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ABSTRACT

Time series classification is a crucial task with widespread applications in vari-
ous fields such as medicine and energy. Due to the non-stationary property of
time series, its data distribution will change over time, which makes it challenging
for models to generalize to the out-of-distribution (OOD) environment. How-
ever, limitations persist in the current research on OOD time series classification,
particularly the absence of a unified consideration addressing both domain dis-
tribution shift and temporal distribution shift. To this end, we view the time se-
ries distribution shift from the frequency perspective and propose a novel method
called Frequency Enhanced Decomposed Network (FEDNet) for OOD time se-
ries classification. FEDNet utilizes frequency domain information to guide the
decomposition of time series and further eliminates domain shift and temporal
shift, it then obtains domain-invariant features for adapting to OOD data. Finally,
we provide theoretical insights of FEDNet to validate its superiority for OOD time
series classification. Comprehensive results on synthetic and real-world datasets
demonstrate that FEDNet achieves state-of-the-art performance in OOD time se-
ries classification tasks, surpassing previous methods by up to 7%. Our code is
available at https://anonymous.4open.science/r/FEDNet-743E.

1 INTRODUCTION

Time series classification is a pivotal task with applications in bio-signals processing (Salehi et al.,
2021), medical diagnostics (Supratak et al., |2017), and human activity recognition (Tang et al.,
2020). Recent studies have introduced methods like TCN (Bar et al.l 2018) and shallow RNN
(Dennis et al., |2019) for this purpose, largely adhering to the independently identically distributed
(i.i.d) assumption. However, this assumption no longer holds in reality as the testing data do not
always follow the same distribution as the training data, i.e. out-of-distribution (OOD), thus the
performance on the testing data is severely degraded.

In practical situations, it proves to be highly challenging to acquire the distribution of the testing set
(Wang et all [2022b). As shown in Figure[I] we can only get training samples from a finite number
of domains, these domains usually represent different types of populations, while the testing data is
invisible and inaccessible in reality. Therefore, we cannot utilize the testing data for domain adap-
tation (Patel et al., 2015) and the limited samples are not enough to build a powerful pre-training
model for transfer learning (Pan & Yang},2009). How to use limited domain datasets to improve the
model’s generalization on datasets in unseen domains becomes a realistic problem. Moreover, tra-
ditional domain generalization methods following the invariant risk minimization (IRM) paradigm
are suboptimal to OOD time series classification since the marginal probability distribution of time
series data would change when facing non-stationary situations, which may cause their distribution
to deviate from the corresponding domains.

Unfortunately, research on OOD generalization for time series classification is limited. Existing
methods can be divided into two main types, domain relabeling and disentangled representation
learning methods. On the one hand, the domain relabeling methods (Lu et al.|[2022; [Du et al.| [2021)
try to divide the time series into groups of segments with large distance in data distribution and
relabel its domain for training. On the other hand, the disentangled representation learning methods
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Figure 1: OOD time series classification scenario. The cross-people division (by age or other rules)
causes domain distribution shift, while different periods caused temporal distribution shift.

(Q1an et al., |2021)) expect to separate the data into domain-invariant and domain-specific parts. The
domain-invariant part represents features that remain consistent or unchanged across domains, while
the domain-specific part represents features that exhibit variations or specificity in different domains.
Nonetheless, domain relabeling methods directly utilize the whole segments to reset domain labels
but ignore the noise and redundant information between segments, and disentangled representation
learning methods ignore temporal distribution shift within the domain by directly utilizing the do-
main labels to aid training. In addition, these methods analyze distribution shift directly from the
time domain without considering the global view of the frequency information in time series.

To fill the gap of frequency information and deal with temporal distribution shift in OOD time series
classification, we propose a method called Frequency Enhanced Decomposed Network (FEDNet).
Inspired by Wold’s Theorem (Jenkins et al.| [1955) and Koopa’s (Liu et al.| [2023) successful prac-
tice in non-stationary time series forecast, we realized that time series can be decomposed into
time-deterministic component and time-stochastic component by frequency information. The time-
deterministic part is less affected by the temporal changes, while the time-stochastic part mainly
depends on temporal changes. It encouraged us to introduce frequency domain information and
time series decomposition ideas into OOD time series classification to analyze the data in differ-
ent domains. Moreover, we use both fast Fourier transform (FFT) and Discrete Wavelet Trans-
form (DWT) to extract a certain percentage of high average amplitude frequency components as
time-deterministic features by scanning all training data in different domains. Specifically, the time-
deterministic features are less affected by time and can be decoupled to extract domain-invariant
features, and the remaining frequency components are used to model the temporal stochastic com-
ponents. Finally, we theoretically compare FEDNet with previous OOD generalization methods.

The contributions of our work can be summarized as follows:

o To the best of our knowledge, it is the first work to investigate OOD time series classification from
the frequency perspective. Additionally, we postulate and formulate the concept of frequency
distribution shift for modeling temporal distribution.

e We propose a novel method called FEDNet and provide its theoretical insights. FEDNet decom-
poses time series into time-deterministic and time-stochastic parts separating the temporal distri-
bution by frequency information. We propose that domain feature contrastive learning simplifies
the constraints on domain-invariant learning and accelerates convergence.

e Experiments on several datasets demonstrate the state-of-the-art performance of FEDNet and the
effectiveness of frequency information. Moreover, we found the stability of the frequency compo-
nent to time-distribution shifts and verified that the essence of frequency enhancement originate
from the orthogonality of frequencies.

2 RELATED WORK

Domain Generalization. Domain generalization (Wang et al., [2022a)) is a difficult challenge where
the goal is to obtain robust models from multiple domains that eventually generalize to unseen
domains and are inaccessible to the training process. Existing domain generalization schemes are
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divided into three main levels: data augmentation, feature representation, and learning strategies. In
data augmentation, Mixup(Zhang,|2017) data from different domains is often used in data processing
and some methods try to augment data from a frequency domain perspective(Demirel & Holz,|2024;
Xu et all [2021) verified the robustness of frequency information. In representation learning, a
common strategy is to extract domain-invariant features across multiple source domains with IRM
paradigm(Arjovsky et al.l 2019; Krueger et al., |2021)), domain adversarial learning (Ganin et al.,
2016) and disentanglement-based method(Ilse et al., |2020) serve the same purpose. For learning
strategies, one of the most famous approaches is distributional robust optimization, such methods
(Sagawa* et al., |2020; Kuhn et al.| 2019) dynamically penalize the weighted average loss of all
domain distribution sets, thus minimizing the generalization expectation of the unseen distributions
theoretically. Some methods attempt to decompose features to capture more stable domain-invariant
information. StableNet(Zhang et al.l [2021)), inspired by causal mechanisms, introduces a novel
nonlinear feature decomposition correlation technique for capturing domain invariant information.
Unfortunately, due to the widespread temporal distribution shift in time series, these above methods
cannot be fully applicable to domain generalization for time series classification.

OOD Time Series Classification. The research on OOD time series classification is very limited.
AdaRNN (Du et al., [2021)) proposes a temporal distribution characterization and matching module
that divides the time series segments into finite large-distance groups in data distribution to extract
invariant features. Diversify (Lu et al.,2022) identifies the latent distribution domains for the “worst-
case scenarios” through adversarial training, and then reduces the gaps between time series segments
in latent domains. GILE (Qian et al.|[2021) is a disentanglement method designed to extract domain-
invariant and domain-specific representations through variational inference (Kingma & Welling,
2013). However, these methods do not take into account both domain and temporal shifts, resulting
in suboptimal performance.

Frequency-Based Time Series Representation. Frequency domain information has been widely
used in recent years. In time series, many methods get better results by introducing frequency
domain information. For example, FEDformer (Zhou et al., [2022) improves the computational ef-
ficiency and performance of long-short forecasting with the help of frequency attention, FreTS (Y1
et al.,|2023) is MLP-based architecture with frequency spectrum, and TF-C (Zhang et al., 2022)) pro-
poses time-frequency consistency to do time series pre-training and transfer learning. These works
show that frequency domain information can improve the generalization performance of the model.

3 PRELIMINARY

Definition 1. Time Series Data. A multi-domain time series dataset can be defined as £ =
{X,Y, D}, where X, ), D represent time series segments pre-processed raw data samples by sliding
window, category labels and domain labels respectively. Specifically, X = {x;}¥ | indicates N time
series segments in total, where x; € X C RY*C is the C-channel instance with L timestamps and
yi€Y={c, -, ch} is its label, where N, is the number of the category labels. In addition, the
dataset is usually divided into multiple domains environments D = {d;, da, - - ,dn, }, where Ny is
the number of the domain labels. Each domain consists of a set of samples Dy, = {(z;, yi)}ﬁv:"“l, Ny,
denotes the number of samples in the k-th domain Dj.

Definition 2. Domain Distribution Shift. Given a multi-domain time series dataset £ =
{X,Y, D}, these domains usually belong to different data distributions. We define the joint dis-
tribution of data and label as P(x, y). Domain distribution shift can be described as

VD; # D;, PP (x) # PP (2), PP (ylz) = PP (y|z) — PP (2,y) # PP (z,y). (1)

Definition 3. Temporal Distribution Shift. Given a group of time series data in k-th domain
Dy, = {(zi,y:)} ¥, suppose these segments come from {D%}7_, peroids, T is unpredictable.
Temporal distribution shift exists between different periods caused by non-stationary or equipment
factors.

PPk (y

Ji, j € [1,T), PP () # PPk (z) # PP* (2) — 25 BDi (2, ) # PPi(2,y) # PP*(2,1). ()

Definition 4. Frequency Distribution Shift. The time series can be transformed to the frequency
domain by the Fourier transform, and we can use the frequency domain statistics to represent the
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Figure 2: Architecture of the proposed FEDNet.

distribution in the same way. Here, we propose the concept of frequency distribution shift to describe
the marginal probability distribution shift of segment in frequency domain.

Po* (ylz)
e

3i,j € [1,T), Bp*(2) # P (z) # P2+ (a) PP (2,y) # Ppt(z,y) # P2 (2,9). (3)

4 PROBLEM FORMULATION

Given a multi-domain time series dataset £ = {X,), D}, we follow the cross-domain rule to
divide the dataset into training dataset &, = {X'" V' D!} and unseen testing dataset &, =
{Xte, yte Dte}. Specifically, in our paper, three conditions are imposed on the dataset: (1) OOD
environments: P*"(x,y) # P*(z,y). (2) Domain distribution shift: PP (z, y) # PPi (x,y),VD; #
D;. (3) Temporal distribution shift: PPx(z,y) # PPk (x,y) # PPk(x,y),3i # j € [1,T]. Our
goal is to learn an optimal model f; : X — ) under the above conditions, the model aims to mini-
mize both domain distribution shift and temporal distribution shift to generalize well to OOD testing
data:

fo = argmlnE(g;y Ngte[ (fo(x), )], 4

where E denotes expectation and /(+, -) denotes loss function.

5 METHOD

In this section, we introduce the detailed pipeline of FEDNet, which is shown in Figure 2JFEDNet
decomposes time series into a time-deterministic block and a time-stochastic block to extract in-
variant features for OOD time series classification. The time-deterministic block is less affected by
time, its feature is mainly affected by the domain distribution shift, which can be prompted with
domain labels. The time-stochastic block is more susceptible to the temporal distribution shift. We
convert data into finite patches to simulate the moving average weighting process of the stochas-
tic component. FEDNet decomposes the time series components theoretically to model the effects
of domain distribution shift and temporal distribution shift for OOD time-series classification. Ul-
timately, we theoretically analyze previous IRM-based methods and FEDNet to demonstrate that
FEDNet is better suited for OOD time series classification.
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5.1 FREQUENCY FILTER

Lemma 1 (Wold’s Theorem). Given weak-sense stationarity time series x can be formally decom-
posed as the sum of two time series, one deterministic and one stochastic.

