
Under review as submission to TMLR

Good Trees: Pruning Random Forests Without Compromise

Anonymous authors
Paper under double-blind review

Abstract

Random forests are a powerful ensemble-based machine learning tool that combines multiple
decision trees to form a better predictor than that based on the individual trees. Because
each random forest prediction utilizes every tree’s prediction, computation scales linearly as
the ensemble size increases. Motivated by the idea that an intelligently selected subset of
trees can perform comparably to the random forest it is derived from, we propose two novel
algorithms to reduce the number of trees in a forest without compromising performance:
tree slices and pruned groups. Tree slices select all trees within a specific performance
range, while pruned groups use a representative sample of the forest to make a weighed
approximation of the forest’s performance. While performance can vary between datasets,
the results are promising and suggest certain workflows can be greatly improved by these
techniques.

1 Introduction

Decision trees take a divide-and-conquer approach to classification and regression, where data is repeatedly
divided based on its features. Random forest is an ensemble machine learning model that aggregates the
predictions of multiple decision trees to form a single prediction. Because each tree uses a random subset of
features at each node split, different trees within a forest can have significant performance differences. The
motivating idea behind random forests is that errors in one tree are offset by the decisions of other trees;
aggregating individual predictors reduces variance, potentially improving overall prediction (Breiman, 1998;
Segal & Xiao, 2011; Genuer & Poggi, 2020; Sagi & Rokach, 2018; Curth et al., 2024).

A fundamental limitation with random forests is their ensemble nature; once the model is fit and a forest
generated, each subsequent prediction requires computing the predictions of every tree in the forest. Com-
putation time and model storage scales linearly with ensemble size, which makes the standard random forest
model computationally expensive and time consuming for inference (Donges et al., 2024; Nan et al., 2016;
Louppe, 2015). In high-volume production environments like fraud detection and product recommendation,
this can be a serious problem (Afriyie et al., 2023; Donges et al., 2024; Everingham et al., 2016). Further-
more, Grinsztajn et al. (2022) finds that on tabular data, neural networks tend to smooth too much, relative
to tree-based methods. This raises the possibility that ensemble pruning may allow random forests to out-
perform neural networks in both computational speed and accuracy. Thus, developing effective methods for
pruning a forest (ie, reducing the number of trees in a forest) is highly valuable.

The literature differentiates between static pruning (a fixed forest is first generated, then some of its trees
are removed) and a dynamic approach (in which pruning is performed in concert with the forest generation).
Static pruning follows the “overproduce and choose” paradigm, where the forest overproduces a number of
trees, then selects a subset of trees to use for prediction (Kulkarni & Sinha, 2012). An example of dynamic
pruning can be seen in Tripoliti et al. (2010), which uses online curve fitting to continuously add trees until
some criterion – such as fitted value or accuracy – is met; for example, if a forest needs an overall accuracy
of X%, then new trees would be created – and added to the forest – until that accuracy goal is achieved.

This paper focuses exclusively on static pruning, or the selection and usage of a subset of trees from a pre-
existing forest. Note that the focus is only on forest pruning (reducing the number of trees in the ensemble)
and not decision tree pruning (reducing the number of nodes in a tree) or feature pruning (selecting and

1

Under review as submission to TMLR

(a) Tree Slices (b) Pruned Groups

Figure 1: Overview of Tree Slices and Pruned Groups

using a subset of data features). Unless otherwise specified, “model performance” refers to the predictive
accuracy for classification tasks, and the mean squared prediction error for regression tasks.

Most prior work on static pruning relies on the intuition that removing the worst trees in the forest will
improve the forest’s performance. Thus, iteratively removing the worst trees until some stopping criterion is
met will theoretically maximize the pruned model performance. For example, Yang et al. (2012) recursively
remove the least important tree from the forest, where the least important tree is calculated using the margin
criterion. Zhang & Wang (2009) iteratively prune the trees that are the least accurate or the most similar
to other trees in the forest. Caruana et al. (2004) greedily add the best trees1 from the initial forest to the
final ensemble until some predefined stopping criterion is met. Giffon et al. (2020) iteratively update the
weights for each tree in the forest until the linear combination of the selected trees’ predictions approximate
the true values.

However, all these proposals have the same issue: they all iteratively compare each tree with all other trees
in the forest, then remove or add the one tree that maximizes some target quantity. Ng et al. (1997) cautions
against this, as when there are too many hypotheses – or potential trees to include or exclude – selecting the
one that maximizes an arbitrary criterion may lead to overfitting, an instance of the “p-hacking” problem.
In fact, Tang et al. (2006) find that pruning the ensemble to specifically maximize tree diversity usually does
not result in the optimal ensemble, and Caruana et al. (2004) notice that poorly designed or naive static
pruning algorithms can lead to overfitting.

As such, the proposed methods will differ from prior research; instead of explicitly constructing an ensemble
that maximizes a criterion, tree slices and pruned groups instead leverage the ensemble’s inherent ranking
structure as a basis for static forest pruning.

1.1 Tree Slices

As seen in Figure 1(a), the tree slicing approach sorts all the trees using their performance on a subset
of training data; a continuous range of trees – or a “slice” – is then selected as the final ensemble. This
methodology is motivated by the idea that a sub-ensemble consisting of a continuous range of trees will have
greater tree diversity than traditional static pruning approaches. Its performance should be similar to the
original ensemble, while accruing major computational advantages during inference.

A “slice” of the ensemble then consists of the trees of rank r through s in the sorted ensemble. While it
can be tempting to set r = n − 1 and s = n, where n is the number of trees in the ensemble, the above

1Best is calculated using accuracy, cross entropy, mean precision, or ROC area.

2

Under review as submission to TMLR

concerns regarding overfitting and p-hacking oftentimes justify a different choice for these hyperparameters.
It is important to ensure a large diversity of trees in the ensemble.

1.2 Pruned Groups

The pruned groups approach groups together trees with similar performances; trees that predict similarly
are put together. These groups form a representative sample of the trees in the random forest, where each
group represents one type of tree in the total forest. An overview of this process is depicted in Figure 1(b).

This methodology is motivated by the idea that trees with similar predictions on the same training data will
likely predict similarly to each other on new data; thus, it would be more efficient to use one representative
tree from every group instead of using every tree from every group (ie, using the original forest). Because
groups sizes are often unequal, the prediction that a representative tree makes is weighted by the number of
trees in its group. This methodology reflects our concern with p-hacking, as it uses an intelligent sampling
paradigm to reduce the number of trees, instead of simply dropping the worst performing trees.

