
The alert service we implemented is built on the monitoring system. A good design
is crucial for addressing all the research questions in Section 1.3.

For maintaining the internal state for tracking different jobs, The alert service
can create or destroy the internal state for specific jobs by following job metadata up-
dates. Whenever we have a new alert, or the alert is dismissed, we write the event into
logs. We garbage collect stale jobs to avoid memory leaks. We get the aggregation
result as soon as data are inserted. For the dashboard RESTful API integration, han-
dling the one-writer, multiple-reader problem can be very complex if we directly let
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the API server access our internal state, as starvation can quickly happen, thus causing
significantly reduced performance. In the end, we chose to convert the issue into the
one-writer, one-reader problem by dumping the alert state with a thread separately at
regular intervals into the JSON string, so that we can easily tackle the issue by simply
using the thread-safe map and mutual exclusion lock, to solve RQ3 in Section 1.3.

For following the job data updates, since message queues introduce a single
point of failure, and can be challenging to debug, we decided not to use them. This
increases the difficulty of our design, but aside from polling, we do have an alter-
native: TimescaleDB, which is based on PostgreSQL. PostgreSQL has LISTEN and
NOTIFY, so we can use triggers to execute NOTIFY after the insertion of each row,
and Timescale Alert can LISTEN to the updates. We also have continuous aggregates
in TimescaleDB [47], which can also be our choice.

As a result, we devised four solutions combining polling/triggers, and with or
without continuous aggregates, to follow the job data updates, so that we can balance
between RQ1 and RQ2 as mentioned in Section 1.3.

• Polling with continuous aggregates: Start/Stop polling as soon as job meta-
data updates. Use the continuous aggregates feature offered by TimescaleDB.

• Polling with SQL aggregates: Start/Stop polling as soon as job metadata up-
dates, directly use SQL for aggregates (without using continuous aggregates
for caching).

• Triggers with continuous aggregates: use the continuous aggregates feature
offered by TimescaleDB and query the aggregated result according to the in-
formation sent by the NOTIFY as soon as the message is received.

• Triggers with in-memory aggregates: Since our monitoring system can en-
sure that data arrives in order and has evenly distributed intervals, we can use a
fixed-size container/ring (Circular Linked List) as the sliding window to store
the history data, and do the aggregation by Golang. Here, we listen to the met-
rics data sent by the NOTIFY from the database and update the internal state
in memory.

Here is an empirical analysis of the four design choices mentioned above: We
can choose either polling or triggers. With polling, the alert delay increases and will
likely burden the database heavily with read operations. The alert delay is minimized
with triggers, but we might slow down the database for writing operations because of
the transactional overhead.

For continuous aggregates in TimescaleDB, Spark [40], and Flink [6], after in-
vestigation, we found they do not have sliding-window aggregation support with a
high-level API:

Since we want real-time alerts, we want to aggregate with a fixed-size sliding
window that considers the latest data and drops the old data at any time, as shown
in Figure 3.9. However, TimescaleDB continuous aggregates, Spark, and Flink high-
level API can only aggregate with a fixed start time, as shown in Figure 3.10, which
will work badly if we want to check the latest aggregation result at o’clock in this
case since we will only have one data to aggregate in that window (only data at 11
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o’clock as shown in the figure). Then, it is not very sensible to have an aggregation.
Although the sliding window is not supported, we can overcome this issue by using
a weighted average on the last two windows. However, it is still not a good candidate
since triggers for continuous aggregates are not supported currently, as confirmed by
the issue the author opened¹. So we will have to burden the database by polling, which
means many read operations plus many background jobs.

Data Data Data Data Data Data Data Data Data

9:00 10:00 11:00

Figure 3.9: Sliding-window aggregation on the last 1 hour’s data

Data Data Data Data Data Data Data Data Data

9:00 10:00 11:00

Figure 3.10: Aggregation with a fixed start time

We need to benchmark all four design choices to reach a final decision, which will
be further discussed in Subsection 4.1.2.

The API design of the Timescale Alert is as follows, which provides the data for
other services and allows easier integration:

• /version: Same as Timescale Ingest, it displays the version information and
build time.

• /healthStatus: Checking connection status between the timescale ingest and
the database.

• /dismiss/:host/:job/:gpu: Disable or enable the alert for the specified GPU on
the host from a specific job ID.

• /history: Displaying a list of JSON objects or a table that shows the alert his-
tory. It can be filtered by the host, username, job ID, and type.

• /: Displaying the current alert status. Host, username, and job ID can also be
the filter.

Below is an example showing the GPU alert history output section of the modified
seff command we added for Timescale Alert. The alert information is printed via the

¹https://github.com/timescale/timescaledb/issues/6500
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above-mentioned /history endpoint. Here are a few alert histories related to GPU
usage. Each entry shows the time when the alert happened, the hostname, and the
GPU ID that generated the alert event. It also shows the 75th percentile aggregation
result for the sliding window time frame that contributes to the alert status change,
and the Normal column shows whether this entry generates a new alert (with x) or
clears the old alert (with v).

1 $ seff 5465
2 GPU Alert History
3 -------------------------------------------------------------------
4 GPU Usage
5 Time Hostname GPU Id 75% (%) Normal
6 2024-04-25T17:05:55+03:00 r14g04 2 5 x
7 2024-04-25T17:06:41+03:00 r14g04 2 21 v
8 2024-04-25T17:10:49+03:00 r14g05 1 8 x
9 2024-04-25T17:11:17+03:00 r14g05 1 23 v

10 -------------------------------------------------------------------

3.5 Alert dashboard
The alert dashboard reads data to display and learn about the current job status. It
renders tables through the web page to internal users, such as CSC user support ex-
perts. As shown in Figure 3.11, the dashboard has a counter for the viewers to know
the total number of GPUs in use, and how many are currently on alert.

Figure 3.11: GPU alert status dashboard

In addition, the dashboard allows users to disable or re-enable job alerts, so that
admins can improve the alert manually and focus more on those jobs, that have not
been checked or can be improved. The users can also click on the button to check
more detailed JSON information about jobs from the output of sacct --json. (We
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don’t render that information directly into the table, since the SQL database behind
Slurm runs full steam for several seconds when calling that, even for a single job)

Besides showing the alert status, the dashboard also displays the watermark in-
formation for the job lifetime metrics, such as the average, minimum, and maximum
GPU load, to give admins a whole picture of what might happen to the job.