Ty =+ ij&?t—j, )
=0

where 7; denotes the deterministic component and ¢, is the stochastic component that is input to an
infinite vector of moving average weights {b; }. Suppose Time series data in the same period can be
regard as local weak-sense stationarity, The main benefit of weak-sense stationarity is that any time
series can be put into the context Hilbert Space. It means any time series can be decomposed by
a set of orthogonal increments in the space. Bochner’s theorem (Loomis, 2013) ensures that there
exists a group of Fourier-type complex exponential function {e~27¢'} componets to generate ;.

Ty = /e‘metdwg (6)

where dwy is the measure weight with the £-th frequency wave. Due to the orthogonality of frequen-
cies, it inspired us to explore whether the deterministic and stochastic components are dominated by
specific frequencies, even in different periods and domains (detail study in Figure [3).

We first precompute FFT or DWT of each data in training set, calculate the averaged amplitude of
each position in spectrum S = {0, - - - , [L/2]} and sort them by corresponding amplitude. Then we
use « to obtain top frequency positions S, for decompostion in train and inference. S, can repre-
sent active stable frequency positions among different periods in multi-domain dataset, which has
time-deterministic property (less affected by time) intuitively. Here we use F to denote frequency
tramsform operation, F —1 denotes the inverse operation.

Topo = FF (Mask [Sa] - F(2)), Zdet = T — Zsto (7)

where x4.; denotes time-deterministic features and x4, denotes time-stochastic features. Mask
operation sets the amplitude of specific position components into zero.

5.2 TIME-DETERMINISTIC BLOCK

We use disentangled representation learning methods based on the paradigm of variational inference
to deal with time-deterministic features  jo;.

We construct the domain-invariant and domain-specific probabilistic encoders to decompose gt
feature space and a decoder merges the two parts of the features to reconstruct origin features. In
parallel, it is supervised by constraint loss from both domain labels and category labels.

Domain Disentangled Probabilistic Encoder. Here we design domain-invariant and domain-
specific probabilistic encoders denoted as ¢y (Zinw|Zdet) and ¢p, (Zspe|Tder) to represent the cor-
responding feature space seperately. The two encoders are used to learn the two feature space
statistics (finv, Tinv) a0d (Uspe, Tspe). We use the reparametrization trick to resample zgpc and zip,
from standard normal distribution statistics.

q¢(zinv|xdet) = N (Zinv | Hinv, Oinv; (b) P (8)

Qoq (Zspc|xdet) = N (Zspc | Hspes Ospes ¢d) ) (9)
where ¢ and ¢4 denote the parameters of the domain-invariant encoder and domain-specific encoder
respectively.

In order to adapt to prior distribution shift in different domains, we also set the prior hypothesis
space p(2iny) and p(zspc) to data-driven Gaussian distributions by domain label and category label
as well.

Finally, a probabilistic decoder pg(Ziny|2inw2spe) s used to feed zgpe and z;,, to reconstruct orig-
inal information, where 6 are learnable parameters of the decoder. The probabilistic encoders and
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decoder are learned with the following objective Lgpo:

EELBO = Eqd)(zi,,wkvdct),qud (zspelTdet) [logpg ('riTLU|Zin’U7 Zspc)]
- DKL (q¢(zznv | xdet)Hp(zinv)) (10)
— Dk, (¢pa (2spe | Taet)P(2spe)) 5

where the first term represents the reconstruction loss to 4., and the next two terms are the prior
matching terms from 2;,,, and z,,. by KL-divergence regularization.

Constraint Loss. The generation process under unsupervised signals proved to be unreliable (Lo-
catello et al., [2019), so we use both domain labels and category labels for constraint loss. It en-
courages the domain-invariant space close to the label space, and the domain-specific space close to
the domain space. We provide two schemes for constraint loss, one is the common feature cross-
prediction loss (Qian et al) [2021), and the other is our proposed simplification of the constraint
process using supervised contrastive loss (Khosla et al., |2020), which achieves the same goal by
reducing the similarity of two features (Shi et al., 2024).

(1) feature cross-prediction loss.
Econl = £li + £ds - Edi - Els- (1 ])
where L;;, L;; denotes 2y, zspe With label loss,Lq;,L 45 denotes 2;p,,25pc With domain class loss.

(2) domain-invirant contrastive loss. We use z;y, and 2. of each batch of data itself as negative
sample pairs, which not only increases the gap between the domain-invariant and domain-specific
parts, but also reduces the individual differences between the positive samples.

CO’I’L2 - Zl 0og exp S /T) (12)
il Zk 0 €Xp(2i, 2 /7).

where I is the origin index set of the 2;,,, and 2,y and we concat them to {Zk}kK:o features, and we

made (zi, {zTH O, {z7 HE 0) while z* represents the same feature space and the z~ represents
the opposite space, T denotes to scalar temperature.

5.3 TIME-STOCHASTIC BLOCK

The time-stochastic block is constructed for time-stochastic features x,;,. It can be considered as
stochastic components with moving average weighting, so we try to capture the local time-variant
dynamic features with the help of patches (Nie et al.,|2023)), recent studies have shown that domain-
invariant features in collaboration with other classification-related features help to improve the ro-
bustness of the model (Yu et al., 2024).

Patch Embedding. We divide the input time series into patches and set the patch length P and
patch stride .S, to divide the L-length sequence x4, into M patches Zpqicn € RPXM where M =
LL 2 | 4- 2. We map the patches through a linear layer W, € RPXF (o the transformer space with
a learnable position encoding W),,s € RP*M (o get the final patch embedding x), € RP*M.

Th = prpatch + Wpos' (13)

Stochastic Encoder. We use self-attention (Vaswani et al., 2017) in the transformer encoder to
model the dynamically varying weighting of the time dimension and to avoid mixing effects between
different variables, we follow a channel-independent design, taking each patch as input and final
splicing the outputs, and then an MLP classifier that constrains the classification loss in that part.
We keep stacking multi-head attention and feed-forward network with residual connections (He
et al.,|2016)) and layer normal (Ba et al., [2016)).

Qn=xIW2 Ky =2l WK v, = 2w,
i (14)

thl(h )V}“

Vv Uk

where Oy, is the output from the multi-head attention layer and input to the feed-forward layer.

Oy, = Attention(Qy,, Kn, Vi) = softmax(
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Finally, an MLP is utilized for label prediction, transferring the output of the encoder into the final
latent feature z5:q € R, we use cross-entrpy (CE) loss Ly, for label classification.

5.4 MODEL SUMMARY AND THEORETICAL INSIGHTS

Proposition 5.1. Assuming time series data v, € R¥*C through frequency decomposition into

time-deterministic components Ager = {a;} € REXC and time-stochastic components Ago =

{a;} € RE/2=F)XC " the invariant minimization objective formula suitable for OOD time series
classification is as follows:

Hgl’l £(’lU) = Z Re(édet(Adet)) + )\det’P((I)det (Adet)) + )\stoquw (Asto) (15)
€€€tT
where R¢ denotes the risk in domain environment e, ® 4.1 denotes invariant feature extractor. P is
the regularization for invariant feature, Jg.,, capture auxiliary features avoiding information lose.

FEDNet decoupled the feature into time-deterministic and time-stochastic features to solve domain
distribution shift and temporal distribution shift respectively and concat z;,,,, 2st, from two parts
for final classification £.;s. The model’s total loss £ consists of three parts:

L= Adet»cdet + )\sto»csto + Ecls»

16
Liet = LELBO + Leons (16)

where L;.: denotes time-deterministic loss, L,;, denotes time-stochastic loss, £.;s denotes final
classification loss, Age¢ and A4y, are hyperparameter weights for two parts.

Proposition 5.2 (Frequency Perspective Risk Bound on Unseen Time series Domain). Let H be

a hypothesis space built from a set of source time series domains D = {Di}fv:dl. Suppose ¢ > 0
is a constant, for any unseen time series domain Dy from the convex hull Ap, we have its closest

element Dy related to source domains in Ap, i.e,Dg = argming, .y By(Dgl| Zi\f:dl m:D;).
Then the risk of Dy on any label function h € H is,

1 1
Rpy 1] < 5dpy (h) + p- [, (W)] 7, (17

where p = 9%F P jenvg RDa(DillDs), dp(h) and ep(h) are ideal and empirical risk of domain D,

1 1 pgtaY NZtanrn|
) ) = 14 N — J . ~
RDADD,) = 2 os [ (Pr(DOF P (D)) o = o | M M

(18)
where pi; = E(D;) = [Tj—y \/50k 15 = E(Dj) = Tjei /5707 = 2ies ﬁJFlg%gq {owtioy

and {1y, }}_, denote frequency scale parameters in D;, D;, n represents the number of components.

The individual oy, is a linear unbiased estimate of F'(ay,), The first term can be regarded as constant
and bounded. The second term perfectly aligns with our motivation for decoupling the frequency
domain. By keeping top E(ay), we can reduce n while making ~ within a controllable range to
decrease p and whole generalization bound. proofs for two proposition are provided in Appendix [A]

6 EXPERIMENT

Datasets. We conduct serveral datasets to evaluate the performance and efficiency of FEDNet. We
used the synthetic dataset Spurious Fourier and the real datasets HHAR (Gagnon-Audet et al.| [2022)
provided by WOODS (Gagnon-Audet et al., [2022), three open-source datasets UCIHAR (Anguita
et al.l 2012), UniMiB-SHAR (Micucci et al., |2017), and Opportunity (Chavarriaga et al., [2013)
used in GILE(Qian et al., 2021), as well as DSADS (Barshan & Yiikseki, [2014)), PAMAP (Reiss &
Stricker, |2012)),processed according to the domain division strategy provided by Diversify (Lu et al.,
2022). The details of these datasets are listed in Appendix

Baselines. We evaluate the proposed FEDNet with various significant baselines, which can be
divided into three types. We provide detailed hyperparameter implementation, dataset settings and
comparing rules in Appendix [D]
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o General time series methods. We compare with the mainstream time series models in recent
years such as PatchTST (Nie et al., [2023), and FreTS (Y1 et al., 2023).

e General OOD methods. We choose some important baselines for OOD generalization from other
research domains, GroupDRO (Sagawa* et al.|[2020), ANDMask (Parascandolo et al.,|2021)), and
VREXx (Krueger et al.,2021)).

e OOD time series methods. Research on OOD generalization for time series classification is
limited, and we select three important works, i.e., GILE (Qian et al., 2021), AdaRNN (Du et al.,
2021)), and Diversify (Lu et al.,[2022).

6.1 PERFORMANCE COMPARISON

Table 1: Accuracy on cross-person generalization. “Target” represents the unseen test domain. Spu-
rious Fourier is a synthetic dataset, with only {d=10%} used as the test domain, while the remains
are all real-world datasets. FEDNet; uses FFT and FEDNet,, uses othogonal function DWT.

