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ABSTRACT

In spite of the great potential of large language models (LLMs) across various
tasks, their deployment on resource-constrained devices remains challenging due
to their excessive computational and memory demands. Quantization has emerged
as an effective solution by storing weights in reduced precision. However, utiliz-
ing low precisions (i.e. 2/3-bit) to substantially alleviate the memory-boundedness
of LLM decoding, still suffers from prohibitive performance drop. In this work,
we argue that existing approaches fail to explore the diversity in computational
patterns, redundancy, and sensitivity to approximations of the different phases
of LLM inference, resorting to a uniform quantization policy throughout. In-
stead, we propose a novel phase-aware method that selectively allocates precision
during different phases of LLM inference, achieving both strong context extrac-
tion during prefill and efficient memory bandwidth utilization during decoding.
To further address the memory-boundedness of the decoding phase, we intro-
duce Progressive Mixed-Precision Decoding (PMPD), a technique that enables
the gradual lowering of precision deeper in the generated sequence, together with
a spectrum of precision-switching schedulers that dynamically drive the precision-
lowering decisions in either task-adaptive or prompt-adaptive manner. Extensive
evaluation across diverse language tasks shows that when targeting Nvidia GPUs,
PMPD achieves 1.4−12.2× speedup in LLM linear layers over fp16 models and
up to 1.41× over uniform quantization. When targeting an LLM-optimized NPU,
our approach delivers a throughput gain of 3.8−8.0× over fp16 models and up to
1.54× over uniform quantization approaches while preserving the output quality.

1 INTRODUCTION

Modern large language models (LLMs) have demonstrated unprecedented capabilities across vari-
ous natural language understanding and generation tasks. However, their computational and memory
footprint, driven by billions of parameters and thousands-of-tokens context windows, pose signif-
icant challenges particularly in applications that require their deployment on embedded or mobile
devices. LLM inference operates in two phases: i) the prefill phase, which processes all input
prompt tokens in parallel, and ii) the decoding phase, which generates output tokens one by one in
an autoregressive manner. Computationally, the prefill phase is known to be compute-bound, while
the decoding stage is memory-bound, leading to underutilization of computational resources and
often dominating inference latency (Kwon et al., 2023; Yuan et al., 2024), especially on resource-
constrained devices where batching is not an option (Yu et al., 2022; Agrawal et al., 2024).

To enhance the hardware performance of LLM inference at the edge, several approaches have been
proposed, including model compression and adaptive inference techniques. Particularly, quanti-
zation has been widely studied, to adopt low-precision representations for the weights (Yu et al.,
2021) and/or activations (Tan et al., 2024), as well as its Key-Value (KV) cache (Hooper et al.,
2024). Nevertheless, most existing approaches apply a uniform quantization scheme across both
prefill and decoding stages, which presents two key limitations: i) They overlook the distinct fault
tolerances against quantization errors in prefill and decoding stages, leading to a significant accuracy
drop while reducing the bit-width for mobile-scale LLMs; ii) Since the decoding phase is memory-
bound, reducing the bitwidth in this stage is more effective in improving hardware performance. As
such, previous uniform quantization approaches can only achieve limited speedups, underscoring
the need for more targeted quantization strategies specifically tailored to LLM decoding.
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Figure 1: Illustration of the conventional paradigm of quantized LLM inference (left) and our
method that comprises phase-aware precision allocation and progressive mixed-precision decod-
ing (right). Our approach is motivated by i) the distinct error resilience observed during the prefill
and decoding phases, and ii) the increasing fault tolerance as decoding progresses to longer tokens.

By observing the key limitations in prior work, this paper identifies a novel insight for LLM weight
quantization: The prefill phase, as well as earlier parts of the decoding phase, are more sensi-
tive to approximation errors from quantization, than later parts of the autoregressive generation
process. Building on this insight, we propose a novel LLM inference method that counteracts the
limitations of existing approaches by means of a phase-aware and progressive reduced-precision
approach, shown in Figure 1. Specifically, our method departs from the existing deployment ap-
proaches that employ uniform quantization precision throughout the LLM inference process and
introduces phase-aware precision allocation. By considering the distinct redundancy, sensitivity to
approximations, and arithmetic intensity of the prefill and decoding phases, our scheme tailors the
arithmetic precision to each phase’s characteristics. This leads to both maintained generation quality
through high-precision prompt encoding during prefill, and improved sustained throughput through
reduced precision during decoding.

To further alleviate the memory-boundedness of decoding, we introduce progressive mixed-
precision decoding (PMPD), a novel decoding scheme that gradually reduces precision throughout
the generation of the LLM response. Based on the observation that tokens generated later in the
output sequence are more resilient to approximations while earlier tokens are more sensitive, our
method employs weight quantization as an approximation mechanism and progressively reduces
the numerical precision during the decoding phase. To balance generation quality with decoding
throughput, we formulate precision scheduling as a constrained optimization problem with the ob-
jective of minimizing the average bitwidth while preserving output quality. As a solution, we de-
sign two complementary precision-switching schedulers, one high-performance task-specific static
scheduler and one flexible task-agnostic learned scheduler, to strategically determine the highest-
performing precision-reduction time. By applying our method on Vicuna-7B, MobileLLaMA-1.4B,
Stable LM Zephyr-3B, and Phi-1.5 across diverse language tasks, we achieve decoding throughput
gains of 3.8-8.0× on NPU platform and 1.40-12.20× speedup on LLM linear layer computations on
GPU. The main contributions of this work can be summarized as follows:

• A novel phase-aware precision allocation strategy that optimizes precisions differently for
the prefill and decoding phases, leveraging the distinct error resilience of each stage to
achieve an extremely low average bitwidth for mobile-grade LLMs.

• A progressive mixed-precision decoding scheme that progressively reduces the precision
as decoding progresses to longer token sequences, effectively improving the hardware per-
formance in the memory-bound LLM decoding stage.

• A prompt-agnostic static scheduler and a task-agnostic learned scheduler for precision
switching, enabling the flexible deployment of our approach across diverse scenarios, ac-
commodating varying data availability constraints and generation quality requirements.