This process is somewhat similar to the Statistically Equivalent Signatures (SES) algorithm, where multiple
equivalent feature subsets (or signatures) are constructed that have similar predictive behavior (Tsamardinos
et al., 2012; Lagani et al., 2016). For us, the grouping is of trees rather than of features. See Appendix A
for an example of how the pruned groups procedure is run.

2 Methodology

We propose two methodologies for static random forest pruning: tree slices and pruned groups. As with
other static pruning methods, these methodologies are a post-processing step after the initial random forest
generation.

2.1 Tree Slices

The procedure for tree slices is described in Algorithm 1.

Algorithm 1 Tree Slice
Require: r and s such that 0 < r < s < Number of Trees in Forest

1: Divide the training dataset into three parts:
2: (a) Training dataset for random forest generation
3: (b) Training dataset for sorting trees by performance
4: (c) Training dataset for validation of the tree slicing process
5: Create random forest using dataset (a)
6: Do classification or regression on each tree using dataset (b), then sort the trees based on their perfor-

mance
7: Retain all trees between rank r and s. These form the new forest, to be used in all future predictions.

Validate performance on dataset (c)

As aforementioned, “performance” refers to the rate of correct prediction for classification tasks, and the
mean squared prediction error for regression tasks.

2.2 Pruned Groups

The procedure for pruned groups is described in Algorithm 2, and an example is provided in Appendix A.

The distance used for “K-Means clustering” is the Euclidean distance between any pair of trees, where the
position of tree t is the n-dimensional coordinate (x1, x2, ..., xn), where xi is tree t’s predicted value for Point
i from dataset (b).

3

Under review as submission to TMLR

Algorithm 2 Pruned Groups
Require: Group Selector g, Tree Selector t

1: Divide the training dataset into three parts:
2: (a) Training dataset for random forest generation
3: (b) Training dataset for group creation
4: (c) Training dataset for group filters
5: Create random forest using dataset (a)
6: Do classification or regression on each tree using dataset (b)
7: Group together similar trees using K-Means clustering with the predictions from (6) as input. Set the

number of clusters k to the square root of the number of trees.
8: Using group selector g, determine which groups to select
9: Using tree selector t, determine which trees to select from the chosen groups

10: To predict, take the weighted mode or mean of the selected trees, where weight is equal to the number
of trees in the group it was taken from divided by the number of trees taken from that group

Table 1: Overview of Utilized Datasets
Covertype Human Activity SV Census Vegas

Description Forest Coverage in
the United States

Smartphone Activity
Recognition

Wage Census Data Vegas Strip Online
Reviews

Source Scikit Package2 UCI Machine
Learning

Repository3

qeML Package4 UCI Machine
Learning

Repository5

Task Classification Classification Regression Regression
Number of Features6 54 561 8 121
Number of Classes 7 6 - -

Number of Instances
(Dataset Size)

250 500 800 504

Size of Dataset (a) 120 240 384 241
Size of Dataset (b) 80 160 256 162
Size of Dataset (c) 30 60 96 60
Size of Validation

Dataset
20 40 64 41

Examples of a group selector (g) include: groups with at least l trees, groups with an average accuracy
above m percent, or groups with an average loss below n. Examples of tree selectors (t) include: randomly
sampling o trees per group, or sampling p percent of trees per group.

3 Experimental Datasets

The performance of these algorithms are evaluated against four datasets, of which Covertype and Human
Activity are used for classification, and SV Census and Vegas are used for regression. An overview of the
datasets are provided in Table 1. While other datasets were used, these four form a representative sample
of tree slice and pruned group performance.

The Covertype dataset uses environmental features to determine dominant tree types in various sections of
the Roosevelt National Forest (Blackard, 1998). The Human Activity dataset uses smart watch sensor data
to predict if user movement. The SV Census dataset utilizes a subset of the 2000 Silicon Valley Census
data to predict the annual wages for programmers and engineers. The Vegas dataset uses hotel and reviewer
statistics to predict TripAdvisor Las Vegas hotel ratings.

4

Under review as submission to TMLR

(a) Bad: Covertype (b) Good: Human Activity (c) Good: SV Census (d) Bad: Vegas Hotel Rat-
ings

Figure 2: Tree Slice Results: Performance of Every Slice
To compare, the original random forest’s performance is included in the top left square.

4 Experimental Performance Results

The innovation for tree slices and pruned groups is that it reduces computation time without affecting model
performance. Thus, each methodology is evaluated using two criteria: 1) its performance against the base
random forest, and 2) its performance against a new random forest with size equal to the tree slice/pruned
group ensemble size.7 The first criterion ensures that the post-processing step did not significantly alter
performance, while the second criterion determines whether this methodology is meaningfully more useful
than generating a new, smaller random forest.

4.1 Tree Slices

A good tree slice should perform similarly to the full, original forest from which it was derived. With
classification, the accuracy should be comparable or better than the random forest, while the mean squared
error for regression should be comparable or lower than the random forest.

However, when comparing a tree slice with a new random forest of equal size, the expectation is that tree
slices perform better than an arbitrarily created random forest with an equal number of trees; the intelligently
selected ensemble should be better than the randomly created forest.

To ensure good results and to minimize the effects of noise, all tree slice experiments are repeated 25 times,
then their results are averaged together.

4.1.1 Criterion 1: Comparison Against Original Random Forest

Tree slices’ performance is showcased in Figure 2. The x-axis represents the lower bound r of the slice,
while the y-axis represents the upper bound s of the slice – both in percentiles. The color represents the
performance of an individual tree slice with the specified upper and lower bounds.

Because tree slices aim to minimize the range of trees while simultaneously maintaining performance and tree
diversity, it is theoretically ideal to select slices a bit above the y = x line. As can be seen, Figures 2(b) and
(c) represent tree slices that perform well against the original random forest, where several configurations
either match or outperform the original random forest. For example with Human Activity, a slice from the
65th to 100th percentiles significantly outperformed the performances of the original random forests.

However, tree slices did not perform as well on the Covertype and Vegas datasets. Figures 2(a) (d) illustrate
how some tree slices can actually perform worse than the original random forest. In these, it was generally
preferable to take the original random forest over the ensembles created via tree slices, as there was either
no performance gain or its performance was somewhat worse.