Dataset | Target | VREx GroupDRO ANDMask |FreTS PatchTST|GILE AdaRNN Diversify[FEDNet s FEDNet.,
Spurious Fourier\d=10%\ 48.19  48.66 11.16 ‘ 49.09 11.03 ‘ 15.90 50.12 15.37 ‘ 74.56 33.34

0 |89.60 88.49 9148 |93.12 7946 |94.51 72.77 91.48 96.97 97.76

1 |91.00 88.81 92.65 9376 79.90 (96.94 75.67 92.65 98.26 97.27

HHAR 2 |84.58 83.99 86.81 [89.93 7534 |88.21 72.77 84.79 90.76 93.04
3 6555 6526 61.60 |62.76 39.68 |63.34 50.06 54.32 63.17 67.87

4 5405 55.74 51.69 |55.40 4222 (4392 36.49 45.14 57.09 51.35

0 |89.34 89.34 98.56 |81.55 78.96 |[83.07 80.20 87.03 94.81 78.38

1 6623 57.28 69.21 [56.62 73.50 |75.62 76.24  76.49 80.13 72.84

UCIHAR 2 |97.65 96.77 97.94 19230 70.67 |86.19 86.45 90.91 97.95 90.61
3 8328 8454 88.33 |79.49 78.86 [91.25 87.50 89.27 91.79 80.12

4 |70.86  66.23 89.74 189.07 80.46 |[85.62 87.81 92.38 98.34 90.06

1 5599 5833 57.55 |41.14 49.21 |47.39 46.88 50.26 55.98 64.58
2 |57.80  59.69 59.35 [36.02 68.78 |46.40 26.76  42.20 70.15 73.58
3 |63.16 63.82 64.14 |60.85 71.38 |62.18 46.05 60.20 71.71 75.65
5 |41.28  42.62 40.94 |38.25 3691 (3843 3557 44.30 40.26 44.29

SI |5373  59.62 77.85 [81.87 52.00 [84.02 80.64 8223 | 84.86  83.82
Obortunit S2 [37.17 5579 7857 [81.21 66.62 [81.39 7897  79.96 | 8145 8153
PP Yl 83 (3677 5631 7467 |7594 4676 (7791 7636 7679 | 7911 = 76.32
S4 |4641  58.15 7832 [77.58 5248 (8091 78.85 8074 | 8177  80.60

UniMiB-SHAR

0 |70.25 70.66 71.60 |71.77 3392 |62.96 54.11 67.55 73.00 64.55

EMG 1 8550  83.08 8252 |80.15 36.82 [68.02 57.44 81.09 87.10 59.59
2 |73.62 77.03 7691 |74.88 22.66 [66.02 57.83 74.64 79.66 77.51

3 |77.14  78.62 7150 |77.96 36.62 |69.99 53.87 77.32 77.43 79.85

0 |80.26  84.69 82.50 [80.26 82.24 [89.64 83.11 77.19 92.80 92.41

DSADS 1 |76.54  78.03 7342 |70.13  74.07 |78.20 79.78 77.28 84.86 83.64
2 8640 8596 83.03 [84.29 82.67 [86.75 83.46 85.22 93.24 90.65

3 |7461 7439 7846 |73.46 78.85 |79.56 70.35 71.80 87.71 80.52

62.88  61.75 61.84 |5522 6040 |[65.01 63.30 61.98 64.94 67.48

PAMAP 54.88  52.00 53.04 |60.41 6636 |51.46 54.24 54.38 68.16 67.08

0
1
2 |22.68  25.69 28.02 |3498 50.06 (2523 23.35 24.32 34.39 35.27
3 16210 6522 67.86 |68.69 63.39 [68.06 61.04 57.79 67.13 68.55

We evaluate the generalizability of our proposed FEDNet by comparing its performance with base-
lines on these publicly accessible datasets in Table[I6] We choose accuracy as the main evaluation
metric. For our experiments, we select one domain as the “target domain” for testing, while the
remaining domains serve as the “source domains” for training.

Cross-person generalization. The frequency-domain separation design of FEDNet achieves the
best performance across multiple datasets compared to other methods. General time series methods
use ERM (Empirical Risk Minimization) as the optimization objective, resulting in greater perfor-
mance fluctuations across different domains. These methods are significantly affected by domain
shifts and segmentation. FreTS, which also extracts frequency-domain information, performs bet-
ter than PatchTST in some domains, indicating that frequency information is robust, by providing
a global perspective on time series. Additionally, FEDNet outperforms three different representa-
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tive types of General OOD that fail to consider the impact of temporal distribution shifts within
the time series window on marginal probabilities. Methods like AdaRNN and Diversify, which are
carefully designed to account for temporal shifts through reweighting or relabeling, directly extract
information from the pure time domain. Essentially, these are data augmentation techniques and are
inevitably affected by sample noise when achieving domain generalization. We also provide results
for other metrics, as detailed in the Appendix [C.9}

Cross-position generalization We did more diffcult experiments explore model generalization fo-
cus on General OOD and time series OOD methods. The details of the dataset-specific processing
are described in the Appendix [B.2} From Table 2] We can see our method is better and stable than
other OOD method, it shows frequency decompostion can hold more generalize sitiuations.

Table 2: Accuracy on cross-position generalization for DSADS.

Dataset | Target | VREx GroupDRO ANDMask IB-IRM IRM GILE AdaRNN Diversify FEDNety

0 27.12 29.99 26.64 29.82 2530 3885 38.19 47.70 40.54
1 20.33 23.86 24.62 23.17 20.18 2145  29.04 32.90 36.05
DSADS 2 27.17 38.20 33.22 3572 25.62 3833 3272 44.50 36.25
3 24.78 24.00 26.95 19.96 2734 20.09 24.61 31.60 33.93
4 17.24 26.01 20.18 22.15 1825 23.14 19.50 30.40 33.04

6.2 MODEL ANALYSIS

Frequency Decomposition Study. We add a fully connected linear layer behind two components
separately after the Frequency Filter to analyze the linear weight changes. We chose different do-
mains as the target domains for training and computed the coefficient of variation of the weights
of the two linear layers since the linear weights can reflect the dependence between the time series
points. Formally, the coefficient of variation is defined as follows:

Oweights

coefficient of variation = (19)

)
Hweights

where o yeignt and flyeights Tepresent the standard deviation and mean of the linear layer weights.

As shown in Figure [3] we find that the coefficient of variation of the deterministic linear weights
during training in different domains is always lower than that in stochastic part. It shows that the
deterministic component could vary less among different periods, controlled by specific frequency.
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Figure 3: Coefficient of variation of time-deterministic and time-stochastic linear weights in model.

1.2
Invirant Feature Study.We use A-distance (Scholkopf et al. 10
to measure the domain discrepancy of invariant fea-
tures obtained by different methods. It can be approximated
as d = 2(1 — 20.4), where o 4 is the risk of a binary classi-
fier distinguishing features between source and target domains. 02
Figured]shows that our method consistently outperforms other 00
approaches, and using contrastive learning achieves better re-
sults compared to the standard cross label loss. The smaller
the indicator, the more invariant features are.

A-distance
o
>

domain-0 domain-1  domain-2  domain-3

Figure 4: A-distance on invariant
features with EMG dataset.
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Ablation Study. we conduct ablations on FEDNet with several degenerate variants to ana-
lyze model components: (1) w/o L.,,: we remove the constraint loss in Time-Determistic
Block. (2) w/o Lg.:: we remove the time-determistic block, only use x4, for classifica-
tion. (3) w/o Lg,: we remove the time-stochastic block, only use 4. for classification. We
present some of the results in Figure [5] with detailed results available in Appendix [C.I] We
observe that our proposed Frequency Filter is effective in disentangling distributional shifts,
and it obtains stable time-invariant components that eliminate the effect of temporal shifts:

(1) w/o L¢oy: The time-deterministic block es-
sentially degenerates into a dimensionality re-
duction module for z,4.; without considering
domain distribution shift. The final results are
not much different from the general time series
methods.

Averange Accu

(2) wlo Lges: Lack of x4e; leads to significant
performance degradation. At the same time, T et o 06 o 05
we find that time-stochastic features still have *

some classification potential in some domains. Figure 5: Ablation study. The Y-axis shows aver-

(3) w/o Lgi,: without x4, it also has a small age accuracy.

effect on model performance. It shows that dy-

namic changes in the time series can improve the robustness of the model in unseen domains to
some degree.

(4) cross vs contrast: contrastive learning obviously outperforms cross loss.

Empirical Domain Divergence Study. As Proposition 5.2 shows,  can be seen as a meaningful
metric to measure the volatility of time series in frequency. We adopted it to be an empirical absolute
valuey = >0 ¢l % — % | avoid redundant frequency to estimate the domain divergence. Figure

3 (d) changes of domain divergence in the dataset consistents with the IRM gains experiments.

s
©0.6
°

Log2-Domain Divergence (q=0.5)

o 20 o0 ) o) 100 02 03 04 05 06 07 08 02 03 04 05 06 07 08 vy, s Uy Sy MG O DSipy Py
n alpha ratio (q=2) alpha ratio (q=0.5) SFoure,

(a) (b) (©) (d)

Figure 6: (a) denotes the second log value with the number of frequencies n and ~. It shows that we
could get the lowest upper bound on generalization when o € [0.2,0.4], v € [1,20] is usually the
datasets’ range after reducing frequencies. (b) and (c) denote the trend of 4 when g = 2,1/2, shows
that reducing the number of frequencies reduces the volatility of time series. (d) denotes dataset
domain divergence with mask a=0.2. It demonstrates that keep « ratio high amplitude frequency
reduces domain divergence. The anomaly in SHAR stems from denominator (< 0.01) very small.

7 CONCLUSION

In this paper, we focus on OOD time series classification and propose a novel method called FED-
Net. Our method incorporates frequency information as a prior and utilizes a decomposition frame-
work to separate time series into time-deterministic components and time-stochastic components.
We address both domain distribution shift and temporal distribution shift to extract invariant fea-
tures for domain generalization. Extensive experiments demonstrate that FEDNet achieves superior
performance and effectively exploits frequency information for OOD time series classification.

10
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A THEORETICAL INSIGHTS

A.1 BACKGROUND

Here, we first provide some background knowledge to illustrate the widespread occurrence of
marginal probability shift in time series.

OOD Generalization Problem. Given datasets D, = {(z¢,y5)};, collected from multiple train-
ing environments e € &;,-. Each dataset D, contains a group of examples according to a certain
probability distribution = ~ [P¢(z). We hold on the basic covariate shift assumption (Shimodaira,
2000) that the optimal label function h* € H representation space or conditional probability distri-

bution P*(y|z) are the same within different environments while P¢(z) # P (), Ve, e’ € &.
We define the prediction risk of model f under e environment as R°(f) := E€ [¢ (f (z°),y°)]. Our

goal is to obtain a optimal model f; that can generalize to unseen domain distribution E,pnseen =
gall/ gtr~

fi = mgminEe,,.... [((fo(x). )] 0)

where E denotes expectation and /(+, -) denotes loss function.

OOD Time Series Problem. The basic goal of the Time Series Out of Distribution Problem is the
same as that of the Out of Distribution Generalization Problem. However, the major difference is
that there exists temporal distribution shift in each domain, which causes the data distribution broken

the i.i.d assumption with D, (z, ), i.e. PPk (z,y) # PPk (z,y) # PPr(z,y),3i # j € [1,T).

IRM. Existing IRM methods encourage to elicit an invariant predictor f(:, w) which is a composite
function of w o ® across environments &,;;. The feature extractor ® : X — H maps X to rep-
resentation space H to extract invariant features i from &, which support E [y | & (z°) = h] =

E [ye/ | @ (me,) = h} ,Ve,e' € Euy, while the classifier w : H — ) simultaneously optimal the

prediction in among &;,-. Here is the formula minimization objective:

min £(w) := Z R (w) + AP (w) (21)
v e€&yr
where R¢(w) = ni Yo 0(f (x¢,w) , y¢) and £ is loss function. P(w) is a regularization encour-

age f(:,w) to optimal all environments. IRM is mainly used to solve the problem of distributional
shifts due to conditional probabilities P¢(y|x) in different environments, hoping to find stable and
invirant features in different environments to solve the OOD problem, but IRM will face challenges
with huge marginal probability shifts P ().