Aside from sorting the data, the dashboard allows the viewers to filter the data by
job ID, user name, hostname, and alert status, so viewers can quickly target different
entities in question. When we filter by user name or job ID, the dashboard also allows
admins to send emails to the user in question, with one click, from the preset template,
for the current jobs in the alert. One example email generated by the dashboard, when
we click the button in Figure 3.11, is as follows:

To: johndow@users.csc.fi
Subject: Low GPU utilization rate with the job you are running on Puhti

Dear johndow,

We have noticed that you have a low utilization rate at least during the
last 30 min, according to our monitoring system, for the jobs you are
running on Puhti:

- GPU 0 on host r03g03 for job 21850954, with lifetime average 3.13%,
maximum 20%, miminum 0%.

Please review them and make improvements at your earliest convenience. We
recommend checking your job scripts and programs to ensure that the jobs are
running as intended.

You might also want to consider the following:
1. Running "seff <job_id>" on the login node to check the job's resource
usage.
2. Find out the history of the job's GPU data by visiting:
https://puhti-ood-testing.csc.fi/pun/sys/dashboard/custom/job_monitor
3. Check the job's output and error logs for any error messages.
4. Reduce the number of GPUs requested in your job script.

if the situation continues and we receive no response from you, we might
take actions to ensure fair usage for all our users. Thank you for your
cooperation! If you have any questions or need help, please feel free to
contact us!

Best regards,
CSC computing services
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We also have a dashboard showing the alert history, as presented in Figure 3.12,
which shows the alert status change time, job ID, user name, hostname, GPU ID,
alert type, alert value (for usage alert, it will be the 75% percentile), and whether the
status change generates a new alert or clear out an old one. The history dashboard
also shares the same features as the status dashboard.

Figure 3.12: GPU alert history dashboard
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Chapter 4

Results and analysis

This Chapter presents the results of benchmarking the real-time GPU resource moni-
toring and alerting system in experimental and production setups. The evaluation in-
cludes a comprehensive analysis of the system’s performance, scalability, and impact
on energy efficiency and resource utilization for production within High-Performance
Computing (HPC) clusters.

4.1 Benchmark
4.1.1 Experimental setup
The experimental setup involves deploying the proposed GPU monitoring system in
a controlled environment, that emulates the characteristics of a typical HPC cluster.
The monitoring infrastructure continuously collects and analyzes the simulated GPU
metrics, and an alert service is configured to notify any sub-optimal GPU utilization.

To integrate all the components for testing, we deployed Slurm in a containerized
environment with an isolated network to simulate the actual HPC job context. Ev-
erything, including the software versions, replicates what we have in production. We
use Podman as the container runtime and Rocky Linux 8 as the base container image
to keep up with the operating system we use in Puhti and Mahti (RHEL 8).

We have two compute nodes in our test environment. All the containers are listed
as follows:

• mysql: Database for Slurm to store job data.
• slurmctld: Central controller daemon of Slurm monitors all other Slurm dae-

mons and resources, accepts jobs, and allocates resources.
• slurmdbd: Interface to the MySQL database for Slurm can be used to archive

accounting records.
• cpn01: Compute node 1 for executing actual jobs received by Slurm.
• cpn02: Compute node 2 for executing actual jobs received by Slurm.
• frontend: Similar to the login node in HPC for submitting jobs.
• timescaledb: TimescaleDB instance for storing the monitoring data.
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• timescaleingest: Timescale Ingest instance for ingesting the monitoring data
into TimescaleDB.

• timescalereader: Timescale Reader instance for fetching the monitoring data
and serving as the API for displaying to end users.

• timescalealert: Timescale Alert instance for checking alerts and displaying
related information.

• ondemand: Open OnDemand serves as a web-based UI to computer clusters
in HPC, in addition to SSH access, to help new users who are not familiar with
Linux get started quickly. It offers an intuitive entry point for straightforward
tasks and shell access for more intricate operations.

• ldap: Lightweight Directory Access Protocol (LDAP), for access control in
Open OnDemand.

To make testing easier with an arbitrary number of GPUs in a container with-
out needing them, we created a fake Nvidia library that implements the Nvidia-ML
interface for generating random data.

We also have separate testing setups, either by randomly generated data or by
replaying the data we collected in production from the database dump.

• For the random data benchmark, we spawn maximum 23824 (2978*8) Go rou-
tines that write to the database simultaneously, which is, i.e., the maximum
GPU number we have in LUMI, to simulate the heaviest situation we can have
in the pre-exascale supercomputer.

• For real data replaying, we read all the records from the database dump or-
dered by time stamp, and send it to timescale ingest with accelerated speed to
reproduce the production situation.

4.1.2 Performance
The benchmarking process focused on evaluating the system’s responsiveness in de-
tecting anomalies and the overall impact on system performance during monitoring,
to assess the system’s adaptability and robustness in different usage patterns.

We use the local environment to run the container setup mentioned in Subsection
4.1.1 on the 12th Gen Intel Core i7-12700H CPU with SSD and 16 GB of RAM by
writing random GPU metrics data to the database continuously in an infinite loop,
without any interval for writing and dumping data. We run each solution for 10 min-
utes and take the average of the last 2-minute delay. The benchmark result is shown
in Figure 4.1 (We apply the logarithmic scale on both the x and y axes):
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Figure 4.1: Timescale Alert benchmark result
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From Figure 4.1, we can learn that:

• Generally, all the delays scale linearly with the number of GPUs.
• Triggers generally double the delay in database transaction commit time for

writing, which the overhead of NOTIFY should be the cause.
• Continuous aggregates (CAgg) cause a slight increase in writing delay and the

memory status dump delay for the triggers solution, which is likely to be caused
by the overhead of CAgg background jobs. However, CAgg accelerates the
query speed dramatically compared to traditional SQL queries aggregate, as
we can see a significant time reduction in completing a read loop among all the
jobs available.

• Polling is very inefficient for accessing data in real-time, since it creates a delay
that is almost 100x more than the triggers solution.

Hence, the results confirmed our empirical analysis in Section 3.4 and led to our
final design after comparison: triggers without continuous aggregates. The rea-
son is that triggers have the best real-time access, while only doubling the delay in
writing compared to polling, which is acceptable, and the in-memory solution has a
better performance in both read and write delay. Most importantly, the in-memory
solution allows us to access raw data for more complicated statistics calculations and
use machine learning models. We used the Golang data race detector to ensure the
correctness during benchmarking and testing. We also checked the memory usage
during the benchmark: The maximum Resident Set Size (RSS) is around 84.6 MB,
which is also acceptable.