7Performance metrics on the same dataset may differ between tree slices and pruned groups because of different averaging
techniques and data splits. Thus, tree slice and pruned group metrics from the same dataset should not be directly compared
between each other.

5

Under review as submission to TMLR

(a) Equal: Covertype (b) Good: Human Activity (c) Good: SV Census (d) Bad: Vegas Hotel Rat-
ings

Figure 3: Tree Slice Results: Comparison Against New Random Forests of Equal Size
The y = x reference line is plotted as reference to distinguish between the two halves of the plot.

4.1.2 Criterion 2: Comparison Against New Random Forests of Equal Size

Figure 3 compares the performance of a tree slice with the performance of a newly generated random forest
of equal size. With classification cases, a good tree slice should be located in the lower right triangle; with
regression cases, a good slice should be located in the top left triangle. This is because greater accuracy is
desirable with classification, and a lower error rate is desirable with regression.

In general, tree slices outperform the new random forests of equal size. For example, most tree slices from
the Human Activity and SV Census datasets outperform their random forest counterparts. However, this
over-performance is not universal. For Covertype, tree slicing performs about the same as its random forest
counterparts, while Vegas tree slices significantly under-perform against their random forest counterparts.

Recall that the underlying principle for tree slices is that some slices will outperform the original random
forest, and only one slice is chosen as the final ensemble. Notably, Figure 3 only showcases the performances of
tree slices between the ith and 100th percentiles – for all i. While these graphs only represent a subset of tree
slices, it is sufficient to demonstrate that for many datasets, there exists a type of tree slice that routinely
outperforms new forests of equal size. Specifically with the Human Activity and SV Census datasets, it
explicitly demonstrates that tree slices can match the second criterion.

4.1.3 Evaluation

The tree slices trained on the Human Activity and SV Census datasets match the expectations set out in
criteria 1 and 2 above. Covertype and Vegas did not.

The Covertype dataset contains a large number of features (54), and only 120 records are provided to create
the forest (see Table 1). This suggests that there are not enough records to create a robust tree classifier that
can sufficiently leverage all 54 features. As seen along the y = x line of Figure 2(a), most of the trees have
very poor individual accuracy. Because all the component trees are poorly constructed in different ways, the
Covertype forests generally perform better with larger ensemble sizes – instead of via a smarter ensemble.
This is also evident with Figure 3(a); the insufficient training data means that this supposedly “smarter”
ensemble is just another ensemble of random, poorly-constructed trees. This contrasts with Human Activity;
with 561 features and more features than records, it still matches the aforementioned expectations. This
suggests that unlike with the Human Activity dataset, many of Covertype’s features are likely important for
classification; more training data is needed to create trees that sufficiently leverage the data’s features.

For the Vegas dataset, when considering Figure 2(d), very few tree slices match the original random forest,
and those that did seem to only do so because it includes a few trees that happen to outperform their
neighbors. As such, the poor performance for criterion 2 (Figure 3(d)) makes sense; tree slices simply
performed poorly. A potential explanation could be that the tree slices are sorted too well, such that similar

6

Under review as submission to TMLR

(a) Bad: Covertype (b) Good: Human Activity

(c) Good: SV Census (d) Good: Vegas Hotel Ratings

Figure 4: Pruned Groups Results: Performance of Various Criteria

trees are very close together, and those that perform dissimilarly are ordered very far apart. Thus, each tree
slice is unlikely to capture a diverse set of trees; in contrast, a newly generated random forest would have
more diversity and outperform the diversity-lacking tree slices.

4.2 Pruned Groups

Like tree slices, a good pruned group should perform comparably to the random forest it was extracted from,
and better than a new random forest with the same number of trees. To ensure consistent results, once the
original random forest is generated, 25 pruned groups are created from this one random forest; the results
from all 25 groups are plotted in Figure 4, and the 25 averaged results are then plotted in Figure 4.2.2.

4.2.1 Criterion 1: Comparison Against Original Random Forest

Figure 4 is a violin plot of the pruned groups’ results. The left-most blue violin plot represents the perfor-
mance of the individual trees that make up the random forest, and the black line is the performance of the
random forest generated via said trees. Each subsequent violin plot represents the range of performances
based on different filtering criteria (group selector g and tree selector t).8 Because a high accuracy is desirable
for classification, violin plots that are equal to or higher than the black line show desirable results; because
a low error rate is desired for regression, violin plots that are equivalent or lower than these black lines are
desirable. An ideal filtering criteria has small variance and is centered on the black line.

For pruned groups on the Human Activity, SVCensus and Vegas datasets, their performances in Figure 4
generally match or exceed their original random forests’ performance. This is expected, as a pruned group
is designed as a representative sample of the original random forest. In contrast, Covertype consistently
performed worse than its original random forest – regardless of grouping and filtering criteria.

A key observation across all datasets is that most pruned groups from the same dataset perform similarly
with similar medians, ranges, and distributions – except for the few with a large variance and generally poor
performance.9 These edge cases occur when the filtering condition is too stringent and results in very few
groups being selected and/or very few trees being selected from each group. In these situations, only a few
trees (sometimes just one tree) are used to represent an entire forest. This is not a representative sample,

8As aforementioned, there is a range of performance for the subsequent violin plots because each pruned group configuration
is repeated 25 times.

9E.g.: Human Activity in Figure 4(b), where Group Size ≥ 50 and 1 tree is selected per group

7

Under review as submission to TMLR

(a) Equal: Covertype (b) Good: Human Activity (c) Good: SV Census (d) Bad: Vegas Hotel Rat-
ings

Figure 5: Pruned Groups Results: Comparison Against New Random Forests of Equal Size
The y = x reference line is plotted as reference to distinguish between the two halves of the plot.

so these small ensembles perform worse than the original random forest, and have significant performance
variation when the process is repeated.10 As such, some filtering conditions are not suitable for certain
datasets and random forests, as they exclude significant groups and/or utilize an insufficient number of trees.
Conditions need to be tailored to the specific experiment and dataset in order to ensure good performance.

If the aforementioned edge cases are excluded from all the plots in Figure 4, all the remaining plots have
roughly the same distribution. Recall that there are two main variations for selecting which groups to
choose, and two main ways to select how many trees to select per group (see Section 2.2). Considering
how different filtering techniques all produce similarly performing pruned groups (with regards to averages,
upper/lower bounds, and distribution shape), it suggests that extensively testing different filtering techniques
is unnecessary because they all arrive at the same functional result – regardless of the quality of said result.
Checking that a set of conditions do not form an edge case should be sufficient in most circumstances.