A.2 PRELIMINARY

Lemma 2 (Temporal Covariate Shift). The root cause of Temporal Distribution Shift is the P(x)
marginal distribution changes, while the P(y|x) conditional distribution in each domain remains
unchanged.

Lemma 3 (Phase Congruency). In Frequency distribution shift, the change in the phase is small
and can be ignored.

Lemma 4 (Distribution of Fourier Component). The distributions of Fourier amplitude and phase
can be modeled as Rayleigh distribution and uniform distribution respectively (He et al.| 2023), the
probabilistic density function of fourier component can be formulated:
2
a

. a
f(a7p) - Raylelgh(a|a) : U(p|07 27T) - ﬁ : exp(_ﬁ% (22)

where a denotes the amplitude while p represents phase, ¢ is a variance parameter to scale the
distribution of frequency component.
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The marginal probabilistic density function of one fourier component amplitude can be viewed as
the integral of f(a,p) over p € [0, 27],a € (0, +00)
2T 2
a a
= dp = — . -
fla)= [ flap)dn= 5 -exp(~5
This also confirms the validity of the influence of linear phase changes on the probability distribution
as stated in Lemma 3.

)da (23)

Then we can get the expectation E(a) and variance D(a) of the frequency components

E(a) = \/ZO',D(U,) - 4*7”02. (24)

We can easily calculate the conclusion that F(a) is an unbiased estimate of the statistic, which means
that we can directly reflect the change on the o parameter by the average amplitude of frequency
component, It is consistent with our motivation for magnitude decoupling.

Corollary 1 (Frequency Marginal Probability Distribution of Time Series Data). Combining
Lemma 3 and Lemma 5 with frequency components independent assumption(Kegel et al., |2018),
we can obtain the strict formulation of the frequency marginal probability distribution Pr () given
a time series data in any domain,

Pr(z) = /f(F[l],...F[n])dF:/f(al,..,an) :/gf(ak)da:/g%exp(—;ﬁ%)da,

(25)
Naturally, we can use the principle of probabilistic independence to obtain the overall expectation
and variance of the time series in the frequency domain perspective.

E(z) = [[ E(a) = (g)% [[ow D)= Dla) = 1 3 3o, (26)
k=1 i=k k=1 k=1

Lemma 5 (Domain Divergence).(Germain et al., 2016) Suppose any domain Dy, D> are built on
input variable x and label variable y. Let ¢ > 0 be a constant, the domain divergence between D;
and D is defined as

1
Dl(‘r)y) e g ERD D D
IB(I (DlHDQ) = |:E(x,y)~D2 (Dg(aﬁ,y) =27 q q(D1] 2)7 (27)

where RD,(-) is Rényi Divergence.

Corollary 2 (Bounding Domain Divergence in A Convex Hull). Let D be a set of source domains,
denoted as D = { Di}f\fl. A convex hull Ap considered here consists of a mixture of distributions
Ap = {D :D(-) =N wDi(-), m € ANd} , where Ay, is the N — 1-th dimensional simplex
(Vm; > 0, vad m = 1). Let p = 9% suPs jetvg RDa(DillD5) then we have the following relation
for the domain divergence when ¢ > 1 between any pair of two domains D', D" € Ag in the convex

hull,
B,(D' | D) < . (8)

Proof. Suppose two unseen domains D’ and D" on the convex hull Ag of Ny source domains
with support O. More specifically, let these two domains be D' = Zi\’:‘ll m;D;(-) and D" =
ZZN:dl m;D;(-), then the domain divergence between D’ and D" is

By (D' D") = 27 FPPIP, 29)
Let us consider the part of RD,(-) as follows first,

1—q

1 Ng 4 Ng
oI / lz wiDi(x)] > miDj(x) dz (30)
O [i=1 j=1

RD,(D'|D") =
P
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Since Vm; € Ap,, We knows that vazdl m; = 1,Vm; > 0, when ¢ > 1 we could hold f(z) = 9
and g(z) = '~ are convex function, their second-order derivative coefficients are the same and
positive ¢ x (¢ — 1) > 0.

Thus the original equation satisfies Jensen’s Inequality (Jensen, [1906) and we get the following
inequality

1—q
1 Ng 91 Ng
a- O li=1 j=1
1 Ng Ng
<1 / S m (D) S Dy ()] de (32)
g—1 Oi=1 i=j
1 Ng Ng
< =) Y s [ D) (D)) " de 33
q i=1 i=j o
< ot [ (D) Dy (0)] o 34
-1 Jo
< sup RDy(D;||D;y) (35)
i,j€[Nal
Then we have
ﬁq (D/HD//) — 2%;1RDQ(D'HDN) < Q%SUqu,je[Nd] RDg(Di||Dj) = p. (36)

O

A.3 PROOF OF PROPOSITION 5.1

Proposition 5.1. Assuming time series data x, € RY*C through frequency decomposition into
time-deterministic components Aqe; = {a;} € REXC and time-stochastic components Ay, =
{a;} € RE/2=K)XC " the invariant minimization objective formula suitable for OOD time series
classification is as follows:

H}l'l}n AC('UJ) = Z Re(q)det(Adet)) + Adetp((l)det (Adet)) + /\stoj(Asto)7 (37)
ec&r

where R¢ denotes the risk in domain environment e, ® 4.4 denotes invariant feature extractor. P is
the regularization for invariant feature, Jg.,, capture auxiliary features avoiding information lose.

Proof. Since the frequency components obtained through the Fourier transform are orthogonal, we
can consider these frequencies to be probabilistically independent of each other.

Flk] = F[f(t)] = / f(t)e 2 Rt = Ayt (38)
where Ay, is the amplitude and P, is the phase of the k-th frequency conponent, thus we obtain:

Vi, j, F[i] L F[j] = Pr(F[i]) L Pr(F[j]) (39)

From Lemma 2, Lemma 3, the phase is not influenced by distributional shifts, so the probability of
frequency components is determined by the amplitude frequency.

K K
Pr(z) = [[ Pr(FIk]) = [] Pr(Ax) (40)
k=1 k=1
After Frequency Filter, the time series decomposed into the time-deterministic components Ag.; =
{a1,as,...,a;} and time-stochastic components Ay, = {ax11,...,ar/2}. Then we could rewrite
the Pr (SL’)
Pr (ZC) = PF(Adet) X Pp (Asto) 41)
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The probability of P (Age:) can be considered unaffected by temporal influences cross domains, i.e

Vi<iz#j<T, SUPP(IP’?L (Aget)) = SUPP(IP’?i (Aget)), thus making this feature suitable for the
IRM invariance theory. thus making this feature suitable for the IRM invariance theory by holding
on the conidtion assumption,

Ely° | ®(Ager)] = E[y° | ®(Ager)], Ve, € € Eau (42)

At the same time, despite V1 < ¢ # j < T, SUPP(P?’“(AStO)) # SUPP(IP’?’“ (Asto)) could lead
to the frequency distribution shift, the behavior on the time series is influenced by moving average
weights, suppose a learnable feature reweight extractor could alleviate the shift optimized with ERM
Js., () since PPk (y|z) don’t change ensure its practicability to help generalization space without
affecting ® 4. extractor and losing information.

quli)n [_:(’LU) = Z Re(q)det(Adet)) + /\detp((I)det(Adet)) + )‘stojqﬁw (AStO) (43)

e€Eyr

Therefore, we complete the proof. O

A.4 THE RISK FOR DOMAIN GENERALIZATION OF TIME SERIES FROM FREQUENCY VIEW

Theorem 1 (PAC-Bayesian Risk Bound on Unseen Time series Domain).(Germain et al., [2016)
Let H be a hypothesis space built from a set of source domains, denoted as D = {D;} ﬁvjl. Suppose
q > 0 is a constant, for any unseen domain Dy from the convex hull Ap, we have its closest

.....

label function h € H. is,

1 _1
Rpy (1] < 5dpy (h) + ¢ [eny (W] 7 +nays, (44)

U

where dp(h) and ep(h) are ideal and expected risk of a domain D respectively, ¢ =

Bq¢(Dy | vazdl m;D;) is an ideal distance since we can’t have access to Dy, while 77/g denotes
the distribution of (z,y) € SUPP(Test)\SUPP(Source), it is usually a small value.

Suppose (x, y) between the unseen domain for testing and source doamins have been fully covered
by A, then 77/5 = 0 and there exists a finite upper bound p = sup; ;¢(n,] B4(D;||D;), Vg > 0 for
any convex combinatorial domains D; and D).

1—1

Riy 0] < o, (h) + - ey ()] 7 @3)

where p denotes the maximum domain divergence of source domains we could minimize, and
ep, (h) represents that the empirical risks of source domains to be minimized.

Proposition 5.2 (Frequency Perspective Risk Bound on Unseen Time series Domain).Let H be

a hypothesis space built from a set of source time series domains D = {Di}fv:‘il. Suppose ¢ > 0
is a constant, for any unseen time series domain Dy from the convex hull Ap, we have its closest

element Dy related to source domains in Ap, i.e,Dg = argming, .y By(Dgl| Zf\fl ™ D;).
Then the risk of Dy on any label function h € H is,

1—1

Ry [b] < 5y () + p- e, ()] 7 6)

where p = 27 SUPijelNg] RDq(DilDs) dp(h) and ep(h) are ideal and empirical risk of domain D,
here p = 2 D

) N’%(qfl) ﬁ2n+1n'|

D, (D;||D;) = 1 Pp(D)]? [Pr(D;)] *da = 1 J . -
RDy(Di|1D;) = - og/[ F(D)] [Pr(D)' ™ da = = log | g S
(47)
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where ji; = E(D;) = [1,_, \/50%, 115 = E =T V577 = Do 1202+2T2,{0k}k 1

and {1 }}_, denote frequency scale parameters in D;, Dj, n represents the number of components.