2 BACKGROUND AND RELATED WORK

2.1 LOW-PRECISION LLM INFERENCE

Several quantization approaches have been employed to reduce the precision of the weights (Fran-
tar et al., 2023), activations (Dettmers et al., 2022; Tan et al., 2024) and KV cache entries of
LLMs (Hooper et al., 2024), aiming to boost their computational efficiency.
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Weight-only Quantization. In particular, weight-only quantization approaches for LLMs result in
remarkable speedups upon deployment on commodity platforms, by alleviating the volume of mem-
ory transactions during decoding which, dominated by weight transfers, forms the main processing
bottleneck in LLM inference (Yuan et al., 2024). Along these lines, and inspired by relevant lit-
erature on deep neural networks (DNNs) (Yu et al., 2021), Any-Precision LLM (Park et al., 2024)
enables the post-training quantization of a single set of weights to multiple lower precisions. This
creates a family of variably quantized model variants, without any storage overhead to the original
model. To further improve the performance of low-bit quantization, Dense-and-Sparse Quantization
(DNS) (Kim et al., 2024) increases the average bitwidth by storing a small fraction of outlier weights
in full precision while keeping the remaining weights in quantized format. Finally, BitNet (Ma et al.,
2024) introduces ternary weights, but requires costly quantization-aware training. In contrast, this
work focuses on low-overhead post-training quantization for efficient LLM inference.

Nonetheless, existing methods typically adopt a uniform precision across phases, which also remains
fixed across all input prompts. Although this approach can deliver near lossless approximate infer-
ence with very low precisions on highly redundant large-scale LLMs, it often struggles to maintain
performance under aggressive quantization (e.g. 2 or 3 bits) for smaller-scale models. Our approach
takes advantage of the low memory footprint solution provided by Any-Precision LLM to accelerate
LLM inference, but adopts a dynamic precision lowering methodology, which considers the LLM
inference phase and input prompt at hand, to push the limits of the adopted precision.

2.2 PRECISION-ADAPTIVE APPROACHES

The proposed approach exploits weight quantization, through a dynamic phase-aware and progres-
sive precision lowering methodology. As such, more relevant to our method is a line of work that
proposes ways to dynamically adapt bitwidth at run time.

Precision-Adaptive Training. MUPPET (Rajagopal et al., 2020), CPT (Fu et al., 2021) and
AdaPT (Kummer et al., 2023) aim to improve the efficiency of the training stage by dynamically
adjusting the arithmetic precision throughout the training process. This family of methods focuses
primarily on classification tasks. In contrast, our method is optimized for the characteristics of LLMs
and focuses on improving the efficiency of the inference stage.

Mixed-Precision Inference. HAQ (Wang et al., 2019) and HAWQ (Dong et al., 2019; 2020) allow
for different precisions across the layers of a given DNN. Nonetheless, the selected precision re-
mains fixed across all processed input samples. Bit-mixer (Bulat & Tzimiropoulos, 2021) allows a
similar utilization of mixed precision across layers, but can adjust the selected bitwidths in a per-
sample manner. CascadeCNN (Kouris et al., 2018) adopts different-precision variants of the same
DNN, organised in a low-to-high precision classifier cascade. Samples that fail to meet hand-tuned
confidence-based criteria on the low-precision stage are propagated for re-computation with higher
precision. As before, these approaches are developed for CNN-based classification tasks and are not
off-the-shelve applicable to the autoregressive decoding process of LLM inference. Closer to our
work, LLM-PQ (Zhao et al., 2024) adjusts model precision based on the hardware support of dif-
ferent servers, along with a phase-aware model partitioning, targeting a distributed LLM inference
serving setup. In contrast, our approach adapts precision at different time steps rather than across
different machines and is optimized for edge-based deployment.

3 MOTIVATION

3.1 OBSERVATION ONE: DIFFERENT ERROR RESILIENCE IN PREFILL AND DECODING

Recent work has shown that allocating larger model capacity to the prefill phase for natural language
understanding allows for reduced capacity in the decoding phase for natural language generation,
while producing responses with both high quality and improved efficiency (Aishwarya et al., 2024).
Inspired by this, we aim to investigate the distinct redundancy and resilience exhibited by the prefill
and decoding phases in LLM inference.

To this end, we target three diverse language tasks and compare the response from two variants of
the same LLM (Vicuna-7B (Chiang et al., 2023)): i) a uniformly low-precision variant with 2-bit
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Figure 2: Phase-aware Precision Allocation. Here prefilling was performed by 2- (top) or 3-bit
(bottom) Vicuna-7B, while decoding employed the 2-bit model for both cases. We observe three
key improvements. i) enhanced reasoning abilities. The model demonstrated higher accuracy for
numerical tasks, such as calculating Fibonacci numbers (left). ii) improved instruction-following.
The model understood and responded to user instructions (middle). iii) strengthened emerging abil-
ities like creativity. The model successfully handled open-ended tasks such as poem writing (right).
More quantitative results are shown in Appendix A.2 and Figure 6.

quantized weights in both prefill and decoding, and ii) a two-precision variant with higher-precision
3-bit weights during prefill and lower-precision 2-bit weights during decoding.

Figure 2 shows the responses of the two LLM variants. We empirically observe that using the 3-bit
model for prefilling (bottom row) significantly enhances the generative capabilities of the uniform 2-
bit model (top row). We attribute this result to the significant steering role that the prefill phase has to
the output generation process. Specifically, a high-quality KV cache extracted from the input prompt
during prefilling provides good understanding of the task and information-rich context, enhancing in
this way the generation capability of the low-precision model. This insight motivates us to explore
and study different precision policies for the prefill and decoding phases.

3.2 OBSERVATION TWO: PROGRESSIVELY LOWERING PRECISION DURING DECODING

To further increase the output quality of reduced-precision generation, we explore the optimiza-
tion space of mixed-precision decoding. Figure 3 depicts our findings when applying different
approaches of scheduling between low- and high-precision weights. Namely, we explore employing
the high-precision weights in the first half, middle part, and last half of the generated tokens.