4.2 Production
The production evaluation involved deploying the real-time GPU monitoring system
in a live HPC environment, including Puhti and Mahti. This evaluation allows us
to test the practicability of alerting for real-world workloads from diverse scientific
domains, including molecular dynamics simulations, computational chemistry, and
machine learning. Unfortunately, due to the time limit for the thesis writing process,
we cannot finish deploying the alert services in production for the pre-exascale HPC
system, LUMI. Still, through a benchmark, we have verified the possibility of deploy-
ing it in a pre-exascale system in Section 4.1.1.

The production evaluation focused on the practical implications of integrating
the alerting and monitoring system into the daily operations of HPC clusters. Key
performance indicators, such as the system’s ability to facilitate timely alerts, were
measured. Additionally, the impact on user experience was evaluated considering the
introduction of real-time alerts to administrators.

4.2.1 Setup
As is presented in Figure 4.2, we have two copies of the monitoring infrastructure
separately for Puhti and Mahti deployed as microservices inside containers:
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Figure 4.2: GPU monitoring infrastructure production setup for Puhti and Mahti

• Monitoring Daemon is written in C++ and deployed on each compute node
for both Puhti and Mahti. The Monitoring Server is deployed as a systemd
service. In contrast, the Monitoring Client is deployed as a CLI utility to be
called by the Slurm prolog and epilog scripts.

• Lmod is the environment module system in Lua. It is deployed on each com-
pute node as well.

• Timescale Reader, Timescale Ingest, and Timescale Alert are all written in
Go and deployed as systemd services. Both copies for Mahti and Puhti are
deployed on the Puhti MonDB Utility node.

• TimescaleDB is deployed as a plugin on the PostgreSQL node. We use differ-
ent database names to isolate the monitoring data between Puhti and Mahti.

• Seff script is the CLI utility written in Perl. It is installed as an RPM package
by admins in all the nodes and can be called by the user.

• Other visualization services, such as the job history and alert status dashboard,
are deployed as Flask Apps for Open OnDemand.

We set the alert sliding window size at 30 minutes. Initially, we collected the
monitoring data at 1-minute intervals, then increased that to 20 seconds, and the whole
monitoring and alert system was still stable enough. We set the compression policy
to compress the data after one day and do the retention every half-year. We also put
an index on the hostname, job ID, and GPU ID to accelerate the querying speed.
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4.2.2 Case studies
Here are some real-world scenarios in which we use our monitoring infrastructure
and Timescale Alert to help users solve issues when they submit jobs in HPC. These
case studies illustrate how the system proposed in this thesis enables the support team
to proactively identify, diagnose, and resolve issues, ensuring efficient utilization of
HPC, reducing user queuing time, and improving user satisfaction.

Configuration Error

From the GPU alert status dashboard, the user support team was alerted by a job that
reserved two full nodes, each with 4 A100 GPUs. It has nearly 100% usage almost
all the time for 1 GPU but zero usage for the remaining 7, as illustrated in Figure
4.3. By checking the GPU alert history dashboard, the support team found that the
alert began long ago. The disk I/O currently used by that job is low, so it shouldn’t
be the case that the job is still loading data. The situation leads them to suspect a
configuration error or code bug. By examining the module load information stored
in the job metadata, they discovered that Pytorch was loaded into the job context, a
mature machine-learning library that shouldn’t have such a situation if everything is
configured right. The user support team then contacted the user to investigate possible
configuration errors. It was eventually discovered that CUDA_VISIBLE_DEVICES was
mistakenly set to 0 (utilizing one GPU only), and they didn’t use srun to distribute
the job steps to all nodes properly with torchrun. The job was terminated to fix this,
and a new job with the correct configuration was subsequently submitted.

Figure 4.3: Job usage graph for a job with configuration error
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Code Bugs

In another scenario, the support team received similar alerts about a job allocated
multiple GPUs, described in the Configuration Error. Still, it showed low utilization
on all GPUs except a few. Those with high usage constantly change and take turns, as
Figure 4.4 demonstrates. By analyzing the job’s execution patterns and checking with
the user, they found that the workload was not adequately distributed across the GPUs
because of code bugs and how the user’s code was written. The user was advised to
improve their code to parallelize tasks and fully utilize the allocated GPUs. This
resulted in significantly improved performance and more efficient use of the cluster’s
GPU resources.

Figure 4.4: Job usage graph for a job with code bugs
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GPU Over-Provisioning

For most cases, the support team was alerted by jobs with low overall GPU utilization
across all allocated GPUs, as shown in Figure 3.3 and Figure 4.5 for examples. After
contacting the users, most of the time, it was found that their applications did not
scale well beyond a certain number of GPUs, which means there were more allocated
GPUs than needed, resulting in the under-utilization of the resources. Ultimately, the
support team recommended shrinking the GPU requests to match the application’s
needs better, leading to more efficient GPU usage and freeing for other jobs.

Figure 4.5: Job usage graph for a job with over-provisioning
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Interactive use on GPU compute node

For some cases, the support team also gets alerted by jobs that only requested 1 GPU
but still have low GPU utilization, on partitions meant for heavy GPU computing jobs,
as demonstrated in Figure 4.6 for one example. After checking with the users, most
of the time, it was found that they develop their code interactively. The user was then
advised to switch their job to the partition meant for lightweight GPU computing.

Figure 4.6: Job usage graph for an interactive job on heavy GPU compute partition
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GPU Memory Leaks

A user raised a ticket, asking for help from the user support team about why his
long-running AI inference job eventually crashed after some time. After checking
the monitoring history, as shown in Figure 4.7, the support team found progressively
increasing GPU memory usage, ultimately leading to the job being killed due to ex-
ceeding memory limits. The support team worked with the user to review the code
and identified a memory leak, caused by improper handling of GPU memory alloca-
tions in a loop. The memory usage was stabilized by fixing the code, allowing the job
to be finished successfully, without exceeding memory limits.

Figure 4.7: Job usage graph for a job with GPU memory leaks
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Chapter 5

Discussion

5.1 Findings
Developing and implementing the monitoring system and alert service for GPU re-
source utilization in HPC clusters has garnered several vital insights, paving the way
for further exploration and advancement in this domain.

One of the primary findings of this research is the effectiveness of the imple-
mented algorithms in detecting inefficient GPU resource usage. By analyzing real-
time monitoring data, the system can identify instances, where jobs are not effec-
tively utilizing allocated GPU resources, potentially leading to performance bottle-
necks or resource wastage. This capability is crucial for optimizing job scheduling
and resource allocation in HPC environments, enhancing overall system efficiency
and throughput.