Proof. Suppose the overall distribution supports condition is SUPP(D;) = SUPP(D);), their corre-
sponding overall probability distributions on the frequency domain Pr(x) also satisfy the condition,
then it is feasible for us to use the generalized Rényi Divergence to estimate its whole probabilistic
density function f(a) = []j_, f(ax), It is a reasonable extension for the individual frequency do-
main components mentioned in Raincoat(He et al.| [2023)) do not satisfy the KL-Divergence in the
range of ay, € (0,+00). We define the probability density functions f;(a), f;(a) corresponding to
the two distributions D; and D,

n 2 n 2

a a a a
fila)= ]| = -exp(=5=).fila) = || 5 -exp(—5=3) 48)
kl;[l o2 203 / kl;[l T2 277
where o and 7 denotes the scale parameters in D;, D; respectively, while n is the number of fre-
quency components. Then we can calculate the formulation of i ‘Ea%,
a ( a® ) 9
; s S =4 u 1 1
e [[5——25 =11 S <—a2(2 - 2)) (49)
fita) 4 7z 'CXP(—?,?) k=1 Ok 205 27
Following these, we can continue to derive RD,(D;||D;),
1 _
RD,(Di||D;) = p— log/ [fi(@)]? [f3(a)]" " da (50)
1 fi(a)
= log/{ } fi(a)da (51
q- 1 fj(a) J( )
1 n 7_2 1 1 q n a a2
= log/ —+exp (—aQ( — )) || = -exp(—==)da
qg—1 Ll:ll U,% 20,% 27']3 pie T,? 27,3
(52)
1 1g/ﬁ7’3qg"6p< 22”:(1 L Qi 1)(53)
= 0 s—a" -exp | —qa S5 53)—a —]
g—1 palet o.! p 207 277 P 277
1 L " q 1—¢q
= log/ kg exp| —a®) (=5 + —5) (54)
qg—1 kl;[l O'iq — 207 21}
Let A=T];_, ~ zq ,B D 1(% + l%gq)’
1 too
RDy(D;i[|Dj) = — 1 logA/O a™ - exp(—Ba*)da (55)
1 1!
= ——log Aiﬁn (56)
qg—1 (g\ﬁ)nﬂ

Let pi; = B(D;) = ;- 1\/>Ok7MJ_E =1Il=1 V57,7 = B.

n 2(] 2 fn”
RD,(D;||D;) = log k [ } (57)
A(DilID;) ([H o7 ] NIRR
2q—2
1 [ T mn!!
= — log 32(1 (=)™ \/>n+1 (58)
q—1 147 27 (2)
2(q—1) 2n+1
_ log i ' T nll (59)
g—1 M?q 227),+1W+1

2n+1 nl
It is easy to determine hm W — +00, At the same time, we plotted its monotonicity
n—

forne NT,1<n< 100, vyeNt1<n<20in Flgure@(a). it usually shows a monotonically
increasing trend.
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Let’s consider Rp,, [h] where p = 95T SUPL vy RDq(DiIDy) RD,(-]]-) >0

1—1

RDU [h] < %dDU (h) +p- [eDU (h)] “, (60)

_1
(1) g > 1, both p and [6[)0 (h)} ' monotonically increasing 7, if we reduce p and ep,, The upper
bound of Rp,, [h] |. We could decrease n and the log part will decrease.

1
(2)0 < g < 1, both p and [e DU(h)]1 7 monotonically decreasing |, When we minimize the

_1
€Dg» [epg (h)] 1 1, so we should decrease the p to let the upper bound of Rp,, [h] |, it requires
RDq(-||) larger, in this case, -1y < 0 5o we also need to decrease the log part by decreasing n. [

B DATASET

B.1 DATASET INFORMATION

‘We list detail introduction of the datasets we used with FEDNet:

o Spurious Fourier (Gagnon-Audet et al.| 2022)) dataset is designed to study the impact of spurious
correlations in one-dimensional signals under distribution shifts. It involves binary classifica-
tion tasks based on the frequency characteristics of the signals. Each signal is constructed from
Fourier spectra with one low-frequency peak and one high-frequency peak. The dataset comprises
different domains, which are 10%, 80%, and 90%, representing the correlation between the low-
frequency signal and the label. In contrast, the high-frequency signal maintains a consistent 75%
correlation with the label across all domains.

e HHAR (Gagnon-Audet et al.| [2022) dataset is used to study human activity recognition across
different smart devices, such as smartphones and smartwatches. This dataset includes five source
domains, each containing data gathered from a different device. The goal is to train models that
can generalize to unseen devices, effectively ignoring spurious information from complex signals.

e UCIHAR (Anguita et al.| [2012) dataset captures daily activities of 30 volunteers aged 19 to 48
using mobile phone sensors. It features a sampling frequency of 50 Hz and contains 1,318,272
time series samples, each with 9 initial features. The classification task involves identifying one
of six activities: walking, sitting, lying down, standing, going upstairs, and going downstairs. The
dataset is organized into 5 domains based on participants, with each domain comprising data from
6 volunteers.

e UniMiB-SHAR (Micucci et al.,[2017) dataset consists of activity data gathered from three mobile
phone sensors at a sampling frequency of 50 Hz, involving 30 participants aged 18 to 60. These
participants performed 17 detailed actions, including 9 everyday activities and 8 types of falls. For
evaluation, the dataset is divided into 4 domains. It includes a total of 1,569 time series samples,
each with 453-dimensional features derived from the three sensors.

e Opportunity (Chavarriaga et al., |2013) dataset contains data from 4 volunteers performing 18
daily activities in a home environment, such as opening and closing the dishwasher, refrigerator,
drawers, and etc. It uses various inertial sensors to enhance the generalization of OOD data. The
dataset is sampled at 30 Hz, resulting in a total of 869,387 time series samples, each with 77
features. It is divided into 4 domains for evaluation purposes.

e DSADS (Barshan & Yiiksek, 2014) dataset consists of 19 activities collected from 8 subjects
wearing body-worn sensors on 5 different body parts. It captures a variety of daily and sports
activities, providing comprehensive data for human activity recognition research.

o PAMAP (Reiss & Stricker, [2012)) dataset includes data on 18 activities performed by 9 subjects,
each wearing 3 sensors. This dataset focuses on physical activities and is designed to aid in the
development of models for recognizing a wide range of movements.

e EMG (Lobov et al, 2018)) consists of 6 types of gestures with 8 channels recorded from 36
participants sampled at 200 Hz.

e EEG (Goldberger et al., 2000) is a single channel EEG dataset collected from 20 subjects to
classify 5 sleep stages.
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Table 3: Dataset statistics.

Dataset Shape Classes Domains samples Subjects  Sensors  Frequency
Spurious Fourier (50, 1) 2 3 12,000 - - -
HHAR (500, 6) 6 5 13,674 9 5 25Hz
UCIHAR (125, 45) 6 5 1,318,272 30 1 50 Hz
UniMiB-SHAR (151, 3) 18 4 11,771 30 1 50 Hz
Opportunity (30, 77) 17 4 869,387 4 72 30 Hz
DSADS (125, 45) 19 4 1,140,000 8 5 25Hz
PAMAP (200, 27) 18 4 3,850,505 9 3 100 Hz
EMG (200, 8) 6 4 33,903,472 36 1 200 Hz
EEG (3000, 1) 5 4 - 20 1 -

B.2 DATA PROCESSING

We will provide preprocessing code for all datasets that need to be processed. The preprocessing
methods will be consistent with those mentioned in other works and with open-source code. The
detailed preprocessing procedures for some datasets are as follows:

DSADS Cross-Position. The DSADS dataset consists of 5 sensors positioned at torso (T), right arm
(RA), left arm (LA), right leg (RL), and left leg (LL). Each sensor records 9-dimensional variables
(x, y, z accelerometers; X, y, Z gyroscopes; X, y, Z magnetometers) representing the position in space.
Originally, the data had dimensions of 125x1x45. We split it into 5 domains based on the positions,
resulting in final data dimensions of 125x1x9. This dataset is used to study more challenging domain
generalization issues across different body parts.

PAMAP. For the PAMAP dataset, we followed the processing method of Diversify, selecting all
sample records and categories. The original data records were used with a fixed window size of 200
and a window overlap ratio of 50%.

Initial Domain splitting We list detail initial domains of the datasets we used in Table

Table 4: Initial domain information.

Dataset Domains Infomation

Spurious Fourier 3 {d=10%, d=80%, d=90%}
HHAR 5 {Nexus 4, Galaxy S3, Galaxy S3 Mini, LG watch, Gear watch}
UCIHAR 5 £0,1,2,3.4,5)
UniMiB-SHAR 4 {1,2,3,5}
Opportunity 4 {S1,S2,53,54}
DSADS 4 {0.1), (2,3), (4.5), (6,1}
PAMAP 4 {(0,1,2,11), (3,5,6,9), (7,8,10,13), (4,12)}
EMG 4 {(0-8), (9-17), (18-26), (27-35)}
EEG 4 {(0,1,2,3,4),(5,6,7,8,9),(10,11,12,13,14),(15,16,17,18,19)}

C SUPPLEMENTARY EXPERIMENTAL RESULTS
C.1 FuLL ABLATION RESULTS

Table 5: Ablation Settings of FEDNet.

Model |  Time-Deterministic | Time-Stochastic | Classification
‘ L"ELOB E(:onl £u0712 ‘ [:sto ‘ Lcls
w/0 Leon v X X v v
w/0 Lget X X X v v
w/0o Lsio v X v X v
FEDNet-cross v v X v v
FEDNet-contrast v X v v v

We conduct ablation study to verify the impact of each technique in FEDNet on performance, and
the details of our setup are provided in Table [5] As shown in Table [6] it is evident that L.,,, and
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L et significantly affect the model’s performance. For all datasets, after removing the constraints
of the z4¢; part, the performance generally shows a significant decrease, which indicates that there
is Domain Shift in this part of the features, and removing z4.; shows a very large decrease in the
performance on all datasets. On the other hand, L, has a smaller impact on performance and even
results in negative optimization in some cases (e.g., when the target domain is S3 on the Opportunity
dataset), this is due to the low signal-to-noise ratio in the information of the x4, features. Addi-
tionally, we can see that FEDNet outperforms its three variants in most results, demonstrating the
soundness of our design.

Abnormal results in Opportunity dataset. due to the original time series sequence window length
L = 30 being much shorter than that of other time series containing limited information, after
applying the Fourier transform, only L /2 frequency components remain, and further decomposition
results in only 2-3 stable frequency components extracted, making prediction difficult in w/o Lop,.

Table 6: Ablation study of FEDNet.

Dataset \ Target \ w/0 Leon, W0 Lger  Wlo L,  FEDNet-cross  FEDNet-contrast
Spurious Fourier | 0 | 50.12 50.78 74.38 74.22 7531
0 83.18 22.23 96.34 99.18 99.48
1 83.98 22.44 96.88 98.98 98.98
HHAR 2 55.45 22.27 87.64 90.97 91.59
3 45.65 17.17 60.56 58.18 67.87
4 42.57 20.27 43.92 58.11 60.81
0 60.80 15.27 90.21 99.42 95.67
1 41.72 17.88 76.82 83.74 80.13
UCIHAR 2 70.96 18.18 96.48 97.15 98.53
3 51.10 18.92 89.58 93.21 94.64
4 54.63 17.76 97.79 98.34 99.02
1 23.69 10.93 53.42 57.55 58.85
- 2 19.21 24.52 44.25 63.63 70.15
UniMiB-SHAR 3 1875 1052 68.09 70.06 71.05
5 31.87 18.79 39.93 44.63 44.29
S1 12.21 63.23 84.62 84.80 85.02
Opportunit S2 15.26 62.38 81.20 79.75 81.45
PP ¥ s3 29.34 51.42 78.77 77.89 79.21
S4 21.15 53.39 81.20 81.36 81.96
0 11.14 5.26 40.89 37.54 40.54
1 11.97 5.26 32.47 35.13 36.05
DSADS Cross Position 2 13.66 5.26 36.25 36.25 36.25
3 9.52 5.26 33.28 32.16 33.93
4 13.53 5.26 35.08 32.78 33.04
0 46.00 17.01 71.77 64.84 73.00
1 41.28 16.48 85.39 82.13 87.10
EMG 2 41.38 16.44 78.82 71.53 79.66
3 45.12 16.42 78.08 69.87 79.85
0 84.60 5.26 88.20 90.74 92.80
1 76.84 5.26 83.11 82.63 84.86
DSADS 2 86.31 5.26 87.89 87.36 93.24
3 82.67 5.26 86.85 71.88 87.71
0 65.24 44.56 66.93 66.53 67.48
1 63.71 59.32 54.81 47.93 67.08
PAMAP 2 35.02 37.57 2291 28.32 35.27
3 66.45 68.03 68.08 64.73 69.80

C.2 Tor AVERAGE AMPLITUDE RATIO EFFECT

We further conduct key experiments on the proportion « of the acquired high average amplitude.
The results in Figure [/| show that we only need to extract 5-20% of the original frequency as a
time-deterministic component to reach state-of-the-art performance, which suggests that the use
of the frequency-domain component as prior information is robust and conducive to the model’s
generalization ability.
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Figure 7: Hyper-parameter study of « on three datasets. The X-axis represents a% of top average
amplitude frequency components, and the Y-axis represents accuracy in time series classification.