In line with our hypothesis, adopting high precision at the first half of the decoding stage yields the
best performance, matching the performance of using high precision throughout the generation pro-
cess. One intuitive explanation is that using high precision to generate the first few tokens minimizes
the error accumulation that would affect the rest of inference. This observation also aligns with the
“attention sink” phenomenon (Xiao et al., 2024), where it was observed that the attention scores tilt
heavily towards the initial tokens, indicating their higher importance. As a reference, we also tested
the performance of alternating the two models at each token, which also proves to work well. How-
ever, frequent precision switching introduces hardware overhead, both in terms of weights loading
time and additional memory traffic, so this schedule is not considered practical for real deployment.

4 METHODOLOGY

Motivated by our findings in Section 3, suggesting that tokens deeper in the decoded sequence are
more resilient to approximations, we adopt weight quantization as our approximation mechanism
and propose a new mixed-precision decoding method, comprising two key techniques: i) phase-
aware precision allocation and ii) progressive mixed-precision decoding (PMPD). With the objective
of maintaining generation quality while maximizing efficiency during inference, the proposed tech-
niques operate complementarily towards applying precision selection and scheduling strategies that
are tailored to the respective characteristics of the prefill and decoding phase of LLMs. To enforce
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Figure 3: Different schedules mixing 3- and 4-bit models for decoding. We examined text sum-
marization on CNN/DM using Phi-1.5. To ensure fair comparison, the same number of tokens are
generated by the 4-bit baseline. Moreover, the 4-bit model was used for prefilling for all schedules.

our approach with fine-grained control, we further introduce two types of runtime schedulers that
drive precision-switching decisions in a prompt- and task-agnostic manner, respectively.

Algorithm 1 presents our end-to-end methodology, consisting of: i) the offline stage (lines 1-8) and
ii) deployment (lines 9-22). The offline stage is responsible for producing variably quantized variants
of a given LLM (line 1), conducting the phase-aware precision allocation (line 2), and configuring
the selected type of precision-switching scheduler with optimized PMPD parameters for the target
use case (lines 3-8). Upon deployment, the scheduler assigns the allocated precisions to the prefill
and decoding stages, and triggers precision-switching events for each encountered prompt (line 20).

4.1 PHASE-AWARE PRECISION ALLOCATION

The proposed Phase-Aware Precision Allocation capitalizes on the unique characteristics of each
LLM inference phase and tailors accordingly the per-phase weight precision. Specifically, our in-
ference scheme dictates that a high-precision model is used during the prefill phase which in turn
enables the use of lower-precision weights in the memory-bound decoding phase, and thus yields
more efficient utilization of the memory bandwidth. Since the prefill phase is compute-bound and
the LLM inference latency is typically dominated by the decoding phase, using a high-precision
model during prefill introduces negligible latency overhead.

Formally, our scheme is parametrized with respect to: 1) a quantizer Q(·), which is typically a
post-training quantization (PTQ) method, 2) a set of precisions P , indicating the supported weight
bitwidths, 3) a reference value qref in a task-specific quality metric, and 4) a quality drop tolerance ϵ.
The objective of our method is to find the pair of smallest weight precisions for the prefill and
decoding phase, respectively, that achieves equal or greater algorithmic performance than qref − ϵ.

We solve this objective by means of a calibration step during the offline stage of our methodology.
First, given a pretrained LLM m, we obtain a set of variably quantized models {mp} containing one
quantized model variant per arithmetic precision p in precision set P using quantizer Q(·) (line 1).
Next, we perform the phase-aware precision allocation step (line 2). Concretely, the pretrained
LLM is evaluated on a calibration dataset, by assessing its algorithmic performance using different
combinations of prefill and decoding bitwidths. Through this process, we determine the lowest pair
of precisions that meet the quality target (line 2).

4.2 PROGRESSIVE MIXED-PRECISION DECODING

Exploiting the insights of Section 3.2, we introduce Progressive Mixed-Precision Decoding
(PMPD) to further improve decoding efficiency. As depicted in Figure 1-Right, PMPD exploits
the variability between different tokens in terms of resilience to approximation, by gradually lower-
ing the arithmetic precision of weights as we go deeper in the output sequence. In this manner, we
maintain higher precision for earlier tokens, which often play a more decisive role in the response
quality, while generating deeper tokens more rapidly through the use of narrower-bitwidth weights.

We parametrize PMPD with i) the precision set P and ii) the precision-switching schedule
S = {st(p) | p ∈ P}, which consists of the possible switching points of each precision defined as
st(p) ∈ [1, OL), where OL is the maximum output length of a given LLM. Here, the starting point
st(p) is defined as the token index of the output sequence where we perform a switch from the cur-
rent precision to the lower precision p. Under this setup, to obtain the highest-performing PMPD
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Algorithm 1: Progressive Mixed-Precision Decoding
Input: LLM m with max output length OL

Precision set P , Quantizer Q(·)
Task-agnostic calibration setDcalib, Task-specific validation set V (optional if using prompt-agnostic static scheduler)
Reference quality qref, Quality drop tolerance ϵ

Output: Output token sequence (t0, t1, ...)
/* - - - Offline Stage - - - */

1 {mp} ← Q(m, p) ∀p ∈ P ▷ Obtain variably quantized model variants
2 pprefill, pdecode ← PAPAlloc(P, Dcalib, qref, ϵ) ▷ Phase-aware precision allocation
3 if type(PMPScheduler) is prompt-agnostic static then
4 PMPDScheduler.S ← OfflineSolver({mp},V, qref, ϵ) ▷ Offline optimization of Eq. (1)
5 end
6 if type(PMPScheduler) is task-agnostic learned then
7 PMPDScheduler.model← SchedulerTrainer({mp},Dcalib) ▷ Train learned scheduler
8 end

/* - - - Deployment Stage - - - */
9 while not prompt queue is empty do ▷ Process incoming prompts