4.2.2 Criterion 2: Comparison Against New Random Forests of Equal Size

The same type of scatter plots (as described in Section 4.1.2) are used to evaluate the performance of pruned
groups against a brand new forest of equal size.11

Based on Figure 4.2.2, Human Activity and SV Census perform well when compared against the original
random forest. For these datasets, pruned groups consistently outperform random forests of equal size; they
have lower errors for regression cases and greater accuracy for classification cases.

There are two datasets that under-performed new random forests of equal size. For Covertype, pruned
groups perform equivalently (or slightly worse) than random forests of the same size; for Vegas, pruned
groups perform meaningfully worse than new forests of the same size.

4.2.3 Evaluation

From these four datasets, there are three primary ways that a dataset can perform, with each of them
revealing certain aspects of the dataset and the random forest configuration.

When pruned groups perform similarly against the original random forest and better against a new forest of
equal size, this is an example of the procedure performing exactly as expected. This is exemplified by the
Human Activity and SV Census datasets.

10This is analogous to how the standard deviation of sample means increases as the sample size decreases (Adhikari et al.,
2022). Similarly, sampling few trees from the group can have meaningfully different results if different trees are selected each
iteration.

11This is a not a direct apples-to-apples comparison. Pruned groups predict via weighed means or weighed modes, where the
weight is equal to the size of the group each tree was selected from. Naive random forest only uses means and modes. However,
this serves as a decent approximation because it keeps the number of utilized trees the same, and thus the number of trees used
in the inference step is kept constant.

8

Under review as submission to TMLR

When pruned groups perform worse than the original random forest but somewhat similarly to a new forest
of equal size, this indicates that the original forest was extremely diverse.12 Because the number of groups
is a predetermined hyperparameter, dissimilar trees may be grouped together simply because there are not
enough groups to separate every unique type of tree. Since the pruned group procedure assumes every
tree within the same group is similar to each other, sampling only a few trees from a non-homogeneous
group means that many tree types may be underrepresented in – or simply absent from – the final forest.
Thus, applying the pruned group procedure to forests with high diversity and too-few groups will result
in a non-representative forest that under-performs against the larger, original random forest. In addition,
because groups are non-homogeneous, this means that two trees selected from one group can share minimal
characteristics and are comparable to any two randomly generated trees; as such, the non-representative
forest the procedure creates is functionally similar to a new random forest of equal size – and these forests
would be indistinguishable from each other. This behavior is exactly reflected in the Covertype dataset.

The third scenario is when pruned groups perform well on the original random forest, yet poorly against new
random forests of equal size. This indicates that the pruned groups are accurately emulating the performance
of the original, large forest – yet the pruned groups under-performing the new, smaller forests implies that
a smaller random forest can outperform the original, large forest. This precisely describes the Vegas results.
This means that the original random forest is not a good ensemble and that a new initial forest with better
performance should be re-generated. In fact, when the pruned groups procedure is rerun on the Vegas
dataset with a different random seed, the pruned groups matched the original random forest’s performance
and outperformed new forests of equal size (see Appendix B). In short, when the initial random forest is
good, pruned groups for the Vegas dataset performed as well as the Human Activity and SV Census datasets.

Overall, this indicates that regardless of how precisely the pruned group algorithm is tuned (with regards to
its group selector g and tree selector t), it is imperative that the original random forest also performs well.
For Covertype, more data can improve its performance. For Vegas, regenerating the forest with different
seeds did improve its performance. Thus, if the original forest is sufficiently good, then the pruned group
procedure can meaningfully prune the number of trees in the forest without negatively affecting performance.

5 Experimental Class Probability Results

For typical classification procedures, models classify an input into one of many classes. Class probability
alters the model output by instead outputting the probability that the data is of each class. These values
are useful in determining a model’s confidence in its outputs.

Tree slices and pruned groups both significantly alter the composition of trees in the forest. Thus, it
is important to consider both the accuracy of these pruned ensembles and whether these ensembles are
similarly confident in their outputs as the original random forest. This section is not concerned if these
ensembles output accurate class probabilities; it only evaluates if tree slices and pruned groups yield similar
class probabilities to their original random forests.

To quantify class probability differences between random forest and tree slice/pruned group performances,
two metrics are used: cross-entropy loss13 and the Kendall’s tau coefficient14. The ground truth are the
metrics calculated from the original random forest’s class probability; they are compared against the metrics
calculated from the tree slice/pruned group’s class probability. If the two ensembles have similar class
probabilities, then the absolute difference between their metrics should be small.

To test, this evaluation is carried out on both classification datasets: Covertype and Human Activity. The
exact procedure and algorithm used to carry out these calculations are described in Appendix C.

9

Under review as submission to TMLR

(a) Tree Slices: Kendall’s
Tau v Cross Entropy

(b) Pruned Groups: Kendall’s Tau
v Cross Entropy

Figure 6: Kendall’s Tau and Cross Entropy for Tree Slices and Pruned Groups for Covertype

Table 2: 95% Confidence Intervals for Covertype
Algorithm Metric Interval Target

Tree Slices Kendall’s Tau [0.143, 0.169] 0.163
Tree Slices Cross Entropy [88.924, 96.154] 89.851

Pruned Group Kendall’s Tau [0.062, 0.116] 0.071
Pruned Group Cross Entropy [5441.574, 22636.533] 22517.236

5.1 Covertype

The Covertype dataset has 7 classes. The cross entropy and Kendall’s tau distributions are shown in Figure
6. The red dot represents the cross entropy loss and the Kendall’s tau coefficient for the original random
forest. Visual inspection of both tree slices and pruned groups show that the metrics for the original random
forest are well contained within their distributions. This similarity between the random forest’s metrics and
the tree slice/pruned group’s metrics are quantified with a 95% confidence interval in Table 2. Because all
random forest’s metrics are all captured within the 95% interval, it suggests that the data could have occurred
under the null hypothesis – specifically, that the random forest’s metric belongs to the same distribution as
the distribution of tree slice/pruned group metrics.

Note that while there are some pruned groups’ metrics that are district from the random forest’s metrics
(see Figure 6(b)). While they are a minority, it indicates that while pruned groups and tree slices generally
preserve the class probabilities during their procedures, it is possible for these algorithms to create a new
ensemble with noticeably different class probabilities.