C.3 TIME-STOCHASTIC FEATURE STUDY

We conducted experimental analysis on the features of the Time-stochastic component across three
different dimensions, demonstrating that these features can serve as auxiliary information to effec-
tively enhance the model’s generalization ability, with potential for further optimization.

Patch condition number (feature level). We analyzed the original patch matrix after dividing the
Time-stochastic feature into patches. We used the condition number cond(Zpaten) = Tmaz/Tmin.
where 0,4, and 0,4, represent the maximum and minimum singular values of x,qcn, to evaluate
this part of the features, as shown in Table |/} We found that using non-overlapping patches effec-
tively reduces the condition number, ensuring the numerical stability of the original matrix. It allows
the module learning more effectively and further speeding up the training process.

Table 7: Time-stochastic patch matrix condition number with different mask ratio .

Dataset ) a=02 . a=04 . a=06
stride = P/2  stride = P | stride = P/2  stride = P | stride = P/2  stride = P
Spurious Fourier 377.80 14.57] 1211.58 41.70] 200.43 24.53]
HHAR 57.31 93.70 6702.17 5661.14, 4149784.84  3688642.06]
UCIHAR 7600.79 30.31) 159401 37.88) 147293444 161.05)
SHAR 47.13 11.21) 9288.10 17.402) 830192 38.3774|
EMG 27.26 84.076 2065.86 152.440 1561521 12334.38]
OPP 151.68 2.0032) 59.24 1.8594] 81.89 1.78146]
DSADS 351.83 26.7469| 2260.30 15.1602) 3226488.87 37.6795|
PAMAP 49.98 71.068 4921.72 245448 2968754.15 26859.82|

Time series missing value study (data level). We further analysed a more realistic scenario, i.e.,
we tried to add different missing rates of values to the training domains. We found it will affect the
extraction of time-deterministic features with Freqency Filter. In this case, the supplementation of
Time-stochastic brought significant gains. Table[8]shows that retaining time-stochastic features can
improve model’s generalization when the invariant features are not sufficiently extracted.

Table 8: time-stochastic gains with different time series missing rate.

Dataset missing rate = 20%|missing rate = 40%|missing rate = 60%|missing rate = 80%
w/o Lg;, FEDNet |w/o L, FEDNet \w/o L,;, FEDNet \w/o L,;, FEDNet
UCIHAR 9452  98.55 | 9452 9741 | 6455 70.60 | 69.74  74.06
UniMiB-SHAR| 52.60  52.86 | 50.52 51.56 | 38.54 4036 | 3098  38.80
EMG 6743 6749 | 38.62 40.73 16.55 27.88 16.55  23.59

EEG Long signal case study (domain level). We investigated the OOD generalization for the
classification of EEG signals with an extremely long sequence (L=3000). As shown in Figure [§]
the spectrum maps produced by ultra-long sequences are more likely to contain unknown frequency
distributions. When we use domain 2 as the target domain, our model is unable to detect frequency
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variations specific to the high-frequency part from the training domain, which may also belong to

invariant features.
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Figure 8: EEG training domain mean frequency spectrum.

This example shows us the shortcomings of FEDNet, i.e., the invariant features learnt from stable
frequencies are not sufficient if we rely exclusively on the training domain to extract them, especially
in the case of ultra-long sequences where many of the frequency components are lost. This is why
we need to retain the time-stochastic module. From Table 0] there is a 3% difference between w/o
L, and FEDNet, while general domain generalization methods are always the lowest. We have
also tried to simplify the attention mechanism with the MLP and the deep separable convolution.

Table 9: EEG target domain 2 performance.

Method \ Accuracy Fl-score Precision Recall

VREx 68.58 56.95 57.44 59.02
GroupDRO 69.40 55.83 58.31 56.53
ANDMask 69.44 57.47 59.40 57.97
FEDNetw/o L, 69.99 57.97 63.26 59.31
FEDNet+ self-attention 72.90 62.16 61.74 63.01
FEDNet+ DwConv 70.21 57.78 56.33 62.09
FEDNet+ MLP 71.85 62.94 61.80 65.19

C.4 EMPIRICAL DOMAIN DIVERGENCE STUDY WITH « ISOLATED LEVEL

We theoretically analyzed the changes in the maximum distance of the dataset under four retention
ratios: « = [0.2,0.4,0.6,0.8]. From Figure and El We found that the maximum distance is
generally smallest when « is 0.2 or 0.4, and the overall trend shows that as the retention ratio
decreases, the domain generalization distance also decreases. The only exception is the UniMiB-
SHAR dataset, where the calculated denominator contains a very small value of 4 < 0.01, which
causes the overall result to be significantly large. However, we conducted mask ratio experiments
on UniMiB-SHAR and found that the optimal frequency is also concentrated at 0.2-0.4 From Table

IKi|

Figure 9: empirical max domain divergence with different o when ¢ = 2.

C.5 INTRINSIC RELATIONSHIP STUDY OF ORTHOGONAL FREQUENCY DECOMPOSITION

In addition to the orthogonal FFT, We conducted experiments using orthogonal wavelet mother func-

tions and non-orthogonal wavelet mother functions in Table [T0] and found that orthogonal wavelet
functions generally outperform the non-orthogonal case, which is consistent with our theoretical
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Figure 10: empirical max domain divergence with different o when ¢ = 1/2.

insight Eq. (39). It is the orthogonality of the frequency components that allows us to treat the prob-
ability distributions of each frequency component as independent of each other. This independence
allows us to model the effects of these distributions separately.

Table 10: Performance on different wavelet mother functions for frequency decomposition.

orthogonal non-orthogonal
Dataset Target db2 coifl rbiol.3
Accuracy F1 Accuracy F1 Accuracy F1

Spurious Fourier | d=10% | 18.00 17.81 33.34 33.33 | 2238 22.37

97.49 97.20 97.30 97.02 96.12 95.75

97.27 96.89 96.97 96.58 95.23 94.84

HHAR 88.99 88.08 89.30 88.59 89.20 88.42
59.22 55.80 59.74 57.32 61.43 59.82

43.92 53.52 40.88 50.70 41.89 50.59

75.50 76.80 78.38 80.45 78.09 80.78

69.86 67.61 72.84 70.10 71.52 67.75

UCIHAR 90.61 90.49 89.44 88.97 89.73 89.49

80.12 79.27 77.60 75.58 75.39 72.64
90.06 90.35 90.06 89.88 92.38 92.56

62.50 50.78 64.58 52.57 62.50 50.14
59.86 47.92 60.72 55.72 60.54 51.65
75.65 50.35 74.67 45.85 73.02 43.85
42.61 29.52 44.29 28.04 41.94 29.09

82.86 56.23 83.82 58.06 83.53 55.42
81.41 51.73 81.53 54.27 81.93 55.75
74.14 36.99 76.32 39.95 74.52 36.25
81.00 47.96 80.60 51.67 80.67 47.25

UniMiB-SHAR

Opportunity

W= O NWN =W —=O W —=O

C.6 TIME-DETERMINISTIC GAIN PHENOMENON FOR IRM

We observed that VREX performs the worst in this temporal OOD scenario. This is mainly because
the principle behind IRM series methods is based on the assumption of domain feature invariance.
Studies have shown that these methods typically fail when there is a significant marginal shift in the
data itself.we selected representative IRM-related methods incorporated the Frequency Filter mod-
ule. We use only the separated time-deterministic components to complete the OOD task. As shown
in Table[I2] we find that using time-deterministic features as a prior resulted in stable improvements
across various IRM variants and it fits our theoretical insights in Appendix [A] We verified that fil-
tering Time-Deterministic features learnt with the help of IRM correlation yields smaller invariant
domain distances than learning the original features directly by .A-distance in Table[TT]

Table 11: A-distance on IRM-based invariant features on DSADS.

IRM IB-IRM VREX 1IB
full 00.2/0.4 full 00.2/0.4 full 0.2/0.4 full 00.2/0.4

0 | 08338 08235, | 09329 08235, | 08524  0.8235] | 0.8833  0.8235)
1 0.8482 0.8513 0.8679  0.8390] | 0.86377  0.8307) | 09195  0.8235]
DSADS| 2 1.0319  0.8421) | 0.9391 0.9473 0.8235 0.8431 1.0061  0.8338]
3 | 08235 0.8534 09287 09102 | 09752  0.8235) | 08482  0.8235]
ave. |0.884110.00 0.842510.01(0.917110.03 0.8800-10.05/0.8787-+0.06 0.83021 0.01|0.91421 0.0 0.8260 0 01

Dataset |Target
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Table 12: Time-Deterministic Enhancement for IRM-based variants.

IRM
full a=20% a=40%

IB-IRM
full a=20% a=40%

VREx
full a=20% a=40%

1B
full a=20% a=40%

48.84 48.971 49.911

49.66 51.341 50.811

49.66 50.691 47.38

50.34 51.341 50.16

90.14 88.39 90.331
89.41 91.571 89.831
88.06 90.291 90.651
65.95 61.02 62.47
52.03 53.381 53.38¢

8523 83.10 85.641
86.17 84.97 87.341
80.63 82.811 81.881
61.60 62.887 63.921
10.57 43.241 43.581

89.60 94.401 95.281
91.00 93.701 95.02+
84.58 90.031 87.231
65.55 67.341 69.901
54.05 53.04 56.421

85.42 85.17 86.021
87.37 87.491 87.25
85.10 85.721 84.79
61.77 64.101 64.621
48.99 49.661 53.041

93.95 95.971 97.691
67.55 85.431 61.92
08.83 99,711 98.83
95.07 94.64 97.791
89.40 98.011 96.031

95.97 99.711 97.981
61.26 74.891 72.414
98.83 99.717 99.711
96.21 9527 97.79t
83.44 88.411 88.741

89.34 96.831 98.851
66.23 86.091 62.25
97.65 99.711 98.531
83.28 85.431 86.381
70.86 89.341 85.701

93.85 96.83 95.68
79.14 87.751 82.121
99.41 96.48 95.60
90.22 94.011 9527+
96.36 96.691 89.07

61.36 65.991 62.491
13.31 44.381 44.431
35.17 39.061 38.011
16.07 52.081 54.101

52.87 57.761 58.741
17.61 47711 45.84
14.09 4028 43.31
18.52 52.061 54.011

53.73 55121 52.60
37.17 47.151 50.761
36.77 40.867 40.411
16.41 53.481 59.781

7000272231 52.17
71.47 53.15 71981
71.47 33.44 3729
4470 51021 4437

72.77 70.60 71.65
84.56 83.24 84.841
77.75 71.811 78.951
77.20 77.671 71.971

69.31 71.481 70.131
86.44 87.761 87.711
80.44 79.96 80.741
80.09 79.92 80.571

70.25 71.771 71.891
85.50 84.12 84.23
75.36 77.511 78.471
77.14 76.79 77201

64.85 68.191 66.841
77.18 79.441 76.79
75.84 71.89 73.68
62.08 71.35t 74.42+

83.63 83.56 85.211
71.77 75.981 71.68
83.54 89.831 90.451
78.57 83.361 78.591

86.22 83.83 83.52
86.99 88.091 86.38
86.98 84.43 90.327
80.29 85.701 84.121

83.27 83.411 78.86
75.56 73.80 75.831
88.27 87.56 90.861
77.81 83.161 82.811

79.04 90.041 88.461
80.70 82.191 81.27+
85.22 83.95 90.181
74.61 75481 70.13

63.44 63.691 62.47
50.31 51.551 51.351
25.68 22.97 23.96
62.62 62.681 63.711

60.04 63.007 61.541
10.81 50.261 51.261
26.01 26031 25.21
62.97 63.821 60.22

62.8% 63.851 62.931
54.88 56301 54.52
22.68 24.981 23.801
62.10 62.151 62.491

63.21 63.667 62.74
57.39 63.661 53.57
22.87 23791 27.111
65.79 66.167 68.971

Dataset Target
Spurious d=10%
Fourier e

0

1

HHAR 2

3

4

0

1

UCIHAR 2

3

4

S1

Opportunity g%

S4

0

1

EMG 2

3

0

1

DSADS )