10 d0, K0V0 ← m
pprefill (prompt) ▷ Prefill Phase

11 t0 ← Sampler(d0)
12 if type(PMPScheduler) is task-agnostic learned then
13 PMPDScheduler.S ← PMPDScheduler.model(K0V0) ▷ Generate precision-switching schedule before decoding
14 end
15 pnew ← pdecode

16 for i← 0 to OL− 1 do ▷ Decoding Phase
17 di+1, Ki+1Vi+1 ← mpnew (ti, KiVi)
18 ti+1 ← Sampler(di+1)
19 if ti+1 is EOS then break ▷ End of sequence
20 pnew ← PMPDScheduler(i + 1) ▷ Precision-switching scheduler
21 end
22 end

configuration, we pose the following optimization problem:

min st(p), ∀p ∈ P \ {pmin} (1)
s.t. qref − ϵ ≤ q(S) & 0 ≤ st(p) < OL, p ∈ P (2)

p > q =⇒ st(p) ≤ st(q), p, q ∈ P (3)

where q(S) is the achieved quality of schedule S. Our objective function aims to minimize the
number of tokens to be processed in each precision in the precision set –except for the lowest pre-
cision pmin which will be used last and until the end of the sequence for higher throughput– subject
to meeting the specified quality target (first constraint in Eq. (2)), not exceeding the LLM’s maxi-
mum context length (second constraint in Eq. (2)), and following a progressive precision lowering
approach (precedence constraint in Eq. (3)).

4.3 PRECISION-SWITCHING SCHEDULER

Upon deployment, PMPD is enforced by means of a precision-switching scheduler (Figure 4). The
scheduler is configured with the PMPD parameters ⟨P, S⟩ and issues precision-switching actions to
the system processor following schedule S for each input prompt.

Given the set of variably quantized models {mp} that was generated in the phase-aware precision
allocation step (Section 4.1 and line 1), the objective function of Eq. (1) can be evaluated for all
combinations of precision-switching schedules. Ideally, the highest-performing schedule considers
all p ∈ P per-prompt per-step when deciding for a precision switch without the precedence con-
straint shown in Eq. (3). This schedule can be obtained through an exhaustive enumeration over
|P|OL schedules. However, for realistic values of |P| and OL, this computation quickly becomes
intractable. Besides, even if such a schedule can be efficiently found, it is, in most cases, imprac-
tical as it would require excessively frequent switching, e.g. per decoding step, between variably
quantized weights, aggravating the memory bandwidth demand (Section 3.2).

Instead, through our approach of progressive precision lowering during decoding, the total num-
ber of schedules to be examined is reduced to

∑|P|−1
r=0

OL!
r!(OL−r)!

(|P|−1)!
r!(|P|−1−r)! where r is the num-

ber of times the precision switches. Nonetheless, the search time for the optimal schedule in-
creases with OL and |P|, which is still prohibitive at run time. Hence, to further reduce the
search time for the optimal S to O(1), we parameterize the number of candidate precision-
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switching points, denoted by N , and add a range constraint to the second constraint in Eq. (2)
as st(p) ∈ {0} ∪ { OL

(N−1) ,
2OL

(N−1) , ...,
(N−2)OL
(N−1) , OL}. Under this setup, we propose two types of

schedulers: i) a prompt-agnostic static scheduler, where S is determined prior to deployment, and
ii) a task-agnostic learned scheduler, where S is derived dynamically for each prompt.

LLM

…

…

…

4-bit 3-bit 2-bit …

Precision-Switching 

Scheduler

Input: Per-prompt prefilled KV cache 
(For learned schedulers only)

Output: Precision-Switching Policy

Figure 4: Precision-switching scheduler.

Prompt-Agnostic Static Scheduler. To utilize an
efficient precision scheduler, we propose a static
approach that selects schedule S through an offline
optimization process (line 4) that utilizes a calibra-
tion set. While the precedence constraint in Eq. (3)
and the optimization objective in Eq. (1) still hold,
the achieved quality in Eq. (2) is approximated as
q(S) ≈ 1

|V|
∑

x∈V qx(S) where V is the validation
set and qx(S) is the measured quality score of the
schedule on a sample x.

As the validation set is defined per task, the static
scheduler remains prompt-agnostic (i.e. uses the
same precision-switching schedule for all prompts)
and task-specific. As such, this type of scheduler is
tailored to the resilience of the task at hand and has
the advantage of inducing close to no runtime overhead. However, by adopting a uniform sched-
ule within a given task, it requires the availability of a task-representative validation set, which is
often not a realistic assumption, and it does not exploit the variability in difficulty and resilience to
approximation across different prompts.

Task-Agnostic Learned Scheduler. To eliminate the need for a per-task validation set, we intro-
duce a trainable scheduler that adjusts the schedule S to each input prompt. For a given LLM, our
learned scheduler is trained on a generic, task-agnostic dataset and then applied across various down-
stream tasks, amortizing in this way its training cost. Specifically, we aim to devise a schedule given
the features of each input prompt. Training the scheduler to make very fine-grained per-step deci-
sions, however, would require both substantial model capacity and excessively frequent scheduler
invocation, which induce significant runtime overhead and counteract PMPD’s speedup benefits.

Hence, we utilize the features extracted in the prefill phase as inputs to our scheduler. With this
approach, we are able to maintain a lightweight architecture for the scheduler and introduce minimal
overhead during inference as the scheduler generates schedule S once before decoding (line 13). In
Section 5.3, we investigate different input features, i.e. KV caches and activations, from various
layers of the model and find that utilizing the prefilled KV cache is efficacious in most cases. Given
an input Key cache K ∈ RT×Dk and Value cache V ∈ RT×Dv , the output of Learned scheduler is
computed as O = MLP(Softmax( qθK

T

√
Dk

)V ), where qθ ∈ RDk is a learned query vector.

We also find that despite not requiring a task-specific validation set and labeled ground truths, our
learned scheduler performs close to the static and, in some cases, even outperforms it in both algo-
rithmic and hardware performance. Its architecture and training are detailed in Appendix A.1.