5.2 Human Activity Index

The Human Activity dataset has 6 classes. Figure 7 showcases the cross entropy and Kendall’s tau distribu-
tions. From visual inspection, the random forest metrics are contained within the distributions. To quantify
this, the confidence intervals for the metrics are calculated. As seen in 3, every original random forest metric
is contained within its corresponding 95% confidence interval. This means that the original random forest
is not statistically distinct enough from the tree slices/pruned group ensembles to conclude they came from
different distributions.

12Diversity can be a consequence of the dataset having too many features and too few instances; the forest will have a large
number of diverse, low-quality trees.

13Cross-entropy loss measures the difference between two classification distributions; its range is from 0 to infinity.
14The Kendall’s tau coefficient measures the association between 2 quantities based on concordances and discordances between

observations pairs (University, 2024); its range is from -1 to 1.

10

Under review as submission to TMLR

(a) Tree Slices: Kendall’s
Tau v Cross Entropy

(b) Pruned Groups: Kendall’s Tau
v Cross Entropy

Figure 7: Kendall’s Tau and Cross Entropy for Tree Slices and Pruned Groups for Human Activity

Table 3: 95% Confidence Intervals for Human Activity
Algorithm Metric Interval Target

Tree Slices Kendall’s Tau [0.733, 0.905] 0.163
Tree Slices Cross Entropy [1.060, 7.775] 4.469

Pruned Group Kendall’s Tau [0.547, 0.585] 0.551
Pruned Group Cross Entropy [1,669.547, 8,403.960] 8,339.879

For Human Activity’s tree slice metrics, there is significant variation; this suggests that there is some in-
stability with these values. While each tree slice may have similar class probability metrics to the original
random forest, the metrics between any two tree slices can have significant differences. This is potentially
because the tree slice procedure is not designed to specifically guarantee diversity, so different tree slices
can be composed of significantly different decision trees; while the predictive accuracy is generally retained
(see Section 4.1), ensembles with different types of decision trees will be less likely to produce similar class
probability distributions.

On the other hand, the probability distributions are very stable for pruned groups. This is likely because
pruned groups are constructed to specifically maintain the predictive diversity of the original random forest
via the tree grouping step. As such, the weighted ensemble produced by the pruned group more consistently
matches the probability distribution of the random forest.

5.3 Evaluation

Based on these datasets, regardless of if the original random forest outputted good class probabilities, tree
slices and pruned groups both preserve the baseline random forest’s class probabilities. Due to how tree
slices are constructed, there is the potential for greater variation in both cross entropy and Kendall’s tau
coefficients; in contrast, pruned groups have minimal variations in cross entropy and Kendall’s tau coefficient.

6 P-Hacking Concerns

P-hacking is the practice of repeatedly selecting a subset of variables until a desired outcome is achieved or a
performance criterion is met (Bruns & Ioannidis, 2016). Ng et al. (1997) describes this concept like picking
a “poor hypothesis that has fit the ... data well ‘just by chance’”.

Consider 20 people who answer a large survey about their likes and dislikes; from this data, it is found that
the number of comedy movies watched and their astrological sign are strongly correlated. As such, it is
concluded that these two features are correlated to each other even though this correlation was the result

11

Under review as submission to TMLR

of pure chance; less significant relationships between every other feature pair are ignored. If this survey
is repeated with 20 new people, this specific relationship is unlikely to reappear. This is an example of
p-hacking, where relationships are cherry-picked to prove some sort of arbitrary relationship. Similarly, prior
static pruning methodologies that seek to only maximize performance raises concerns of p-hacking. There
is no guarantee that the subset of trees is truly the best and will generalize well; there is a chance that the
random choice of trees performs well only by chance.

For tree slicing, the models generalize well to the validation set. While this does not necessarily resolve all
p-hacking concerns, it demonstrates that even though the methodology uses accuracy or error as the sorting
criterion, the resulting ensemble predicts in a predictable manner.

For pruned groups, the concerns regarding p-hacking are minimized further because the groups are not
created to maximize accuracy or minimize loss; groups are created based on prediction patterns and used to
form a representative sample of the entire forest. Accuracy and error are only optionally used for determining
which groups to select – but their use can be removed entirely because other non-metric-based techniques
exist that produce similar results.

7 Discussion and Areas of Future Development

While the two methodologies developed here show promising results in both classification and regression
cases for many datasets, they perform less well in other instances. A theoretical analysis of both these
techniques can provide further insight into the specific situations that cause performance variations.

There can also be further experiments in the p >> n case, where the number of features is significantly greater
than the number of instances. The Human Activity dataset tests this, but a more extreme example like a
human genomics dataset, where there are thousands of genes (features) for only a few subjects (instances),
can be an even more rigorous stress test to ensure that tree slices and pruned groups will still function as
expected in these extreme circumstances.

For tree slices, there should be research into striding: selecting only every m-th tree in between the specified
lower and upper bounds. This can be a computationally simpler alternative to pruned groups, as it is an
intelligent sampling technique that does not directly rely on accuracy or loss for determining which trees to
select.

For pruned groups, there should be experimentation into different metrics for quantifying tree similarity.
The pruned groups algorithm in Algorithm 2 uses the Euclidean distance between two trees, but Kulkarni
& Sinha (2012) describe a different metric that uses the “correlation between the predicted outcomes of two
trees,” while Perner (2013) proposes a “rule set” technique that quantifies the similarity of all nodes between
two trees. If these metrics can more effectively group similar trees, then it could improve the pruned groups
algorithm.

Another improvement to the pruned groups algorithm is to dynamically determine the optimal number of
groups. The number of groups is currently hardcoded, which means pruned groups are less effective when
grouping forests with large tree diversity (see Section 4.2.3’s discussion on the Covertype datasets).

8 Conclusion

Tree slices and pruned groups are empirically shown to be efficient ways of reducing random forest ensemble
sizes without significantly affecting performance. By matching the performance of the original random forest
and outperforming naive random forests of equal size, these methodologies can perform exceptionally well
in both classification and regression cases. These methodologies also largely preserve class probabilities
for classification cases. However, the fact that these procedures can – at times – create noticeably under-
performing ensembles means that future work still needs to be done to make sense of this performance
difference.

Regardless, as it currently stands, these methodologies can be an effective post-processing step for random
forests that optimize performance for future classification and regression tasks.