3

0

PAMAP | )

3

1

UniMiB-SHAR| 3

5

60.16 53.91 58.07
61.92 43.40 52.66
69.41 60.86 67.11
3691 36.58 38.267

59.11 55.73 58.85
63.64 48.54 57.12
66.45 54.61 59.87

42.28 40.60 42.621

55.99 53.39 59.641
57.80 45.11 53.69
63.16 60.20 67.117

41.28 38.93 40.60

60.42 5547 57.81
62.09 49.74 52.14
65.79 66.451 71051
46.64 44.63 4430

C.7 VISUALIZATION STUDY

We provide some t-SNE and FFT masking spectrum visualizations as shown in Figure[IT]and[T2] We
have chosen several methods for comparison: FreTS and Diversify, one ablation version FEDNet
w/0 Lcon, and FEDNet. From the results, it can be seen that our proposed FEDNet has a more
compact potential representation and the division between different labels is clear. In addition,
Diversify’s division between labels is clear, but the representation is scattered, potentially causing
confusion from redundant information and random noise.

1.0 ’? A 1.0 - Z Q. 1.0 1.0 -ﬁ
08{, * % 08{ - 08 08
3 ] !{l [ | o 3 e
So6 -&},‘ e So6y " ° Sos6 S506{ o #
2 Maed e @ 2 2 2 |
2oaf{ ,, re Yo Zo4| ¥ . goa £04y .,
° 1 s “e & . s s 1
02{ 2 ” 02 ‘»'.!:.@' 02 02] 2 . -
B & . .
0.00 :'"'" 0.0 : 0.0 0.0 "% 7“‘ °
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
dimension-1 dimension-1 dimension-1 dimension-1
(a) FreTS (b) Diversify (c) FEDNet w/o Lcon (d) FEDNet

Figure 11: t-SNE visualizations on the UCIHAR dataset with target domain 0. The X-axis represents
the first dimension and the Y-axis represents the second dimension. The colors denote class labels.
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Domain 0

0 10 20 30 40 50 6 70 0 10 20 30 40 50 60 70

(a) SHAR domain 0 (b) SHAR domain masked (c) HHAR domain 0-3 (d) HHAR domain masked

Figure 12: Figures (a) and (b) show the spectrograms before and after masking for domain 0O of the
SHAR dataset. It can be observed that the retained frequencies are not exclusively low-frequency
signals. Figures (c) and (d) display the polar plots before and after masking between domain 0 and
domain 3 of the HHAR dataset. It can be seen that, through masking, the diversity between domains
is more pronounced, while many redundant frequencies are eliminated.

Table 13: Performance on dataset UniMiB-SHAR with different « ratio level.

FFT DWT
0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

0 5729 61.19 5859 5859 | 5520 56.77 59.89 58.07
1 67.75 65.00 67.06 6255 | 58.83 73.58 66.72 66.03
2 67.10 69.73 65.13 68.42 | 75.65 75.65 74.01 73.68
3 3523 4295 3825 3892 | 40.26 44.29 40.26 38.59

Target

C.8 MODEL COMPLEXITY

Given a time series data L x C, where L denotes its input length and C' represents the number of
channels, FFT complexity is O(L log L). The time-deterministic complexity is O(2 x N x L x C' x
Cout X K) comes from the encoder and decoder, where N is the number of hidden layers, K is the
kernel size of the 1D-Conv and C,,; is the output channels. The time-stochastic part uses patchify
to reduce tokens in attention layer, with complexity O(M?) where M = L/S < L, S is patch
stride.

C.9 FULL METRIC RESULTS

In order to more fully illustrate the effectiveness of our method, we provide results for other metrics
in table[T4] and it can be seen that our method achieves the best performance on most of the datasets.

D IMPLEMENTATION DETAILS

D.1 EXPERIMENTAL ENVIRONMENT

We implement FEDNet and the baselines based on WOODS(Gagnon-Audet et al.,[2022)) Benchmark
and Time-Series-Library on a server equipped with an Intel(R) Xeon(R) Gold 5117 CPU and a Tesla
V100 (32 GB) GPU, with 256 GB of memory. The server runs on Ubuntu 18.04 with CUDA 12.4,
and the codes are implemented in PyTorch 2.3.0+cul21, Python 3.9.12. To reduce randomness, we
conducted each experiment 3 times and reported the best results.

D.2 COMPARISON METHOD INTRODUCTION

We list detail introduction of the methods we compared with FEDNet:

o IRM (Arjovsky et al.l 2019) proposes a framework named Invariant Risk Minimization that aims
to find representations where the optimal classifier remains invariant across different environ-
ments, thereby improving generalization to unseen domains.
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Table 14: Macro-F1 on cross-person generalization.

Dataset | Target |[VREx GroupDRO ANDMask|FreTS PatchTST|GILE AdaRNN Diversify|FEDNet; FEDNet,
Spurious FOurier‘d:lO%‘ 3252 3273 32.93 ‘ 11.15 50.32 ‘11.03 33.39 15.37 ‘ 74.56 33.33

0 |88.57 88.24 90.73 9225 7825 (93.75 90.73 91.82 96.63 97.51

1 19031  86.66 91.87 ]93.00 78.60 |96.57 68.58 91.99 97.96 96.89

HHAR 2 |83.61 82.80 85.83 [88.67 74.68 |[87.33 67.69 86.87 89.75 92.25
3 16032 64.07 61.13 |58.42 36.53 [62.67 4630  51.67 61.53 65.94

4 |56.16  59.49 49.74 |54.47 45.60 |49.70 41.63 49.29 59.59 53.52

0 |89.23 91.70 98.73 |84.01 67.52 |86.44 85.29 79.67 95.62 80.45

1 6333 5140 63.00 [52.58 7450 |75.88 5636  66.78 77.49 70.10

UCIHAR 2 19751 96.81 97.85 |92.10 66.59 |97.31 75.05 92.39 97.80 90.49
3 8318 81.81 87.78 |76.67 80.05 |[87.59 74.25 85.61 88.80 79.27

4 16891  60.30 89.75 |88.89 77.65 [92.89 65.23 92.18 98.35 90.35

1 |43.37 4599 45.89 |27.96 30.85 |[33.80 29.10  36.21 41.05 52.57
2 |51.37  53.55 52.55 |32.41 5449 |47.09 17.75 28.66 55.97 61.87
3 |3159 3552 35.69 [41.62 51.71 [48.20 15.73 40.50 49.81 50.35
5 |23.70 2474 2356 |23.10 24.85 |31.82 34.02 20.10 22.39 28.04

S1 3998  40.16 28.67 |55.41 27.18 |60.76 47.48 53.75 63.22 58.06
S2 |32.06 33.56 3052 |54.47 2475 |55.69 40.71 46.72 55.66 54.27

UniMiB-SHAR

Opportunity | g3 15653 3215 2179 |4120 2351 |45.64 3158 3439 | 4235  39.95
S4 (2930 3267 2920 [46.75 2466 |49.51 3398 4603 | 5179 5167

0 |7159 7055 7125 [7157 3207 [6297 5258  65.18 | 7271  64.03

EMG 1 (8299 8271 8210 |80.16 35.66 |67.97 5639 7861 | 87.06  59.57

2 |7288 7849 7660 |74.62 1435 [65.88 56.04 70.63 | 79.46  77.07

3 (7741 7885 79.87 |7826 36.14 [70.02 5276 7650 | 77.69  79.80

0 [7683 82.88 7973 |78.28 81.82 [89.41 8258  76.58 | 92.65  92.57

DSADS 1 [7791 7651 7448 |69.76 7332 |7826 7974 7729 | 8274  83.73
2 18539 8275 81.08 [8335 8250 (8537 83.07 85.12 | 9321  90.27

3 (7333 7493 7758 |7236 7828 |77.38 69.54 7004 | 87.64  80.52

0 4522 48.18 4749 |4879 48.66 |5552 53.61 5378 | 5543  53.26

PAMAP | [46.14 4124 4383 (5149 5546 |4145 4392 4131 | 5990  49.69
2 2270 2621 2771 [3550 49.65 [2652 23.13 2540 | 3534  37.15

35060 5277 57.60 |68.23 5154 [55.06 47.57 48.67 | 56.68 5534

e IIB (Li et al, 2022) proposes a method to enhance domain generalization by extracting features
with information bottleneck that are invariant across different domains, improving model robust-
ness and performance.

e VREX (Krueger et al., 2021) introduces a method to enhance model robustness by penalizing the
variance of risks across different environments, encouraging the model to perform consistently
across diverse settings.

o IB-IRM (Ahuja et al., 2021) presents a method that combines the principles of empirical risk
minimization with the information bottleneck approach to encourage models to focus on relevant
features, enhancing robustness and generalization across different environments.

e GroupDRO (Sagawa* et al., [2020) is a method that seeks a global distribution with the worst per-
formance within a range of the raw distribution for better generalization. Ours study the internal
distribution shift instead of seeking a global distribution close to the original one.

o ANDMask (Parascandolo et al.||2021)) is another gradient-based optimization method that belongs
to special learning strategies. Ours focuses on representation learning.

e GILE (Qian et al., 2021) is a disentanglement method designed for cross-person human activity
recognition. It is based on VAEs and requires domain labels.

o AdaRNN (Du et al., 2021)) is a method with a two-stage that is non-differential and it is tailored
for RNN. A specific algorithm is designed for splitting. Ours is universal and is differential with
better performance.

e Diversify (Lu et al., 2022) is a time series OOD generalization method for dynamic distribution
representation learning. It constructs a set of latent domain labels to better adapt to downstream
tasks by employing a min-max adversarial approach to divide the original time series data distri-
bution.
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Table 15: Precision on cross-person generalization

Dataset | Target [VREx GroupDRO ANDMask|FreTS PatchTST|GILE AdaRNN Diversify| FEDNet y FEDNet,,
Spurious Fourier|d=10%|24.33  24.33 2455 |11.17 5032 |11.03 25.06 1536 | 74.56 33.34

0 [89.14 8857 90.84 [92.41 79.14 |94.39 90.84 91.14 | 96.65  97.73
HHAR 1 (9021 86.79 91.76 9299 78.44 (9645 77.17 9155 | 97.98  97.32
84.09 83.29 86.17 [89.13 75.07 [88.03 68.03 8479 | 89.43  92.38
6541 6545 61.90 |63.63 3648 (6593 4646 5432 | 6282  69.86
5424  56.35 48.61 |57.18 4699 |51.45 60.84 5149 | 59.85  53.28

91.19  93.04 98.53 |87.24 78.13 |89.70 89.29  80.78 95.36 80.89
79.53  74.97 61.07 |69.66 7530 |83.72 5434  67.39 86.99 79.52
97.86 97.24 97.82 19247 71.86 |97.31 8091  93.14 97.80 90.79
88.69  89.01 91.13 |83.49 81.09 |90.44 81.06  87.85 92.64 81.24
82.45  62.54 90.26 80.89 |94.07 6894  93.27 98.36 91.53