Moreover, integrating GPU energy consumption data into the monitoring system
offers valuable insights into the sustainability aspects of HPC operations. With in-
creasing focus on energy efficiency and environmental sustainability, understanding
and managing power consumption in HPC clusters is paramount. By monitoring GPU
energy usage and identifying energy-intensive tasks or jobs, HPC users can implement
strategies to reduce power consumption, lower operational costs, and minimize their
environmental footprint.

Furthermore, the research’s practical implications extend beyond HPC cluster
management to various application domains, including AI development and scientific
computing. The ability to monitor and analyze GPU resource utilization in real time
provides researchers and practitioners with valuable insights into the performance of
AI algorithms, computational simulations, and data analysis workflows. By optimiz-
ing GPU resource allocation and usage, HPC users can accelerate AI model training,
improve scientific simulations, and drive innovation in various fields.

Additionally, we highlight the potential challenges and limitations we have tackled
in the monitoring system and alert service for this master’s thesis, such as scalabil-
ity issues with large-scale HPC clusters and compatibility with different hardware
configurations (Nvidia/AMD).
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5.2 Related work
Several job monitoring platforms for HPC have emerged in recent years, including
Ganglia [25], TACC Stats [12], XDMoD [30], LIKWID [35], LDMS [20], PIKA
[11], and MAP [28, 29]. However, these platforms lack GPU monitoring support,
and few have real-time alerting and history visualization features.

Other notable works in this area use the Prometheus monitoring framework and
the Grafana visualization toolkit, including Jobstats [31] and the work down by Jae-
lyn et al. [23]. These platforms are designed for both CPU and GPU clusters, and
they leverage the Prometheus monitoring framework [33] and the Grafana visual-
ization toolkit [7] to provide job-level information on CPU/GPU efficiencies and
CPU/GPU memory usage. However, these out-of-the-box solutions operate with
high-level APIs, and it is hard to access the streaming raw data for alert customization,
such as machine learning algorithms to identify jobs in real-time. Performance can
also be an issue, and it is tough to debug if something goes wrong when we implement
these solutions to pre-exascale supercomputers such as LUMI.
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Chapter 6

Conclusions and future work

In this Chapter, we summarize the thesis and conclude with future work that we could
not cover during the thesis period.

6.1 Summary
The thesis comprehensively explores designing, implementing, and evaluating a mon-
itoring system and alert service for GPU resource utilization in High-Performance
Computing (HPC) clusters. Through a systematic methodology, the research ad-
dresses critical challenges in efficiently analyzing jobs in HPC systems in real-time,
focusing on minimizing alert delays and performance impacts on database systems,
maintaining reliable data structures for job alert status checks, identifying optimal
algorithms for generating alerts, and addressing all research questions in Section 1.3.

The thesis’s contributions are multifaceted. First, a monitoring system and alert
service with visualization are successfully created and deployed for Nvidia and AMD
GPUs within Slurm-managed supercomputer systems. Then, an algorithm is devel-
oped to detect and alert jobs with inefficient GPU resource usage by investigating
collected monitoring data. Additionally, the thesis provides insights into GPU re-
source utilization dynamics with case studies in production. By addressing critical
challenges and proposing innovative solutions, the research enhances the effective-
ness and sustainability of GPU-accelerated computing environments, paving the way
for future advancements in HPC infrastructure management and AI research.

6.2 Future work
There are several avenues for future research and improvements due to the limited
time during this master’s thesis project:

6.2.1 Additional job schedulers
Extend support for real-time GPU monitoring to additional job schedulers commonly
used in HPC environments, such as LSF [22], TORQUE [44], or UGE [1].

69



6.2.2 More monitoring metrics
Collect monitoring data from other hardware (e.g., CPU, disk I/O) and collectively
contribute to the alert for the whole system. The monitoring infrastructure already
has the capabilities for monitoring additional hardware, but due to performance con-
siderations, they have not been tested in production.

In addition, we can also explore the possibility of capturing and analyzing fine-
grained GPU usage metrics, including memory bandwidth, cache utilization, and in-
struction throughput. This granular level of monitoring can provide deeper insights
into application performance and identify optimization opportunities at the code level.

6.2.3 Flexible alerting
Investigate adaptive alerting strategies that dynamically adjust the thresholds in our
alert algorithms based on workload characteristics, ensuring effective alerting across
varying HPC workloads.

It’s also worth exploring the integration of possible other advanced machine learn-
ing algorithms to predict GPU resource usage patterns, enabling proactive alerting
based on historical data analysis.

We can also try to implement mechanisms to directly gather feedback from ad-
ministrators or support teams regarding the effectiveness of the jobs, and improve
our alert strategies automatically, so that we can continuously refine them based on
practical usage experiences.

6.2.4 Resource optimization
Investigate optimization techniques for dynamically allocating GPU resources based
on real-time workload demands and system utilization. This could involve develop-
ing algorithms for intelligent resource provisioning and load balancing to maximize
overall cluster efficiency and performance.

We can also investigate the predictive maintenance techniques for GPUs based
on real-time monitoring data. Predictive maintenance models can anticipate failures
or performance degradation by analyzing hardware health metrics and performance
degradation, enabling proactive maintenance actions to minimize downtime and max-
imize system reliability.

It’s also worth investigating integrating the real-time GPU monitoring system with
energy management systems to optimize power consumption. By correlating GPU
usage metrics with power consumption data, administrators can implement energy-
efficient computing strategies, such as dynamic voltage and frequency scaling, to min-
imize power consumption without sacrificing performance.
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Appendix A

More about Slurm

In addition to the three main components (Slurmctld, Slurmdbd, Slurmd) mentioned
in Section 2.1, Figure A.01 shows the general Slurm architecture.

Slurm also adopts the plugin-based architecture. These plugins, from network
topologies to authentication mechanisms, offer a customizable framework adaptable
to different computing environments. Moreover, Slurm’s robust plugin design al-
lows for seamless integration of custom functionalities, empowering users to tailor
the system to their specific needs.

This Chapter introduces Slurm’s login-node commands and Slurm’s key features.
We also compare Slurm with Kubernetes.

A.1 Login-node commands
Here are the available Slurm commands for users to interact in the login node:

• sbatch: For submitting batch scripts, which can be written in bash, Perl, or
Python, enabling users to automate the execution of tasks in a batch mode.

• scancel: Enabling the cancellation of pending or running jobs or job steps,
providing users with control over job management and resource allocation.

• squeue: For querying pending and running jobs, providing users with visibility
into the status of their submitted tasks and overall system workload.