12

Under review as submission to TMLR

References
Ani Adhikari, John DeNero, and David Wagner. Computational and Inferential Thinking: The Foundations

of Data Science. Creative Commons, 2022.

Jonathan Kwaku Afriyie, Kassim Tawiah, Wilhemina Adoma Pels, Sandra Addai-Henne, Harriet Achiaa
Dwamena, Emmanuel Odame Owiredu, Samuel Amening Ayeh, and John Eshun. A supervised machine
learning algorithm for detecting and predicting fraud in credit card transactions. Decision Analytics
Journal, 6:100163, March 2023. ISSN 2772-6622. doi: 10.1016/j.dajour.2023.100163.

Jock Blackard. Covertype, 1998. URL https://archive.ics.uci.edu/dataset/31.

Leo Breiman. Arcing classifier (with discussion and a rejoinder by the author). The Annals of Statistics, 26
(3):801 – 849, 1998. doi: 10.1214/aos/1024691079. URL https://doi.org/10.1214/aos/1024691079.

Leo Breiman, Jerome Friedman, R. A. Olshen, and Charles J. Stone. Classification and Regression Trees.
Chapman and Hall/CRC, New York, October 2017. ISBN 978-1-315-13947-0. doi: 10.1201/9781315139470.

Stephan B. Bruns and John P. A. Ioannidis. p-curve and p-hacking in observational research. PLOS ONE, 11
(2):1–13, 02 2016. doi: 10.1371/journal.pone.0149144. URL https://doi.org/10.1371/journal.pone.
0149144.

Rich Caruana, Alexandru Niculescu-Mizil, Geoff Crew, and Alex Ksikes. Ensemble selection from libraries
of models. In Proceedings of the Twenty-First International Conference on Machine Learning, ICML
’04, pp. 18, New York, NY, USA, 2004. Association for Computing Machinery. ISBN 1581138385. doi:
10.1145/1015330.1015432. URL https://doi.org/10.1145/1015330.1015432.

Alicia Curth, Alan Jeffares, and Mihaela van der Schaar. Why do random forests work? understanding tree
ensembles as self-regularizing adaptive smoothers, 2024.

Niklas Donges, Brennan Whitfield, and Sadrach Pierre. Random forest: A complete guide for machine
learning, Sep 2024. URL https://builtin.com/data-science/random-forest-algorithm.

Yvette Everingham, Justin Sexton, Danielle Skocaj, and Geoff Inman-Bamber. Accurate prediction of sugar-
cane yield using a random forest algorithm. Agronomy for Sustainable Development, 36(2):27, April 2016.
ISSN 1773-0155. doi: 10.1007/s13593-016-0364-z.

Francis Galton. Vox populi. Nature, 75(1949):450–451, March 1907. ISSN 1476-4687. doi: 10.1038/075450a0.

Robin Genuer and Jean-Michel Poggi. Random Forests, pp. 33–55. Springer International Publishing, Cham,
2020. ISBN 978-3-030-56485-8. doi: 10.1007/978-3-030-56485-8_3. URL https://doi.org/10.1007/
978-3-030-56485-8_3.

Luc Giffon, Charly Lamothe, Léo Bouscarrat, Paolo Milanesi, Farah Cherfaoui, and Sokol Koço. Pruning
random forest with orthogonal matching trees. In https://cap-rfiap2020. sciencesconf. org/, 04 2020.

Léo Grinsztajn, Edouard Oyallon, and Gaël Varoquaux. Why do tree-based models still outperform deep
learning on tabular data?, 2022.

Vrushali Y. Kulkarni and Pradeep Sinha. Pruning of random forest classifiers: A survey and future directions.
2012 International Conference on Data Science & Engineering (ICDSE), pp. 64–68, 2012. URL https:
//api.semanticscholar.org/CorpusID:15383926.

Vincenzo Lagani, Giorgos Athineou, Alessio Farcomeni, Michail Tsagris, and Ioannis Tsamardinos. Feature
selection with the r package mxm: Discovering statistically-equivalent feature subsets, 2016.

Gilles Louppe. Understanding random forests: From theory to practice. (arXiv:1407.7502), June 2015. doi:
10.48550/arXiv.1407.7502. URL http://arxiv.org/abs/1407.7502. arXiv:1407.7502.

Dragos D Margineantu and Thomas G Dietterich. Improved class probability estimates from decision tree
models. In Nonlinear Estimation and Classification, pp. 173–188. Springer, 2003.

13

https://archive.ics.uci.edu/dataset/31
https://doi.org/10.1214/aos/1024691079
https://doi.org/10.1371/journal.pone.0149144
https://doi.org/10.1371/journal.pone.0149144
https://doi.org/10.1145/1015330.1015432
https://builtin.com/data-science/random-forest-algorithm
https://doi.org/10.1007/978-3-030-56485-8_3
https://doi.org/10.1007/978-3-030-56485-8_3
https://api.semanticscholar.org/CorpusID:15383926
https://api.semanticscholar.org/CorpusID:15383926
http://arxiv.org/abs/1407.7502

Under review as submission to TMLR

Feng Nan, Joseph Wang, and Venkatesh Saligrama. Pruning random forests for prediction on a budget.
In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett (eds.), Advances in Neural Information
Processing Systems, volume 29. Curran Associates, Inc., 2016. URL https://proceedings.neurips.cc/
paper_files/paper/2016/file/3948ead63a9f2944218de038d8934305-Paper.pdf.

Andrew Y Ng et al. Preventing" overfitting" of cross-validation data. In ICML, volume 97, pp. 245–253.
Citeseer, 1997.

Archana R. Panhalkar and Dharmpal D. Doye. Optimization of decision trees using modified african buffalo
algorithm. Journal of King Saud University - Computer and Information Sciences, 34(8, Part A):4763–
4772, 2022. ISSN 1319-1578. doi: https://doi.org/10.1016/j.jksuci.2021.01.011. URL https://www.
sciencedirect.com/science/article/pii/S1319157821000136.

Nikita Patel and Saurabh Upadhyay. Study of various decision tree pruning methods with their empirical
comparison in weka. International journal of computer applications, 60(12), 2012.

Petra Perner. How to compare and interpret two learnt decision trees from the same domain? pp. 318–322,
03 2013. ISBN 978-1-4673-6239-9. doi: 10.1109/WAINA.2013.201.