5 EVALUATION

Models and Datasets. We conducted experiments on edge-deployable models, including Vicuna-
7B (Chiang et al., 2023), MobileLLaMA-1.4B (Chu et al., 2023), Stable LM Zephyr-3B1, and Phi-
1.5 (Li et al., 2023b), evaluating their zero-shot generative performance on news summarization,
dialogue summarization, and translation tasks using the CNN/DM (Hermann et al., 2015), Dialog-
sum (Chen et al., 2021), and IWSLT French-English datasets (Cettolo et al., 2017), respectively.
These tasks encompass context understanding and text generation, providing a comprehensive eval-
uation of PMPD2. We also tested open-ended question answering on MT-Bench (Chiang et al.,
2023), a special case where Static scheduler is infeasible due to the absence of a validation set.

1https://stability.ai/news/stablelm-zephyr-3b-stability-llm
2Hereafter, PMPD refers to our approach including both phase-aware precision allocation and progressive

mixed-precision decoding.
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Method

CNN/DM Dialogsum IWSLT
Model (↓): Vicuna-7B Model (↓)): Vicuna-7B Model (↓)): Vicuna-7B

MobileLlaMA , Phi-1.5 MobileLlaMA, Phi-1.5 MobileLlaMA, Zephyr-3B

Bit Rouge-L/ Bit Rouge-L/ Bit BLEU/
BERTScore BERTScore SacreBLEU

Baseline-l 2 8.30 / 78.4 2 10.2 / 75.5 2 1.2 / 1.2
Baseline-h 3 24.2 / 86.9 3 24.4 / 88.2 3 31.6 / 31.6

DNS 2.39 24.2 / 86.8 2.0 - 2.68 27.6 / 27.6
PMPD-Static 2.39 24.3 / 87.0 2.0 25.0 / 88.2 2.68 31.0 / 31.1

PMPD-Learned 2.43 24.0 / 86.7 2.74 24.5 / 88.2 2.37 29.9 / 29.9
Baseline-l 3 16.3 / 83.3 3 15.8 / 84.1 3 9.8 / 9.83
Baseline-h 4 17.2 / 83.5 4 16.8 / 84.9 4 12.7 / 12.7

DNS 3.37 17.4 / 83.5 3.21 14.7 / 84.4 3.65 12.0 / 12.0
PMPD-Static 3.37 17.6 / 83.7 3.0 17.0 / 85.0 3.65 12.6 / 12.6

PMPD-Learned 3.19 16.6 / 83.2 3.21 17.1 / 85.0 3.48 11.8 / 11.8
Baseline-l 3 13.4 / 82.4 3 15.3 / 85.1 3 21.1 / 21.1
Baseline-h 4 16.2 / 84.0 4 18.0 / 86.1 4 30.4 / 30.4

DNS 3.71 12.4 / 81.8 3.30 16.1 / 85.7 3.34 28.2 / 28.2
PMPD-Static 3.71 16.2 / 84.0 3.30 18.1 / 86.2 3.0 29.7 / 29.7

PMPD-Learned 3.09 15.5 / 83.4 3.52 17.9 / 86.1 3.34 29.8 / 29.8

Table 1: Performance comparison of Static and Learned schedulers against low-precision (baseline-
l) and high-precision (baseline-h) baselines, as well as DNS with the same average bitwidth as the
scheduler with highest performance. For CNN/DM and Dialogsum, models used from top to bottom
are Vicuna-7B (2/3 bit), MobileLLaMA (3/4 bit), and Phi-1.5 (3/4 bit). For IWSLT, the models are
Vicuna-7B, MobileLLaMA, and Zephyr-3B (3/4 bit). Pairwise winners between the scheduler and
DNS are underlined, while the highest overall scores are in bold.

Baselines. We compare against single-precision quantized models, and quantized models enhanced
with Dense-and-Sparse decomposition (DNS) (Kim et al., 2024), with DNS ratios adjusted to match
PMPD’s average bitwidth. PMPD’s average bitwidth is calculated as the weighted average of
bitwidths over decoding steps, weighted by the number of tokens generated at each precision.

PMPD Implementation Details. For PTQ method, we adopted the nested quantization method
of Any-Precision LLM (Park et al., 2024), ensuring that using multiple weight precisions incurs
no memory footprint overhead. We further explore the effect of using other PTQ methods in Ap-
pendix A.7. The Static scheduler finds a schedule that minimizes high-precision steps on each
benchmark’s validation set while maintaining lossless performance. The Learned scheduler was
trained using the first 256 samples from the C4 test dataset as the seed dataset. The high-precision
variant of each model is quantized to the lowest lossless precision determined by perplexity on the
C4 dataset, while low precision is defined to be one bit lower than the high precision.

GPU Latency. Following Any-Precision LLM (Park et al., 2024), we evaluated the latencies of
linear layers in the LLMs across different Nvidia GPUs, including RTX 4090 and A40. As our
implementation was based on PyTorch (Paszke et al., 2019), we employed its built-in Profiler tool
and reported the average self CUDA time metric over 100 forward passes to ensure reliable results.

NPU Simulation Measurements. To estimate the processing speed of PMPD when deployed
on an NPU, we developed an analytical performance model of the hardware architecture of
FlightLLM (Zeng et al., 2024), an LLM-optimized accelerator, adapted to support multi-precision
weight loading. More details can be found in Appendix A.6.

5.1 ALGORITHMIC PERFORMANCE

Table 1 presents the algorithmic performance of PMPD in comparison with both single-precision
baselines and DNS. We observe that both Static and Learned schedulers achieve significant bitwidth
reduction while maintaining competitive performance.

PMPD vs. Baselines: Both schedulers deliver lossless performance on the CNN/DM and Di-
alogsum datasets with up to 33% reduction in bitwidth, highlighting their ability to effectively
capture context and generate high-quality outputs. In some cases, PMPD even outperforms the
high-precision baseline by up to 2.4%. On the IWSLT dataset, Static experiences a moderate perfor-
mance drop of up to 2.3%, while still reducing the average bitwidth by 9-33%. Notably, our results
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Figure 5: End-to-end NPU throughput. Speedup ratios are obtained in comparison with fp16 model.