• salloc: Users can interactively access computing resources for their tasks to
request interactive job allocations.

• sinfo: Retrieving comprehensive information about partitions, reservations,
and the state of nodes within the system, helping users understand the avail-
ability and status of computing resources.

• scontrol: Enabling users to manage jobs, query system configurations, and
retrieve resource utilization and allocation information.

• sprio: Enabling users to query job priorities, assisting in resource allocation
decisions and prioritization of tasks based on predefined criteria.

• seff: Providing a concise overview of resource utilization for active and com-
pleted batch jobs, detailing the requested and actual usage of resources.

76



sbcast / sgather

sstat

sattach

srun

sacctmgr

sacct

sview

seff

sprio

scontrol

sinfo

salloc

squeue

scancel

sbatch

Login Nodes

slurmctld

slurmdbd

MySQL
Database

Master Nodes

slurmd

Compute Node 1

slurmd

Compute Node 2

slurmd

Compute Node 3

slurmd

Compute Node N

sshare

Figure A.01: Slurm architecture overview

• sview: GUI that offers state information for jobs, partitions, and nodes, enhanc-
ing user experience in monitoring and managing computing resources.

• sshare: Providing users with fair-share information, offering insights into re-
source allocation fairness among different users based on usage history and
system policies.

• sacct: Retrieving accounting information about jobs and job steps stored in
Slurm’s database, assisting in resource usage analysis, billing, and reporting.

• sacctmgr: Enabling users to query accounting-related information and other
accounting data stored in Slurm’s database, facilitating user accounting man-
agement and administration tasks.

• srun: Initiating job steps, primarily within a job or starting interactive jobs,
allowing for executing multiple steps sequentially or in parallel on allocated
nodes within the job’s resource allocation.
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• sattach: Attaching standard input, output, and error streams, along with signal
capabilities, to a currently running job or job step, facilitating real-time moni-
toring and interaction.

• sstat: Querying status information about running jobs, providing real-time up-
dates on job progress, resource utilization, and other relevant metrics.

• sbcast: Facilitating the transfer of files to all nodes allocated for a specific job,
so that we can ensure necessary data or resources to be available across the
computing environment.

• sgather: Allowing the retrieval of files from all allocated nodes to the currently
active job, serving as a mechanism for aggregating results or data produced
during job execution.

A.2 Key features
Key features for Slurm include:

• High-availability for the primary daemons, namely Slurmctld and Slurmdbd,
ensuring uninterrupted operation.

• Compute nodes are grouped into partitions by Slurm, allowing for configuring
various limits and policies for each partition, such as permitted users, maximum
nodes, and maximum wall-time limit per job.

• Quality-of-Services (QoS) enforce additional limits based on the status of the
user’s group.

• Utilization of the backfilling scheduling algorithm to optimize job scheduling
and enhance resource utilization.

• Job scheduling based on priorities allows efficient allocation according to user-
defined criteria.

• Accountingmechanism utilizing Slurmdbd and the MySQL/MariaDB database
to track resource usage and job statistics for Trackable RESources (TRES). De-
fault TRES include nodes, CPUs, memory, and billing.

• No preemption policies support, meaning that administrators can configure
Slurm so that running jobs are not subject to interruption.

• Prologue and Epilogue scripts to execute tasks before and after job execution.
• Generic RESources (GRES) such as GPUs and NVMe allow flexibility but

lack built-in accounting support.

A.3 With Kubernetes
With the rise of cloud computing, container orchestration systems such as Kubernetes
become increasingly popular. However, these tools are unsuitable for deployment in
the HPC world, as HPC job schedulers like Slurm revolve around job completion. At
the same time, Kubernetes is tailored for hosting and sustaining services over time
[10]. To be more precise, the primary distinction between an HPC workload and
the typical application suited for Kubernetes lies in their operational characteristics.
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HPC workloads focus on efficiently executing a complex task within the shortest time
frame, even if the duration is considerable. Conversely, Kubernetes excels in manag-
ing continuously running applications, particularly those designed as services.

However, there is a growing interest in integrating batch job systems with Ku-
bernetes to provide the best of both worlds. Such integration aims to leverage Ku-
bernetes’s capabilities in managing scalable, long-running services while benefiting
from the efficient scheduling and resource management of HPC systems like Slurm.
Several models have been proposed for converging these environments, including Ad-
jacent and Under models. In the Adjacent model, both control planes are overlapped,
with Slurm managing both traditional HPC and Kubernetes workloads, utilizing Ku-
bernetes’ capabilities like sidecars and operators. The Under model involves running
Slurm clusters within a Kubernetes environment, allowing for traditional user experi-
ences and higher throughput for MPI workloads. At the same time, Kubernetes man-
ages scaling and dynamic resource allocation. One such example project is SUNK
(Slurm on Kubernetes) [52], which is working towards seamless integration to sup-
port large-scale AI training, as well as inference and other complex workflows on
hybrid environments that combine cloud-native and HPC.
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Appendix B

More about HPC systems at CSC

This Chapter gives more information about the HPC systems at CSC, on top of Section
2.2, including the overview of CPU for Mahti, more details about the AMD MI250X
GPU, and how the hardware is connected for each HPC system.

B.1 Mahti CPU
The NUMA configuration of Mahti [14] involves a hierarchical structure within each
node. Each node contains two sockets, each accommodating a single CPU alongside
memory DIMMs. Although the memory within the node is shared, the performance
of memory access varies based on the proximity of the core to the memory. Mahti
operates each CPU in NPS4 (NUMA per socket 4) mode to optimize memory perfor-
mance, dividing each CPU into four NUMA domains. Each NUMA domain includes
16 cores and two memory controllers, providing 32 GiB of memory. Thread allo-
cation within each core follows a specific pattern: core 0 runs threads 0 and 128,
core 1 runs threads 1 and 129, and so forth. Figure B.11 shows how the threads are
distributed over each core and NUMA node.

Figure B.11: Mahti NUMA structure overview [14]

80



Each core possesses 32 KiB of L1 data cache, 32 KiB of L1 instruction cache, and
a private 512 KiB L2 cache. Additionally, each core has two FMA (fused multiply-
add) units capable of processing operations on full 256-bit vectors. Consequently,
each unit can execute operations on 8 single-precision floats or 4 double-precision
floats per clock cycle, resulting in 16 double-precision floating point operations per
clock cycle.