Omer Sagi and Lior Rokach. Ensemble learning: A survey. WIREs Data Mining and Knowledge Discovery, 8
(4):e1249, 2018. doi: https://doi.org/10.1002/widm.1249. URL https://wires.onlinelibrary.wiley.
com/doi/abs/10.1002/widm.1249.

Mark Segal and Yuanyuan Xiao. Multivariate random forests. WIREs Data Mining and Knowledge Discovery,
1(1):80–87, 2011. doi: https://doi.org/10.1002/widm.12. URL https://wires.onlinelibrary.wiley.
com/doi/abs/10.1002/widm.12.

Yan-yan Song and Ying Lu. Decision tree methods: applications for classification and prediction. Shanghai
Archives of Psychiatry, 27(2):130–135, April 2015. ISSN 1002-0829. doi: 10.11919/j.issn.1002-0829.215044.
URL https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4466856/.

E. K. Tang, P. N. Suganthan, and X. Yao. An analysis of diversity measures. Machine Learning, 65(1):
247–271, Oct 2006. ISSN 1573-0565. doi: 10.1007/s10994-006-9449-2. URL https://doi.org/10.1007/
s10994-006-9449-2.

Evanthia E. Tripoliti, Dimitrios I. Fotiadis, and George Manis. Dynamic construction of random forests:
Evaluation using biomedical engineering problems. In Proceedings of the 10th IEEE International Con-
ference on Information Technology and Applications in Biomedicine, pp. 1–4, 2010. doi: 10.1109/ITAB.
2010.5687796.

I. Tsamardinos, V. Lagani, and D. Pappas. Discovering multiple, equivalent biomarker signatures. proceedings
of the 7th conference of the Hellenic Society for Computational Biology & Bioinformatics, 2012.

The Pennsylvania State University. Design and Analysis of Clinical Trials. Creative Commons, 2024.

Fan Yang, Wei hang Lu, Lin kai Luo, and Tao Li. Margin optimization based pruning for random forest.
Neurocomputing, 94:54–63, 2012. ISSN 0925-2312. doi: https://doi.org/10.1016/j.neucom.2012.04.007.
URL https://www.sciencedirect.com/science/article/pii/S0925231212003396.

Bianca Zadrozny and Charles Elkan. Obtaining calibrated probability estimates from decision trees and
naive bayesian classifiers. ICML, 1, 05 2001.

Heping Zhang and Minghui Wang. Search for the smallest random forest. Stat. Interface, 2(3):381, January
2009.

14

https://proceedings.neurips.cc/paper_files/paper/2016/file/3948ead63a9f2944218de038d8934305-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2016/file/3948ead63a9f2944218de038d8934305-Paper.pdf
https://www.sciencedirect.com/science/article/pii/S1319157821000136
https://www.sciencedirect.com/science/article/pii/S1319157821000136
https://wires.onlinelibrary.wiley.com/doi/abs/10.1002/widm.1249
https://wires.onlinelibrary.wiley.com/doi/abs/10.1002/widm.1249
https://wires.onlinelibrary.wiley.com/doi/abs/10.1002/widm.12
https://wires.onlinelibrary.wiley.com/doi/abs/10.1002/widm.12
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4466856/
https://doi.org/10.1007/s10994-006-9449-2
https://doi.org/10.1007/s10994-006-9449-2
https://www.sciencedirect.com/science/article/pii/S0925231212003396

Under review as submission to TMLR

A Example of the Pruned Groups Procedure

Consider a random forest with 6 trees. These 6 trees have made these predictions in Table 4; these predictions
are also visualized in Figure 8.

Table 4: Example Random Forest Predictions
Tree Point A Predictions Point B Predictions Group Number

Tree 1 2 4 Group 1
Tree 2 1.9 4.1 Group 1
Tree 3 6.1 1 Group 2
Tree 4 6.0 1.1 Group 2
Tree 5 5.9 0.9 Group 2
Tree 6 6.0 1 Group 2

Figure 8: Example Random Forest Predictions

Based on every tree’s predictions on Points A and B, Trees 1 and 2 have similar predictions, and Trees
3, 4, 5, and 6 predict similarly to each other. An ideal K-Means clustering of these 6 trees would create
these 2 clusters: Group 1 with Trees 1 and 2, and Group 2 with Trees 3, 4, 5, and 6; any tree sampled
from either group should be a good approximation of all the other trees in its group. Thus, if one tree is
sampled from each group and their predictions are weighted together,15 the predictions would be a reasonable
approximation of the original random forest’s predictions.

B Rerunning Pruned Groups on the Vegas Dataset with Different Seeds

Appendix B highlights how a poor initial random forest can undermine the pruned groups algorithm.

All prior procedures – including the pruned groups procedure on the Vegas dataset – use an arbitrarily
chosen initial seed of 0. As Figure ?? indicates, the original pruned groups for the Vegas dataset perform
comparably to the original random forest. As Figure 5(d) indicates, these pruned groups perform worse than

15The predictions from Group 1’s tree will have a weight of 2 because Group 1 has 2 trees; the predictions from Group 2’s
tree will have a weight of 4 because Group 2 has 4 trees.

15

Under review as submission to TMLR

new forests of equal size. As aforementioned in Section 4.2.3, this is unexpected, because it means a larger
random forest has worse performance than a smaller random forest. This suggests that the original random
forest was – by chance – a poor performer.

When the pruned groups procedure is repeated with a different seed (namely, a seed of 1), the output is
substantially better. Figure 9 demonstrates that the pruned group algorithm is still able to accurately match
the performance of this newly generated large random forest. Importantly however, Figure 10 shows that
these pruned groups also outperform trees of equal size. A better initial forest makes the resulting pruned
groups more effective. In fact, this new performance matches that of the Human Activity and SV Census
datasets as discussed in section 4.2.3, and indicates that the Vegas dataset – when properly preprocessed –
can match our expectations.

Figure 9: New Pruned Group Results on the Vegas Dataset: Performance of Various Criteria

Figure 10: New Pruned Group Results on the Vegas Dataset: Comparison Against New Random Forests of
Equal Size

As such, whenever a pruned group matches the original random forest but under-performs against equally-
sized forests, it suggests that the original forest is a poor model – not that the algorithm is flawed. To
improve pruned group performance, the solution is to regenerate the original forest.