Vicuna-7B MobileLlama Phi-1.5 Zephyr-3B
Attn Proj. MLP Proj. Attn Proj. MLP Proj. Attn Proj. MLP Proj. Attn Proj. MLP Proj.

RTX 4090 Baseline-h 6.25× 11.32× 1.25× 2.50× 1.32× 1.70× 3.33× 2.54×
PMPD 6.25× 12.20× 1.40× 2.81× 1.51× 1.84× 2.73× 2.82×

A40 Baseline-h 5.81× 3.77× 3.00× 3.96× 2.57× 2.83× 3.50× 3.02×
PMPD 6.58× 4.60× 3.37× 4.74× 2.77× 3.51× 3.81× 4.27×

Table 3: GPU speedup ratios of PMPD for linear layers compared to the fp16 model. Two repre-
sentative layers per model are shown: attention projection (Attn Proj.) and MLP projection (MLP
Proj.). PMPD speedup was calculated as a weighted average of kernel latencies in two precisions,
weighted by decoding steps. Additional details are included in Appendix A.5.

show that using high-precision models in the decoding phase is not always necessary. Also, Static
is able to accurately identify such scenarios, achieving the maximum bitwidth reduction possible.

PMPD vs. DNS: DNS is a robust baseline that maintains low-bit precision by selectively handling
outlier values. Nonetheless, our Static scheduler consistently outperforms DNS at the same bitwidth
across all tasks, achieving up to 29% higher BLEU on the IWSLT dataset. Additionally, the per-
formance gain increases with smaller models: DNS performs comparably to Static on CNN/DM for
Vicuna-7B but lags behind by 23% in Rouge-L on MobileLLaMA. This indicates that PMPD is
particularly well-suited for edge deployment scenarios.

Model Method Bit Rouge-L/
BERTScore

Vicuna-7B

2bit 2 16.7 / 80.4
3bit 3 41.0 / 89.9

PMPD-Learned 2.68 39.6 / 88.9
DNS 2.68 36.7 / 88.2

Zephyr-3B

3bit 3 28.6 / 87.2
4bit 4 40.8 / 89.6

PMPD-Learned 3.48 40.7 / 89.7
DNS 3.48 35.3 / 88.6

MobileLLaMa

3bit 3 22.3 / 82.4
4bit 4 28.9 / 85.8

PMPD-Learned 3.39 29.1 / 85.4
DNS 3.39 25.4 / 84.2

Phi-1.5

3bit 3 27.9 / 85.7
4bit 4 35.4 / 87.8

PMPD-Learned 3.56 35.7 / 87.9
DNS 3.56 29.9 / 86.7

Table 2: PMPD’s MT-Bench perfor-
mance with fp16 output as reference.

Static vs. Learned Scheduler: On average, the Static
scheduler achieves a slightly higher bitwidth reduction (0.66
vs. 0.63 bits) and frequently outperforms Learned, showing
more stable performance with less variance. This is likely
because Static leverages task-specific data, while Learned
may face challenges from data distribution shifts between its
training set and each test set.

Open-Ended Tasks: We used MT-Bench as a challenging
benchmark covering a wide range of open-ended tasks. In
particular, we demonstrate the usefulness of Learned in this
scenario where Static is not feasible due to the absence of
task-specific validation set. We measured the faithfulness of
the quantized models to the fp16 model by evaluating the
similarity of their outputs. As shown in Table 2, Learned
achieves an average bitwidth reduction of 0.47 with no drop
in BERTScore and only up to 1.4 points drop in Rouge-L. Additionally, it consistently outperforms
DNS with 13.9-18.4% higher Rouge-L, demonstrating that PMPD better preserves model fidelity
in complex tasks. Moreover, Learned’s relative performance improves with smaller models, making
it particularly promising for reducing quantization error in mobile-friendly models.

5.2 HARDWARE PERFORMANCE

NPU Evaluation. We compare the attainable throughput of PMPD against fp16 and reduced-
precision baselines on an LLM-optimized NPU (Zeng et al., 2024) by emulating their execution.
As shown in Figure 5, PMPD achieves a significant speedup of 3.8-8.0× over fp16 across various
models and datasets, with more pronounced speedup for the larger Vicuna-7B, due to its higher re-
silience to quantization errors, enabling more aggressive 2-bit precision lowering. Overall, PMPD
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Figure 6: Performance of the phase-aware precision allocation, 3/2 bits for Vicuna-7B, 4/3 bits for
the other models.

achieves more than 50 tokens/s and 15 tokens/s for mobile-grade LLMs and for the larger Vicuna-
7B, respectively, in spite of the limited bandwidth (32 GB/s for NPU vs. 1008 GB/s for RTX4090
GPU), showcasing its effectiveness and suitability for LLM deployment on mobile devices.

GPU Evaluation. Focusing on PMPD’s GPU deployment, Table 3 compares the latency of fp16
and quantized linear layers, reporting CUDA kernel runtimes with batch size of 1. PMPD achieves
speedups of 1.40-6.58× for smaller attention projection layers and 1.84-12.20× for larger feedfor-
ward projection layers. We hypothesize that the lower speedup on smaller layers is primarily due to
the memory-bound nature of matrix-vector multiplication. Despite the accelerated GPU execution,
we observed that CPU-side processes for GPU kernel launching become a bottleneck, resulting in
suboptimal GPU utilization. Potential solutions include leveraging CUDA Graph (Gray, 2019) to
launch multiple GPU operations simultaneously, which we leave for future research.

5.3 ABLATION STUDIES
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Figure 7: Normalized scores of
different Learned schedulers
variants across CNN/DM,
IWSLT and MT-Bench on
MobileLLaMA.