91.01
47.60 48.37 49.15 |28.49 3893 [33.11 35.86  39.31 43.21 52.90
5457 57.70 5722|3572 5474 146,52 18.06  32.61 57.58 63.03
35.65 4231 37.17 |40.15 49.69 |55.08 13.63  43.10 | 57.77 56.00
24.03  24.70 2421 |24.84 2353 |29.04 1785 36.41 25.63 23.83

. S1 3496 34.87 39.85 ]63.66 2350 [68.60 58.21  59.25 70.79 68.09
Opportunity S2 [28.09 28.76 4541 |61.58 2475 |62.78 55.83  60.05 64.57 64.84
S3 (2486 30.01 26.85 |52.73 20.60 |55.80 43.54  47.11 56.41 51.36
S4 2520 27.36 39.40 4592 2536 [59.30 43.99  53.81 59.96 58.61

0 7243 71.12 7192 |72.52 3148 |64.20 53.48 6691 73.19 67.19

UCIHAR

UniMiB-SHAR

NP~ | RRWND—O | AW

EMG 1 |8437 84.61 8421 |81.49 3534 [69.04 56.88 80.67 | 8731  60.34
2 |7351  78.66 7730 (7499 10.81 [66.04 56.80 7128 | 8032  78.00

3 |7827 79.48 80.05 |78.95 37.74 |70.56 54.84 7679 | 7939  78.43

81.79 88.22 86.59 [82.35 84.00 [91.23 8526 8033 | 93.65  93.93

DSADS 87.21 82.31 82.16 |77.73 7607 |84.72 83.58 8351 | 8551  88.57

7948  81.53 81.54 |80.42 81.81 |(85.30 75.67 77.72 88.67 83.35

4460  49.92 47.62 |5345 5378 |5625 5930 57.37 | 58.89  57.37
PAMAP 1 [56.77 49.20 5045 |52.49 5726 |49.01 44.12 4201 | 6478  58.01
2 2536  29.64 30.35 |33.46 49.55 [30.11 27.57 2673 | 4235 3923
3 15076 54.28 62.41 |73.39 5534 |55.41 4842 5061 | 59.73  55.53

0
1
2 190.89  85.59 84.49 |88.50 86.29 (9147 89.24  89.83 93.75 92.58
3
0

D.3 EVALUATION

For UCIHAR, UniMiB-SHAR, and Opportunity, we directly utilized the open-source original
datasets processed by GILE. To faithfully replicate the performance of GILE on these datasets,
our experimental evaluation follows the same methodology as GILE. Specifically, for each domain,
we treat it as the testing set while the remaining domains serve as the training set. We then select
the model with the highest accuracy on the testing set.

For Spurious Fourier and HHAR, both are derived from the Benchmark dataset provided by
WOODS (Gagnon-Audet et al., 2022). We adopt WOODS’ default methods and domain parti-
tioning as our baseline. This involves splitting 20% of the data in each domain for evaluation, using
the evaluation data from the training domain as the validation set, and the evaluation data from the
testing domain as the testing set. We calculate the average accuracy of each checkpoint on all vali-
dation sets across domains and save the results corresponding to the model with the highest average
accuracy. The evaluation metric primarily relies on the Train-domain validation from WOODS, as
it aligns with the evaluation methodology used in other datasets.

For DSADS, PAMAP, and we improved the architecture provided by WOODS and extended it to
integrate these datasets for evaluation. The dataset partitioning method for evaluation follows the
same approach as employed in Diversify, where only 20% of the training data is set aside as the
validation set, and the remaining data from each domain is used as the testing set. We record the
results on the testing set corresponding to the model that performed best on the validation set.

D.4 HYPERPARAMETER SETTING

For hyper-parameter settings, if baselines provide hyper-parameters for the used datasets, we keep
their default settings. Otherwise, we adjust the hyper-parameters to ensure a fair comparison as
much as possible. For our proposed FEDNet, we leverage a 4-layer CNN with max pooling for the
time-deterministic block and a 2-layer transformer encoder for the time-stochastic block, attention
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Table 16: Recall on cross-person generalization.

Dataset | Target [VREx GroupDRO ANDMask|FreTS PatchTST|GILE AdaRNN Diversify| FEDNet y FEDNet,,
Spurious Fourier|d=10%|50.00  50.00 50.00 |[I1.15 5032 |11.03 50.00 15.38 | 74.56 33.33

0 [88.38 8839 90.89 9222 7848 [93.53 90.89 9120 | 96.64  97.34
HHAR 1 19079 86.96 92.08 [93.33 7921 [96.75 7120 9154 | 97.94  96.57

3690  39.58 40.78 [46.51 54.62 (52.14 21.75 4440 49.33 50.68
3095 33.12 31.57 129.50 31.54 [38.41 19.97 4091 27.31 37.19

2 8372 83.02 86.01 [88.46 74.87 [87.74 7048 8341 | 9078  92.17
3 6430 63.99 6140 [59.73 3871 [6229 4836 5342 | 61.86  66.79
4 |6450 67.58 56.46 |61.40 5052 |5590 5232 5933 | 69.21  58.95
0 |88.65 92.02 98.96 (8537 76.12 |88.14 8553 80.01 | 96.66  80.35
UCIHAR 1 16659 57.98 6774 |56.82 72.67 |75.88 61.43 7099 | 7897  72.15
2 19735 9679 97.94 [91.92 70.84 (9730 7549 9226 | 97.81  90.35
3 (8292 8439 88.80 [79.22 78.89 (8759 73.09 8573 | 91.72  78.95
4 |7284 6748 90.15 [89.53 80.18 [92.89 69.62 92.05 | 9839  90.61
o 1 4735 4781 49.19 (2849 3354 |39.79 31.75 37.96 | 4561  54.84
UniMiB-SHAR | 5 |5512 3641 56.63 3632 60.54 [52.94 2534  40.04 | 6039  64.89
3
5

o . S1 |59.88 56.63 2586 |50.77 39.82 |55.96 43.19 50.60 | 5895 = 52.03
pportunity S2 |53.15 48.13 2595 [50.30 27.77 (54.19 3538 4120 | 53.07  49.94
S3 (4382 42.81 19.74 |38.82 33.52 |42.28 29.24 3473 | 3831  36.80
S4 [48.42 31.01 28.10 |45.92 35.68 |49.83 32775 4342 | 51.10  51.55

72.02  70.75 71.69 |71.87 3437 |63.21 5432  66.23 73.11 64.73

0
EMG 1 |8328 83.19 82.61 (8025 3694 [6826 57.59 79.13 | 8717  59.98
2 |7321 7855 76.62 |74.59 2255 (6577 5739  71.11 | 7939  77.14
3 (7716 T8.64 79.86 |78.02 36.46 [70.12 53.82 7643 | 7754  79.97
0 (8026 84.69 8250 [80.26 82.24 [89.64 83.11 77.19 | 92.80  92.41
DSADS 1 |7654 76.58 7342 [70.13 74.07 |7820 79.78 7728 | 84.86  83.64
2 (8640 84.69 83.03 (8429 82.67 [86.75 8346 8522 | 9324  90.65
3 |7461  76.62 78.46 |73.46 7885 [79.56 7035 71.80 | 87.71  80.52
PAMAP 49.10  52.46 5246 |51.64 4871 |58.56 58.59 57.79 | 57.85  56.66

0

1 [45.03  41.99 43.18 |52.63 54.89 |42.09 5122 4497 61.34 49.73
2 127.03 30.12 30.72 |41.72 5583 |30.26 25.94  27.10 36.56 40.06
3 |5147 5272 56.43 |70.00 5093 |[5791 47.65 49.58 58.11 57.79

layer with 8 multi-head, patch length set to 16. We set the temperature for contrastive learning to
0.07 or 0.2.

For UCIHAR, UniMiB-SHAR, Opportunity, we follow the same settings with GILE The hidden
dimension is set to 50 for UCIHAR and UniMiB-SHAR datasets, and 128 for Opportunity datasets
as they are more complex.

We used the Adaptive Moment Estimation (Adam) optimizer for all our training processes, with
learning rates primarily adjusted le-2 ~le-5. The weight decay parameter is typically set to {0, le-5,
5e-4}. For the UCIHAR, UniMiB-SHAR, and Opportunity datasets, we employed the Weight-
edRandomSampler consistent with GILE to balance label distribution. For other datasets without
specific requirements, we utilized the RandomSample method provided by WOODS (Gagnon-Audet
et al.| 2022) for class balancing strategies.

Table 17: Training hyperparameter settings for specific objective.

Object Hyperparameter Value Object Hyperparameter Value
penalty weight led s latent_domains [5,10]
VREX  nnealing iterations  [500,1000,2000,4000]  D1Versify alpha [0.1,1.0,10]
GroupDRO n le-2 ANDMask T 1.0

E FURTHER DISCUSSION

Finer-grained analysis with temporal stochastic components. Our method effectively separates
the influence of two types of shifts and models the relationship between time-stable modules and
domain shifts well. We have verified that this approach can effectively mitigate the generalization
performance of IRM methods under data conditions where the marginal probabilities within do-
mains dynamically change over time. However, finer-grained research on the impact of temporal
shift components still requires further investigation. From the current experimental results, better
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Table 18: Model hyper-parameter settings.

Objective Dataset Model Model-parameter
VREx hidden_dept=3,
Spurious hidden_width=20,
GroupDRO Fourier LST™™M recurrent_layers=2,
state_size=32
ANDMask
VREx

n_filters_time=32,
GroupDRO HHAR Deep4Net n_filters_spat=32,
n_filters = [64,128,256]

ANDMask
VREx PDASIC‘[R§’ kernel_size=(1,6)
GroupDRO UCIHAR ActNetwork ) bottleneck,dlmTZSE
UniMiB-SHAR MaxPool2d _kernel_size=(1,2)

i MaxPool2d_stride=2
ANDMask Opportunity

FreTS embed_size=128, hidden_size=256
ERM
PatchTST patch_len=16, d_model = 128, n_heads = 4
GILE ALL GILE kernel_size=9, d_AE=50
AdaRNN AdaRNN n_hiddens=[64,64], trans_loss="mmd’
Diversify ActNetwrok kernel_size=6, alphal=1.0, alpha=1.0
FEDNet FEDNet kernel_size=9, hidden_size=50,

patch_len=16, d_model=512, n_heads=8

modeling of dynamic changes is beneficial for improving model robustness. Currently, there are
related works on large language models attempting to map the changes in time series to state tokens
that describe temporal trends. In the future, we can use the results of temporal shift components as
guideline to model trends between patches, capturing the patterns of different domains change over
time.

multi-domain datasets training phenomenon. We observed a phenomenon in the training of
multi-domain datasets, which mainly arises from differences in the training processes of diversify
and GILE compared to WOODS. For the training processes of diversify and GILE on UCIHAR,
UniMiB-SHAR, and Opportunity datasets, 20% of the data is randomly divided from the entire
training data. This can lead to an imbalance in the number of different training domains. In contrast,
WOODS uses a method where 20% is divided from each domain as a validation set, and the multi-
domain data is simultaneously loaded for training. This training strategy is more balanced compared
to the previous method, but it also reduces the model’s performance because, after balancing each
domain, the originally smaller number of samples becomes even fewer. We hope to discuss which
of these two training strategies is more reasonable, or if there is a better evaluation, as this will be
helpful for our subsequent research.
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