16

Under review as submission to TMLR

(a) Human Activity Accuracy (b) Vegas Loss

Figure 11: Comparison Between Random Forest Size and Performance

Recall that the pruned group procedure seeks to replicate a forest’s performance with fewer trees; it is
not designed for performance improvements. Thus, the original forest must be good. The primary driving
issue with the Vegas dataset is that forests generated with this dataset do not meaningfully improve with
more trees. Figure 11(b) shows the performance of 350 total forests with varying numbers of trees; more
trees did not meaningfully improve performance. Because a high-performing model is desired, a model that
outperforms forests with fewer trees ought to be selected; with the Vegas dataset, this means this initial
forest must also outperform most forests of the same size. When this advice is heeded, good pruned groups
like in Figures 12(a), 12(b), and 12(c) can occur. When any arbitrary forest is selected, bad pruned groups
like in Figures 12(d), 12(e), and 12(f) can occur.

(a) Good: Seed 1 (b) Good: Seed 2 (c) Good: Seed 3

(d) Bad: Seed 0 (Original
Seed)

(e) Bad: Seed 6 (f) Bad: Seed 8

Figure 12: Pruned Group with Different Seeds Results: Comparison Against New Random Forests of Equal
Size

17

Under review as submission to TMLR

Of note, this preprocessing stage for selecting a good forest often requires few (if any) forest re-generations.
For example, the Human Activity dataset’s random forest performance in Figure 11(a) demonstrates that as
the size of the forest increases, accuracy meaningfully increases until it plateaus after 50 trees. Because the
pruned groups generated by the Human Activity dataset have a median of 35 trees, and over 75% of pruned
groups have fewer than 50 trees, it is expected that most pruned groups generated from a random forest
of 500 trees will outperform smaller forests of size equal to the pruned groups. In fact, the pruned groups
showcased in Figures 4(b) and 5(b) required no random forest re-generations.

In short, the original random forest must be first validated to have good performance before any static
pruning procedure should be carried out. Failure to do so can result in poor pruned group results.

C Algorithms for Calculating Class Probability Metrics

Appendix C describes how the raw data for class probabilities are collected, processed, and used to output
metrics and graphs.

Each dataset has a list of forests that have been generated. This list corresponds to either a set of tree slices
or pruned groups. Algorithm 3 calculates the cross entropy and Kendall’s tau coefficient for all provided
forests, then outputs the graphs for this data. It uses Algorithm 4 to calculate the class probability for one
forest, Algorithm 5 to calculate the cross entropy metric, and Algorithm 6 to calculate the Kendall’s tau
coefficient.

Algorithm 4 takes as input any forest and any dataset, then outputs the matrix class_prob_matrix that
contains the class probabilities. The keys of class_prob_matrix are the true classes, and the keys for
class_prob_matrix[c] are the predicted classes for class c. The values (class_prob_matrix[c][ĉ]) represent
the total weight of each true and predicted class combination.

The formula for cross entropy is: cross_entropy = −
∑

(pk ∗ log(pk)) +
∑

(pk ∗ log(pk

qk
). pk is the ground

truth distribution and qk is the predicted class distribution. This cross entropy implementation uses SciPy’s
entropy implementation.16

The formula for Kendall’s tau is: tau = P −Q√
(P +Q+T)∗(P +Q+U)

. P is the number of concordant pairs, Q the
number of discordant pairs, T the number of ties only in the first array, and U the number of ties only in
the second array. If a tie occurs for the same pair in both arrays, it is not added to either T or U . The
Kendall’s tau implementation uses SciPy’s default taub implementation.17

Algorithm 3 Class Probability for List of Forests
Require: r and p, where r is a random forest and p is the list of forests created from r
Require: dataset D

1: cross_entropy_records← []
2: tau_records← []
3: ensembles← p + [r] (ie, append r to p)
4: for forest f in ensembles:
5: curr_class_prob_matrix← Algorithm 4 on F = f and D = D
6: cross_entropy_records.append(Algorithm 5 on curr_class_prob_matrix)
7: tau_records.append(Algorithm 6 on curr_class_prob_matrix)
8: return scatter(cross_entropy_records, tau_records)
9: return histogram(cross_entropy_records)

10: return histogram(tau_records)

16https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.entropy.html
17https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.kendalltau.html

18

Under review as submission to TMLR

Algorithm 4 Calculating Class Probabilities for One Forest
Require: Forest F and Dataset D

1: Initialize empty dictionary class_prob_matrix, with values 0
2: For data d in D:
3: Let f be the features of d and c be the class of d
4: For each tree t in F :
5: Let w be the weight associated with t. If no weight is specified, let w = 1
6: Classify feature f using tree t. Let the class be ĉ
7: class_prob_matrix[c][ĉ]+ = w
8: return class_prob_matrix

Algorithm 5 Cross Entropy Helper
Require: class_prob_matrix from Algorithm 4

1: n← number of classes in class_prob_matrix
2: loss← 0
3: for i in [0, ..., n− 1]:
4: yi_true← [0] ∗ n
5: yi_true[i]← 1
6: yi_weight = sum(class_prob_matrix[i])
7: if yi_weight = 0:
8: continue
9: yi_classprobs← class_prob_matrix[i]

yi_weight

10: curr_loss← entropy(yi_true) + entropy(yi_true, yi_classprobs) ▷ This entropy call calls scipy’s
entropy function

11: loss+ = (curr_loss ∗ yi_weight)
12: return loss

Algorithm 6 Kendall’s Tau Helper
Require: class_prob_matrix from Algorithm 4

1: n← number of classes in class_prob_matrix
2: ground_truth_matrix← zeros(n, n)
3: for c in class_prob_matrix:
4: ground_truth_matrix[c][c]← 1
5: return kendalltau(ground_truth_matrix, class_prob_matrix) ▷ This kendalltau call calls scipy’s

kendalltau function

19

	Introduction
	Tree Slices
	Pruned Groups

	Methodology
	Tree Slices
	Pruned Groups

	Datasets
	Performance Results
	Tree Slices
	Criterion 1: Comparison Against Original Random Forest
	Criterion 2: Comparison Against New Random Forests of Equal Size
	Evaluation

	Pruned Groups
	Criterion 1: Comparison Against Original Random Forest
	Criterion 2: Comparison Against New Random Forests of Equal Size
	Evaluation

	Class Probability Results
	Covertype
	Human Activity Index
	Evaluation

	P-Hacking
	Discussion
	Conclusion
	Pruned Group Example
	Rerun Pruned Groups with Vegas
	Class Probability Algorithm