As shown in Figure B.12, cores in the CPU are grouped into core complexes
(CCXs) and further combined into compute dies (CCDs). At the CCX level, four
cores share a 16 MiB L3 cache within the CCX, and two CCX parts combine to form
a compute die (CCD).

Figure B.12: Mahti CCD structure overview [14]

Each processor comprises eight compute dies and an additional I/O die, including
memory and PCI-e controllers. Furthermore, each node consists of two processors
and one 200 Gbps HDR network adapter, as shown in Figure B.13.
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Figure B.13: Mahti node structure overview [14]

B.2 AMD MI250X GPU

Figure B.24: AMD MI250X GCD structure [13]

The GCD structure of AMD MI250X GPU is demonstrated in Figure B.24. When a
kernel is dispatched for execution on the GPU, it is organized as a grid of thread blocks
(workgroups), with the grid and thread blocks being one, two, or three-dimensional.
The grid can have a maximum number of blocks specified along each dimension of
(2147483647, 2147483647, 2147483647), while the maximum number of threads
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(work-items) for each dimension of a block is (1024, 1024, 1024), with a thread block
size limit of 1024, which means size.x * size.y * size.z must be less or equal to 1024.

The thread blocks are assigned to one of the 110 compute units and are sched-
uled in groups of 64 threads, known as wavefronts. This is analogous to a warp on
NVIDIA hardware, except that a warp consists of 32 threads, while for AMD hard-
ware, a wavefront comprises 64 threads.

The execution process of wavefronts by a compute unit can be outlined as follows:

1. Each wavefront has 64 work items (threads) allocated to one of the 16-wide
SIMD units.

2. Most instructions are executed within a single cycle, although one instruction
requires four cycles per wavefront.

3. With 4 SIMD units available per compute unit, up to 4 wavefronts can be pro-
cessed simultaneously, ensuring a consistent throughput of one instruction per
wavefront per compute unit.

Figure B.25 shows that each compute unit has 512 64-wide 4-byte vector general-
purpose registers. Additionally, the unit provides access to low-latency storage through
a 64 kB local data share (LDS, shared memory), accessible to all threads within a
block. The programmer manages the LDS allocation. Furthermore, each compute
unit has access to 16 kB of L1 cache.

Figure B.25: AMD MI250X compute unit structure [13]

The vector ALUs are complemented by matrix cores optimized to execute matrix-
fused multiply-add instructions. These cores offer significant acceleration for gener-
alized matrix multiplication computations, which is crucial for linear algebra in High-
Performance Computing applications and AI workloads. Each compute unit (CU) has
four matrix cores capable of achieving a throughput of 256 double-precision floating-
point format (FP64) Flops/cycle/CU.

B.3 Connections
This Section introduces how the hardware or node is inter-connected, for the three
HPC systems at the CSC: Puhti, Mahti, and LUMI.
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B.3.1 Puhti
The Puhti[15] interconnect architecture is based on a dual-rail Mellanox HDR100
InfiniBand setup. It offers a non-blocking fat-tree topology with a blocking factor
of approximately 2:1 and delivers an impressive aggregate bandwidth of 200 Gbps,
ensuring efficient connectivity across the network.

B.3.2 Mahti
The network interconnect in Mahti is based on Mellanox HDR InfiniBand, with each
node connected via a single 200 Gbps HDR link. The network topology adopts a
dragonfly+ configuration, in which multiple groups of nodes are internally connected
using a fat tree topology. These fat trees are interconnected using all-to-all links to
ensure fully non-blocking connectivity between groups, as shown in Figure B.36.

Figure B.36: Mahti dragonfly+ configuration overview [14]

In Mahti, each dragonfly group comprises 234 nodes, with an internal fat tree
featuring a blocking factor of 1.7:1 and 20 or 18 nodes connected per leaf switch.
Each leaf switch connects to the spine switch in the group via 12 200 Gbps links.
Figure B.37 shows the topology of such a group. There are six groups, with five
200 Gbps links connecting each spine switch to a spine switch in every other group,
facilitating comprehensive inter-group communication.
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Figure B.37: Mahti dragonfly topology [14]

B.3.3 LUMI
Figure B.38 shows the node LUMI topology. Each MI250X module includes 5 GPU-
GPU links, 2 CPU-GPU links, and 1 PCIe link to the slingshot-11 interconnect. The
MI250X modules are connected via an in-package Infinity Fabric interface, capable
of delivering a theoretical peak bidirectional bandwidth of up to 400 GB/s. Further-
more, GCDs across different MI250X modules are linked through single or double
Infinity Fabric links, offering peak bidirectional bandwidths of 100 GB/s and 200
GB/s, respectively. Each MI250X module directly connects to the slingshot-11 net-
work, affording peak bandwidths of up to 25+25 GB/s.
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Figure B.38: LUMI GPU node topology overview [13]

Figure B.39 shows the CPU-GPU links from a CPU-centric or GPU-centric point
of view of the LUMI GPU node. Proper binding of the NUMA node to the GPU can
be essential to ensure optimal application performance.

Figure B.39: CPU-GPU links on LUMI GPU node [13]
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Appendix C

Event stream management

Event Stream Management involves ingesting, analyzing, and storing streams of events,
which are discrete data points denoting state changes. This allows for real-time ana-
lytics and decision-making.

• MapReduce [17] is a programming model for processing large data sets with a
parallel, distributed algorithm on a cluster. A MapReduce program comprises
a map procedure, which performs filtering and sorting, and a reduce method,
which performs a summary operation. The MapReduce algorithm contains two
important tasks, namely Map and Reduce. The map script takes some input data
and maps it to <key, value> pairs according to the specifications. The reduce
script takes a collection of <key, value> pairs and reduces them according to
the specifications. MapReduce is primarily used for batch processing of large
datasets and is not designed for real-time processing or low-latency queries.

• Apache Spark [40] is an open-source cluster-computing framework. It pro-
vides elegant development APIs for Scala, Java, Python, and R that allow de-
velopers to execute a variety of data-intensive workloads across diverse data
sources, including HDFS, Cassandra, HBase, S3, etc. Spark provides a faster
and more general data processing platform. Spark lets users run programs up
to 100x faster in memory or 10x faster on disk than Hadoop. Spark’s versatility
makes it suitable for various applications and industries.

• Apache Flink [6] is a Big Data processing framework that allows programmers
to process vast data efficiently and in a scalable. Flink primarily focuses on real-
time stream processing, efficiently processing large volumes of data with low
latency. Flink’s processing engine is built on top of its streaming runtime and
can handle batch processing. Flink provides robust Java, Scala, and Python
APIs for developing data processing applications.