Phase-Aware Precision Allocation. Figure 6 analyzes the im-
pact of phase-aware precision allocation on performance. Rouge-
L on CNN/DM improves by an average of 4.3 points, BERTScore
on Dialogsum increases by 3.6, and BLEU improves by 9.45.
The 2-bit variant of Vicuna-7B benefits significantly from using
a higher-precision model during the prefill phase, as it struggles
with instruction following and often outputs incomplete tokens or
repeated prompts. Using a 3-bit variant during prefilling improves
language comprehension and generation. Latency overhead from
using higher precision is minimal, ranging from 0.07% to 1.05%,
confirming that the prefill phase is compute-bound. This supports
the efficiency of phase-aware precision allocation for system opti-
mization.

Learned Scheduler Design. We study different choices of inputs for Learned, including activa-
tions3 and KV caches from the first, middle, and last Transformer attention blocks. We test two
random schedulers: i) using a uniform distribution (random uniform) and ii) matching the label dis-
tribution of the training dataset (random prior). As shown in Figure 7, using the KV cache from
the last attention block achieves the highest normalized score with significant bitwidth reduction,
highlighting its effectiveness in capturing contextual information for precise switch point predic-
tion. This scheduler also outperforms the two random schedulers, indicating that it is effectively
learning patterns in the KV cache.

6 CONCLUSION

Taking advantage of the insight that later stages of the LLM decoding process demonstrate enhanced
resilience to approximations, we introduced PMPD, a novel technique that progressively reduces
the precision of the model’s weights during inference. The proposed approach considers the distinct
LLM inference phases (prefill vs decoding) and the depth of the decoding sequence to schedule
precision changes in either a prompt-agnostic static or a task-agnostic learnable manner. We show
that PMPD can generate high-quality responses to prompts, while significantly reducing the adopted
average bitwidth, leading to remarkable gains in inference speed across GPU and NPU platforms.

3Specifically, we use the input activations to the final projection layer of the attention block.
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A APPENDIX

A.1 LEARNED SCHEDULER DETAILS

A.1.1 MODEL ARCHITECTURE

To avoid runtime overhead, we employ a lightweight attention module for Learned scheduler. Given
an input Key cache K ∈ RT×Dk and Value cache V ∈ RT×Dv , the output of Learned scheduler is
computed as:

O = Softmax(
qθK

T

√
Dk

)V (4)

Logits = Softmax(MLP (O)) (5)

where MLP is a feedforward neural network with one hidden layer and a ReLU as its activation,
and qθ ∈ RDk is a learned query vector. In other words, the trainable parameters of the network
include the query vector and the parameters of the MLP.

A.1.2 TRAINING APPROACH

To prepare the training dataset, we use the C4 dataset as the seed dataset and randomly truncate each
sample to create a completion task. For each sample, we generate N sequences, each corresponding
to a high-precision step from {0, OL

N−1 ,
2OL
N−1 , . . . ,

(N−2)OL
N−1 , OL}. The ground-truth label is set to

the lowest high-precision step such that the Rouge-L score of the sequence matches or exceeds that
of the fp16 model output.

During training, we use a cross-entropy loss function as the objective.

A.2 ERROR RESILIENCE OF PREFILL AND DECODE BITWIDTH

Decoding/Prefill Strategy Rouge-L
2bit Prefill, 2bit Decode 18.3
3bit Prefill, 2bit Decode 28.1
2bit Prefill, 3bit Decode 22.2

Table 4: Rouge-L scores for different decoding and prefill bitwidth allocations. Vicuna-7B and MT-
Bench are used. Outputs from fp16 model are used as reference answer.

As shown in Table 4, we observed that using a higher bitwidth for prefilling significantly improves
output quality. On the other hand, using higher bitwidth for decoding does not improve the perfor-
mance as much. This demonstrates that a higher bitwidth should be used for prefilling.

A.3 PERFORMANCE OF PMPD FOR LARGER MODELS

While PMPD mainly targets edge and mobile applications, it would be interesting to see if
larger models could also benefit from PMPD. We conducted additional experiments using Llama3-
8B (AI@Meta, 2024) and longchat-16k-13B (Li et al., 2023a) models, with a static scheduler for
PMPD given the availability of validation data. The results shown in Table 5 demonstrate our
method’s generalizability across model scales.

A.4 GPU END-TO-END LATENCY SPEEDUP

We provide the GPU end-to-end latency speedup as compared to FP16 models in Table 6. PMPD
consistently speedup improvement over the uniform quantization baseline upto 0.31 ×.
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Method

CNN/DM Dialogsum IWSLT
Model (↓): Llama3-8B Model (↓)): Llama3-8B Model (↓)): Llama3-8B

Longchat-13B Longchat-13B Longchat-13B

Bit Rouge-L/ Bit Rouge-L/ Bit BLEU/
BERTScore BERTScore SacreBLEU

Baseline-l 2 4.35 / 75.8 2 5.58 / 81.7 2 0 / 0.16
Baseline-h 3 18.3 / 85.2 3 19.0 / 85.8 3 23.1 / 23.2

PMPD-Static 2.66 17.8 / 84.8 2.31 18.7 / 85.8 2.71 22.1 / 22.1

Baseline-l 2 9.29 / 72.8 2 10.6 / 80.8 2 2.94 / 2.94
Baseline-h 3 19.9 / 86.4 3 19.9 / 86.6 3 21.6 / 21.6

PMPD-Static 2.37 19.9 / 86.4 2.0 20.3 / 86.5 2.71 21.4 / 21.4

Table 5: Performance of PMPD on models larger than 7B.

GPU Method Vicuna-7B MobileLlama Phi-1.5 Zephy-3B

4090 Baseline-h 3.05× 1.80× 1.75× 2.07×
PMPD 3.36× 1.90× 1.83× 2.22×

A40 Baseline-h 2.67× 1.71× 1.66× 1.91×
PMPD 2.91× 1.82× 1.74× 2.07×

Table 6: End-to-End GPU latency speedup as compared to FP16 model.