• Apache Kafka [34] / Apache Pulsar [41] is a real-time event-streaming plat-
form that collects, stores, and processes messages. It provides excellent per-
formance, too, at scale. On top of that, it provides capabilities such as stream
processing, distributed logging, and pub-sub messaging. An event (or message)
in Kafka consists of Key and Value.

All four technologies can handle big data, but each has strengths and use cases:
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• MapReduce is primarily used for batch processing of large datasets. It is not
designed for real-time processing or low-latency queries.

• Apache Spark, on the other hand, while initially designed for batch processing,
has evolved to handle real-time data processing through micro-batching.

• However, Apache Flink was designed as a stream-first framework, excelling in
real-time stream processing. It efficiently processes large volumes of data with
low latency.

• Apache Kafka, similar to Flink, is designed for real-time data streaming. How-
ever, Kafka is more focused on the messaging system, providing a robust plat-
form for storing, reading, and analyzing streaming data.

• Apache Pulsar combines the strengths of both a message queue system and a
streaming platform, making it a versatile choice for many use cases.
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Appendix D

Code for figures

In this Chapter, we present the code for some of the figures drawn using Python script.
These figures are drawn using the Matplotlib plotting library, together with pandas
and NumPy.

D.1 Figure 3.5 & Figure 3.6
Section 3.3 shows the silhouette analysis on windowed GPU load data. Here is the
code for the direct one [37], as in Figure 3.5. Note that for load_gpu.csv, we have the
format as follows, where the data for each entry is the fixed-size (30) sliding window:

ℎ𝑜𝑠𝑡𝑛𝑎𝑚𝑒, 𝑗𝑜𝑏𝑖𝑑, 𝐺𝑃𝑈𝑖𝑑, 𝑑𝑎𝑡𝑎0, 𝑑𝑎𝑡𝑎1, ...., 𝑑𝑎𝑡𝑎28, 𝑑𝑎𝑡𝑎29

1 import pandas as pd
2

3 data = pd.read_csv('load_gpu.csv', usecols=[i for i in range(3, 33)
])

4 X = data.to_numpy()
5

6 import matplotlib.cm as cm
7 import matplotlib.pyplot as plt
8 import numpy as np
9

10 from sklearn.cluster import KMeans
11 from sklearn.metrics import silhouette_samples , silhouette_score
12

13 range_n_clusters = [2, 3, 4, 5, 6, 7]
14

15 plt.rcParams.update({'font.size': 56})
16

17 for n_clusters in range_n_clusters:
18 print("Start creating plot for n_clusters =", n_clusters)
19 # Create a subplot with 1 row and 1 column
20 fig, ax1 = plt.subplots(1, 1)
21 fig.set_size_inches(18, 18)
22

23 # The 1st subplot is the silhouette plot
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24 # The silhouette coefficient can range from -1, 1
25 ax1.set_xlim([-0.6, 0.4])
26 # The (n_clusters+1)*10 is for inserting blank space between

silhouette
27 # plots of individual clusters , to demarcate them clearly.
28 ax1.set_ylim([0, len(X) + (n_clusters + 1) * 10])
29

30 # Initialize the clusterer with n_clusters value and a random
generator

31 # seed of 10 for reproducibility.
32 clusterer = KMeans(n_clusters=n_clusters)
33 cluster_labels = clusterer.fit_predict(X)
34 print(cluster_labels , cluster_labels.shape)
35

36 # The silhouette_score gives the average value for all the
samples.

37 # This gives a perspective into the density and separation of
the formed

38 # clusters
39 silhouette_avg = silhouette_score(X, cluster_labels)
40 print(
41 "For n_clusters =",
42 n_clusters ,
43 "The average silhouette_score is :",
44 silhouette_avg ,
45 )
46

47 # Compute the silhouette scores for each sample
48 sample_silhouette_values = silhouette_samples(X, cluster_labels

)
49

50 y_lower = 10
51 for i in range(n_clusters):
52 # Aggregate the silhouette scores for samples belonging to
53 # cluster i, and sort them
54 ith_cluster_silhouette_values = sample_silhouette_values[

cluster_labels == i]
55

56 ith_cluster_silhouette_values.sort()
57

58 size_cluster_i = ith_cluster_silhouette_values.shape[0]
59 y_upper = y_lower + size_cluster_i
60

61 color = cm.nipy_spectral(float(i) / n_clusters)
62 ax1.fill_betweenx(
63 np.arange(y_lower, y_upper),
64 0,
65 ith_cluster_silhouette_values ,
66 facecolor=color,
67 edgecolor=color,
68 alpha=0.7,
69 )
70

71 # Label the silhouette plots with their cluster numbers at
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the middle
72 ax1.text(-0.05, y_lower + 0.5 * size_cluster_i , str(i))
73

74 # Compute the new y_lower for next plot
75 y_lower = y_upper + 10 # 10 for the 0 samples
76

77 # ax1.set_title("The silhouette plot for the various clusters
.")

78 ax1.set_xlabel("The silhouette coefficient values")
79 ax1.set_ylabel("Cluster label")
80

81 # The vertical line for average silhouette score of all the
values

82 ax1.axvline(x=silhouette_avg , color="red", linestyle="--")
83

84 ax1.set_yticks([]) # Clear the yaxis labels / ticks
85 ax1.set_xticks([-0.6, -0.4, -0.2, 0, 0.1, 0.2, 0.3, 0.4])
86

87 plt.savefig("plot/directly/silhouette_directly_" + str(
n_clusters) + ".pdf", format="pdf", bbox_inches="tight")

88

89 plt.show()

For the one with statistics analysis, as in Figure 3.6, the code for drawing it is
similar. The only difference is that, we do an aggregation for each entry (fixed-size
(30) sliding window), and append those results to the end of each entry, using the
nine descriptive statistics metrics, as defined in Subsection 2.6.1: percentiles (25%,
50%, 75%), kurtosis, maximum, minimum, skewness, standard deviation, as well as
the variance.
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D.2 Figure 3.7 & Figure 3.8
Section 3.3 also has the histogram of statistics analysis on windowed GPU load data.
Here is the code for drawing those figures:

1 import pandas as pd
2 import matplotlib.pyplot as plt
3 plt.rcParams.update({'font.size': 32})
4 plt.figure(figsize=(14,4))
5

6 data = pd.read_csv('load_gpu.csv', usecols=[i for i in range(3, 33)
])

7 new_data = data.transpose()
8 stat = new_data.describe()
9 stat.loc['skew'] = new_data.skew()