A.5 GPU MATRIX MULTIPLICATION LATENCY EVALUATION

Table 7 and Table 8 report the GPU kernel latency using the self CUDA time metric on RTX 4090
and A40 GPUs. For PMPD, the latency is calculated as a weighted average of the fixed-bitwidth
latencies, where the weights correspond to the average number of decoding steps performed at each
bitwidth across datasets. To select between the Static and Learned schedulers, we choose the one
with the highest performance. For MobileLLaMA and Vicuna-7B, bitwidths are averaged over the
CNN/DM, Dialogsum, and IWSLT datasets. For Phi-1.5, bitwidths are averaged over the CNN/DM
and Dialogsum datasets, while for Zephyr-3B, the bitwidth is from the IWSLT dataset.

A.6 NPU SIMULATION DETAILS

We developed an analytical performance model to emulate the deployment of PMPD on
FlightLLM (Zeng et al., 2024), an NPU architecture that has been optimized for LLM inference.
FlightLLM consists of: i) a unified Matrix Processing Unit that can perform multiple types of mul-
tiplications between matrices and/or vectors through a hierarchical structure of multiply-accumulate
(MAC) units, ii) a Special Function Unit where LLM-specific operations such as softmax, layer
normalisation etc are mapped and iii) an optimized memory hierarchy for the computational pattern
of LLMs, while keeping all activation on-chip during decoding. The underlying design space of
FlightLLM’s NPU architecture is traversed through a design space exploration method that takes
into consideration the need to support different precisions of LLM weights. For our experiments,
we instantiate two NPU configurations consisting of: 4K and 16K MAC units with 1 GHz clock
frequency (i.e. 8 and 16 teraops/sec (TOPS) peak throughput, respectively) for the deployment of
smaller- (MobileLLaMa-1.4B, Phi-1.5) and larger-scale LLMs (Vicuna-7B), respectively, and with
32 GB/s off-chip memory bandwidth.

A.7 ALTERNATIVE PTQ METHOD

Our approach offers a plug-and-play framework compatible with any PTQ method. To showcase its
generalizability, we evaluate the performance of both Static and Learned schedulers using GPTQ, a
uniform quantization technique (Frantar et al., 2023). As shown in Table 9, both schedulers deliver
performance that closely matches the high-precision baseline.
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Model q proj k proj v proj o proj up proj down proj gate proj
MobileLLaMA-1.4B-Chat
fp16 5 5 5 5 13.3 15 13
w2 3 3 3 3 4 5 4
w3 3 3 3 3 4.3 5 4.57
w4 4 4 4 4 5.1 6 5.97
phi-1 5
fp16 5 5 5 5 10.6 11.8 -
w2 2.96 2.82 2.93 2.82 4.96 4.94 -
w3 3 2.81 2.89 2.91 5.36 5.92 -
w4 3.98 3.79 3.86 3.9 6.92 6.93 -
stablelm-zephyr-3b
fp16 10 10 10 10 11 18 11
w2 2 2 2 4 6 4 6
w3 4 4 4 4 6 6 6
w4 5 3 5 3 8 7.1 6
vicuna-7b-v1.5
fp16 25 25 25 25 97.1 101.93 97
w2 4 4 3.8 4 7 8 7
w3 4 4 4 4 8.1 9 8
w4 5 5 5 5 12 12 12

Table 7: GPU matrix kernel latency (µs) on RTX 4090.

Model q proj k proj v proj o proj up proj down proj gate proj
MobileLLaMA-1.4B-Chat
fp16 18 18 18 18 42.4 47.5 42
w2 4.9 4.9 5 4.7 7.4 8 7.5
w3 5 5 5 5 8 9 8
w4 6 6 6 6 11 12 10.2
phi-1 5
fp16 18 18 18 18 62.2 60.3 -
w2 5.9 5.7 5.9 5.9 10 11 -
w3 6 6 6 6 12 13 -
w4 7 7 7 7 20.3 21.3 -
stablelm-zephyr-3b
fp16 28 28 28 28 66.1 70.1 66.4
w2 6 6 6 6 11 10 11
w3 7 7 7 7 13 12.9 13
w4 8 8 8 8 22.1 23.2 22
vicuna-7b-v1.5
fp16 64 64 64 64 170 162 170
w2 9 9 9 9 24.3 30.9 24.2
w3 11.2 11 11 11 33.9 43 33.4
w4 21.2 21.5 21.3 21.2 46.6 58.9 45.9

Table 8: GPU matrix kernel latency (µs) on A40.

A.8 EXAMPLE OUTPUTS BY PMPD

In this section, we include some example outputs by Vicuna-7B with PMPD on MT-Bench, The
precisions used are 3 and 4 bits.

A Success Case
Question: How do the stages of life shape our understanding of
time and mortality?

Answer: The stages of life can shape our understanding of time
and mortality in several ways.

1. Childhood: Children are often more focused on the present
moment and less concerned with the future. This can lead to a
more relaxed and flexible understanding of time and mortality.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Method Bit Rouge-L BertScore
3bit 3 9.71 82.7
4bit 4 16.0 84.2
PMPD-Static 3.63 16.0 84.6
PMPD-Learned 3.02 14.2 84.2

Table 9: Performance of GPTQ-quantized MobileLLaMA on Dialogsum.

2. Adulthood: As we enter into adulthood, we become more aware
of the passage of time and the possibility of death. This can
lead to a more pessimistic view of time and mortality.

3. Midlife: Midlife is a time of significant life changes,
including career changes, family responsibilities, and the
possibility of death. This can lead to a more realistic and
optimistic view of time and mortality.

4. Later life: As we age, we may experience changes in our lives
and the possibility of death. This can lead to a more realistic
and pessimistic view of time and mortality.

Overall, the stages of life can shape our understanding of time
and mortality by shaping our understanding of the present moment
and the possibility of death.

The PMPD model is able to produce sensible results for humanity subjects.

A Failure Case
Question: When a number is divided by 10, the remainder is 4.
What is the remainder when twice the number is divided by 4?

Answer: To find the remainder when a number is divided by 4, you
can use the following steps:

1. Write down the number you want to find the remainder of.

2. Write down the number you want to find the remainder of again.

3. Multiply the number you wrote down 2 times.

4. Write down the result.

Here, while coherent texts are generated, the answer is not very relevant to the question.
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