10 stat.loc['kurt'] = new_data.kurt()
11 stat = stat.drop(['count'], axis=0)
12 stat = stat.transpose()
13 for kind in ["mean", "std", "min", "25%", "50%", "75%", "max", "

skew", "kurt"]:
14 pd.cut(stat[kind], bins=100).value_counts().sort_index().to_csv

("load_gpu_" + kind + "_histogram.csv")
15 figure = stat[kind].plot.hist(bins=100).get_figure()
16 figure.savefig("load_gpu_" + kind + "_histogram.pdf")
17 figure.clear()
18

19 # Verify the threshold selection
20 def getJobs(name, threshold):
21 jobs = []
22 for index in stat.index[stat[name] < threshold].tolist():
23 jobs.append(data.iat[index, 1])
24 jobs.sort()
25

26 return set(jobs)
27

28 for job in (getJobs("75%", 20).union(getJobs("max", 32))):
29 print(job)

D.3 Figure 4.1
In Subsection 4.1.2, we have a performance benchmark. The code for drawing the
related Figure 4.1 is here. You can also find the raw data for the benchmark result in
the code below:

1 import matplotlib.pyplot as plt
2 import numpy as np
3

4 # Data
5 methods = ["Polling CAGG", "Polling Direct Query", "Trigger CAGG",

"Trigger in Memory"]
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6 colors = ["#36A2EB", "#FF6384", "#FF9F40", "#9966FF"]
7 gpu_write_delay = [
8 [0.321007643, 0.660196607, 1.279614867, 2.433749516,

5.131623884, 11.624568741],
9 [0.31859915, 0.625456453, 1.191235464, 2.350517039,

4.958478354, 9.977873813],
10 [0.765987412, 1.609155407, 2.73052539, 5.176909349,

10.908855175, 20.96940738],
11 [0.65528452, 1.285481557, 2.53125466, 5.007170087, 9.824896244,

19.604722893]
12 ]
13 read_iteration = [
14 [1.201504459, 2.102009134, 3.58900885, 7.282948943,

13.567867101, 18.581255946],
15 [2.245655323, 3.443534234, 6.191009134, 12.676023435,

26.139007435, 55.204802484],
16 [13.184558, 30.957367, 56.111442, 101.592729, 212.071778,

433.089509],
17 [12.250112, 30.117734, 52.671703, 91.90153, 188.53631,

388.158221]
18 ]
19 index = range(len(gpu_write_delay[0]))
20

21 # Plot for GPU Write Delay
22 fig, axes = plt.subplots(3, 1, figsize=(8, 12))
23 for i, method in enumerate(methods):
24 axes[0].bar([x + i * 0.2 for x in index], gpu_write_delay[i],

0.2, label=method, color=colors[i])
25 axes[0].plot([x + i * 0.2 for x in index], gpu_write_delay[i],

color=colors[i], marker='o', linewidth=1, markersize=2)
26 # Add horizontal lines to the first plot
27 for tick in gpu_write_delay[i]:
28 axes[0].axhline(y=tick, color='grey', linestyle='dotted',

linewidth=0.3)
29 axes[0].set_xlabel('Node Count * GPU')
30 axes[0].set_ylabel('Time (s)')
31 axes[0].set_title('Delay in Database Writing Transaction Commit')
32 axes[0].set_yscale('log')
33 axes[0].set_xticks([x + 0.2 * 3 / 2 for x in index])
34 axes[0].set_xticklabels(['93*8', '186*8', '372*8', '744*8', '1489*8

', '2978*8'])
35 axes[0].legend()
36 y_ticks_0 = [0.5, 1, 2, 3, 4, 5, 6, 7, 9, 11, 14, 17, 20]
37 axes[0].set_yticks(y_ticks_0)
38 axes[0].set_yticklabels([str(tick) for tick in y_ticks_0])
39

40 # Plot for Read Iteration
41 for i in range(2):
42 method = methods[i]
43 axes[1].bar([x + i * 0.2 for x in index], read_iteration[i],

0.2, label=method, color=colors[i])
44 axes[1].plot([x + i * 0.2 for x in index], read_iteration[i],

color=colors[i], marker='o', linewidth=1, markersize=2)
45 # Add horizontal lines to the second plot
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46 for tick in read_iteration[i]:
47 axes[1].axhline(y=tick, color='grey', linestyle='dotted',

linewidth=0.3)
48 axes[1].set_xlabel('Node Count * GPU')
49 axes[1].set_ylabel('Time (s)')
50 axes[1].set_title('Time Needed in Completing a Read Loop Iteration'

)
51 axes[1].set_yscale('log')
52 axes[1].set_xticks([x + 0.2 * 3 / 2 for x in index])
53 axes[1].set_xticklabels(['93*8', '186*8', '372*8', '744*8', '1489*8

', '2978*8'])
54 axes[1].legend()
55 y_ticks_1 = [0.5, 1, 2, 2.5, 3, 4, 5, 6, 7, 9, 12, 15, 20, 25, 30,

40, 50, 60]
56 axes[1].set_yticks(y_ticks_1)
57 axes[1].set_yticklabels([str(tick) for tick in y_ticks_1])
58

59 # Plot for Memory Status Dump
60 for i in range(2, 4):
61 method = methods[i]
62 axes[2].bar([x + i * 0.2 for x in index], read_iteration[i],

0.2, label=method, color=colors[i])
63 axes[2].plot([x + i * 0.2 for x in index], read_iteration[i],

color=colors[i], marker='o', linewidth=1, markersize=2)
64 # Add horizontal lines to the third plot
65 for tick in read_iteration[i]:
66 axes[2].axhline(y=tick, color='grey', linestyle='dotted',

linewidth=0.3)
67 axes[2].set_xlabel('Node Count * GPU')
68 axes[2].set_ylabel('Time (ms)')
69 axes[2].set_title('Delay in Completing a Memory Status Dump')
70 axes[2].set_yscale('log')
71 axes[2].set_xticks([x + 0.2 * 3 / 2 for x in index])
72 axes[2].set_xticklabels(['93*8', '186*8', '372*8', '744*8', '1489*8

', '2978*8'])
73 axes[2].legend()
74 y_ticks_2 = [5, 10, 20, 25, 30, 40, 50, 60, 70, 90, 120, 150, 200,

250, 300, 400, 500]
75 axes[2].set_yticks(y_ticks_2)
76 axes[2].set_yticklabels([str(tick) for tick in y_ticks_2])
77 plt.tight_layout()
78 plt.savefig("benchmark -data.pdf")
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